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1 Overview
This document contains the following:

• Section 2: Mathematical proofs of the statements mentioned in the main paper

• Section 3: Additional registration qualitative and quantitative results

• Section 4: Several ablation experiments are presented, replacing components of Deep-
UME by alternatives in order to evaluate the contribution of the proposed construction

• Section 5: DeepUME architecture details

2 Mathematical Proofs

2.1 Discrete UME
Relying on the original UME method, we prove the closed form formula presented in the
paper in equation (1).

Theorem 2.1 Let R be a rotation matrix and P1 and P2 be two point clouds satisfying the
relation P2 = R ·P1. Let F be an SO(3) invariant feature on P1 and P2, namely

F(p) = F(Rp), ∀p ∈ P1, (1)

then

MP2(F) = R ·MP1(F), where MPi(F) =
1
|Pi|

∑p∈Pi p1F(p)
∑p∈Pi p2F(p)
∑p∈Pi p3F(p)

 , p =

p1
p2
p3

 . (2)

In order to prove Theorem 2.1, we first state and prove a discrete version of the UME
theorem from which Theorem 2.1 follows immediately as a special case. We begin by pre-
senting the continuous UME theorem, [4], in the specific case where the translation vector
t = 0.
© 2021. The copyright of this document resides with its authors.
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Definition 2.1.1 Let k :Rn→R be a compactly supported measurable function and w1, . . . ,wD :
R−→ R are measurable functions. The n×D UME matrix of k with respect to w1, . . . ,wD is
defined by

[UMEk]i, j :=
∫
Rn

xiw j(k(x))dx. (3)

Theorem 2.2 (Continuous UME) [4], Let f ,g : Rn → R, be two functions with compact
supports related by a rotation R, i.e. g(x) = f (Rx) for all x ∈ Rn. Then, for any set of D
measurable functions w1, . . . ,wD such that wi(0) = 0 for all i,

UME f = R ·UMEg . (4)

We next provide the discrete analog of Theorem 2.2 where the continuous functions f
and g are replaced by the invariant functions estimated from the observed point clouds using
the DNN, and integration is replaced by summation on the elements in the point clouds.

Definition 2.2.1 LetP ⊆R3 be a finite point cloud,F a feature (function) onP and w1, . . . ,wd :
R→ R measurable functions. The discrete n×D UME matrix of P and F with respect to
w1 . . . ,wD is defined to be

[UMEF
P ]i, j = ∑

p∈P
piw j(F(p)). (5)

Proposition 2.2.1 Let P1 and P2 be two point clouds satisfying P2 = RP1, and F is an
invariant feature on P1 and P2. For any D functions w1, . . . ,wd : R→R satisfying wi(0) = 0
for all i

UMEF
P2

= R ·UMEF
P1

. (6)

We note that if we take w1 to be the identity function and denote the first column of
UMEF

P1
and UMEF

P2
by [UMEF

P1
]1 and [UMEF

P2
]1 respectively, we have

1
|Pi|

[UMEF
Pi
]1 = MPi(F), i = 1,2. (7)

Hence, Theorem 2.1 is followed by Proposition 2.2.1 trivially, as a special case.
Proof of Proposition 2.2.1 The main idea in our proof is to approximate the discrete

sums defining the discrete UME matrices in (6) by continuous integrals and apply the con-
tinuous UME theorem. Given ε > 0, P1, P2 and the invariant feature F , we construct two
compactly supported measurable functions fε ,gε : R→ R such that gε(x) = fε(R−1x). We
then apply Theorem 2.2 to fε and gε , and taking ε → 0 we will conclude.

Denote the ball of radius ε centered at a point p ∈ R3 by Bε(p) . Define the functions fε

is and gε by

fε(x) := ∑
p∈P1

F(p)1Bε (p)(x), gε(x) := ∑
p∈P2

F(p)1Bε (p)(x). (8)

See the illustration of fε(x) in Figure 1. We now prove that the desired relation gε(x) =
fε(R−1x) holds: Directly from the definition of fε ,

fε(R−1x) (8)
= ∑

p∈P1

F(p)1Bε (p)(R
−1x). (9)
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Since a rigid transformation maps any ball to a ball with the same radius, we have that
1Bε (p)(R

−1x) is non-zero if and only if R−1x ∈ Bε(p):

R−1x ∈ Bε(p) ⇐⇒ x ∈ R(Bε(p)) ⇐⇒ x ∈ Bε(Rp). (10)

It is immediately follows that

1Bε (p)(R
−1x) = 1Bε (Rp)(x), ∀x ∈ R3. (11)

Substituting (11) into (9), and using the SO(3) invariance of F we have

fε(R−1x) = ∑
p∈P1

F(p)1Bε (p)(R
−1x) (12)

= ∑
p∈P1

F(Rp)1Bε (Rp)(x) (13)

= ∑
p∈P2

F(p)1Bε (p)(x) = gε(x). (14)

We have so far proved that fε(x) = gε(Rx) for all x. By Theorem 2.2 we have

UMEgε
= R ·UME fε . (15)

For sufficiently small ε , the balls defining fε do not intersect and therefore we have,

[UME fε ]i j
(8)
=
∫
R3

xiw j

(
∑

p∈P1

F(p)1Bε (p)(x)

)
dx (16)

=
∫
⊎

v∈P1
Bε (v)

xiw j

(
∑

p∈P1

F(p)1Bε (p)(x)

)
dx (17)

+
∫
R3\

⊎
v∈P1

Bε (v)
xi w j

 ∑
p∈P1

F(p)1Bε (p)(x)︸ ︷︷ ︸
=0


︸ ︷︷ ︸

w j(0)=0

dx (18)

= ∑
v∈P1

∫
Bε (v)

xiw j

(
∑

p∈P1

F(p)1Bε (p)(x)

)
dx (19)

= ∑
v∈P1

w j(F(v))
∫

Bε (v)
xidx. (20)

where
⊎

denotes a disjoint union of sets and the last equality stems from the fact that F(p)
is constant on Bε(v). By (20) and the integral mean value theorem we have that

lim
ε→0

1
Vol(Bε)

[UME fε ]i j = lim
ε→0

1
Vol(Bε)

∑
p∈P1

w j(F(p))
∫

Bε (p)
xidx

= ∑
p∈P1

w j(F(p)) lim
ε→0

1
Vol(Bε)

∫
Bε (p)

xidx︸ ︷︷ ︸
pi

= ∑
p∈P1

piw j(F(p))
(21)
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Figure 1: Bε(p) for p ∈P . Balls centers are the point cloud points, and each ball color represents the value of F(p).

This shows that

UMEF
P1

= lim
ε→0

1
Vol(Bε)

UME fε , (22)

and similarly it is easily proved that

UMEF
P2

= lim
ε→0

1
Vol(Bε)

UMEgε
. (23)

Finally, applying Theorem 2.2 on fε and gε we obtain:

UMEF
P2

= lim
ε→0

1
Vol(Bε)

UMEgε
= lim

ε→0

1
Vol(Bε)

R ·UME fε (24)

= R · lim
ε→0

1
Vol(Bε)

UME fε = R ·UMEF
P1

. (25)

This completes the proof.

2.2 SO(3)-invariant coordinate system
In the proposed method, point cloud raw coordinates are mapped to a transformation in-
variant representation by projecting them on the coordinate system defined by the principle
vectors of the point cloud PCA.

More specifically, given a point cloud P , the cloud center of mass (denoted by mP ) is
subtracted from each point coordinates, to obtain a centered representation P ′. The axes
of the new coordinate system are the principle vectors of the point cloud covariance matrix
given by

HP ′ = ∑
p∈P ′

ppT (26)

For a point p ∈ P ′, the new coordinates of p are defined to be cp = DT
P ′ · p where DP ′ is

a matrix whose columns are principle vectors. Formally, DP ′ is an orthogonal matrix for
which HP ′ = DP ′ΛΛΛDT

P ′ for a diagonal matrix ΛΛΛ. The resulting point cloud new coordinates
are denoted by C.

We shall now verify that the new axes (columns of the PCA matrix) are rotation co-
variant:

HRP ′ = ∑
p∈RP ′

RppT RT = RHP ′RT = RDP ′ΛΛΛ(RDP ′)
T . (27)
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That is,

DRP ′ = RDP ′ . (28)

Using (28), we easily prove that the projection coefficients on the new axes are rotation
invariant. Given P1 and P2 related by a rigid motion, we have

C1 =

{(
DP ′1

)T
p : p ∈ P1

}
=

{(
RT DP ′2

)T
p : p ∈ P1

}
=

{(
DP ′2

)T
Rp : p ∈ P1

}
=

{(
DP ′2

)T
p : p ∈ P2

}
= C2.

(29)

2.2.1 Axes sign ambiguity

For a point cloud P , the principal vectors defining DP ′ , are defined up to a sign. Hence, the
equality in (28) is true up to multiplication of the the columns by ±1. That is to say, only
one from the 8 possibilities for the principal vectors matrix satisfies the desired equality (28).

We eliminate this sign ambiguity by considering all 8 possible new axes systems
{

Di
P ′2

}8

i=1
given by different sign multiplication constellations. We choose the one axes system that
satisfies (29) by

i = argmin
j=1,...,8

dC(C1,C j
2) (30)

where dC stands for Chamfer distance.

3 Additional Registration Results

3.1 The Effect of Sampling-Rate on Registration under
Sampling-Noise Scenarios

Figure 2 depicts the registration performance of different methods under different point den-
sities.

As mentioned in the introduction of the main paper, many point cloud registration appli-
cations process under-sampled point clouds. Figure 2 shows that on dense point clouds, the
evaluated registration methods achieve comparable results. However, as the sampling rate
decreases, the sampling noise effect becomes dominant and the performance of all methods,
but DeepUME, severely deteriorates.

We note that for the closed form registration methods considered, where computational
requirements are moderate, registration is testable with up to 80,000 sample points per cloud.
In that scenario, PCA and UME registration achieve RMSE(R) errors of 5.147 and 2.573
respectively. This is particularly interesting since it shows that PCA and UME, which are
both critical parts in our framework, require about 160 times more samples than DeepUME
(80k vs 500) in order to achieve similar performances. It is further implied that the main
effect of the proposed method is equivalent to the interpolation of sub-sampled point clouds
where the quality criterion of the interpolation is its efficiency for registration purposes.
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Figure 2: Registration performance under zero-intersection
noise model and different point densities on the FAUST
dataset. On dense point clouds, the compared registra-
tion methods achieve comparable results. However, as the
sampling rate decreases, the sampling noise effect becomes
dominant and the performance of all methods, but Deep-
UME, severely deteriorates.
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Figure 3: The effect of the WAGN variance on DeepUME
performance (measured in RMSE(R)) in all three data sets
tested. In the presence of noise, more symmetric examples
in ModelNet40 data set are incorrectly registered and there-
fore the average error increases dramatically.

Figure 4: Symmetric objects registration ambiguity arising in sampling noise scenarios. Due to the sampling noise there is no one
true registration solution for the input, but any that aligns the clouds together. Therefore, the two presented solutions should result
in a low error metric, which is reflected in the Chamfer and Hausdorff distances and not in RMSE(R).

3.2 Symmetric objects registration ambiguity

In Figure 4, we demonstrate the ambiguity problem discussed in section 5 in the paper. The
box shaped bookshelf (as many other examples in ModelNet40) is symmetric under rotations
of 180◦ about the z axes. Therefore, as shown the in Figure 4, in the sampling noise scenario
(zero-intersection model) two possible registration solutions (that differ by a 180◦ rotation
about the z axis) are possible. Both solutions do align the point clouds, yet one achieves zero
RMSE(R) error, while the other yields a much higher one. Nevertheless, both Chamfer and
Hausdorff distances achieve small errors which implies they are better suited for measuring
registration error on symmetric shapes.

3.3 Gaussian Noise

One of the most intriguing observations presented in the experimental section considers the
effect of different types of noise on registration, and in particular, Additive White Gaussian
Noise (AWGN) versus sampling noise. In Figure, 3 we evaluate the effect of the noise vari-
ance on the rotation RMSE. An interesting observation is that registration on ModelNet40
dataset [11] is significantly more affected by AWGN, than other types of data. Recalling
the ambiguity problem of ModelNet40 (see section 3.2 and section 5 in the main paper) this
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Figure 5: DeepUME performance (measured in RMSE(R)) under Bernoulli noise model with respect to the probabilities q1 and q2
in all three datasets tested. The surfaces visualization implies that the sparseness of the sparsest point clouds is the dominant cause
of error, rather then the difference between the clouds densities.

Figure 6: The effect of Bernoulli noise on a point cloud in extreme values of the probabilities q1 and q2. Red points denote P1, blue
points denote P2 and purple points belong to both.

is quite expected: Noise makes the inherent ambiguity problem harder to resolve. In the
presence of noise, many of the ambiguous examples are falsely registered and therefore the
average error increases dramatically.

3.4 Bernoulli Noise
The error surfaces depicted in Figure 5 describe the rotation RMSE with respect to the prob-
abilities q1 and q2 in all three datasets tested. As expected, the error increases as q1 and q2
decrease and the point clouds are made sparser. Note that in Figure 5, in all the datasets con-
sidered, the rotation RMSE becomes large even when only one of the clouds is sparse (when
the probability for keeping a point is small on one cloud and large on the other cloud). That
is, the rotation RMSE does not increase much when we take the second cloud to be sparse
as well. This might suggest that the sparseness of the sparsest point cloud is the dominant
cause of error, rather then the difference between the clouds densities.

For a visualization of the effect of Bernoulli noise on a point cloud in extreme values of
the probabilities q1 and q2 we refer the reader to Figure 6.

3.5 Small rotation angles range
In our experiments, all DGCNN-based networks, except ours, provide poor registration. This
is expected, as without a proper pre-processing procedure such networks fail to create fea-
tures that are invariant under large rotations. The experimental results demonstrate that on
the average, when large rotations are allowed, the registration results of the proposed method
outperform the alternatives. However, for a more comprehensive overview, we also compare
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Noise free Zero-intersection noise

Model dC dH RMSE(R) RMSE(t) dC dH RMSE(R) RMSE(t)

UME [4] <9e-05 <4e-04 0.333 <5e-06 0.030 0.269 42.559 0.010
ICP [2] 0.280 1.274 72.265 0.277 0.267 1.256 71.532 0.276

PointNetLK [1] <7e-04 0.005 0.729 0.005 0.012 0.113 11.504 0.095
DCP [10] <4e-04 0.003 5.739 0.002 0.065 0.479 71.307 0.011
DeepGMR [12] <4e-06 <2e-05 0.110 <6e-05 0.294 0.270 33.128 0.015
RGM [5] 0.268 1.203 0.025 <2e-04 0.267 1.187 4.690 0.032

DeepUME (ours) <1e-07 <1e-07 <8e-05 <1e-07 0.002 0.118 5.159 0.010

Table 1: Free and zero-intersection noise models results on the unseen dataset Stanford 3D Scanning Repository in small rotation
angles regime of [0,60] degrees about each axes. Our method outperforms the competing techniques in the examined scenarios
for all metrics, only except the RMSE(R) in the zero-intersection noise model. These results suggest that our framework improves
the state-of-the-art methods not only on the average over the entire range, but also in the small angles scenario, where most of the
methods were designed to be optimal.

our performance separately for the case of registration under rotation by small angles (up to
60◦ about each axes).

For a fair comparison, we use the pre-trained models released by the authors and test
all the proposed methods with rotation in the range [0,60] degrees about each of the axes,
for the noise free and zero-intersection noise models, in a similar manner to the experiments
described in the main paper. We note that in the small rotations experiment, none of the
tested methods encounters the ambiguity problem of ModelNet40, discussed in 3.2 and in
section 5 in the main paper. The symmetry in the examples of ModelNet40 creates ambiguity
where rotations by angles larger then 90◦ are considered. Since our method is designed for
arbitrary rotations, we do suffer from the ambiguity problem in ModelNet40. Hence, for
generating a reliable comparison, we perform that experiment on the Stanford 3D Scanning
Repository [8], which does not contain ambiguous examples.

From the results summarized in Table 1, we conclude that the method proposed in this
paper outperforms all compared methods in all metrics examined (except for one case, where
RGM method [5] achieves slightly smaller rotation RMSE). This shows that the proposed
framework outperforms state-of-the-art methods not only on the average on the entire trans-
formation range, but also for the small angles scenario.

4 Ablation Study

We conduct several ablation studies, removing components of the proposed DeepUME and
replacing each part with an alternative, to better evaluate our design. The studies were tested
for the Gaussian noise and zero-intersection noise models on the unseen FAUST [3] dataset,
in a similar manner to the experiments described in the main paper. The results of this section
are summarized in Table 2.

4.1 With or without invariant coordinates?

We first try to evaluate whether the new transformation-invariant coordinates generated for
the point cloud at the pre-processing phase, provide value over the original representation
of the point cloud. We therefore remove the pre-processig module (presented in Figure 2
in the paper) and compare the resulting performance to that obtained using the full model.
Table 2 demonstrates that DeepUME performs consistently better with the inclusion of the
pre-processig module.
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Zero-intersection noise Gaussian noise

Model dC dH RMSE(R) RMSE(t) dC dH RMSE(R) RMSE(t)

No pre-processing 0.094 0.913 83.506 0.140 0.087 0.896 82.260 0.140
Features joint-sampling 0.007 0.082 14.913 0.027 0.001 0.012 1.533 0.002
MLP instead of UME 0.003 0.046 12.964 0.023 0.001 0.011 1.488 0.003

DeepUME (full model) 0.002 0.024 8.630 0.019 0.001 0.011 1.069 0.002

Table 2: Ablation study results on the unseen dataset FAUST [3]. DeepUME full model achieves equal or better registration results
in all tested scenarios and in all metrics.

4.2 Coordinates joint-resampling or features joint-resampling?
In our proposed framework, the Transformer layer executes a joint-resampling procedure
in the coordinated space of R3. This is unlike other networks, where the joint-resampling
process is executed in feature space. Applying the Transformer in the coordinate space
has a notable computational advantage as in this case, the embedding size of each point is
significantly lower. In our our network the embedding size of each point on the coordinate
space is 3 while in the feature space it is 512. Hence, performing a coordinate sampling
allows for a dramatic decrease in computational complexity, both in the train and evaluation
processes (twice faster). We compare our framework with the two strategies - resampling in
coordinate space and resampling in features space. The results presented in Table 2 show that
the decrease in computational complexity does not cause a decrease in registration accuracy.

4.3 UME or MLP?
While MLP (Multi Layer Perceptron) provides, in principle, a universal approximation, the
UME integration into a DNN framework is designed to provide an accurate computation of
a rigid motion under noisy sampling of point clouds. A natural question to ask is whether
the UME parameter extraction may be replaced by a general learned module, such that reg-
istration with comparable accuracy is achieved. As expected, Table 2 shows that the model
performs better with the UME layer than a general MLP.

5 Implementation Details
The architecture of DeepUME is shown in Figure 2 in the paper, and includes the Trans-
former and DGCNN learned modules. The overall architecture of the Transformer [9] as
used in this work, is depicted in Figure 7.

5.1 Point clouds joint-resampling performed by a Transformer in the
projected coordinate space

Loosely speaking, the action of the Transformer is meant to improve performances in learned
methods for various tasks, by jointly creating weighted sums that modify the original input.
Formally, take C1 and C2 to be the point clouds generated by the module in 2.2; these repre-
sentations are computed independently of one another. Our attention model learns a function

φ : RN×3×RM×3→ RN×3 (31)

that provides new coordinates for the point clouds

CTransformer
1 = C1 +φ(C1,C2), CTransformer

2 = C2 +φ(C2,C1). (32)
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Figure 7: Transformer network architecture. ED stands for Encoder-Decoder.

The objective of the map C1 7→ CTransformer
1 is to modify the features associated with the points

in C1 in a way that is knowledgeable of the structure of C2; the map C2 7→ CTransformer
2 serves

a symmetric role. The asymmetric function φ is given by a Transformer.

During the learning process, the additive terms, φ(C1,C2) and φ(C2,C1), change the point
clouds, without distorting the shape. We therefore refer to this process as resampling. A
method for evaluating the similarity between the shapes of the Transformer input and output
is to compute their Chamfer distance. We average the Chamfer distance between Ci and
CTransformer

i over the ModelNet40 dataset, and get a distance of about 0.004 (where all point
clouds are scaled to the unit sphere). This shows that a different point cloud is obtained after
the Transformer’s action, however the small Chamfer distance between the input and output
point clouds (relatively to the point clouds size) shows that this difference is due to a change
of sampling points rather than a change of shape.

5.2 Optimization details

Adam [6] is used to optimize the network parameters, with an initial learning rate of 0.001.
We divide the learning rate by 10 at epochs 75,150 and 200, training for a total of 250
epochs. As the modules of the pre-processing and the UME are of closed-form and non
iterative or brute force, their impact on the computational time is negligible. DeepUME is
implemented in Pyotrch [7], and its training times is about 11 hours long using an NVIDIA
Quadro RTX6000 GPU.
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