Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

readme.md

LearnToCompareText

implement "StructuredSelfAttention" + "RelationNetwork" for few shot learning of text

step

python Util.py python fewshot_main.py

how

more data via manual annotation or data augmentation
more features via transfer learning
more train via meta learning
less parameters and other robust

performance

30seq 10000step 300dim minum100shot
embeeding +cosine  0.54   
embedding+ [bi]GRU + cosine 0.59/0.61
embedding+ [bi]LSTM + cosine 0.63/0.61
embedding+ attn BiGRU + cosine 0.77
embedding+ attn BiLSTM + cosine 0.76
embedding+ attn BiGRU + cosine + data arguementation 0.79
embedding+ attn BiLSTM + concat not converge
bert... tokenize in task_generator

data augmentation √
seqquence length √
pretrain √
less parameters √
c-way-k-shot √

Reference:

  1. Few-Shot Text Classification with Induction Network https://arxiv.org/abs/1902.10482
  2. Learning to Compare: Relation Network for Few-Shot Learning https://arxiv.org/abs/1711.06025 https://github.com/floodsung/LearningToCompare_FSL
  3. A Structured Self-attentive Sentence Embedding https://arxiv.org/abs/1703.03130 https://github.com/kaushalshetty/Structured-Self-Attention
  4. corpus https://github.com/fate233/toutiao-multilevel-text-classfication-dataset
  5. char_vector https://github.com/Embedding/Chinese-Word-Vectors

About

Learning To Compare For Text , Few shot learning in text classification

Topics

Resources

Releases

No releases published

Packages

No packages published

Languages