Skip to content
R Library for Analytics and Machine Learning
Branch: master
Clone or download
Latest commit 8b581d4 Aug 20, 2019
Type Name Latest commit message Commit time
Failed to load latest commit information.
data 30 colours and nor var omitted Jul 1, 2019
inst New h2o class added Aug 20, 2019
man Version h2o Aug 20, 2019
.DS_Store New myip() function Oct 10, 2018
.Rbuildignore First CRAN release! Feb 6, 2019
.gitignore .travis.yml added Oct 22, 2018
.travis.yml Added before_install for rstan issue in travis file Apr 11, 2019 Contribute politics Jul 24, 2018
DESCRIPTION 2 less deps Aug 12, 2019
NAMESPACE Version h2o Aug 20, 2019 Split h2o_automl results to new function Aug 16, 2019


R Package for Analytics and Machine Learning

Build Status Rdoc saythanks

lares is a library designed to automate, improve, and speed everyday Analysis and Machine Learning tasks. With a wide variety of family functions within Machine Learning, Data Wrangling, EDA, and Scrappers, lares helps the analyst or data scientist to get quick, reproducible, and robust results, without the need of repetitive coding or extensive programming skills.

You are most welcome to install, use, and/or comment on any of the code and functionalities. If you are colour blind as well, glad to share my colour palettes! Feel free to contact me via Linkedin, and please, do let me know where did you got my contact from.


# install.packages('devtools')
# User friendly update

CRAN NOTE: I currently don't have planned to submit the library into CRAN, eventhough it passes all its quality tests (and I'm a huge fan). I think lares is more of an everyday useful package rather than a "specialized for a specific task" library. It has too many useful and various kinds of functions, from NLP to querying APIs to plotting Machine Learning results to market stocks and portfolio reports. I gladly share my code with the community and encourage you to use/comment/share it, but I strongly think that CRAN is not aiming for this kind of libraries in their repertoire.

See the library in action!

AutoML Simplified Map from h2o_automl()

AutoML Map (lares)

Insights While Understanding

To get insights and value out of your dataset, first you need to understand its structure, types of data, empty values, interactions between variables... corr_cross() and freqs() are here to give you just that! They show a wide persepective of your dataset content, correlations, and frequencies. Additionally, with the missingness() function to detect all missing values and df_str() to break down you data frame's structure, you will be ready to squeeze valuable insights out of your data. Cross-Correlations and Frequencies (lares)

Kings of Data Mining

My favourite and most used functions are freqs(), distr(), and corr_var(). In this RMarkdown you can see them in action. Basically, they group and count values within variables, show distributions of one variable vs another one (numerical or categorical), and calculate/plot correlations of one variables vs all others, no matter what type of data you insert.

If there is space for one more, I would add ohse() (One Hot Smart Encoding), which has made my life much easier and my work much valuable. It converts a whole data frame into numerical values by making dummy variables (categoricals turned into new columns with 1s and 0s, ordered by frequencies and grouping less frequent into a single column) and dates into new features (such as month, year, week of the year, minutes if time is present, holidays given a country, currency exchange rates, etc).

What else is there?

You can type lares:: in RStudio and you will get a pop-up with all the functions that are currently available within the package. You might also want to check the whole documentation by running help(package = "lares") locally or in the or websites. Remember to check the families and similar functions on the See Also sections too.

Getting further help

If you need help with any of the functions, use the ? function (i.e. ?lares::function) and the Help tab will display a short explanation on each function and its parameters.

If you encounter a bug, please share with me a reproducible example on Github issues and I'll take care of it. For inquiries, and other matters, you can email me directly or open a new ticket here.

You can’t perform that action at this time.