Skip to content
Branch: master
Go to file
Code

Latest commit

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
app
 
 
cinch @ 06ae213
 
 
 
 
 
 
doc
 
 
 
 
 
 
 
 
 
 
 
 
wonton @ 09fa02e
 
 
 
 
 
 
 
 
 
 
 
 

README.md

Build Status codecov.io

portage

The portage library provides a framework for general purpose data remapping - between meshes, between particles, or between meshes and particles - in computational physics applications. Remapping is facilitated through the use of user-supplied wrappers around meshes/particle swarms with their data. The remap algorithm is organized in three phases operating on the wrappers corresponding to the original mesh/particles: search for intersection candidates, calculate the intersection with candidates, then interpolate the results onto the new mesh or particle swarm. Algorithms for each of the phases can be customized (e.g. order of accuracy of the interpolation) and, through the wrappers, take advantage of hybrid parallelism (MPI+X).

Getting Started

To obtain a copy of portage and its submodules from GitHub, clone recursively:

git clone --recursive https://github.com/laristra/portage

If you are familiar with Docker, take a look at our Dockerfile for a working build environment. In particular, the Dockerfile builds off of the portage-buildenv Dockerfile, and uses our travis.yml file with Travis CI.

Prerequisites

Portage uses standard C++11 features, so a fairly modern compiler is needed. We regularly test with Intel 18.0.1, GCC 6.4.0, and GCC 7.3.0.
Utilizing the full capabilities of portage will require an MPI implementation; we regularly test with OpenMPI 2.1.2 The build system requires CMake version 3.0+.

The following libraries are also required (see examples below):

  • LAPACKE (3.8.0+)

  • Either Boost (1.68.0+) or Thrust (1.6.0+): We wrap some features of either one of these packages. If you would like to run with OpenMP or TBB threads, then you must use Thrust.

Portage provides wrappers for a few third-party mesh types. Building support for these is optional:

  • Jali:

    We regularly test with verison 1.0.0. You will need to set the Jali_Dir CMake variable if you wish to build support for Jali and its tests (see examples below).

  • FleCSI Burton Specialization:

    The Burton specialization in the flecsi-sp repository is built on top of FleCSI. You will need both projects to build support for the Burton mesh specialization and its tests. You will need to set ENABLE_FleCSI=True and add the FleCSI and FleCSI-sp install paths to the CMAKE_PREFIX_PATH; see examples below. Both FleCSI packages are under constant development. This version of portage is known to work with hash 374b56b of the FleCSI stable branch, and hash e78c594 of the FleCSI-SP stable branch.

The documentation is built using doxygen (1.8+).

For more details regarding CMake settings, see the documentation page.

Installing

In the simplest case where you have the appropriate versions mentioned above and Boost and LAPACKE are in the usual locations that CMake searches, then the build step is:

portage $ mkdir build
portage $ cd build
portage/build $ cmake -DENABLE_APP_TESTS=True ..
portage/build $ make

This compiles the serial code and about a dozen application tests. To run the tests, simply execute

portage/build $ make test

If you wish to install the code into the CMAKE_INSTALL_PREFIX then simply execute

portage/build $ make install

To build the documentation, one would configure with the -DENABLE_DOXYGEN=True flag, and then make doxygen.

See the examples below, or the documentation for more build instructions.

License

This project is licensed under a modified 3-clause BSD license - see the LICENSE file for details.

Release

This software has been approved for open source release and has been assigned LA-CC-16-084.



Example builds

Below we list copy & paste instructions for several local machines; we have a script that parses this README file to execute the examples below to ensure they build.

Darwin

Execute the following from the portage root directory:

# machine=darwin-fe

# VERSION NUMBERS
INTEL_VERSION=18.0.3
MPI_VERSION=3.1.3
JALI_VERSION=1.0.5
TANGRAM_VERSION=0.9.8
XMOF2D_VERSION=0.9.5
BOOST_VERSION=1.68.0

BUILD_PREFIX=/usr/projects/ngc/private

# load the correct boost, compiler, and openmpi
module purge
module load cmake openmpi/${MPI_VERSION}-intel_${INTEL_VERSION} boost/${BOOST_VERSION}

cmake \
    -D CMAKE_BUILD_TYPE=Release \
    -D ENABLE_UNIT_TESTS=True \
    -D ENABLE_APP_TESTS=True \
    -D ENABLE_MPI=True \
    -D Jali_DIR:FILEPATH=${BUILD_PREFIX}/jali/${JALI_VERSION}-intel-${INTEL_VERSION}-openmpi-${MPI_VERSION}/lib \
    -D TANGRAM_DIR:FILEPATH=${BUILD_PREFIX}/tangram/${TANGRAM_VERSION}-intel-${INTEL_VERSION}-openmpi-${MPI_VERSION} \
    -D XMOF2D_DIR:FILEPATH=${BUILD_PREFIX}/xmof2d/${XMOF2D_VERSION}-intel-${INTEL_VERSION}/share/cmake \
    -D LAPACKE_DIR=${BUILD_PREFIX}/lapack/3.8.0-patched-intel-${INTEL_VERSION} \
    ..

make -j16
ctest -j16 --output-on-failure

Snow

Execute the following from the portage root directory:

# machine=sn-fey
. /usr/share/lmod/lmod/init/sh
module load intel/18.0.5 openmpi/2.1.2 cmake
JALI_INSTALL_PREFIX=/usr/projects/ngc/private/jali/1.0.5-intel-18.0.5-openmpi-2.1.2
TANGRAM_INSTALL_PREFIX=/usr/projects/ngc/private/tangram/0.9.8-intel-18.0.5-openmpi-2.1.2
XMOF2D_INSTALL_PREFIX=/usr/projects/ngc/private/xmof2d/0.9.5-intel-18.0.5
LAPACKE_DIR=/usr/projects/ngc/private/lapack/3.8.0-patched-intel-18.0.5
mkdir build
cd build
cmake \
    -D CMAKE_BUILD_TYPE=Release \
    -D ENABLE_UNIT_TESTS=True \
    -D ENABLE_APP_TESTS=True \
    -D ENABLE_MPI=True \
    -D Jali_DIR:FILEPATH=$JALI_INSTALL_PREFIX/lib \
    -D TANGRAM_DIR:FILEPATH=$TANGRAM_INSTALL_PREFIX \
    -D XMOF2D_DIR:FILEPATH=$XMOF2D_INSTALL_PREFIX/share/cmake \
    -D LAPACKE_DIR=$LAPACKE_DIR \
    ..
make -j4
ctest -j4 --output-on-failure

If you want to build an app for performance testing, you should include Thrust and TCMalloc in your build. The cmake command for this is:

# machine=sn-fey::thrust
. /usr/share/lmod/lmod/init/sh
module load intel/18.0.5 openmpi/2.1.2 cmake
JALI_INSTALL_PREFIX=/usr/projects/ngc/private/jali/1.0.5-intel-18.0.5-openmpi-2.1.2
TANGRAM_INSTALL_PREFIX=/usr/projects/ngc/private/tangram/0.9.8-intel-18.0.5-openmpi-2.1.2-thrust
XMOF2D_INSTALL_PREFIX=/usr/projects/ngc/private/xmof2d/0.9.5-intel-18.0.5
LAPACKE_DIR=/usr/projects/ngc/private/lapack/3.8.0-patched-intel-18.0.5
mkdir build-thrust
cd build-thrust
cmake \
   -D CMAKE_BUILD_TYPE=Release \
   -D ENABLE_UNIT_TESTS=True \
   -D ENABLE_APP_TESTS=True \
   -D ENABLE_MPI=True \
   -D Jali_DIR:FILEPATH=$JALI_INSTALL_PREFIX/lib \
   -D TANGRAM_DIR:FILEPATH=$TANGRAM_INSTALL_PREFIX \
   -D XMOF2D_DIR:FILEPATH=$XMOF2D_INSTALL_PREFIX/share/cmake \
   -D ENABLE_THRUST=True \
   -D THRUST_DIR:FILEPATH=/usr/projects/ngc/private/include \
   -D ENABLE_TCMALLOC=True \
   -D TCMALLOC_LIB:FILEPATH=/usr/lib64/libtcmalloc.so \
   -D LAPACKE_DIR=$LAPACKE_DIR \
   ..
make -j4
ctest -j4 --output-on-failure

Varan

Execute the following from the portage root directory:

# machine=varan
export MODULEPATH=""
. /opt/local/packages/Modules/default/init/sh
module load intel/18.0.1 openmpi/2.1.2 cmake
JALI_INSTALL_PREFIX=/usr/local/codes/ngc/private/jali/1.0.5-intel-18.0.1-openmpi-2.1.2
TANGRAM_INSTALL_PREFIX=/usr/local/codes/ngc/private/tangram/0.9.8-intel-18.0.1-openmpi-2.1.2
XMOF2D_INSTALL_PREFIX=/usr/local/codes/ngc/private/xmof2d/0.9.5-intel-18.0.1
LAPACKE_DIR=/usr/local/codes/ngc/private/lapack/3.8.0-patched-intel-18.0.1/
LAPACKE_INCLUDE_DIR=$LAPACKE_DIR/include
LAPACKE_LIBRARY_DIR=$LAPACKE_DIR
mkdir build
cd build
cmake \
    -D CMAKE_BUILD_TYPE=Debug \
    -D ENABLE_UNIT_TESTS=True \
    -D ENABLE_APP_TESTS=True \
    -D ENABLE_MPI=True \
    -D Jali_DIR:FILEPATH=$JALI_INSTALL_PREFIX/lib \
    -D TANGRAM_DIR:FILEPATH=$TANGRAM_INSTALL_PREFIX \
    -D XMOF2D_DIR:FILEPATH=$XMOF2D_INSTALL_PREFIX/share/cmake \
    -D LAPACKE_DIR=$LAPACKE_DIR \
    ..
make -j2
ctest -j2 --output-on-failure

If you want to build an app that uses FleCSI, you can link against a built verison of FleCSI on Varan. An example is below:

# machine=varan::flecsi
export MODULEPATH=""
. /opt/local/packages/Modules/default/init/sh
module load gcc/6.4.0 openmpi/2.1.2 cmake
FLECSI_INSTALL_PREFIX=/usr/local/codes/ngc/private/flecsi/374b56b-gcc-6.4.0
FLECSISP_INSTALL_PREFIX=/usr/local/codes/ngc/private/flecsi-sp/e78c594-gcc-6.4.0
TANGRAM_INSTALL_PREFIX=/usr/local/codes/ngc/private/tangram/0.9.8-gcc-6.4.0-openmpi-2.1.2
XMOF2D_INSTALL_PREFIX=/usr/local/codes/ngc/private/xmof2d/0.9.5-gcc-6.4.0
LAPACKE_DIR=/usr/local/codes/ngc/private/lapack/3.8.0-patched-gcc-6.4.0
LAPACKE_INCLUDE_DIR=$LAPACKE_DIR/include
LAPACKE_LIBRARY_DIR=$LAPACKE_DIR
mkdir build-flecsi
cd build-flecsi
cmake \
    -D CMAKE_C_COMPILER=`which mpicc` \
    -D CMAKE_CXX_COMPILER=`which mpiCC` \
    -D CMAKE_BUILD_TYPE=Debug \
    -D ENABLE_UNIT_TESTS=True \
    -D ENABLE_APP_TESTS=True \
    -D ENABLE_MPI=True \
    -D ENABLE_FleCSI=True \
    -D CMAKE_PREFIX_PATH="$FLECSI_INSTALL_PREFIX;$FLECSISP_INSTALL_PREFIX" \
    -D TANGRAM_DIR:FILEPATH=$TANGRAM_INSTALL_PREFIX \
    -D XMOF2D_DIR:FILEPATH=$XMOF2D_INSTALL_PREFIX/share/cmake \
    -D LAPACKE_DIR=$LAPACKE_DIR \
    ..
make -j2
ctest -j2 --output-on-failure
You can’t perform that action at this time.