Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
/*
* Copyright (c) 1987, 1989 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Arthur David Olson of the National Cancer Institute.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE. */
/*static char *sccsid = "from: @(#)ctime.c 5.26 (Berkeley) 2/23/91";*/
/*
* This implementation of mktime is lifted straight from the NetBSD (BSD 4.4)
* version. I modified it slightly to divorce it from the internals of the
* ctime library. Thus this version can't use details of the internal
* timezone state file to figure out strange unnormalized struct tm values,
* as might result from someone doing date math on the tm struct then passing
* it to mktime.
*
* It just does as well as it can at normalizing the tm input, then does a
* binary search of the time space using the system's localtime() function.
*
* The original binary search was defective in that it didn't consider the
* setting of tm_isdst when comparing tm values, causing the search to be
* flubbed for times near the dst/standard time changeover. The original
* code seems to make up for this by grubbing through the timezone info
* whenever the binary search barfed. Since I don't have that luxury in
* portable code, I have to take care of tm_isdst in the comparison routine.
* This requires knowing how many minutes offset dst is from standard time.
*
* So, if you live somewhere in the world where dst is not 60 minutes offset,
* and your vendor doesn't supply mktime(), you'll have to edit this variable
* by hand. Sorry about that.
*/
#include "ntp_machine.h"
#if !defined(HAVE_MKTIME) || !defined(HAVE_TIMEGM)
#ifndef DSTMINUTES
#define DSTMINUTES 60
#endif
#define FALSE 0
#define TRUE 1
/* some constants from tzfile.h */
#define SECSPERMIN 60
#define MINSPERHOUR 60
#define HOURSPERDAY 24
#define DAYSPERWEEK 7
#define DAYSPERNYEAR 365
#define DAYSPERLYEAR 366
#define SECSPERHOUR (SECSPERMIN * MINSPERHOUR)
#define SECSPERDAY ((long) SECSPERHOUR * HOURSPERDAY)
#define MONSPERYEAR 12
#define TM_YEAR_BASE 1900
#define isleap(y) ((((y) % 4) == 0 && ((y) % 100) != 0) || ((y) % 400) == 0)
static int mon_lengths[2][MONSPERYEAR] = {
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};
static int year_lengths[2] = {
DAYSPERNYEAR, DAYSPERLYEAR
};
/*
** Adapted from code provided by Robert Elz, who writes:
** The "best" way to do mktime I think is based on an idea of Bob
** Kridle's (so its said...) from a long time ago. (mtxinu!kridle now).
** It does a binary search of the time_t space. Since time_t's are
** just 32 bits, its a max of 32 iterations (even at 64 bits it
** would still be very reasonable).
*/
#ifndef WRONG
#define WRONG (-1)
#endif /* !defined WRONG */
static void
normalize(
int * tensptr,
int * unitsptr,
int base
)
{
if (*unitsptr >= base) {
*tensptr += *unitsptr / base;
*unitsptr %= base;
} else if (*unitsptr < 0) {
--*tensptr;
*unitsptr += base;
if (*unitsptr < 0) {
*tensptr -= 1 + (-*unitsptr) / base;
*unitsptr = base - (-*unitsptr) % base;
}
}
}
static struct tm *
mkdst(
struct tm * tmp
)
{
/* jds */
static struct tm tmbuf;
tmbuf = *tmp;
tmbuf.tm_isdst = 1;
tmbuf.tm_min += DSTMINUTES;
normalize(&tmbuf.tm_hour, &tmbuf.tm_min, MINSPERHOUR);
return &tmbuf;
}
static int
tmcomp(
register struct tm * atmp,
register struct tm * btmp
)
{
register int result;
/* compare down to the same day */
if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
(result = (atmp->tm_mon - btmp->tm_mon)) == 0)
result = (atmp->tm_mday - btmp->tm_mday);
if(result != 0)
return result;
/* get rid of one-sided dst bias */
if(atmp->tm_isdst == 1 && !btmp->tm_isdst)
btmp = mkdst(btmp);
else if(btmp->tm_isdst == 1 && !atmp->tm_isdst)
atmp = mkdst(atmp);
/* compare the rest of the way */
if ((result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
(result = (atmp->tm_min - btmp->tm_min)) == 0)
result = atmp->tm_sec - btmp->tm_sec;
return result;
}
static time_t
time2(
struct tm * tmp,
int * okayp,
int usezn
)
{
register int dir;
register int bits;
register int i;
register int saved_seconds;
time_t t;
struct tm yourtm, mytm;
*okayp = FALSE;
yourtm = *tmp;
if (yourtm.tm_sec >= SECSPERMIN + 2 || yourtm.tm_sec < 0)
normalize(&yourtm.tm_min, &yourtm.tm_sec, SECSPERMIN);
normalize(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR);
normalize(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY);
normalize(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR);
while (yourtm.tm_mday <= 0) {
--yourtm.tm_year;
yourtm.tm_mday +=
year_lengths[isleap(yourtm.tm_year + TM_YEAR_BASE)];
}
for ( ; ; ) {
i = mon_lengths[isleap(yourtm.tm_year +
TM_YEAR_BASE)][yourtm.tm_mon];
if (yourtm.tm_mday <= i)
break;
yourtm.tm_mday -= i;
if (++yourtm.tm_mon >= MONSPERYEAR) {
yourtm.tm_mon = 0;
++yourtm.tm_year;
}
}
saved_seconds = yourtm.tm_sec;
yourtm.tm_sec = 0;
/*
** Calculate the number of magnitude bits in a time_t
** (this works regardless of whether time_t is
** signed or unsigned, though lint complains if unsigned).
*/
for (bits = 0, t = 1; t > 0; ++bits, t <<= 1)
;
/*
** If time_t is signed, then 0 is the median value,
** if time_t is unsigned, then 1 << bits is median.
*/
t = (t < 0) ? 0 : ((time_t) 1 << bits);
for ( ; ; ) {
if (usezn)
mytm = *localtime(&t);
else
mytm = *gmtime(&t);
dir = tmcomp(&mytm, &yourtm);
if (dir != 0) {
if (bits-- < 0)
return WRONG;
if (bits < 0)
--t;
else if (dir > 0)
t -= (time_t) 1 << bits;
else t += (time_t) 1 << bits;
continue;
}
if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
break;
return WRONG;
}
t += saved_seconds;
if (usezn)
*tmp = *localtime(&t);
else
*tmp = *gmtime(&t);
*okayp = TRUE;
return t;
}
#else
int mktime_bs;
#endif /* !HAVE_MKTIME || !HAVE_TIMEGM */
#ifndef HAVE_MKTIME
static time_t
time1(
struct tm * tmp
)
{
register time_t t;
int okay;
if (tmp->tm_isdst > 1)
tmp->tm_isdst = 1;
t = time2(tmp, &okay, 1);
if (okay || tmp->tm_isdst < 0)
return t;
return WRONG;
}
time_t
mktime(
struct tm * tmp
)
{
return time1(tmp);
}
#endif /* !HAVE_MKTIME */
#ifndef HAVE_TIMEGM
time_t
timegm(
struct tm * tmp
)
{
register time_t t;
int okay;
tmp->tm_isdst = 0;
t = time2(tmp, &okay, 0);
if (okay || tmp->tm_isdst < 0)
return t;
return WRONG;
}
#endif /* !HAVE_TIMEGM */