
ELSEVIER Journal of Computational and Applied Mathematics 82 (1997) 41-58 

JOURNAL OF 
COMPUTATIONAL AND 
APPLIED MATHEMATICS 

DAEs arising from traveling wave solutions of PDEs 

Stephen L. Campbell *, Wieslaw Marszalek 1 
Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205 USA 

Received 21 August 1996 

Abstract 

The study of traveling waves for explicit and implicit PDEs can sometimes result in differential algebraic equations 
(DAEs) instead of ordinary differential equations. The advantages of using DAEs is discussed as are the implications of 
DAE theory for the study of traveling waves. A specific type of traveling wave that connects equilibria is examined in 
more detail. Specific examples are given. 
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I. Introduction 

DAEs are implicitly defined systems of differential equations, 

F ( y ' , y , t ) = O  (1) 

with OF/Oy' identically singular. DAEs arise in many different areas and a variety o f  numerical and 
analytical tools for working with DAEs have been developed over the last decade [1]. That DAEs 
arise in the method o f  lines (MOL)  solution o f  constrained and unconstrained PDEs has been one 
o f  the driving forces behind the development  o f  numerical integrators for DAEs. It is less well 
appreciated that DAEs can arise from PDEs in other ways. 

In this paper we show that the search for traveling wave solutions o f  PDEs can lead naturally 
to nonlinear DAEs. Even i f  the original PDE is explicit and without constraints we will show 
that it is possible for the resulting ordinary differential equations to be a DAE. Following the 
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general discussion, we consider a particular example from magnetohydrodynamics; the dissipative 
magnetohydrodynamic equations with resistivity, viscosity, and thermal conductivity from [24]. 

To our knowledge this paper is the first discussion of  the relationship between the theory of  DAEs 
and traveling waves. The DAE perspective makes it possible to exploit specially designed integrators 
and other software for the analysis of  DAEs. It is shown that by utilizing a DAE perspective we can 
more easily analyze and explain some of the existing results in the magnetohydrodynamics literature. 
In this paper we develop the basic theoretical framework that is needed. A more detailed analysis 
of  the magnetohydrodynamics equations using this framework is given in a follow up paper [16] 
where our approach permits us to show the existence of  a special kind of  weak shock for certain 
parameter values. 

2. A few c o m m e n t s  on D A E s  

There has been a considerable amount of  work in the last decade on developing analytical and 
numerical tools for working with DAEs [1, 2, 13, 15]. Many DAEs can be numerically simulated 
without having to reduce them to an explicit form. As we will see later this can be advantageous 
for studying traveling wave solutions. 

DAEs differ from ODEs in several ways. The DAE is called solvable if there is a well defined 
constant dimensional manifold of  solutions and the solutions are uniquely determined by consistent 
initial conditions. Solvability sometimes also includes the idea of  solutions existing for a class of  
forcing functions. 

The solution manifold may be thought of  as being defined by a family of  constraints. In some 
applications these constraints are given explicitly but in other problems some or all of  the constraints 
may be defined implicitly. One of  our examples will have implicit constraints. 

The index is one measure of  how singular a DAE is. There are several definitions of  the index 
of  a DAE. For our purposes the most important is as follows. If (1) is differentiated k times with 
respect to t, we get the (k + 1)n derivative array equations [1] 

F(y ' ,y , t )  

Ft (y', y, t) + Fy(y', y, t)y' + Fy, (y', y, t)y" 

d k 
-~F(y ' ,  y,t) 

=Gk(y ' ,y , t ,w)=O, (2) 

where w =  [y (Z) , . . . , y (k+ l ) ] .  We frequently drop the k subscript on G to simplify our notation. 
In particular applications, different equations in F = 0 are often differentiated a different number 
of  times. This has no affect on our discussion. 

For our purposes it suffices to say that the DAE F = 0 is index k if Gk = 0 uniquely determines 
y'  given consistent t, y and no smaller value of  k has this property. A more careful discussion of  
the index is in [9]. 
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3. General traveling waves 

In order to keep our notation reasonably concise we shall consider one dimensional partial differ- 
ential equations (PDEs). In their most general form they would look something like 

F ( ut, utt, Ux, Uxx, Uxt, u) = O, (3) 

where u is a vector variable of  the scalar variables t,x. At this point we consider the domain to be 
the real plane. Of  course by letting v = u,, w = Ux, p -- [u, v, w] we can rewrite (3) as a first order 
system F ( p t ,  Px, P ) =  0. However, it will sometimes be simpler to take our equations in the form 
of (3). 

A travelin9 wave solution of (3) is a solution of  the form u ( x , t ) = d p ( x -  st)  where qS(z) is a 
function of  the scalar variable z and s is called the wave speed. 

Assuming that ~b is twice differentiable, we get that ~b must be a solution of  the DAE 

F ( - s dp ' , s2 ~p ' ' , dp ', ~p " , - s dp " , dp ) = O . (4) 

Traveling waves are important in several different ways. Which part of  DAE theory is appropriate 
depends on what kind of  traveling waves are of  interest and what the intended application is. 

In some areas, such as chemical engineering, the systems of  PDEs that arise in the form (3) 
frequently have second partials of  only some components of  u occurring. Also the second partials 
do not appear in all equations. In these situations (4) will always be a DAE. 

3.1. Wave famil ies  

In the theory for the standard linear time invariant wave equation, traveling waves are used to 
represent solutions. What is of  interest is not the existence of  one particular solution which is a 
traveling wave but rather the existence of  an infinite dimensional family of  traveling waves all with 
the same speed. 

We shall say that (3) has a f ami l y  o f  traveling waves at wave speed s if (4) has an infinite 
dimensional set of  solutions. A necessary condition for this to happen is that (4) is not solvable. 
For nonlinear DAEs that would say that the conditions given in [10] do not hold. For linear time 
invariant PDEs the situation is simpler. 

Proposition 1. Le t  A ,B ,  C , D , E , F  be square matrices. The linear time invar&nt P D E  

Ou 02u c ~U 02u 02u 
A~-~- + B ~ - ~  + ~x + D ~ x 2  + E ~  + F u = 0  (5) 

has a f ami l y  o f  travelin9 waves with wave speed s i f  and only i f  

det ( - s 2 A  + s222B + 2C + ,~2D - s22E + F )  = 0 for all 2. (6) 

ProoL For the system (5) we get that the DAE (4) becomes 

(s2B + D - sE)qb" ÷ ( - s A  + C ) 4 '  + Fq5 = 0. (7) 
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This is a linear time invariant DAE. It is known [3, 4] (see the more recent [11]) that the existence of  
a finite dimensional family of  solutions is equivalent to solvability of  (7) which in turn is equivalent 
to the existence of  a 2 such that 22(s2B + D -  s E ) +  2 ( - sA  + C ) +  F has nonzero determinate 
[1]. If a linear time invariant DAE with square coefficients is not solvable, then there always exits 
an infinite dimensional family of solutions. Thus the proposition holds. This proposition can also 
be proved directly by rewriting (7) as a first order pencil and using the Kronecker structure of  a 
singular matrix pencil. [] 

From (6) we have that if a family of  traveling waves exists, then F must be singular. 

Example 2. Let 

E ° [10 o l [o A =  0 , B =  , C =  , D =  0 , E = F = O .  

Then det ( - s2A  + s222B + 2C -k 22D) = (s22 z + 2)2(1 - s). Thus the only wave speed for a family 
of  traveling waves is s = 1. At s = 1, the wave family is ~bl(z) arbitrary and ¢2(z) = f ( e  - ¢'1(z) - 

Note that s = - 1  is not also a wave speed in Example 2. This contrasts with the usual linear time 
invariant case where the negative of  the wave speed is also a wave speed. 

3.2. Traveling waves and equilibria 

A very different scenario occurs when one is looking for a traveling wave that connects two 
equilibria. This occurs in some approaches for proving the existence of  shock waves. Classically 
a researcher would have to reduce the problem to an ordinary differential equation (ODE). Such a 
reduction might be extremely difficult or even impossible without making simplifying assumptions. 
Also different reductions might be necessary for different parameter values. 

There are advantages to considering a DAE instead. No simplification may be needed. The same 
DAE model can serve for a variety of  parameter values. The time needed for obtaining information 
can be greatly reduced. In this situation we want to have the DAE to be solvable so that there is a 
well defined solution manifold. We also want to be able to determine the equilibria of  the DAE and 
their stability properties. Finally we want to be able to use DAE integrators to integrate the DAE 
in order to help study the system's behavior. We now consider each of  these three topics. 

3.2.1. The solution manifold 
If we are fortunate enough that our DAE takes the form of  

q~l = f(~bl,  q~2), 0 = g ( ¢ , ,  ¢2)  (8a, b) 

and Og/~dp2 is invertible, then the situation is easy. The DAE is what is called semi-explicit index 
one and the solution manifold is given by (8b). 

In general the situation is more complex if the DAE is not semi-explicit or if it is not index one. 
General procedures are described in [6, 10]. These papers give ways to determine the index, the 
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dimension of  the solution manifold, and explain how to get a local characterization of  the solution 
manifold. 

In order to briefly describe some of these results for later use, let 

Jk ---- [Gy, Gw], Jk = [Gy, Gw Gy], 

where G = Gk. 
The following assumptions on Gk permit a robust numerical least squares solution of  the derivative 

array equations. 

(A1) Sufficient smoothness of Gk. 
(A2) Consistency of  Gk = 0  as an algebraic equation. 
(A3) Jk = [Gy Gw] is 1-full with respect to y'  and has constant rank independent of (t,y, y ' ,w).  
(A4) Jk = [Gy, GwGy] has full row rank independent of  ( t , y ,y ' ,w) .  

Here the matrix C of the equation Cx = b is said to be 1-full with respect to xl if there is a 
nonsingular matrix Q such that 

QA=  M ' x =  . X2 

Note that ( A I ) - ( A 4 )  are directly in terms of  the original equations and their derivatives. Also (A3) 
and (A4) hold in a full neighborhood since y ' , y , w  are considered to be independent variables in 
(A1)-(A4) .  Conditions (A1) - (A4)  are numerically verifiable using a combination of  symbolic and 
numeric software [10]. 

Assumptions (A1) - (A4)  can also be used to establish solvability, compute the index, and deter- 
mine the degrees of freedom. Let Sk = {(t, y): Gk(t, y, 33) = 0 is consistent for some )3}. 

Theorem 3 (Campbell and Griepentrog [10]). Suppose that there is a k such that the derivative 
arrays Gi o f  F(y ' ,  y, t) satisfy (A1) - (A4)  for  i = k and k + 1 on appropriate neighborhoods. Then 
the D A E  is geometrically (uniformly) solvable on that neighborhood and the solution manifoM 
is Sk. I f  no smaller value o f  k satisfies these assumptions, then the index is k. 

Unless stated otherwise, in what follows we shall always assume that we have taken k large 
enough so that the assumptions of Theorem 3 hold almost everywhere. 

In general, one cannot determine the index of a DAE from a linearization of it. There is one 
important exception. 

Theorem 4. Suppose that Fy, has constant rank and {Fy,,Fy} is an index one pencil independent 
o f  y, y', t. Then the D A E  F(y ' ,  y, t) = 0 has index one. 

3.2.2. Equilibria o f  DAEs  
When studying equilibria of DAEs there are several issues. One is finding the equilibrium. The 

second is determining the stability of the equilibrium point. There is a related issue of whether two 
equilibria are on the same component of the solution manifold. We now restrict ourselves to time 
invariant systems. 
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y is an equilibria of  F(y',  y ) =  0 if and only if F(0, ~ ) =  0. If Fy(0, y)  is nonsingular, then fi is 
isolated and can in principle be found by solving F(0, y ) =  0 by a numerical or symbolic method. 

The invertibility of Fy(O,y) is important in another way. The following lemma is used in the 
subsequent theorem. 

Lemma 5. Suppose that A,B is a regular pencil of  matrices, that is, det(2A + B )  is not identically 
zero. Then "2 = 0 is an eigenvalue of  the pencil if  and only if  det(B) = 0. 

Proof. The eigenvalues of the pencil are those 2 such that det(2A + B) = 0. If 0 is an eigenvalue, 
then de t (B)= 0. To see the converse, we note that since the pencil is regular there are invertible 
matrices P, Q such that 

where N is a nilpotent matrix of  index k. Thus det(2A ÷ B) is a constant multiple of  det(2I ÷ 
D) det(2N + I )  = det(2I + D). If D is singular, then det(2A + B) = 0 for 2 = 0. [] 

Given an equilibrium we have found it is possible to analyze its stability directly from the DAE. 
In general, one has to be very careful with linearizing DAEs. However, the situation is more straight- 
forward around equilibria. The following result uses the above Lemma and follows from [8] which 
in turn was motivated by [22] which used somewhat different assumptions. 

Theorem 6. Suppose that ~ is an equilibrium of  F(y' ,  y) = O. Suppose that the DAE satisfies (A1) -  
(A4) in a neighborhood of  (O,y,O). Let A =Fy,(0,~) ,  B=Fy(O,y). Suppose that B is nonsingular. 
Let y be n dimensional and r be the difference in rank of  [Gy,, Gw] and [Gy,, Gy, Gw] for this system 
at (0, y, 0). Then 

(i) The local linearization A y  + B~ =B~  and the original DAE F(y',  y ) =  0 have the same 
dimensional solution manifold in a neighborhood of  ~. 

(ii) y ' = y +  O ( N y -  ~[[2). 
(iii) The dimension of  the solution manifold is n - r. 
Thus if the pencil 2A+B has n - r  finite eigenvalues with nonzero real part, then they will determine 
the stability properties o f  y on the solution manifold of  F(y' ,  y) ---- O. 

Proof. Item 1 and 2 are from [8]. They imply that the eigenvalues of the pencil will determine the 
stability of  the equilibrium provided the number of  nonzero eigenvalues with nonzero real part is 
the same as the dimension of the solution manifold. Item 3 is from [5]. The final conclusion now 
follows. [] 

3.2.3. Simulation 
One advantage of an implicit formulation is that simulations can be performed prior to an extensive 

analysis and problem reduction. BDF based codes such as DASSL are available for index one DAEs 
[1]. Index two and three DAEs may be integrated by Implicit Runge Kutta (IRK) codes such as 
RADAU5 [15] if they have a Heisenberg structure. The integration of  higher index fully implicit 
DAEs is more difficult but techniques are under development [12]. 
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4. Conservative form PDEs 

In this section we shall examine traveling waves solutions for PDEs of  the form 

[h(u)], + [p(U)]x = u[D(u)Ux]x. (9) 

The existence of traveling wave solutions to (9) connecting equilibria with # > 0  is often related to 
the existence of  shock waves to the PDE with # = 0 [23]. 

Keeping the same variable u for the traveling wave function we get that (4) for (9) is 

- sh ' (u)u '  + [p(u)] '  = #[D(u)u']'. (10) 

We want our solution u(z) to go from a left equilibrium UL to a right equilibrium u R. That is we 
want l imz~_~ u ( z )=  UL, limz~o~ u ( z )=  UR, and limlzl_,~ u ' ( z )=  0. Integrating (10) from - ~  to t 
and using that UL is the left endpoint and that u' has zero limit as t ~ - c ~  gives the DAE 

- s (h (u)  - h ( u L ) ) + p ( u )  -- p (ue )=ld ) (u )u ' .  ( l l )  

The DAE (11) is a linearly implicit DAE. However, as we shall see it need not be index one. An 
equilibrium for (11) must satisfy 

- s ( h ( u )  - h(UL) ) + p(u) - p(UL) = 0. (12) 

At a given equilibrium ~ the Jacobian for (12) is R(fi) = - sh ' (~)  + p'(~). If there is a traveling 
wave solution connecting the equilibria, then the left and right equilibria determine the wave speed 
via (12). A type of converse holds. 

Theorem 7. Fix Ue. Suppose that there exists a solution ~ o f  the D A E  (11) which connects the 
equilibrium Ue with the equilibrium UR with wave speed'S. Suppose that the assumptions (A1)- (A4)  
hold for  (11 ) in a neighborhood o f  ~ and UL, UR and for  s near Z 

(i) I f  --'£h'(UR) + p'(UR) is nonsingular, then for  s near ~ there will be a right equilibrium UR(S) 
and a solution o f  (11) connecting Ue to UR(S). 

(ii) Suppose [--~h'(UR)+ pI(UR),h(UR)- h(UL)] is invertible when its ith column is deleted. Let  
6 be the ith component o f  UR. Then there will exist a new right equilibrium fiR(6) with this 
same ith component and a solution connecting Ue and UR(6) for  a wave speed s(6) near "£. 

Proof. The proof is straightforward application of the implicit function theorem and standard ODE 
theory, once we see that the assumptions (A1) - (A4)  holding as s varies ensures that the solution 
manifold has fixed dimension and also varies smoothly with the chosen parameters [5, 10]. [] 

At an equilibrium ~, the linearization of (11 ) is 

A =#D(~) ,  B = s f f ( K )  - p'(~). (13) 

Note that Eq. (9) includes the form 

[h(u)]t + [p(U)]x = #[d(u)]xx (14) 



48 S.L. Campbell, W. Marszalek/Journal o f  Computational and Applied Mathematics 82 (1997) 41-58 

by letting D ( u ) =  d ' ( u ) .  However, (9) is more general since not every D ( u )  can be written as d ' ( u )  

for some d ( u ) .  The DAE (11 ) could also be written as a semiexplicit DAE by letting v :  u' but that 
would increase the index by one. 

5. The p-system 

Our first example is the p-system. It is reasonably simple and can be used to illustrate several of  
the ideas given above. The PDE is 

ut - Vx = O, vt + [p(u)]x = #uxx. (15a,b) 

The corresponding DAE (1 1) is 

- s ( u  - UL) -- (V -- VL) = 0, --S(V -- VL) + p ( u )  -- p(UL) = #U'. (16a,b) 

This is a semi-explicit DAE which is always index one and (16a) gives the solution manifold. An 
equilibrium (UR, VR) different from (UL, VL) must satisfy 

--S(UR -- UL) -- (VR -- VL) = 0, --S(VR -- VL) + p(UR) -- p(UL) = 0. (17a,b) 

The matrix pencil (13) in ( u , v )  variables is given by 

A =  , B =  - p ' ( u )  s " 

B is nonsingular if p ' ( u ) +  s 2 #  O. Also det(2A + B )  = ( - 2 #  + p ' ( u ) +  s 2) so that the eigenvalue at 
an equilibrium is 

2 --  p ' ( u )  + s 2 

# 

Note that 2 ¢ 0 precisely when de t (B)¢  0 as promised by Lemma 5. 
What is required in order to get the required traveling wave with two equilibria whose stability 

is determined by the linearization? Since the solution manifold is one dimensional, in order to get 
a trajectory from uL to UR we must have uL is unstable and UR is stable. This can only happen if 
p ' ( u L ) + s  2 > 0  and p ' ( U R ) + S  2 <0.  From (17a) we see that s and the right equilibrium are carefully 
linked for this problem. We could discuss this example in more detail, but instead tum to a more 
complex equation. 

6. Example from magnetohydrodynamics 

The dissipative magnetohydrodynamics equations with resistivity, viscosity, and thermal conduc- 
tivity, are ~7. B = 0 and [24] 

~p 
0-~ = - ~7. (pv ) ,  (19a) 
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~ ( P V ) - - ~ 7 " ( p v v + l ( p + B - - - ~ ) - B B ) + v ~ 7 2 v + ( t ~ + 3 )  (19b) 

0B 
~3t _g7 x E, (19c) 

- -  ~ _  . . . ¢3t _~7 + P + p  v + E x B  + g 7  a . v + x g 7 2  (19d) 
7 - 1  

The specific meaning of these variables is discussed in [24] and [16]. If we consider one dimensional 
flow in the x direction only, then the x component B x of the magnetic induction is constant and the 
y and z components, B y, B z can be taken as functions of  x, t. 

For notational convenience let g replace /.t + 4v. Letting p=u~, the three components of v be 
u2, u3,u4, and [BY,BZ,E] = [U5, Uo, g/7] , we obtain the traveling wave DAE (10) as 

--Sb/tl "-~ (b / lU2)  t = 0 ,  (20a) 

- s ( u l u 2 ) '  -t- (ulu 2 + P * ) '  =- I~U2', (20b) 

- - S ( b / I U 3 ) '  -~- ( U l U 2 L / 3  - -  BXbl5) t = YU~', (20c) 

--S(gllU4) t -'}- (/-/IU2U4 - -  BXu6) ' = rut4 ', (20d) 

- s u '  5 + (u2u5 - BXu3)' = rlu~', (20e) 

- - S b / 6  -Jr- ( U 2 U  6 - -  B X u 4 )  t = t]blt6 t, (20f) 

-SUIT + [(u7 + P*)u2 - BX(BXu2 + u3u5 + b/4 / ' /6 ) ]  

I ~l, 2",11 V 2 2)1t rl 2 2 . "  ~ P =~,u2) +~.(u 3 + u  4 + ~ ( u  5+u6) + ~ . (20g) 

The parameters r/, tc,/~, v are resistivity, thermal conductivity, and the two viscosity coefficients. P* 
and p are given by 

P* = p + ½((BX) 2 + u 2 + u2), (21) 

P = ½(7 - 1)[2u7 - ul(u 2 + u 2 + u 2) - (u 2 + u26 + (BX)2)], (22) 

where B x and 7 are constants. 
The DAE that results from (20) will be linearly implicit. However, if x ~ 0, then the nullspace 

of  the coefficient of  u I will not be constant. If K=0, then the nullspaee will be constant but the 
range will not be. Several algorithms have been developed, especially in the chemical engineering 
literature to estimate the index and determine the dimension of the solution manifold [17, 18]. 
These algorithms rely on the graph describing which variables are in which equations. For ~c = 0, 
these algorithms will underestimate the number of constraints. (They miss the implicitly defined f7 
equation in Proposition 8). 

The DAE can be made semi-explicit by introducing another variable but then it will be index two. 
A detailed analysis of the system (20) is performed in [16]. Here we are illustrating the general 

ideas. To be precise we consider a special case. 
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6.1. q only 

Suppose  that  q # 0 but  # = v = t¢ = 0. Then  the D A E  for  the w a v e s  is 

- s u l  + ulu2 - cl = 0, (23a)  

-SUlU2 + UlU 2 + P *  - c2 = 0, (23b)  

-SUlU3 + ulu2u3 - BXu5 - c3 --- 0, (23c)  

- -SUlU 4 Jr- UlU2U 4 - -  BXu6 - -  C 4 = O, (23d)  

- s u s  + u2u5 - BXu3 - cs = qu;,  (23e)  

- -SU 6 -~ U2b/6 --  BXu4 - -  C 6 = ~]U6, (23f )  

- su7  + (u7 + P * ) u 2  - B~(BXu2 + u3u5 + u4u6) - c7 = rl(usu~ + u6u~), ( 23g )  

where  the c i are constants  de te rmined  b y  /'/L. That  is, c~ is the ith entry  o f  the vec to r  h(UL) -- p(UL) 
in (11) .  The  Jacobians  o f  the D A E  F ( u ' , u ) =  0 are 

F~, = 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

F .  = _ 

0 0 

0 0 

0 0 

0 0 0 

0 0 q 

0 0 0 

0 0 qu5 

U 2 - - S  

(U2 -- S)U2 q- PI* 

(u2-s)u3 
( U 2 - - S ) U 4  

0 

0 

0 0 

0 0 

0 0 

O_ 

0 

0 

0 0 , 

0 0 

~I 0 

~U 6 0 

U 1 0 0 0 0 0 

( 2u2 - s)u~ + P2* P3* P *  Ps* P *  P *  

UlU 3 ( U z - - S ) U  1 0 - B  x 0 0 

Ulg  4 0 (U2--S)Ul 0 --B x 0 

us - B  x 0 u 2 - s  0 0 

U 6 0 --B x 0 u 2 - - s  0 

~2 ~3 ~4 ~5 ~6 ~7 

where  P~* = aP*/~3ui and the ~i are nonze ro  entries.  Le t  

= _ 

- s  + u2 

--SU2 -4- U~ q-/91" 

- -SU3-~-U2U 3 

--SU4-~-U2U4 

ul 0 0 0 

-su~ + 2u,u2 + P2* /°3* P4* P *  

ulu3 - s u l  + ulu2 0 0 

b/lU 4 0 --SU 1 -4- UlU 2 0 

~2 - u 2 - u~ ~3 + B~us ~4 q- BXu6 0~7 

, (24)  
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To simplify the remaining discussion we rewrite (23) as 

~(Ul ,U2)=0 ,  (25a) 

A(Ul,U2,U3,U4, U5, U6, U7) = 0 ,  (25b) 

J~(Ul,U2, U3, U5)~-O, (25c) 

.)~(Ul,U2, U4, U6) = 0 ,  (25d) 

j~(u2, u3, u 5 ) =/~u;, (25e) 

j~(u2, u4, u6) =/Tu;, (25f) 

j~(Ul, U2, U3, U4, U5, U6, U7) = ~(U5U; -t- U6U6), (25g) 

Proposition 8. For the system (23) and with 0 defined by (24) we have that 
(i) I f  d e t ( O ) ¢ 0  and Ul ¢ 0 ,  then the D A E  (23) is an index one D A E  with a 2 dimensional 

solution manifold. 
(ii) I f  the pencil {Fu,,F,} has 2 nonzero eigenvalues with nonzero real parts at an equilibrium, 

then these eigenvalues determine the stability properties o f  that equilibrium on the solution 
manifold. 

(iii) The solution manifold is given by (23a)-(23d) and f7 = -us f s  - u6f6 + f7 = O. 

Proof. Adding -us  times row 5 to row 7 and -u6 times row 6 to row 7 converts the pencil {F,,,Fu} 
to the pencil 

{ [i°!] r°: • °:l/ Q1 = t/I , Q2 = * 

0 [O21 * O22J 

O11 O12] (26) 
where O = [O2~ 022 " 

The pencil {Fu,,Fu} is index one if and only O is nonsingular. IfFu, has constant rank, then the DAE 
is index one if and only if the pencil of  its linearization is also index one. This direct relationship 
between the index of the pencil and the index of the DAE is not true for higher index DAEs. [] 

The solution manifold given by f = 0 , . . . ,  j~=0, ~ = 0  contains all the equilibrium points. Provided 
its Jacobian is full row rank we get a well defined manifold. 

There are several problems which can now arise in order for there to exist a traveling wave that 
connects two equilibria. 

First the solution manifold may consist of  more than one component. In order to connect them 
the equilibria need to be on the same component. 

Secondly, even if the equilibria both lie on the same component of the manifold, there can be 
difficulties. The equation d e t ( O ( u ) ) =  0 defines another, possibly empty, manifold which we will 
call the singularity manifold. In some problems the singularity manifold may intersect the solution 
manifold. If the equilibria are on opposite sides of the singularity surface, it may not be possible to 
connect them with a solution. 
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Table 1 
Four equilibrium points 

RL URI RR2 RR3 

15 13.1798 10.0611 27.5113 
0.5 0.4309 0.2546 0.7274 
0.2 -0.3155 -0.1086 -0.0326 
0.2 -0.3155 -0.1086 -0.0326 

-1 0.9332 0.1572 -0.1279 
-1 0.9332 0.1572 -0.1279 
10 8.9599 4.8305 20.5711 

Table 2 
Nonzero eigenvalues and det(O) at each of the four equilibria 

UL RR 1 RR2 /2R3 

Eigenvalue 1 0.0333 -0.0357 -0.2035 0.2586 
Eigenvalue 2 0.8557 0.3993 -0.2121 0.2607 

det(O) -34.200 -72.922 - 178.985 65.234 

6.1.1. Speci f ic  M H D  e x a m p l e  
We will now give a specific illustration of  the above ideas. Let 

UL = [15,0.5,0.2,0.2,--1,--1,10],  B x = 2 ,  7 =  1.4, s =  1. 

Solving the equilibrium equations we get that there are 3 other equilibrium points. They are given 
in Table 1. 

The nonzero finite eigenvalues for the pencil of  the linearization at each equilibrium and the value 
of  det(O) are given in Table 2. 

The information in Table 2 combined with the theoretical results given earlier, make it possible to 
draw several conclusions. The equilibria UL, UR3 are unstable, UR2 is stable, and URI is a saddle. The 
fact that det(O) changes sign shows that the singularity manifold intersects the solution manifold 
and cuts it into submanifolds. The sign of  det(O) will be constant on each connected submanifold. 
The equilibrium UR3 must lie on a different submanifold than UL, UR1, UR2 since det(O) has a different 
sign at UR3. Thus a traveling wave solution of  the type that we seek must originate at UL and proceed 
to either UR1 or UR2. 

In general it is not possible to easily visualize a high dimensional DAE. However, for the system 
(25) it is possible to do so. Using a symbolic language, such as MAPLE, one can solve f = 0, J~= 

0, J~ = 0, f7 = 0 for ul, u3, u4, u7 and get a DAE in u2, us, u6. 

/ t 
u5 = gl (us, u2, fl), u6 = g2(u6, u2, fl), 0 = h(u2, us, u6, fl), (27a,b,c) 

where fl includes parameters such as ~/, UL,S, 7, BX. 
h is a quadratic in u2. One could try to solve for u2. This has been done elsewhere in the literature 

[24]. However, this breaks the problem into two subproblems. There are advantages to leaving the 
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Fig.  1. So lu t ion  m a n i f o l d :  0 < u2 < 1.4, - 5  < us, u6 < 5. 

problem in the form of (27). We shall merely allude to them here. In [16] this analysis is carried 
out in detail. 

Returning to our specific example, we see in Fig. 1 that the solution manifold given by the graph 
of (27c) consists of  two surfaces which resemble an 'egg floating over a volcano'. The vertical 
direction is the u2 direction. For this particular problem, all 4 equilibria lie on the egg which we 
denote g. 

The singularity manifold d e t ( O ) =  0 in the reduced set of  coordinates is now given by hu2 = 0. 
This surface is graphed in Fig. 2. 

We know that the singularity manifold must intersect C since the sign of det(O) was not constant 
on the equilibria. The curve of intersection is at the equator of g as shown in Fig. 3. The equilibrium 
uR3 lies on the bottom half of  g (larger u2). This is called the supersonic region in the MHD literature 
[24]. The other three equilibria lie on the top half of  g (smaller u2). This is known as the subsonic 
region. 

By looking at the DAE (27) we can examine what happens as parameters are varied and, in 
particular, we can place an equilibrium on the singularity curve. The consequences of  this are also 
examined in [ 16]. 

6.1.2. A cautionary example 
One of the advantages of modem symbolic and numeric software is that they make it possible 

to rapidly experiment with a variety of parameter values and physical configurations. However, care 
must still be exercised to make sure the relevant theoretical assumptions hold. Our last example 
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Fig. 2. Singularity manifold. 

illustrates this point. Suppose that B x = 0, s = b/2L and that the remaining components of  u L are 
chosen to satisfy 

3 2  . 2 L )  1 1 2 R2L) O. UTL "~- ~(U5c ~- -- ~SRIL -- ~Ulc(U3c ~- = 

Then the D A E  ( 2 7 )  becomes 

t t 3 2 us=(u2-s)us,  u6=(u2-s)u6, O=(u2-s)(us+u6+~(us+u26)). (28a ,  b , c )  

The linearization around an equilibrium (us,u6, u2) is given by the pencil 

E10 ] E gas 0 
A = 0 1 , B = 0 U 2 - -  S 

3 3 0 0 (U 2 - -  S)(1  + ~U5) (U 2 - -  S) (1  -}- ~U6) 

u5 ] 
U6 32 

U 5 -}- U 6 q- "~(U 5 -}- 

( 2 9 )  

The surface given by the constraint (28c) consists of  a cylinder cg and a plane ~ (u2 = s) which is 
perpendicular to the cylinder. See Fig. 4. The equilibrium points are all of  ~ and the line u5 =0,  u6=0 
and u2 arbitrary on cg. We denote this line by L* ° and the points on ~ but not on c~ by ~ -  cg. 

However, this information does not correctly capture the full solution behavior of  this example. 
To see this we examine the system more carefully. Let (u2- s)Q be the right hand side of  (28c). If 
Q ~ 0, that is u ~ cg, then the DAE is semi-explicit index one and as noted earlier, ( A 1 ) - ( A 4 )  hold. 
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Fig. 3. Solution and singularity manifolds. 

However, it will be more convenient to consider (A1) - (A4)  directly since we need the calculations 
later. 

One differentiation of  the DAE would suffice for considering solutions on ~ but two are needed 
for cg. Differentiating the equations in (28) twice and forming the Jacobian we see that 

[Gy, Gw] = 

- 1  0 

0 - 1  

0 0 

• 0 

0 * * 
• • , 

0 0 

0 0 
0 0 

* --1 

* 0 

Q o 

0 0 

0 0 
0 0 

0 0 
- 1  0 

0 0 

0 * 

0 0 0- 

0 0 0 
0 0 0 

0 

0 

0 

0 * * 
• , Q 

0 0 

0 0 

0 0 

- 1  0 0 
0 - 1  0 
0 0 0 

(30) 

where * is a possibly nonzero entry whose value is not important for this discussion. If  Q ~ 0, then 
the rank of  (30) is 8 (has corank 1). If  only the first 6 rows are considered the matrix has rank 5 
(has corank 1) and the matrix is still one full. One can easily show that (28a) satisfies assumptions 
(A1) - (A4)  and the requirements of  Theorem 3 and (28) is a solvable index one DAE on ~ -  ~.  
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-4- 

Fig. 4. Solution manifold: - 4 < u 2  <4,  - 2  <us, /g6 <2.  

At an equilibrium on ~ -  ~ we have the pencil  

A--- 1 , B =  0 u 6 , 

0 0 Q 

where Q is nonzero. The pencil is 
Suppose, however,  that we are 

(31) 

regular and does correctly capture the index and solution behavior. 
on the ~ so that Q = 0. Then the matrix (30) is 

- 1  0 0 0 0 0 0 0 0- 
0 - 1  0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
* 0 * - 1  0 0 0 0 0 
0 • * 0 - 1  0 0 0 0 
* * 0 0 0 0 0 0 0 
* 0 * * 0 * - 1  0 0 
0 * * 0 * * 0 - 1  0 
* * * * * 0 0 0 0 

(32) 

One-fullness and constant rank are invariant under invertible row operations and column operations 
that do not originate with the first three columns. Using the first two rows to zero below them and 
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the 7th and 8th columns to zero to the left, we get 

- 1  0 0 0 0 0 0 0 O" 
0 -1  0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 * - 1  0 0 0 0 0 
0 0 * 0 -1  0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 - 1  0 0 
0 0 0 0 0 0 0 -1  0 
0 0 * * * 0 0 0 0 

(33) 

which has rank no more than 7. But as noted earlier, the rank is 8 if Q ~ 0. A similar calculation, 
which we omit, works for 3 differentiations which is the maximum needed since the system has 
three variables. Thus (A3) is violated since the rank is not constant in a full neighborhood of  any 
points on cg and the DAE is not uniformly solvable on cg or any submanifold of  cg. 

We now look at the solutions on c£. Since the problem appears to be index 2 we expect another 
constraint. Differentiating the constraint (28c) we get, after some simplification, that we have the 
additional constraint 

u~ + u 2 = 0  (34) 

on cg. Thus u5 = 0, U 6 = 0 which is the line 5¢. We already know that 5¢ consists of a line of 
equilibria stretching up the side of the cylinder. However, this does not fully describe the solutions. 
If u5 = 0 and u6 = 0, then the DAE (28) on cg puts no restrictions on u2. Thus the DAE on cg has 
solutions u5 = 0, u6 = 0 and u2 arbitrary. The DAE is not solvable. DAEs with an infinite number of 
solutions have been discussed elsewhere [14]. However, some sort of regularization, motivated by 
physical considerations, is needed to pick out a particular solution. We will not discuss this further 
here. 

We note that the pencil (29) on ~g is 

0 Uo:] A = 1 , B = 0 (35) 
0 0 

which is not regular. 

7. Conclusions 

We have seen that the traveling waves for PDEs can satisfy a differential algebraic equation which 
may not be in the simple semi-explicit index one form. The existing DAE theory and algorithms 
permit analysis and simulation to be be performed based on the original DAE model. An example 
from magnetohydrodynamics has been used as an illustration. 
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