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Abstract

The test set for IVP solvers presents a collection of Initial Value Problems to test solvers for
implicit differential equations. This test set can both decrease the effort for the code developer to
test his software in a reliable way, and cross the bridge between the application field and numerical
mathematics, by helping people working in several branches of scientific disciplines in choosing the
code most suitable for their problems. This document contains the descriptive part of the test set.
It describes the solvers used in the comparisons, the test problems and their origin, and reports on
the behavior of the solvers on these problems. The latest version of this document and the software
part of the test set is available via the world wide web at http://www.dm.uniba.it/~testset.
The software part serves as a platform on which one can test the performance of a solver on a
particular test problem oneself. Instructions how to use this software are in this paper as well.
The idea to develop this test set was discussed at the workshop ODE to NODE, held in Geiranger,
Norway, 19-22 June 1995 and was developed by the CWI group. After the workshop ANODEO1,
held in Auckland, New Zealand, 2001, the testset moved to the University of Bari.
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I Introduction

I.1 The idea behind this test set

Both engineers and computational scientists alike will benefit greatly from having a standard test set
for Initial Value Problems (IVPs) which includes documentation of the test problems, experimental
results from a number of proven solvers, and Fortran subroutines providing a common interface to
the defining problem functions. Engineers will be able to see at a glance which methods will be most
effective for their class of problems. Researchers will be able to compare their new methods with the
results of existing ones without incurring additional programming workload; they will have a reference
with which their colleagues are familiar. This test set tries to fulfill these demands and tries to set a
standard for IVP solver testing. We hope that the following features of this test set will enable the
achievement of this goal:

¢ uniform presentation of the problems,

e ample description of the origin of the problems,

e robust interfaces between problem and drivers,

e portability among different platforms,

e contributions by people from several application fields,

e presence of real-life problems,

e being used, tested and debugged by a large, international group of researchers,
e comparisons of the performance of well-known solvers,

e interpretation of the numerical solution in terms of the application field,

e case of access and use.

There exist other test sets, e.g., NSDTST and STDTST by Enright & Pryce | ], PADETEST
by Bellen [ ], the Geneva test set by Hairer & Wanner [[IW] and the Test Frame for Ordinary
Differential Equations by Nowak and Gebauer | ], which all have their own qualities.

1.2 Structure of this test set

The test set consists of a descriptive part and a software part. The first part describes solvers and
test problems and reports on the behavior of the solvers when applied to these problems. Section IT
explains how this information is presented. The software serves as a platform to test the performance
of a solver on a particular test problem by a user of the test set. In Section IV we specify the format of
the Fortran subroutines and explain how to run test problems with the help of drivers that make these
codes suitable for runs with a number of solvers. Currently, BIMD, DASSL, GAMD, MEBDFDAE,
MEBDFI, PSIDE, RADAU, RADAUS5 and VODE are supported.

I.3 How to submit new test problems

We invite people to contribute new test problems to this test set. To restrict the amount of time

required for the maintainers of the test set to incorporate new problems, it is important that the

submissions are in the prescribed format. Firstly, every problem should have a description containing

the 4 sections mentioned in Section II, preferably as a IWNTEX-file. Secondly, a set of Fortran subroutines

that is necessary for the implementation has to be supplied in the format specified in Section IV
Submissions can be sent by e-mail to testset@dm.uniba. it
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I.4 How to obtain this test set
The latest release of this test set can be obtained via the WWW page with URL

http://www.dm.uniba.it/~testset ,

The first release of this test set appeared in | ], the second release in [ ], the third release in

[MI03].

I.5 Acknowledgements

We gratefully acknowledge Jacek Kierzenka for his help in defining the interface that that allow the
use of the IVP test set problems in the MATLAB environment, the CWI group that set up the first
two versions of the testset: P.J. van der Houwen , W. Hoffmann, B.P. Sommeijer, W.M. Lioen, W.A.
van der Veen, J.J.B. de Swart, J.E. Frank. In particular we wish to thank P.J. van der Houwen and
Walter Lioen, who helped us during the installation procedure.

I.6 People involved

This test set is maintained by the INdAAM Bari unit project group Codes and test problems for Differ-
ential Equations (coordinator F. Mazzia). The revision 2.3 has been sponsored by the project PRIN
2004 ”Metodi numerici e software matematico per le applicazioni” (coordinator L. Brugnano, local
coordinator F. Mazzia) and by the project ”Metodi Numerici per equazioni differenziali” (coordinator
P. Amodio), sponsored by the University of Bari. In January 2002 a steering committee of A. Bellen
(Universita di Trieste, Italy) , J. R. Cash (Imperial College, London, U.K.), E. Hairer (Université
de Geneve, Switzerland), F. Krogh (Math a la Carte, Tujiunga, California, U.S.A), L. Petzold (Uni-
versity of California, Snata Barbara, U.S.A), B. Simeon, G. Soderlind (Lund University,Sweden), D.
Trigiante (Universita di Firenze, Italy) and P.J. van der Houwen (formerly at CWI, Amsterdam, The
Netherlands) has been set up to oversee this project.
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II Format of the problem descriptions

Every problem description contains the four sections described below.

I1.1 General information

The problem identification is given: the type of problem (IDE, ODE or DAE), its dimension and
index. The contributor and any further relevant information are listed too. What is meant here by
IDE, ODE, DAE and index, is explained in §IV.

I1.2 Mathematical description of the problem

All ingredients that are necessary for implementation are given in mathematical formulas.

II.3 Origin of the problem

A brief description of the origin of the problem, in order to give its physical interpretation. References
to the literature are given for further details.

I1.4 Numerical solution of the problem

This section contains:

1. Reference solution at the end of the integration interval. The values of (some of) the
components of a reference solution at the end of the integration interval are listed.

2. Run characteristics. Integration statistics, if applicable, of runs with BIMD, DASSL, GAMD,
MEBDFDAE, MEBDFI, PSIDE, RADAU, RADAU5, and VODE serve to give insight in the
numerical difficulty of the problem.

The experiments were done on an Alphaserver DS20E, with a 667 MHz EV67 processor. We
used the Fortran 90 compiler with optimization: £90 -05 <source code>. If a run did not
produce correct results then we report what went wrong.

The characteristics are in the following format:

e solver
The name of the numerical solver with which the run was performed.

o rtol
The user supplied relative error tolerance.

e atol
The user supplied absolute error tolerance.

e ho
The user supplied initial step size (if relevant).
e scd

The scd values denote the minimum number of significant correct digits in the numerical
solution at the end of the integration interval, i.e.

scd 1= —log (]| relative error at the end of the integration interval ||o). (II1.1)

If some components of the solution vector are not taken into account for the computation
of the scd value, or if the absolute error is computed instead of the relative error, then this
is specified locally.
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e mescd

mescd := —log;,(|| absolute error ./ (atol./rtol + | ytrue |) ||oo)- (I1.2)

where the absolute error is computed at the end of the integration interval, atol and rtol
are the input tolerances, ytrue is the exact solution at the end of the integration interval
and ./ and .% are element by element operators. In this case all the components of the
solution are taken into account.

o steps
Total number of steps taken by the solver (including rejected steps due to error test failures
and/or convergence test failures).

® accept
The number of accepted steps.

# f and # Jac

The number of evaluations of the derivative function and its Jacobians, respectively.

# LU

The number of LU-decompositions (not for DASSL). The codes, except for RADAU and
RADAUS5, count the LU-decompositions of systems of dimension d, where d is the dimension
of the test problem.

RADAU and RADAUS5 use an s-stage Radau IIA method. For RADAUS5, s = 3 and for
RADAU, s = 3, 5 or 7. Every iteration of the inexact Newton process, used for solving
systems of non-linear equations, requires the solution of a linear system of dimension sd.
By means of transformations, this linear system is reduced to (s + 1)/2 linear systems of
dimension d. Of these systems, one system is real, and (s —1)/2 systems are complex. The
decompositions of all (s + 1)/2 linear systems are counted by RADAU and RADAUS5 as 1
LU-decomposition.

e CPU
The CPU time in seconds to perform the run on the aforementioned computer. Since
timings may depend on other processes (like e.g. daemons), we perform 10 runs, discard
the maximum and minimum values and list the medium of the CPU times.

PSIDE — Parallel Software for Implicit Differential Equations — is a Fortran 77 code for solving
IDE problems. It is developed for parallel, shared memory computers. The integration char-
acteristics in the tables refer to a one-processor computer. Since PSIDE can do four function
evaluations and four linear system solves concurrently on a computer with four processors, one
may divide the number of function evaluations, decompositions and solves in the tables by four
to obtain the analogous effective characteristics for four-processor machines.

Behavior of the numerical solution. Plots of (some of) the solution components over (part
of) the integration interval are presented.

. Work-precision diagrams. For every relevant solver, a range of input tolerances and, if

necessary, a range of initial stepsizes, were used to produce plots of the resulting scd or mesed
values, defined in Formulas (.IL.1) and (.I.2), against the number of CPU seconds needed for
the run on the aforementioned computer, with the setting as described before. Here we took
again the medium of the CPU times of 10 runs, after discarding the maximum and minimum
values. The format of these diagrams is as in Hairer & Wanner | , Pp. 166-167, 324-325].
The range of input tolerances and initial stepsizes is problem dependent and specified locally.
The input parameters for the runs in the tables with run characteristics are such that these runs
appear in the work-precision diagrams as well. The code PSIDE has been performed only on
one processor.
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We want to emphasize that the reader should be careful with using these diagrams
for a mutual comparison of the solvers. The diagrams just show the result of runs
with the prescribed input on the specified computer. A more sophisticated setting
of the input parameters, another computer or compiler, as well as another range
of tolerances might change the diagrams considerably.
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IIT Format of the solver descriptions

Every solver description contains the four sections described below.

ITI.1 General information

The name of the solver, the type of problem it solves (ODE, IDE or DAE), the authors, the date of the
first release, the language, the official link where it is possible to retrieve the software and any further
relevant information are listed. What is meant here by IDE, ODE, DAE and index, is explained in
§IV.

II1.2 Numerical method

General details about the numerical method implemented in the code and references to the literature
are given.

IT1.3 TImplementation details

A brief description of the implementation choices used in the codes, like the step variation strategy,
the numerical solution of linear and non linear systems and any other useful information together with
references to the literature are given.

III.4 How to solve test problems with the solver

This section contains a description of the compiling sequence and explains how to solve test problems
in the test set format.
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IV The software part of the test set

IV.1 Classification of test problems

We have categorized the test problems in three classes: IDEs, ODEs and DAEs.
In this test set, we call a problem an IDE (system of Implicit Differential Equations) if it is of the
form
f(tvyayl) = 07 to S t S tenda
y,f €RY,
y(to) and y'(ty) are given.

A problem is named an ODE (system of Ordinary Differential Equations), if it has the form

yI:f(tvy)a tO Stgtenda
y, f € RY,
y(to) is given,

whereas the label DAE is given to problems which can be cast in the form

Mylzf(tay)a to Stgtenda
y,f € RY, M € R¥*d
y(to) and y'(ty) are given,

where M is a constant, possibly singular matrix. Note that ODEs and DAEs are subclasses of IDEs.

IV.2 How to perform tests

You can perform one of the following types of tests:
e solve test set problems with solvers that are supported in the test set,
e solve test set problems with your own solver,
e golve your own problem with solvers that are supported in the test set,
e gsolve a test set problem using the web facility,
e gsolve your own problem using the web facility,
e solve test set problems using a MATLAB solver,
e solve you own problem in the test set format using a MATLAB solver.

For the first five types of tests, four types of codes are involved: a solver, a driver, a problem code
and auxiliary routines, for the last two types of tests the matlab interface of the problem is generated
using two axiliary routines. The solvers available are described in §1-1-1-1-9-1. Currently, there are 9
solvers available:

1. BIMD for ODEs and DAEs of index less than or equal to 3,
2. DASSL for ODEs and IDEs/DAEs of index less than or equal to 1,
GAMD for ODEs and DAEs of index less than or equal to 3,

=

MEBDFDAE for ODEs and DAEs of index less than or equal to 3,
5. MEBDFI for ODEs and IDEs/DAEs of index less than or equal to 3,
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6. PSIDE for ODEs and IDEs/DAEs of index upto at least 3,

7. RADAU for ODEs and DAEs of index less than or equal to 3,

8. RADAUS5 for ODEs and DAEs of index less than or equal to 3, and
9. VODE for ODEs.

These solvers can be obtained via | ]in the files bimd.f, ddassl.f, gamd.f90, mebdfd.f, mebdfi.f,
pside.f, radau.f, radaub.f and vode.f. These files contain versions of the solvers with which the
numerical experiments were conducted. The official links to the solvers, which possibly direct to more

recent versions, can be found at | ] too.
The drivers bimdd. f, dassld.f, gamdd.f, mebdfdaed.f, mebdfid.f, psided.f, radaud.f, radaubd.f
and voded . f, which are available at | ], are such that runs can be performed that solve the problem

numerically with the aforementioned solvers.

For every test problem, the file problem.f contains a set of nine Fortran 77 subroutines defining
the problem. Although the format of the subroutines is the same for all three classes, the meaning of
the arguments may depend on the problem class. Section I1V.3 describes the format of the problem
codes.

The auxiliary linear algebra routines for the solvers are in bimda. f, dassla.f, gamda.f90, psidea.f,
radaua.f (for both RADAU and RADAUS5) and vodea.f. For MEBDFDAE/MEBFI, the linear al-
gebra routines are included in mebdfdae.f/mebdfi.f. The auxiliary file report.f contains a user
interface. All these files are available at | ] as well.

IV.2.1 How to solve test problems with available solvers
Compiling
£f77 -o dotest solverd.f problem.f solvera.f solver.f report.f,

for the solvers written in Fortran 77, will yield an executable dotest that solves the problem, of which
the Fortran routines in the format described in Section IV.3 are in the file problem.f. A complete
description of each solver toghether with some examples are reported in the SOLVERS sections §I-2-
1-1-9-1. A makefile is also available in the | ] to help in the compilation steps.

IV.2.2 How to solve test problems with your own solver

The following guidelines serve to test your own solver with the test set problems.

e Write your own solver in a format similar to existing solvers in the file own.f.

e (Optional) You may like to put the linear algebra subroutines in a separate file owna.f. In this
way you can, for example, use the linear algebra of an existing solver.

e Write driver subroutines in the file ownd.f. If the format of your solver is similar to that of a
solver that is already available in the test set, then this will only require minor modifications of
the driver routines of that solver.

e Adjust the file report.f as indicated in the comment lines of this file. This will only be a minor
modification.

e Compiling
£77 -o dotest ownd.f problem.f own.f owna.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines are in
the file problem. £
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IV.2.3 How to solve your own problem with available solvers

The following guidelines serve to solve your own problem with the solvers that are supported in the
test set.

e Write your own problem in a format similar to that of the test set problems in the file newprob.f.
This format is described precisely in Section IV.3.

e Adjust the file report.f as indicated in the comment lines of this file. This will only be a minor
modification.

e To solve your problem with, for example, DASSL, compiling
£f77 -o dotest dassld.f newprob.f ddassl.f dassla.f report.f,

will give you the desired executable dotest.

IV.2.4 How to solve a test set problem using the web facility

In| ], following the link “compile and run on line” it is possible to solve a test set problem on-line,
using the supported solvers. The user input are the relative tolerance rtol, the absolute tolerance atol
and the initial stepsize h for the solvers that need it. As a results the solution computed in the last
point, the scd and mescd and some integration characteristics, as described in §I1.4, are displayed.
The plots of some component of the solution are also visualized.

IV.2.5 How to solve your own problem using the web facility

In | ], following the link “compile and run on line” it is possible to upload a file containing the
subroutines describing the problem written using the format described precisely in §IV.3. Then it is
possible to choose one of the supported solver for the solution of the problem. The user input are the
relative tolerance rtol, the absolute tolerance atol and the initial stepsize h0 for the solvers that need
it. As a results the solution computed in the last point, the scd and mescd if the reference solution is
available and some integration characteristics, as described in §11.4, are displayed. The plots of the
components of the solution defined in the subroutine setoutput are also visualized.

IV.2.6 How to solve test set problems using a MATLAB solver

The MATLAB [Mat] function minterface.m toghether with the fortran function matlab_interface.F,
allow to construct the mex files to runs problems in the MATLAB environment. The only restriction
is that you need to put the problems and the auxiliary routines in the correct directory. We suggest
to download the complete distribution tree of the IVP test set in | ] if you want to use the matlab
interface.

The MATLAB instruction:

MPROB = minterface(problem)

returns a function handle to a MEX-Function interface to problem problem. If needed, the Fortran
MEX-Function interface is automatically generated and compiled, you need a Fortran compiler com-
patible with the MATLAB environment to complete the compilation steps. Moreover, before using,
for the first time, this utilities, at the MATLAB prompt type

mex -setup

and select the Fortran compiler you want to use.
The interface mprob supports the following calling sequences:
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PROB = MPROB(’Prob’)

[YO,YPO,CONSIST] = MPROB(’Init’,NEQ,TO)

[ATOL,RTOL] = MPROB(’Tolerances’,NEQN,ATOL,RTOL)
[F,IERR,RPAR,IPAR] = MPROB(’Feval’,NEQ,T,Y,YP,RPAR,IPAR)
[J,IERR,RPAR,IPAR] = MPROB(’Jeval’,LDIM,NEQ,T,Y,YP,RPAR, IPAR)
[M,IERR,RPAR,IPAR] = MPROB(’Meval’,LDIM,NEQ,T,Y,YP,RPAR, IPAR)

Y = MPROB(’Solut’,NEQ,TFINAL)

[MESCD,SCD] = MPROB(’Report’,NEQ,YREF,Y,PROBNM, TOLVEC,ATOL,RTOL)

The input parameters are the same defined in IV.3 for the fortran functions defining the problem.

The functions odetest_61.m, odetest_65.m, odetest_70.m and idetest_70.m contain a user
interface to run and compile the problems in the MATLAB environment (the number means the
MATLAB version). As an example, on MATLAB 7.0 or upper, the instruction:

>> [sol,stats] = odetest_70(problem,’odelbs’,le-5,1e-4,1)

solves the problem using the matlab solver ’odelbs’, with absolute tolerance equal to le-5, relative
tolerance equal to le-4, the first component of the solution is plotted using the MATLAB function
‘odeplot’. The output variable sol contains information about the solution.

Use the MATLAB help to have information about the input/output parameters of the functions.

IV.2.7 How to solve you own problem in the test set format using a MATLAB solver

Write your own problem in a format similar to that of the test set problems, as described in Section IV.3
in the file newprob.f. Then put the file in the correct directory in the testset distribution. The
instruction:

MPROB = minterface(newprob)

returns a function handle to a MEX-Function interface to problem newprob.
Using the user interface odetest_70

>> [sol,stats] = odetest_70(newprob,’odelbs’,le-5,1e-4,1)

will automatically generate the function handle and solve the problem with the MATLAB solver
odelbs.

IV.3 Format of the problem codes

The eight subroutines that define the problem are called PROB, INIT, SETTOLERANCES, SETOUTPUT,
FEVAL, JEVAL, MEVAL, and SOLUT. The following subsections describe the format of these subroutines
in full detail. An additional function PIDATE allows to check the problem interface date, for the current
release this function should be equal to:

integer function pidate()
pidate = 20060828

return

end

In the sequel, the variables listed under INTENT (IN), INTENT (INOUT), and INTENT (OUT) are input,
update and output variables, respectively.
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IV.3.1 Subroutine PROB

This routine gives some general information about the test problem.

SUBROUTINE PROB(FULLNM,PROBLM,TYPE,
NEQN,NDISC,T,
NUMJAC,MLJAC,MUJAC,
NUMMAS , MLMAS , MUMAS,,
IND)
CHARACTER* (*) FULLNM, PROBLM, TYPE
INTEGER NEQN,NDISC,MLJAC,MUJAC,MLMAS,MUMAS, IND (%)
DOUBLE PRECISION T(0:%*)
LOGICAL NUMJAC, NUMMAS
C INTENT (OUT) FULLNM,PROBLM,TYPE,NEQN,NDISC,T,NUMJAC,MLJAC,
C + MUJAC,NUMMAS , MLMAS , MUMAS , IND

+ 4+ + 4+

Meaning of the arguments:

FULLNM
This character string contains the long name of the problem, e.g. Chemical Akzo Nobel problem.

PROBLM
This character string contains the short name of the problem, e.g. chemakzo, and corresponds
to the name of the Fortran source file.

TYPE
This character string takes the value IDE, ODE or DAE, depending on the type of problem.

NEQN
The dimension d of the problem, which is the number of equations to be solved.

NDISC
The number of discontinuities in time of the function f or its derivative. The solver is restarted
at every such discontinuity by the driver.

T
An array containing time points.
— If NDISC .EQ. O, then T(0) contains ty and T(1) contains fenq.
— If NDISC .GT. O, then T(0) contains g, T(NDISC+1) contains teng and T(1) ...T(NDISC)
are the time points where the function f or its derivative has a discontinuity in time.
NUMJAC

To solve the problem numerically, it is necessary to use the partial derivative J := 0f/dy. If
J is available analytically, then NUMJAC = .FALSE. and J is provided via subroutine JEVAL. If
J is not available, then NUMJAC = .TRUE. and JEVAL is a dummy subroutine. In this case, the
solvers approximate J by numerical differencing.

MLJAC and MUJAC
These integers contain information about the structure of J := 9f/0y. If J is a full matrix, then
MLJAC = NEQN, otherwise MLJAC and MUJAC equal the number of nonzero lower co-diagonals and
the number of nonzero upper co-diagonals of J, respectively.

NUMMAS
Only relevant for IDEs.
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— For IDEs, it is necessary to use the partial derivative M := 9f/0y’. If M is available
analytically, then NUMMAS = .FALSE. and M is provided via subroutine MEVAL. If M is
not available, then NUMMAS = .TRUE. and MEVAL is a dummy subroutine. In this case, the
solvers have to approximate M by numerical differencing.

— For DAEs and ODEs, NUMMAS is not, referenced.
MLMAS and MUMAS

These integers contain information about the structure of the constant matrix M (for DAEs) or
the matrix M := 9f /0y’ (for IDEs).

— For IDEs and DAEs: If M is a full matrix, then MLMAS = NEQN, otherwise MLMAS and
MUMAS equal the number of nonzero lower co-diagonals and the number of nonzero upper
co-diagonals of A, respectively.

— For ODEs, MLMAS and MUMAS are not referenced.
IND
Connected to IDEs and DAEs is the concept of index.
— For ODEs, IND is not referenced.

— For IDEs and DAEs, IND is an array of length NEQN and IND(I) specifies the index of
variable I.

IV.3.2 Subroutine INIT
This routine contains the initial values y(tg) and y'(to).

SUBROUTINE INIT(NEQN,T,Y,YPRIME,CONSIS)
INTEGER NEQN
DOUBLE PRECISION T,Y(NEQN),YPRIME(NEQN)
LOGICAL CONSIS

C INTENT (IN) NEQN,T

C INTENT (OUT) Y,YPRIME,CONSIS

Meaning of the arguments:

NEQN
The dimension of the problem.

Y (NEQN)
Contains the initial value y(to).

YPRIME (NEQN)
Only relevant for IDEs and DAEs.
— For IDEs and DAEs, YPRIME contains the initial value y'(tg).
— For ODEs, YPRIME is not set. If needed by the solver, it is computed in the driver as
y'(to) = f(to,yo)-

CONSIS
Only relevant for IDEs and DAEs.
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— For IDEs and DAEs, CONSIS is a switch for the consistency of the initial values. If
CONSIS .EQ. .TRUE., then y(tg) and y'(¢o) are assumed to be consistent. If CONSIS .EQ.
.FALSE., then y(tp) and y'(t¢) are possibly inconsistent. Solvers with a facility to compute
consistent initial values internally, will try to do so in this case. Currently, all problems in
the test set have consistent initial values.

— For ODEs, CONSIS is not referenced.

IV.3.3 Subroutine SETTOLERANCES

This routine defines the input tolerances RTOL and ATOL.

SUBROUTINE SETTOLERANCES(NEQN,RTOL,ATOL,TOLVEC)
INTEGER NEQN

LOGICAL TOLVEC

DOUBLE PRECISION RTOL(NEQN), ATOL(NEQN)

C INTENT (IN) NEQN
C INTENT (INOUT) RTOL, ATOL
C INTENT (OUT) TOLVEC

Meaning of the arguments:

NEQN
The dimension of the problem.

RTOL
Contains the relative tolerances.
— In input contains the value RTOL(1).
— In output could contain a vector valued RTOL, with different values for the relative tolerances

in each component.

ATOL
Contains the absolute tolerances.
— In input contains the value ATOL(1).
— In output could contain a vector valued ATOL, with different values for the absolute toler-

ances in each component.

TOLVEC
Logical output variable.

— TOLVEC
— TOLVEC

.TRUE. if all the component of RTOL and ATOL are initialized.
.FALSE. if only the first component of RTOL and ATOL is initialized.

IV.3.4 Subroutine SETOUTPUT
This routine contains information about the required output.

SUBROUTINE SETOUTPUT (NEQN,SOLREF,PRINTSOLQOUT,
+ NINDSOL, INDSOL)

LOGICAL SOLREF, PRINTSOLOUT
INTEGER NEQN, NINDSOL
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INTEGER INDSOL (NEQN)
C INTENT (IN) NEQN
C INTENT(OUT)  NINDSOL, INDSOL(NEQN), PRINTSOLOUT, SOLREF

Meaning of the arguments:

NEQN
The dimension of the problem.

SOLREF
Contains information about the reference solution.

— SOLREF .TRUE. means that the reference solution is available in the function solut.

— SOLREF = .FALSE. means that the reference solution is not available, the subroutine SOLOUT
must be a dummy subroutine.

PRINTSOLOUT
Contains information about the required output.

— PRINTSOLOUT=.TRUE. means that some components of the intermediate computed values
of the solution are printed in the output file called problemSOLVER.txt.

— This option is not activated for the code pside. Moreover a MATLARB file called prob-
lemSOLVER.m and a SCILAB file called problemSOLVER.sci are generated as utilities to
generate the plots of the printed components of the solution.

— PRINTSOLOUT=.FALSE. means that no intermediate values are printed.

NINDSOL
If PRINTSOLOUT=. TRUE., NINDSOL contains the number of components to be printed.

INDSOL
If PRINTSOLOUT=. TRUE., INDSOL(1:NINDSOL) contains the index of the NINDSOL components to
be printed.

IV.3.5 Subroutine FEVAL

This subroutine evaluates the function f.

SUBROUTINE FEVAL(NEQN,T,Y,YPRIME,F,IERR,RPAR,IPAR)
INTEGER NEQN,IERR,IPAR(*)
DOUBLE PRECISION T,Y(NEQN),YPRIME(NEQN) ,F(NEQN),RPAR(*)

C INTENT (IN) NEQN,T,Y,YPRIME
C INTENT (INOUT) RPAR,IPAR
C INTENT (OUT) F,IERR

Meaning of the arguments:

NEQN
The dimension of the problem.

The time point where the function is evaluated.

Y (NEQN)
The value of y in which the function is evaluated.
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YPRIME (NEQN)
Only relevant for IDEs.

— For IDEs, this is the value of ¥’ in which the function f is evaluated.
— For ODEs and DAEs, YPRIME is not referenced.

F (NEQN)
The resulting function value f(T,Y) (for ODEs and DAEs), or f(T,Y,YPRIME) (for IDEs).

TERR
TERR is an integer flag which is always equal to zero on input. Subroutine FEVAL sets IERR = -1
if FEVAL can not be evaluated for the current values of T, Y and YPRIME. Some solvers have the
facility to attempt to prevent the occurrence of IERR = -1, or return to the driver in that case.

IERR has an analogous meaning in subroutines JEVAL and MEVAL.
RPAR and IPAR
RPAR and IPAR are double precision and integer arrays, respectively, which can be used for

communication between the driver and the subroutines FEVAL, JEVAL and MEVAL. If RPAR and
IPAR are not needed, then these parameters are ignored by treating them as dummy arguments.

RPAR and IPAR have the same meaning in subroutines JEVAL and MEVAL.

IV.3.6 Subroutine JEVAL

This subroutine evaluates the derivative (or Jacobian) of the function f with respect to y.

SUBROUTINE JEVAL(LDIM,NEQN,T,Y,YPRIME,DFDY,IERR,RPAR,IPAR)
INTEGER LDIM,NEQN,IERR,IPAR(x*)
DOUBLE PRECISION T,Y(NEQN),YPRIME(NEQN) ,DFDY(LDIM,NEQN) ,RPAR (%)

C INTENT (IN) LDIM,NEQN,T,Y,YPRIME
C INTENT (INOUT) RPAR,IPAR
C INTENT(OUT)  DFDY,IERR

Meaning of the arguments:

LDIM
The leading dimension of the array DFDY.

NEQN
The dimension of the problem.

The time point where the derivative is evaluated.

Y (NEQN)
The value of y in which the derivative is evaluated.

YPRIME (NEQN)
Only relevant for IDEs.

— For IDEs, this is the value of 3’ in which the derivative 0f(¢,y,y’) /0y is evaluated.
— For ODEs and DAEs, YPRIME is not referenced.

DFDY(LDIM,NEQN)
The array with the resulting Jacobian matrix.
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— If 0f /0y is a full matrix (MLJAC = NEQN), then DFDY(I,J) contains 0f1/Jy;.
— If 0f/0y is a band matrix (0 < MLJAC < NEQN), then DFDY(I-J+MUJAC+1,J) contains
0f1/0y; (LAPACK / LINPACK / BLAS storage).

IERR, RPAR and IPAR
See the description of subroutine FEVAL.

IV.3.7 Subroutine MEVAL

For ODEs, MEVAL is not called and a dummy subroutine is supplied. For DAEs, it supplies the constant
matrix M. For IDEs, it evaluates the matrix M := 8f/0y’.

SUBROUTINE MEVAL(LDIM,NEQN,T,Y,YPRIME,DFDDY, IERR,RPAR,IPAR)
INTEGER LDIM,NEQN,IERR,IPAR(*)
DOUBLE PRECISION T,Y(NEQN),YPRIME(NEQN) ,DFDDY(LDIM,NEQN) ,RPAR (%)

C INTENT (IN) LDIM,NEQN,T,Y,YPRIME
C INTENT (INOUT) RPAR,IPAR
C INTENT (OUT) DFDDY, IERR

Meaning of the arguments:

LDIM
The leading dimension of the matrix M.

NEQN
The dimension of the problem.

The time point where M is evaluated. (For DAEs, T is not referenced.)

Y (NEQN)
The value of y in which M is evaluated. (For DAEs, Y is not referenced.)

YPRIME (NEQN)
The value of y' in which M is evaluated. (For DAEs, YPRIME is not referenced.)

DFDDY (LDIM, NEQN)
This array contains the constant matrix M (for DAEs) or M := df /0y’ (for IDEs).

— If M is a full matrix (MLMAS = NEQN), then DFDDY (I, J) contains M ; for DAEs and 0 f1/0y}
for IDEs.

— If M is a band matrix (0 < MLMAS < NEQN), then DFDDY (I-J+MUMAS+1,J) contains My ; for
DAEs and 0f1/0y} for IDEs. (LAPACK / LINPACK / BLAS storage).

IERR, RPAR and IPAR
See the description of subroutine FEVAL.

IV.3.8 Subroutine SOLUT
This routine contains the reference solution.

SUBROUTINE SOLUT(NEQN,T,Y)
INTEGER NEQN
DOUBLE PRECISION T,Y(NEQN)
C INTENT (IN) NEQN,T
C INTENT (OUT) Y
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Meaning of the arguments:

NEQN

The dimension of the problem.

The value of ¢, in which the reference solution is given (normally fenq)-

Y (NEQN)

This array contains the reference solution in ¢ = T.

IV.4 Format of the solver codes

The following guidelines serve to write a solver that could be easily inserted in the test set.

Write your own solver in a format similar to existing solvers in the file own.f.
Put the linear algebra subroutines in a separate file owna. f.

Write driver subroutines in the file ownd.f. If the format of your solver is similar to that of a
solver that is already available in the test set, then this will only require minor modifications of
the driver routines of that solver.

Adjust the file report.f as indicated in the comment lines of this file. This will only be a minor
modification.

References

[Mat)

The Mathworks. Matlab. http://www.mathworks.com/.

[MIO3] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of Math-

ematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/~testset.
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Part 1
Solvers

This part contains a brief description of the solvers used in the comparisons. The description is not
meant, in substitution of the information given by the authors of the solvers, but just to provide the
users with some general specifics of the solvers supported and to collect the most useful bibliography.

Also, some suggestions on how to use the codes in combination with the software provided in the
test set home page are given.
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1 Solver BiMD

1.1 General information

Authors: C. Magherini and L. Brugnano

first version: October, 2005

last update: September, 2006

language: Fortran 77

availability: the code BiMD is freely available (in the public domain)
official link: http://wwuw.math.unifi.it/~brugnano/BiM/index.html
problem type: ODEs, DAEs up to index 3

IVPtestset files: solver: bimd.f

driver: bimdd.f
auxiliary files: bimda.f (auxiliary routines)

1.2 Numerical method

The code BiMD (written in FORTRAN 77) is based on Blended Implicit Methods of orders 4, 6, 8,
10 and 12. These are a class of L-stable Block Implicit Methods defined as a suitable combination
(blending) of two equivalent forms of a basic method in order to favorably meet implementation
requirements | , , , ].

1.3 Implementation details

Nonlinear systems are solved by means of an iterative procedure, called blended iteration, based on
a nonlinear splitting “naturally” associated to the methods. The strategies for the variation of both
the stepsize of integration and the order of the method rely on an estimate of the local truncation
errors, obtained through a deferred correction-like procedure, and on an estimate of the convergence
properties of the blended iteration. Almost all the details concerning the construction of the code are
described in | , , ]. The style used during the formulation of the code is very similar
to the one used in the codes RADAU and GAM, from which the authors imported some subroutines
and comments. Moreover, the name and the meaning of a number of input parameters and local
variables have been fully inherited from such codes.

1.4 How to solve test problems with BiMD
Compiling
f90 -o dotest ©bimdd.f problem.f bimda.f bimd.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the file problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure 1.1.1 shows what
one has to do.

References

[BM02] L. Brugnano and C. Magherini. Blended implementation of block implicit methods for odes.
Appl. Numer. Math., 42:19-45, 2002.

[BMO04] L. Brugnano and C. Magherini. The bim code for the numerical solution of odes. J. Comput.
Appl. Math., 164-165:145-158, 2004.
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http://www.dm.uniba.it/~testset/src/auxil/bimda.f

SOLVER - BiMD

$ ./dotest
Test Set for IVP Solvers (release 2.3)
Solving Problem HIRES using BiMD

User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

give initial stepsize:

1d-4

Numerical solution:

solution component

mixed

y( 1) = 0.7370390869868378E-003 7.04
y( 2) = 0.1442309432867305E-003 7.75
y( 3) = 0.5886726446999230E-004 7.70
y( 4) = 0.1175514405948053E-002 6.86
y( 5) = 0.2382225270095926E-002 5.38
y( 6) = 0.6222129415035646E-002 4.78
y( 7) = 0.2849350956905541E-002 6.19
y( 8) = 0.2850649043094471E-002 6.19
used components for scd 8
scd of Y (maximum norm) 4.78
using mixed error yields mescd 4.78
using relative error yields scd
Integration characteristics:

number of integration steps 36

number of accepted steps 33

number of f evaluations 559

number of Jacobian evaluations 30

number of LU decompositions 36
CPU-time used:

0.0020 sec

$ £90 -05 -o dotest bimdd.f hires.f bimda.f bimd.f report.f

scd
ignore
abs rel mix - abs,rel
7.04 3.90
7.75 3.91
7.70 3.47
6.86 3.93
5.38 2.76
4.77 2.57
6.19 3.64
6.19 3.64
8 8
4.77 2.57
2.57

FIGURE 1.1.1: Ezample of performing a test run, in which we solve problem HIRES with BiMD. The experiment was

done on an ALPHAserver DS20E, with a 667TMHz EV67 processor.

optimization flag -05.

We used the Fortran 90 compiler £90 with the
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2 Solver DASSL

2.1 General information

Author: L. Petzold

first version: March 15, 1983

last update: July 11, 2000

language: Fortran 77

availability: the code DASSL is freely available (in the public domain)
official link: http://wuw.netlib.org/ode/ddassl.f

problem type: IDEs/DAE:s of index less or equal to 1

IVPtestset files: solver: ddassl.f

driver: dassld.f
auxiliary files: dassla.f (auxiliary linear algebra routines)

2.2 Numerical method

This code implements the Backward Differentiation Formulas of orders one through five to solve an
IDE for y and y'. Values for y and y' at the initial time must be given as input. These values must
be consistent, (that is, if ¢o, yo, y, are the given initial values, they must satisfy f(to,yo,v5) = 0)

[ J:

2.3 Implementation details

The subroutine solves the system from ¢y to ¢yt (final integration time). It allows to continue the
solution to get results at additional ¢q,;¢. This is the interval mode of operation. Intermediate re-
sults can also be obtained easily by using the intermediate-output capability. The derivatives are
approximated by backward differentiation formulae (BDFs), and the resulting nonlinear system at
each time-step is solved by Newton’s method. The linear systems are solved using routines from the
LINPACK subroutine package. Error handling is accomplished using routines from the SLATEC com-
mon mathematical library package. This code is good for stiff ODEs and for DAEs of moderate size,
where it is appropriate to treat the Jacobian matrix with dense or banded direct LU decomposition.
For large-scale stiff ODE and DAE problems, the user should consider DASPK. For ODE or DAE
problems which must stop at the root of a given function of the solution, the user should consider
DASKR. The code includes an extensive amount of documentation.

2.4 How to solve test problems with DASSL
Compiling
f90 -o dotest dassld.f problem.f ddassl.f dassla.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the file problem.f.

Although DASSL is a code written for problems of index < 1, it can handle some of the higher
index problems by adjusting the error control. If possible, this is done in the driver dassld.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure 1.2.1 shows what
one has to do.


http://www.netlib.org/ode/ddassl.f
http://www.dm.uniba.it/~testset/src/solvers/ddassl.f
http://www.dm.uniba.it/~testset/src/drivers/dassld.f
http://www.dm.uniba.it/~testset/src/auxil/dassla.f
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$ £90 -05 -o dotest dassld.f hires.f ddassl.f dassla.f report.f
$ ./dotest
Test Set for IVP Solvers (release 2.3)
Solving Problem HIRES using DASSL
User input:
give relative error tolerance:
1d-4
give absolute error tolerance:
1d-4
Numerical solution:
scd
solution component 0 ——-—-—————————————————————— ignore
mixed abs rel mix - abs,rel

y( 1) = 0.7437259735671353E-003 5.18 5.18 2.05
y( 2) = 0.1455514426118115E-003 5.89 5.89 2.04
y( 3) = 0.6009984916041035E-004 5.92 5.92 1.69
y( 4) = 0.1188134706173305E-002 4.90 4.90 1.97
y( 5) = 0.2577046600086416E-002 3.72 3.72 1.10
y( 6) = 0.6824947575510993E-002 3.23 3.23 1.03
y( 7) = 0.2989385921555588E-002 3.86 3.86 1.31
y( 8) = 0.2710614078444423E-002 3.86 3.86 1.31
used components for scd 8 8 8
scd of Y (maximum norm) 3.23 3.23 1.03
using mixed error yields mescd 3.23
using relative error yields scd 1.03
Integration characteristics:

number of integration steps 108

number of accepted steps 99

number of f evaluations 173

number of Jacobian evaluations 31
CPU-time used: 0.0010 sec

FIGURE 1.2.1: Ezample of performing a test run, in which we solve problem HIRES with DASSL. The experiment was
done on an ALPHAserver DS20F, with a 667TMHz EV67 processor. We used the Fortran 90 compiler £90 with the
optimization flag -05.
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3 Solver GAMD

3.1 General information

Authors: F. lavernaro and F. Mazzia

first version: August 1997 (GAM)

last update: February, 2006

language: Fortran 90

availability: the code GAMD is freely available (in the public domain)
official link: http://www.dm.uniba.it/~mazzia/ode/readme.html
problem type: ODEs, DAEs of index less than 3

IVPtestset files: solver: gamd.f90

driver: gamdd.f
auxiliary files: gamda.f90 (auxiliary routines)

3.2 Numerical method

The code GAMD (written in FORTRAN 90) uses the Generalized Adams Methods in block form, of
orders 3, 5, 7 and 9. These are A-stable formulae belonging to the class of Boundary Value Methods

[BT98, IM99].

3.3 Implementation details

The solution of nonlinear systems is obtained by means of a one-step splitting Newton iteration.
The order variation and stepsize selection strategies are based upon an estimation of the local
truncation errors for the current, lower and upper order formulae, obtained by means of a de-
ferred correction-like procedure | ]. The philosophy and the style used during the formulation
of the code are very similar to those characterizing the code RADAUS, from which the authors im-
ported some subroutines, comments and implementation techniques, leaving unchanged the name
and the meaning of a number of variables. A preprocessed version of the code GAMD, that al-
lows the user to switch beetwen quadruple and double precision, is also available at the official link
http://www.dm.uniba.it/~mazzia/ode/readme.html.

3.4 How to solve test problems with GAMD

Some machines need more virtual memory to compile the subroutine gamda.f90 ; for example if you
are using an ALPHAserver DS20E, with a 667MHz, EV67 processor, execute the following command
before the compilation: ulimit -Sd 241000 . Compiling

f90 -o dotest gamdd.f problem.f gamda.f90 gamd.f90 report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the file problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure 1.3.1 shows what
one has to do.

References

[BT98] L. Brugnano and D. Trigiante. Solving Differential Problems by Multistep Initial and Boundary
Value Methods. Gordon & Breach, Amsterdam, 1998.
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$ £90 -05 -o dotest gamdd.f hires.f gamda.f90 gamd.f90 report.f
$ dotest

Test Set for IVP Solvers (release 2.3)
Solving Problem HIRES using GAMD90O
User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

give initial stepsize:

1d-4

Numerical solution:

scd
solution component = =0  ——mm——————————o———————————o ignore
mixed abs rel mix - abs,rel

y( 1) = 0.7370189658683070E-003 6.95 6.95 3.82
y( 2) = 0.1442269592313960E-003 7.67 7.67 3.82
y( 3) = 0.5886363518265143E-004 7.63 7.63 3.40
y( 4) = 0.1175477661507891E-002 6.76 6.76 3.83
y( 5) = 0.2381655379215545E-002 5.33 5.33 2.71
y( 6) = 0.6221249713391935E-002 4.75 4.75 2.55
y( 7) = 0.2848304918830136E-002 5.77 5.77 3.23
y( 8) = 0.2851695081169868E-002 5.77 5.77 3.23
used components for scd 8 8 8
scd of Y (maximum norm) 4.75 4.75 2.55
using mixed error yields mescd 4.75
using relative error yields scd 2.55
Integration characteristics:

number of integration steps 29

number of accepted steps 24

number of f evaluations 967

number of Jacobian evaluations 24

number of LU decompositions 29
CPU-time used: 0.0020 sec

FI1Gure 1.3.1: Ezample of performing a test run, in which we solve problem HIRES with GAMD. The ezperiment was
done on an ALPHAserver DS20E, with a 667TMHz EV67 processor. We used the Fortran 90 compiler £90 with the
optimization flag -05.
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4 Solver MEBDFDAE

4.1 General information

Author: J. Cash

first version: November , 1998

last update: February, 2006

language: Fortran 77

availability: the code MEBDFDAE is freely available (in the public domain)

official link: http://www.ma.ic.ac.uk/~jcash/IVP_software/mebdftest/mebdfdae.f
problems type: ~ ODEs and DAEs of index less than or equal to 3

IVPtestset files: solver: mebdfdae.f

driver: mebdfd.f
auxiliary files: the linear algebra routines are included in medbdfdae.f.

4.2 Numerical method
The code MEBDFDAE uses the Modified Extended Backward Differentiation Formulas of Cash, that

increase the absolute stability regions of the classical BDFs | , .
These methods are A-stable up to the order 4 and stiffly stable for orders up to 9; therefore they are
especially suited for the solution of stiff systems of ODEs [ ]. The orders of the implemented

formulae range from 1 to 8.

4.3 Implementation details

The formulae implemented are three-stages general linear methods with the same Jacobian to be used
in the Newton iteration for all the stages. Blas and Lapack auxiliary routines are also used. Versions
of this solver for the solutions of ODEs are MEBDF and MEBDFSO, the last one is designed to
solve stiff Initial Value Problems for very large sparse systems of ODEs, where the linear equation
solver is replaced by the sparse solver YSMP | ]. Extensions of MEBDFDAE for the solution
of very large sparse systems of DAEs is given by the solver MEBDFSD, where the sparse solver
used is MA28 | ]. A MATLAB translation of MEBDFDAE is available at the official link http:
//www.ma.ic.ac.uk/~jcash/MATLAB software/MEBDF .m.

4.4 How to solve test problems with MEBDFDAE
Compiling
f90 -o dotest mebdfdaed.f problem.f mebdfdae.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the file problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure 1.4.1 shows what
one has to do.

References

[Cas79] J. Cash. Stable Recursions with applications to the nwmerical solution of stiff systems.
Academic Press, New York, 1979.

[Cas83]  J. Cash. The integration of stiff initial value problems in o.d.e.s using modified extended
backward differentiation formulae. Comp. and Maths. with Applics., 9:645-657, 1983.
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$ dotest
Test Set for IVP Solvers (release 2.3)
Solving Problem HIRES using MEBDFDAE
User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

give initial stepsize:

1d-4

Numerical solution:

solution component

$ £f90 -05 -o dotest mebdfdaed.f hires.f mebdfdae.f

report.f

mixed

y( 1) = 0.7324251767207330E-003 5.33
y( 2) = 0.1433221554010029E-003 6.03
y( 3) = 0.5800420518076766E-004 6.05
y( 4) = 0.1166962417102632E-002 5.06
y( 5) = 0.2241753919183594E-002 3.84
y( 6) = 0.5760280012688669E-002 3.32
y( 7) = 0.2767358761415102E-002 4.08
y( 8) = 0.2932641238585708E-002 4.08
used components for scd 8
scd of Y (maximum norm) 3.32
using mixed error yields mescd 3.32
using relative error yields scd
Integration characteristics:

number of integration steps 97

number of accepted steps 94

number of f evaluations 168

number of Jacobian evaluations 21

number of LU decompositions 21
CPU-time used: 0.0020 sec
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mix - abs,rel

FI1GUure 1.4.1: Ezample of performing a test run, in which we solve problem HIRES with MEBDFDAE. The experiment
was done on an ALPHAserver DS20E, with a 667TMH EV67 processor. We used the Fortran 90 compiler £90 with the

optimization flag -05.
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5 Solver MEBDFI

5.1 General information

Authors: T.J. Abdulla and J.R. Cash

first version: October 31, 2003

last update: February, 2006

language: Fortran 77

availability: the code MEBDFT is freely available (in the public domain)

official link: http://www.ma.ic.ac.uk/~jcash/IVP_software/itest/mebdfi.f
problems type: ~ ODEs, DAEs and IDEs of index less than or equal to 3

IVPtestset files: solver: mebdfi.f

driver: mebdfid.f
auxiliary files: the linear algebra routines are included in mebdfi.f.

5.2 Numerical method

The code MEBDFTI is an extension of MEBDFDAE for the solution of implicit differential equations
and uses the Modified Extended Backward Differentiation Formulas of Cash, that increase the absolute

stability regions of the classical BDFs [ , , ]. These methods are A-
stable up to the order 4 and stiffly stable for orders up to 9 therefore they are especially suited for
the solution of stiff systems of ODEs [ ]. The orders of the implemented formulae range from 1
to 8.

5.3 Implementation details

The formulae implemented are three-stages general linear methods with the same Jacobian to be used
in the Newton iteration for all the stages. Blas and Lapack auxiliary routines are also used. A Fortran
95 translation of MEBDFI made by Bill Paxton is available at the official link of MESA (Modules
for Experiments in Stellar Astrophysics) http://theory.kitp.ucsb.edu/~paxton/mesa/mesa doc/
index.html.

5.4 How to solve test problems with MEBDFI
Compiling
£f90 -o dotest mebdfid.f problem.f mebdfi.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the file problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure 1.5.1 shows what
one has to do.

References
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$ £90 -05 -o dotest mebdfid.f hires.f mebdfi.f  report.f
$ dotest
Test Set for IVP Solvers (release 2.3)

Solving Problem HIRES using MEBDFI
User input:

give relative error tolerance:
1d-4

give absolute error tolerance:
1d-4

give initial stepsize:

1d-4

Numerical solution:

R R, DNDNDNDN

.46

scd
solution component = =0 @ 0—--———m—mmmm——————————————o
mixed abs

y( 1) = 0.7360756579676240E-003 5.98 5.98
y( 2) = 0.1440435009167338E-003 6.69 6.69
y( 3) = 0.5867365037055238E-004 6.67 6.67
y( 4) = 0.1173828077122226E-002 5.74 5.74
y( 5) = 0.2347013337886003E-002 4.41 4.41
y( 6) = 0.6023708667056447E-002 3.67 3.67
y( 7) = 0.2893696909773767E-002 4.36 4.36
y( 8) = 0.2806303090227050E-002 4.36 4.36
used components for scd 8 8
scd of Y (maximum norm) 3.67 3.67
using mixed error yields mescd 3.67
using relative error yields scd
Integration characteristics:

number of integration steps 92

number of accepted steps 89

number of f evaluations 311

number of Jacobian evaluations 18

number of LU decompositions 18
CPU-time used: 0.0010 sec

ignore
mix - abs,rel

FI1Gure 1.5.1: Ezample of performing a test run, in which we solve problem HIRES with MEBDFI. The erperiment
was done on an ALPHAserver DS20E, with a 667TMH EV67 processor. We used the Fortran 90 compiler £90 with the

optimization flag -05.
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6 Solver PSIDE

6.1 General information

Authors: J.J.B. de Swart, W.M. Lioen, and W.A. van der Veen
first version: November 28 1997 (version 1.0)

last update: November 25 1998 (version 1.3)

language: Fortran 77

availability: the code PSIDE is freely available (in the public domain)
official link: http://www.cwi.nl/cwi/projects/PSIDE/

problem type: IDEs/DAE:s of index upto at least 3

IVPtestset files: solver: pside.f

driver: psided.f
auxiliary files: psidea.f (auxiliary linear algebra routines)

6.2 Numerical method

The code uses the four-stage Radau ITA method.

6.3 Implementation details

PSIDE is a Parallel Software for Implicit Differential Equations [ , ]. It has been
designed for working on shared memory parallel computers, using the OPENMP parallel tools.

The nonlinear systems are solved by a modified Newton process, in which every Newton iterate
itself is computed by means of the Parallel Iterative Linear system Solver for Runge-Kutta (PILSRK)
proposed in [ ]. This process is constructed such that the four stage values can be computed
simultaneously, thereby making PSIDE suitable for execution on four processors. Full details about
the algorithmic choices and the implementation of PSIDE can be found in | ]

6.4 How to solve test problems with PSIDE
Compiling
f90 -o dotest ©psided.f problem.f pside.f psidea.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the file problem.f. In order to have the correct solution, before the
compilation, change the auxiliary routine IMACH and DIMACH, in the file dassla.f because they
are machine dependent.

As an example, we perform a test run, in which we solve problem HIRES. Figure 1.6.1 shows what
one has to do.

References
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[SLV97a] J.J.B. de Swart, W.M. Lioen, and W.A. van der Veen. PSIDE, December 1997. Available
at http://www.cwi.nl/cwi/projects/PSIDE/.

[SLV97b] J.J.B. de Swart, W.M. Lioen, and W.A. van der Veen. PSIDE Users’ Guide, 1997. Available
at http://www.cwi.nl/cwi/projects/PSIDE/.
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$ £90 -05 -o dotest psided.f hires.f pside.f psidea.f report.f
$ ./dotest
Test Set for IVP Solvers (release 2.3)
Solving Problem HIRES using PSIDE
User input:
give relative error tolerance:
1d-4
give absolute error tolerance:
1d-4
Numerical solution:
scd
solution component 0 ——-—-——-——————————————————— ignore
mixed abs rel mix - abs,rel
y( 1) = 0.7371770832059414E-003 7.34 7.34 4.21
y( 2) = 0.1442575715381605E-003 8.05 8.05 4.20
y( 3) = 0.5889602259243881E-004 8.06 8.06 3.83
y( 4) = 0.1175734704403569E-002 7.08 7.08 4.15
y( 5) = 0.2387823243162753E-002 5.83 5.83 3.21
y( 6) = 0.6244778711349675E-002 5.24 5.24 3.03
y( 7) = 0.2850043711924880E-002 7.34 7.34 4.80
y( 8) = 0.2849956288075124E-002 7.34 7.34 4.80
used components for scd 8 8 8
scd of Y (maximum norm) 5.24 5.24 3.03
using mixed error yields mescd 5.24
using relative error yields scd 3.03
Integration characteristics:
number of integration steps 43
number of accepted steps 37
number of f evaluations 665
number of Jacobian evaluations 20
number of LU decompositions 168
CPU-time used: 0.0029 sec

FIGURE 1.6.1: Ezample of performing a test run, in which we solve problem HIRES with PSIDE. The experiment was
done on an ALPHAserver DS20E, with a 667TMHz EV67 processor. We used the Fortran 90 compiler £90 with the
optimization flag -05.
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7 Solver RADAU

7.1 General information

Authors: E. Hairer and G. Wanner

first version: April 23, 1998

last update: January 18, 2002

language: Fortran 77

availability: the code RADAU is freely available (in the public domain)
official link: http://www.unige.ch/~hairer/prog/stiff/radau.f
problem type: ODEs and DAE:s of index less than or equal to 3
IVPtestset files: solver: radau.f

driver: radaud.f
auxiliary files: radaua.f (auxiliary linear algebra routines)

7.2 Numerical method

The code RADAU is based on implicit Runge-Kutta methods (Radau ITa) of orders 5, 9 and 13. These
methods are L-stable and were firstly implemented in fixed order mode in the code RADAUP | ]
It is written for problems of the form My' = f(t,y) with a possibly singular matrix M. Tt is therefore
also suitable for the solution of differential-algebraic problems.

7.3 Implementation details

All the implementation techniques described for RADAUS5 hold here as well. The code has been
provided with an order variation strategy. This is based upon the observation that high order methods
perform better than low order methods as soon as the convergence of the simplified Newton iteration
is sufficiently fast (a measure of the rate of convergence is the so called contractivity factor) | ]

7.4 How to solve test problems with RADAU
Compiling
f90 -o dotest radaud.f problem.f radau.f radaua.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the file problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure 1.7.1 shows what
one has to do.

References
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$ £90 -05 -o dotest radaud.f hires.f radau.f radaua.f report.f
$ ./dotest

Test Set for IVP Solvers (release 2.3)
Solving Problem HIRES using RADAU
User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

give initial stepsize:

1d-4

Numerical solution:

scd
solution component =0 ——-—-——-——————————————————— ignore
mixed abs rel mix - abs,rel

y( 1) = 0.7485152484440879E-003 4.94 4.94 1.81
y( 2) = 0.1464912389469645E-003 5.65 5.65 1.81
y( 3) = 0.6101426280653334E-004 5.67 5.67 1.44
y( 4) = 0.1196763210067838E-002 4.68 4.68 1.75
y( 5) = 0.2731889907948499E-002 3.46 3.46 0.84
y( 6) = 0.7347017643277632E-002 2.96 2.96 0.75
y( 7) = 0.3074620885907540E-002 3.65 3.65 1.10
y( 8) = 0.2625379114092413E-002 3.65 3.65 1.10
used components for scd 8 8 8
scd of Y (maximum norm) 2.96 2.96 0.75
using mixed error yields mescd 2.96
using relative error yields scd 0.75
Integration characteristics:

number of integration steps 38

number of accepted steps 31

number of f evaluations 295

number of Jacobian evaluations 20

number of LU decompositions 37
CPU-time used: 0.0010 sec

FIGURE 1.7.1: Ezxample of performing a test run, in which we solve problem HIRES with RADAU. The experiment was
done on an ALPHAserver DS20E, with a 667TMHz EV67 processor. We used the Fortran 90 compiler £90 with the
optimization flag -05.
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8 Solver RADAUS5

8.1 General information

Authors: E. Hairer and G. Wanner

last update: January 18, 2002

language: Fortran 77

availability: the code RADATUS5 is freely available (in the public domain)
official link: http://www.unige.ch/~hairer/prog/stiff/radaub.f
problem type: ODEs and DAEs of index less than or equal to 3
IVPtestset files: solver: radaub.f

driver: radau5d.f
auxiliary files: radaua.l (auxiliary linear algebra routines)

8.2 Numerical method

The code RADAUS5 uses an implicit Runge-Kutta method (Radau ITa) of order 5 (three stages) with
step size control and continuous output. It is written for problems of the form My’ = f(¢,y) with
a possibly singular matrix M. It is therefore also suitable for the solution of differential-algebraic
problems.

8.3 Implementation details

Nonlinear systems are solved by a simplified Newton iteration. A similarity transformation on the
inverse of the Butcher array is performed in order to reduce the computational cost associated to
the solution of linear systems (see | ], page 121) so that, each time the Jacobian is updated, a
factorization of one real and one complex matrix of the same dimension as that of the continuous
problem is needed.

8.4 How to solve test problems with RADAUb5
Compiling
£f90 -o dotest radaubd.f problem.f radaub.f radaua.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the file problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure 1.8.1 shows what
one has to do.

References

[HW96] E. Hairer and G. Wanner. Solving Ordinary Differential FEquations II: Stiff and Differential-
algebraic Problems. Springer-Verlag, second revised edition, 1996.


http://www.unige.ch/~hairer/prog/stiff/radau5.f
http://www.dm.uniba.it/~testset/src/solvers/radau5.f
http://www.dm.uniba.it/~testset/src/drivers/radau5d.f
http://www.dm.uniba.it/~testset/src/auxil/radaua.f

I-8-2

SOLVER - RADAU5

$ £90 -05 -o dotest radaubd.f hires.f radaub.f radaua.f report.f

$ ./dotest
Test Set for IVP Solvers (release 2.3)
Solving Problem HIRES using RADAUS
User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

give initial stepsize:

1d-4

Numerical solution:

solution component

mixed

y( 1) = 0.7485152484440879E-003 4.94
y( 2) = 0.1464912389469645E-003 5.65
y( 3) = 0.6101426280653334E-004 5.67
y( 4) = 0.1196763210067838E-002 4.68
y( 5) = 0.2731889907948499E-002 3.46
y( 6) = 0.7347017643277632E-002 2.96
y( 7) = 0.3074620885907540E-002 3.65
y( 8) = 0.2625379114092413E-002 3.65
used components for scd 8
scd of Y (maximum norm) 2.96
using mixed error yields mescd 2.96
using relative error yields scd
Integration characteristics:

number of integration steps 38

number of accepted steps 31

number of f evaluations 295

number of Jacobian evaluations 20

number of LU decompositions 36
CPU-time used: 0.0010 sec
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FIGure 1.8.1: Ezample of performing a test run, in which we solve problem HIRES with RADAUS5. The experiment
was done on an ALPHAserver DS20FE, with a 667TMHz EV67 processor. We used the Fortran 90 compiler £90 with the

optimization flag -05.
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9 Solver VODE

9.1 General information

Authors: Peter N. Brown, George D. Byrne and Alan C. Hindmarsh
first version: June 15 1989

last update: April 30, 2000

language: Fortran 77

availability: the code VODE is freely available (in the public domain)
official link: http://wuw.netlib.org/ode/vode.f

problem type: ODE

IVPtestset files: solver: vode.f

driver: voded.f
auxiliary files: vodea.f (auxiliary linear algebra routines)

9.2 Numerical method

The code is based upon linear multistep methods used with variable coefficients (but fixed leading
term) to take account for the stepsize change. It allows the use of Adams and BDFs methods to
handle both non stiff and stiff problems [ ]

9.3 Implementation details

VODE | ] is a package based on the EPISODE and EPISODEB packages | , ], and
on the ODEPACK user interface standard [ ], with minor modifications. The code may switch
between two different techniques, namely functional iteration and the modified Newton method, to
solve nonlinear systems at each time-step. Recently, a FORTRAN 90 version of this solver has been
made available at the URL http://www.radford.edu/~thompson/vodef90web/.

9.4 How to solve test problems with VODE
Compiling
f90 -o dotest voded.f problem.f vode.f vodea.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the file problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure 1.9.1 shows what
one has to do.
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$ £90 -05 -o dotest voded.f hires.f vode.f vodea.f report.f
$ dotest
Test Set for IVP Solvers (release 2.3)
Solving Problem HIRES using VODE
User input:
give relative error tolerance:
1d-4
give absolute error tolerance:
1d-4
Numerical solution:
scd
solution component 0 ——-————-—-——m—————————————— ignore
mixed abs rel mix - abs,rel

y( 1) = 0.7405428802164954E-003 5.47 5.47 2.33
y( 2) = 0.1449232356407335E-003 6.17 6.17 2.33
y( 3) = 0.5951034500912568E-004 6.21 6.21 1.98
y( 4) = 0.1182096389331148E-002 5.19 5.19 2.26
y( 5) = 0.2483586047844519E-002 4.01 4.01 1.39
y( 6) = 0.6494848234786107E-002 3.59 3.59 1.39
y( 7) = 0.2954272405089350E-002 3.98 3.98 1.44
y( 8) = 0.2745727594910732E-002 3.98 3.98 1.44
used components for scd 8 8 8
scd of Y (maximum norm) 3.59 3.59 1.39
using mixed error yields mescd 3.59
using relative error yields scd 1.39
Integration characteristics:

number of integration steps 133

number of accepted steps 131

number of f evaluations 191

number of Jacobian evaluations 10

number of LU decompositions 25
CPU-time used: 0.0010 sec

FIGURE 1.9.1: Ezample of performing a test run, in which we solve problem HIRES with VODE. The experiment was
done on an ALPHAserver DS20F, with a 667TMHz EV67 processor. We used the Fortran 90 compiler £90 with the
optimization flag -05.
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[HB77]

[Hin83]

A. C. Hindmarsh and G. D. Byrne. Episode: An effective package for the integration of
systems of ordinary differential equations. Technical Report UCID-30112, Rev. 1, April
1977, LLNL, 1977.

Alan C. Hindmarsh. ODEPACK, a systemized collection of ODE solvers. In R. Stepleman
et al., editors, Scientific Computing, pages 55—64, Amsterdam, 1983. IMACS, North-Holland
Publishing Company.
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Part 11
Problems

This part is the core of the report. All the test problems collected are described. The problems are
ordered as ODEs, DAEs and IDEs.
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ODE - Problem HIRES I1-1-1

1 Problem HIRES

1.1 General information

This IVP is a stiff system of 8 non-linear Ordinary Differential Equations. It was proposed by Schifer
in 1975 [ ]. The name HIRES was given by Hairer & Wanner | ]. It refers to ‘High Irradiance
RESponse’, which is described by this ODE. The parallel-IVP-algorithm group of CWI contributed
this problem to the test set. The software part of the problem is in the file hires.f available at | ].

1.2 Mathematical description of the problem
The problem is of the form

dy
dt

with
yeIR®, 0<t<321.8122.

The function f is defined by

—1.71y; +043y,  +8.32y; +0.0007
171y, —8.75ys

—10.03ys +0.43ys +0.035y5

B 832y, +1.7lys —1.12y

Iy) = —1.745y5 +0.43ys  +0.43y;

—280ysys +0.69y4 +1.71ys —0.43ys +0.69y~
280y6y8 —181y7

—280y6y8 +181y7

The initial vector g is given by (1,0,0,0,0,0,0,0.0057)T.

1.3 Origin of the problem

The HIRES problem originates from plant physiology and describes how light is involved in morpho-
genesis. To be precise, it explains the ‘High Irradiance Responses’ (HIRES) of photomorphogenesis
on the basis of phytochrome, by means of a chemical reaction involving eight reactants. It has been
promoted as a test problem by Gottwald in [ ]. The reaction scheme is given in Figure II.1.1.

P, and Py, refer to the red and far-red absorbing form of phytochrome, respectively. They can be
bound by two receptors X and X', partially influenced by the enzyme E. The values of the parameters
were taken from [ ]

kv = 171 ks = 832||ks = 0035 | kr = 280 | k* = 0.69
ko = 043 || ks = 069 || ks = 832| k- = 069] o, = 0.0007
For more details, we refer to [ ]
Identifying the concentrations of P,, Pg, P.X, PpX, P. X', PpX', P X'E and E with y;, i €
{1,...,8}, respectively, the differential equations mentioned in §1.2 easily follow. See [ ] for a

more detailed description of this modeling process.
The end point of the integration interval, 321.8122, was chosen arbitrarily| ]


http://www.dm.uniba.it/~testset/src/problems/hires.f
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k1
_ Ok P, —— P,
A k-2
/ ko ! k- '
ke ks E+P.X «— P X'E — P X'+ E
kL
ky v
P.X —/—— PyX k*
A k2
ks k4 Py + E
k1 '
pP.X' PsX'
ko

FIGURE I1.1.1: Reaction scheme for problem HIRES.

1.4 Numerical solution of the problem

Tables I1.1.1-11.1.2 and Figures I1.1.2-11.1.6 present the reference solution at the end of the integration
interval, the run characteristics, the behavior of the solution over (part of) the integration interval and
the work-precision diagrams, respectively. The reference solution was computed by RADAUS on a
Cray €90, using double precision, work (1) = uround = 1.01-107'°, rtol = atol = h0 = 1.1-107'8,
For the work-precision diagrams, we used: rtol = 10~G+™/4) m = 0,1,...,28; atol = rtol; h0 =
1072 - rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAUS.

TABLE I1.1.1: Reference solution at the end of the integration interval.

y1 | 0.7371312573325668 - 102 || y5 | 0.2386356198831331 - 102
Yo | 0.1442485726316185 - 1073 || yg | 0.6238968252742796 - 102
ys | 0.5888729740967575 - 10~ || yr | 0.2849998395185769 - 102
ys | 0.1175651343283149 - 1072 || ys | 0.2850001604814231 - 10~2

References
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ODE - Problem HIRES II-1-3
TABLE 11.1.2: Run characteristics.

solver rtol atol hO mescd  scd steps accept #f  #Jac #LU CPU
BIMD 10-7 1077 10—9 842 6.21 48 47 1395 42 48 0.0039
10-10 10710 1012 11.49 9.28 89 89 2854 82 88  0.0088

DDASSL 107 10T 6.02 3.81 380 369 591 32 0.0039
1010 10-10 899 6.78 1160 1148 1557 45 0.0098

GAMD 107 1077 107° 8.51 6.00 38 34 2167 33 38 0.0049
10-10 1010 1012 10.26 7.82 55 50 4164 51 55 0.0098

MEBDFI 10=7 107 10—9 6.45 4.24 218 214 767 29 29  0.0029
10-10 10710 10712 9.51 7.30 420 416 1492 46 46  0.0068

PSIDE-1 107 10T 7.24  4.88 68 60 1208 25 252 0.0039
1010 10-10 11.06 &8.85 152 151 2528 35 344 0.0068

RADAU 1077 1077 10—9 7.11 491 51 40 985 22 51 0.0020
10~ 1071 10-12 10.65 8.03 69 58 1511 29 68 0.0039

VODE 10-7 1077 6.19 3.98 415 390 608 9 70 0.0029
10~ 1010 875 6.20 933 880 1224 15 134 0.0059

[Wan98] G. Wanner, 1998. Private communication.
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Ficure 11.1.2: Behavior of the solution over the integration interval.
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Ficure 11.1.3: Work-precision diagram (scd versus CPU-time).
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Ficure 11.1.4: Work-precision diagram (scd versus CPU-time).
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Ficure 11.1.5: Work-precision diagram (mescd versus CPU-time).
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2 Pollution problem

2.1 General information

This IVP is a stiff system of 20 non-linear Ordinary Differential Equations. It is the chemical reaction
part of the air pollution model developed at The Dutch National Institute of Public Health and En-
vironmental Protection (RIVM) and it is described by Verwer in [ ]. The parallel-IVP-algorithm
group of CWI contributed this problem to the test set.

The software part of the problem is in the file pollu.f available at | ]

2.2 Mathematical description of the problem

The problem is of the form
dy
w = W, v =w, (I1.2.1)
with
y € R*, 0<1t<60.

- > rjt+ > T
j€{1,10,14,23,24} j€{2,3,9,11,12,22,25}

—Try —T3—T9 — T2 +71 + 721

—7“15+T‘1 +7“17+7“19 +7“22

—Try—Ti6 —T17 —T23 + 715

—r3 4+ 2rqy +rg + r7 + ri3 + 20

—re —1rg —T14 — T2 + 73+ 2rig

—Tr4y —T5 —T¢ +T13

T4 + Trs + Tg + rr

—Tr7 — T8

f=1 —rio+ri+r )

—r9g —Tio+rs+rn

T9

—r11 + T10

—r13 + 712

14

—T18 —T19 + T'16

—T20

720

—T21 —T22 —T2q4 +7T23 +T25

—To5 + 724

The function f is defined by

where the r; are auxiliary variables, given in Table I1.2.1. The values of the parameters k; are in
Table I1.2.2. Finally, the initial vector y, is given by

yo = (0,0.2,0,0.04,0,0,0.1,0.3,0.01,0,0,0,0,0,0,0,0.007,0,0,0)T.

2.3 Origin of the problem

The problem is a chemical model consisting of 25 reactions and 20 reacting compounds. Figure I1.2.1
shows the reaction scheme. Writing down the reaction velocities r; for every reaction equation and
making the identification in Table I1.2.3, which also lists the concentrations at ¢t = 0, one arrives at
the system of differential equations (I1.2.1). The time interval [0,60] represents the behavior of the
reactants sufficiently.


http://www.dm.uniba.it/~testset/src/problems/pollu.f
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ODE - Pollution problem

TABLE I1.2.1: Auziliary variables.

ry = ki rio = kwo-yiicy || e = ko yis
re = ky- Y2 - Ya rin = ku “Y13 oo = koo~ Y17 - Ys
rg = ks ys-y2 ||[r12 = kiz-yrory2||rer = k2t
ry = kg yr riz = kiz-yua roo = ko2 Y19
rs = ks-yq ria = kia-Y1-Ys ||T23 = ko3-y1-ys
re = ke yr-Ys s = kis-ys ro4 = kosa Y-y
rr = kr-yo e = kie-ya ros = ka5 Y20
rg = ks Yo-ys ||Tir = kir-ya
ro = ko-yi1-Y2 || T8 = kisg-Yis
TABLE I[1.2.2: Parameter values.
k‘l = 0.350 klO = 0.900 - 104 k‘lg =0.444 - 1012
ks =0.266-102 kit =0220-10""1 || kyy =0.124-10*
kst =0.123-10° || kip =0.120-10° || kyy = 0.210-10
ks =0860-10"2 || ky3 =0.188-10 koo =0.578-10
ks =0820-10"3 || kya =0.163-10° kas =0.474-10"1
ke =0.150-10° k15 = 0.480 107 kou =0.178.10*
kr  =0.130-1072 || ki¢ =0.350-1073 || ko5 =0.312-10
ks =0.240.10° ki =0.175-10"1
ke =0.165-10° kis =0.100-10°
' Notice that this constant has a typing error in [ IE
1. NO2 - NO+03P 14. NO2+0OH — HNO3
2. NO+03 — NO2 15. O3P - 03
3. HO2+NO — NO2+0OH 16. O3 — 01D
4. HCHO — 2 HO24+CO 17. 03 — 03P
5. HCHO - CO 18. O1D — 2 O0OH
6. HCHO+OH — HO2+CO 19. O1D - 03P
7. ALD — MEO2+HO2+CO 20. SO2+0H —  SO4+HO2
8. ALD+OH - €203 21. NO3 - NO
9. C203+NO — NO2+MEO2+CO2 22. NO3 —  NO2+03p
10. C203+NO2 — PAN 23. NO2+03 —  NO3
11. PAN —  (C203+NO2 24. NO3+NO2 — N205
12. MEO2+NO — CH30+NO2 25. N205 — NO3+NO2
13. CH30 — HCHO+HO2

FIGURE I1.2.1: Reaction scheme.
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TaBLE 11.2.3: Identification of variables with species. The square brackets ‘[ |’ denote concentrations.

variable species initial value || variable species initial value
Y1 [NO2] 0 Y11 [0203] 0
Ya [03] 0.04 || y14 [CH3O] 0
Ys [HO2] 0 Y15 [HNO?)] 0
Ys [OH] 0 || vie [O1D] 0
e [HCHO)] 0.1 || y17 [SO2] 0.007
Ys [CO] 0.3 Y18 [804] 0
Yo [ALD] 0.01 Y19 [NO?)] 0
Y10 [MEOQ] 0 Y20 [N205] 0

TABLE 11.2.4: Reference solution at the end of the integration interval.

y1 | 0.5646255480022769 - 101 || y11 | 0.1135863833257075 - 107
Yo | 0.1342484130422339 y12 | 0.2230505975721359 - 102
ys | 0.4139734331099427 - 1072 || y15 | 0.2087162882798630 - 10~
ys | 0.5523140207484359 - 1072 || y14 | 0.1396921016840158 - 10~*
ys | 0.2018977262302196 - 10 || y15 | 0.8964884856898295 - 102
Yo | 0.1464541863493966 - 10 || y16 | 0.4352846369330103 - 1017
yr | 0.7784249118997964 - 10~ || y17 | 0.6899219696263405 - 10~
ys | 0.3245075353396018 Y18 | 0.1007803037365946 - 10~3
Yo | 0.7494013383880406 - 1072 || y1o | 0.1772146513969984 - 10~
yio | 0.1622293157301561 - 107 || yao | 0.5682943292316392 - 10~*

2.4 Numerical solution of the problem

Tables 11.2.4-11.2.5 and Figures 11.2.2-11.2.6 present the reference solution at the end of the integration
interval, the run characteristics, the behavior of the solution over the interval [0,12] and the work-
precision diagrams, respectively. The reference solution was computed by RADAUS5 on a Cray C90,
using double precision, work(1) = uround = 1.01-107!°, rtol = atol = h0 = 1.1-10"'® For the
work-precision diagrams, we used: rtol = 10-6G+"/4 m = 0,1,...,32; atol = rtol; h0 = rtol for
BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAUS5.
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TABLE I11.2.5: Run characteristics.

solver rtol atol hO mescd  scd steps accept #f  #Jac #LU CPU
BIMD 10-7 1077 1077 9.25 5.63 25 25 572 22 25 0.0039
1010 10-1° 10-1° | 11.73 8.73 41 41 1257 27 41 0.0107
DDASSL 107 10T 594 4.13 135 135 188 23 0.0039
10~ 1010 9.04 591 536 532 669 38 0.0107
GAMD 107 107 1077 8.16 6.31 23 23 625 23 23 0.0049
101 1071 10~ | 11.35 5.36 36 36 1401 36 36 0.0098

MEBDFI 107 10~ 107" 8.46 6.46 120 118 391 20 20 0.0039
10710 10710 10710 | 1145 9.32 235 235 763 33 33 0.0078

PSIDE-1 1077 1077 751 4.84 31 29 465 9 124 0.0049
10710 10710 10.64 8.04 63 62 970 12 188 0.0098
RADAU 1077 1077 1077 5.59  3.78 32 29 227 21 32 0.0029
1071 1071 1071 | 10.00 7.75 35 35 449 21 35 0.0049
VODE 1077 1077 6.61 3.32 149 149 208 4 27 0.0029

10710 10710 879 4.78 393 375 528 7 61 0.0059




ODE - Pollution problem

¥(1)
0.08 p—
ﬂﬂ 10 20
yid)
Q.04
0.02
0
(1] 10 20
¥i?)
01
.08
008, w20
\ 10% ¥110)
I_‘_‘_‘——\_
ID'D 10 20
x 107 ¥(13)
05
nﬂ 10 20
x 1917 ¥(18]
1
ﬂ'D 10 20
x 10% ¥(19)
1
II:I'IZJ 10 20

Figure 11.2.2:

y(2)

02

015

o2 107 ¥iS

20

¥i8)

20

0.31

20

20

20

20

20

0 10

35 107 yii2)

Q 10
4 1o ¥

0 0

42 o ¥iiB)

0 0

Behavior of the solution over the interval [0,12].

I1-2-5



I1-2-6

002158
ooz

om
0.oog

0oos

0.7

0.00E

0005

0004

wiok [CPU-lime in saconds)

0.0z

0oz

0.0

ODE - Pollution problem

Fallnion problam

33 & 10 12
precision (scd)

Ficure 11.2.3: Work-precision diagram (scd versus CPU-time).



ODE - Pollution problem

I1-2-7

Fallnion problam

002158
ooz

om
0.oog

0oos

0.7

0.00E

0005

0004

wiok [CPU-lime in saconds)

0.0z

0oz

ool -

T T T
MEEDFDAE —+—
MEEDFI
RADAL -- 4
RADAUS —=—

33 & 10 12
precision (scd)

Ficurg 11.2.4: Work-precision diagram (scd versus CPU-time).



II-2-8 ODE - Pollution problem

Fallnion problam

002158
ooz

oo
0o -

oooe -

0007

0.ooE -

0004 -

wiok [CPU-lime in saconds)

0oz -

0oz -y

oot .

1 1 1 1 1

4 33 & 10 1z 14
preciEion [ mescd)

Ficure 11.2.5: Work-precision diagram (mescd versus CPU-time).



ODE - Pollution problem II-2-9

Fallnion problam

T
MEEDFDAE —+—

MEEDFI
RADAL -- 4
RADAUS —=—

002158 E
ooz -

oo
0o -

oooe -

0007

0oas

wiok [CPU-lime in saconds)

1 1 1 1 1 1
4 33 & 10 1z 14
preciEion [ mescd)

FI1Gure 11.2.6: Work-precision diagram (mescd versus CPU-time).



II-2-10 ODE - Pollution problem



ODE - Ring modulator I1-3-1

3 Ring modulator

3.1 General information

The type of the problem depends on the parameter Cy. If Cy # 0, then it is a stiff system of 15

non-linear ordinary differential equations. For Cs = 0 we have a DAE of index 2, consisting of
11 differential equations and 4 algebraic equations. The numerical results presented here refer to
Cs = 2-107'2. The problem has been taken from [ ], where the approach of Horneber | ]

is followed. The parallel-IVP-algorithm group of CWI contributed this problem to the test set.
The software part of the problem is in the file ringmod.f available at [ ]

3.2 Mathematical description of the problem
For the ODE case, the problem is of the form

dy
E = f(tvy)a y(O) = Yo,
with

yeRY, 0<t<1073.

The function f is defined by

“L(ys — 0.5y10 + 0.5y11 + y14 — R 1y1)

“Hyo — 0.5y12 + 0.5y13 + y15 — R y)

(w10 — q(Up1) + q(Upa))

(—y11 +q(Up2) —q(Ups))

(12 +q(Up1) —q(Up3))

(=y13 — q(Up2) + q(Upa))

(=R, 'yr +q(Up1) + ¢(Up2) — ¢(Ups) — ¢(Ups))
fit,y) = |—Ly wn . (I1.3.1)

Ls_zl (0.5y1 — ys — Ry2y10)
( 0.5y1 + ya — Rgsy11)
(0 5y2 — ys — Ryoy12)

5 (=052 + ys — Ry3y13)
(

Y-

Y1 + Uina1 (t) — (Ri + Rg1)y14)
y2 — (Re + Rg1)y1s)

The auxiliary functions Up1,Ups, Ups, Upa, q,Uin1 and U,s are given by

Up1 = Y3 — Ys — y7 — Uina(2),

Ups = —ys+ys—yr— Upna(t),

Ups = ya+ys+yr+ Uma(t),

Ups = —ys—ys+yr+ Upna(t),

gU) = (Y -1, (I1.3.2)
Umi(t) = 0.5sin(20007t),
Uina(t) = 28in(200007t).

The values of the parameters are:
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I1-3-2 ODE - Ring modulator

c = 16-108[R = 25000
c, = 210712 | R, = 50
c, = 1078 | Ry = 36.3
Ly = 445 | Ry = 17.3
Ly = 0.002 | Rys = 17.3
Ly = 5-104 | R, = 50
Lyg = 5-107* | R, = 600
v = 40.67286402-107° | § = 17.7493332

The initial vector yq is given by
yo = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)".

The definition of the function ¢(U) in (II.3.2) may cause overflow if §U becomes too large. In
the Fortran subroutine that defines f, we set IERR=-1 if U > 300 to prevent this situation. See
page IV-ix of the description of the software part of the test set for more details on IERR.

3.3 Origin of the problem

The problem originates from electrical circuit analysis. It describes the behavior of the ring modulator,
of which the circuit diagram is given in Figure I1.3.1. Given a low-frequency signal U;,; and a high-
frequency signal Uy,2, the ring modulator produces a mixed signal in Us,.

R, + Rgl

FiGure 11.3.1: Circuit diagram for Ring Modulator (taken from [ ]).

Every capacitor in the diagram leads to a differential equation:

cU =1.
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Applying Kirchhoff’s Current Law yields the following differential equations:

CUy, = L —05I;+0.50+I; — R7'U,

CU, = Iy —05I3+05l+Ig— R'Us,

CUs = Iz —q(Up1) +q(Upa),

CsUs = —Ii +q(Up2) — q¢(Ups),

CsUs = Is +q(Up1) —q(Ups),

CUs = —Is —q(Up2) +q(Ups),

CoUr = —Ry'Uz +q(Up1) +q(Up2) — q(Ups) — q(Upa),

where Up1,Ups,Ups and Up, stand for:

Upr = Uz — Us — U — Ups,
Ups = -Us + Us — U;r — Upe,
Ups = Uy + Us + Ur + Uno,
Ups = -Us — Us + Ur + Une.

The diode function g is given by
q(U) = ’Y(eéU - ]-)7

where v and ¢ are fixed constants.
Every inductor leads to a differential equation as well:

LI =U.

Applying Kirchoff’s Voltage Law to closed loops that contains an inductor, results in another 8
differential equations:

Ly, = =Uy,

Ly, = -Us,

Lol = 05U, — Us — Rgls,
Lgly = —05U; + Us — Ryl
Lols =  05Us — Us — Rgls,
Lgls = —05Us + Us — Rgls,
Lol = Ui + Uwm - (Ri+Rp)I,
LIy = -Us - (Rc + Rgl)Ig.

Initially, all voltages and currents are zero.

Identifying the voltages with y1,...,y7 and the currents with ys,...,y15, we obtain the 15 dif-
ferential equations (I1.3.1). From the plot of y» = U, in Figure I11.3.2 we see how the low and high
frequency input signals are mixed by the ring modulator.

3.4 Numerical solution of the problem

Tables I1.3.2-11.3.3 and Figures I1.3.2-11.3.7 present the reference solution at the end of the integration
interval, the run characteristics, the behavior of the solution over the integration interval and the
work-precision diagrams, respectively. The reference solution was computed using PSIDE with atol
= rtol = 1073, For the work-precision diagrams, we used: rtol = 10~¢4+m/4) m = 0,1,...,32;
atol = rtol; h0 = 10~ 2 -rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAUS5. The
failed runs are in Table I1.3.1; listed are the name of the solver that failed, for which values of m this
happened, and the reason for failing.
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TABLE 11.3.1: Failed runs.

solver m reason

RADAU | 0,1,...,26 | solver cannot handle TERR=-1.
RADAUS5 | 0,1,...,9 | solver cannot handle TERR=-1.
VODE 0 solver cannot handle IERR=-1.
VODE 2 error test failed repeatedly.

TABLE 11.3.2: Reference solution at the end of the integration interval.

y1 | —0.2339057358486745 - 1071 || yo | —0.2840029933642329 - 10~ 7
y2 | —0.7367485485540825 - 1072 || y19 0.7267198267264553 - 103
Y3 0.2582956709291169 Y11 0.7929487196960840 - 103
ys | —0.4064465721283450 Y12 | —0.7255283495698965 - 103
ys | —0.4039455665149794 y13 | —0.7941401968526521 - 103
Y6 0.2607966765422943 Y14 0.7088495416976114 - 10~*
Y7 0.1106761861269975 Y15 0.2390059075236570 - 10~
Ys 0.2939904342435596 - 106
TABLE 11.3.3: Run characteristics.
solver rtol  atol  hO mescd  scd steps  accept #f  FtJac #LU CPU
BIMD 10=* 107* 1076 2.89 2.20 19415 19089 455877 17614 19127 3.0793
10-7 1077 107° 7.08 6.28 26590 25880 824318 25865 26585 5.5886
DDASSL 107+ 107* 1.18 049 88627 86091 116778 3538 1.4230
1077 1077 3.22  2.53 252827 249239 318196 7777 4.0123
GAMD 107% 107* 10°¢ 2.34 1.65 12420 11264 474866 11264 12420 2.7572
10-7 1077 107° 6.11 5.42 18798 16913 1049423 16909 18793 6.0502
MEBDFI 10~* 10~* 1076 2.54 1.85 61426 61208 201899 5374 5374 1.6416
1077 1007 107° 5.28 4.59 148609 148298 483689 12471 12471  3.9831
PSIDE-1  107* 10°* 1.29 0.60 9791 8241 267721 6834 38184 1.6709
1077 1077 5.21 4.53 55345 45636 886724 3984 111508 5.4656
RADAU5 1077 107 107° 4.49 3.80 102515 93113 545282 12316 54746 3.7742
VODE 10-7 107 2.84 2.15 217383 207569 261396 3605 22598 2.4019
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4 Medical Akzo Nobel problem

4.1 General information

The problem consists of 2 partial differential equations. Semi-discretization of this system yields a
stiff ODE. The parallel-IVP-algorithm group of CWI contributed this problem to the test set in
collaboration with R. van der Hout from Akzo Nobel Central Research.

The software part of the problem is in the file medakzo.f available at | ].

4.2 Mathematical description of the problem
The problem is of the form

dy

T - flt,y), y(0) =g, (IL.4.1)

with
yeR®, 0<t<20.

Here, the integer N is a user-supplied parameter. The function f is given by

Y2j+1 — Y253 Y2j—3 — 2y25—1 + Y2541
= . . B
foj—1 i IAC + B; (A2 Y2;-1Y25,
foj = —kuy2ye5-1,
where
_ 2(A¢-1)°
YT T2
_gag-!
b = —a

Here, j ranges from 1 to N, A = %, y_1(t) = (), yans1 = yan_1 and g € IR?Y is given by
g= (0,’[)0, 07”07 LR 07UO)T~

The function ¢ is given by
| 2 for te(0,5],
o(t) = { 0 for te (5,20].

which means that f undergoes a discontinuity in time at ¢ = 5. Suitable values for the parameters £k,
vg and ¢ are 100, 1 and 4, respectively.

4.3 Origin of the problem

The Akzo Nobel research laboratories formulated this problem in their study of the penetration of
radio-labeled antibodies into a tissue that has been infected by a tumor | ]. This study was
carried out for diagnostic as well as therapeutic purposes.

Let us consider a reaction diffusion system in one spatial dimension:

ou 8%y
0 -k, (IL.4.3)

ot
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which originates from the chemical reaction

A+BAC

Here A, the radio-labeled antibody, reacts with substrate B, the tissue with the tumor, and k& denotes
the rate constant. The concentrations of A and B are denoted by w and v, respectively. In the
derivation of the equations (I1.4.2) and (I1.4.3) it was assumed that the reaction is governed by mass
action kinetics and in addition that the chemical A is mobile while B is immobile.

Consider a clean semi-infinite slab, in which the substrate B is uniformly distributed. When the
slab is exposed at its surface to the chemical A, this chemical starts to penetrate into the slab.

To model this penetration, the equations (I1.4.2) and (I1.4.3) are considered in the strip

Sr={(z,t): 0<z <00, 0<t<T} forsomeT,
along with the following initial and boundary conditions:
u(z,0) =0, v(z,0) =vy forz >0,

where vg is a constant, and
u(0,t) = ¢(t) for0<t<T.

In order to solve the problem numerically, we transform the variable z in such a way that the semi-
infinite slab is transformed into a finite one. A suitable transformation is provided by the following
special family of Md&bius transformations:

(=2 withe> 0.
T+ c

Each transformation in this class transforms St into the slab:
{(G1):0<¢<L, 0<t<T}

In terms of ¢ the problem now reads:

du  ((—1)*u  2(¢-1)%0u

9% 2o + 2 ac kuwv, (I1.4.4)

Jv

i —kuwv, (I1.4.5)
with initial conditions

u(¢,0) =0, v(¢,0) =vg for¢ >0, (I1.4.6)
and boundary conditions
Ju .
u(0,t) = ¢(t), 8—C(1,t) =0 forO<t<T. (I1.4.7)
ou

The last boundary condition is derived from §%(oc0,t) = 0.

The system consisting of (I1.4.4), (II.4.5), (I1.4.6) and (I1.4.7) will be written as a system of
ordinary differential equations by using the method of lines, i.e. by discretizing the spatial derivatives.
We use the uniform grid {{;};=1, ..~ defined by:

. . 1
C]:.]AC7 .7:]-77N7 ACZN
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Let u; and v; denote the approximations of w({;,t) and v((;,t), respectively. Obviously, u; and v;
are functions of ¢. In terms of the function w;, our choices for the discretization of the spatial first
and second order derivatives read

ou;  Ujp1 — Ui Ou; w1 — 2u; + Ui
g %t J and jg . %y—1 J j+

a¢ 2A¢ acz (A¢)? ’

respectively, where 7 = 1,..., N. Suitable values for uy and uy,;1 are obtained from the boundary
conditions. They are given by ug = ¢(t) and uy 1 = uy.

Defining y(t) by y = (u1,vi,us,vs,...,un,vn)", and choosing T = 20, this semi-discretized
problem is precisely the ODE (I1.4.1).

To give an idea of the solution to the PDE (I1.4.4)—(11.4.7), Figure I1.4.1 plots « and v as function
of z and ¢. We nicely see that injection of chemical A (locally) destroys B.

x-axis

FIGURE 11.4.1: u and v as function of time and space.

4.4 Numerical solution of the problem

The numerical experiments were done for the case N = 200. In Table I1.4.1 we give the value of
some components of the reference solution at the end of the integration interval. These components
correspond to the values of v and v in z =1, 2.4, 4.0 and 6.0. For the complete reference solution we
refer to the Fortran subroutine solut. Figure 11.4.2 plots the behavior of the solution components y;
for i € {79,80,133,134,171,172,199, 200}, which correspond to approximations of the PDE solutions
u and v on the grid lines z = 1, 2, 3 and 4. Table I[.4.2 and Figures 11.4.3-11.4.6 show the run
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TABLE 11.4.1: Reference solution at the end of the integration interval.

yro | 0.2339942217046434-10 3 || y1oe | 0.11737412926802 - 103
yso | —0.1127916494884468 - 10~141 || 4300 | 0.61908071460151 - 10~°
yiao | 0.3595616017506735 - 10~3 || 3230 | 0.68600948191191 - 10~
yiso | 0.1649638439865233 - 1056 || 4240 | 0.99999973258552

TABLE 11.4.2: Run characteristics.

solver rtol  atol  hO mescd  scd steps accept #f  #Jac #LU CPU

BIMD 107 107* 107° 4.94 4.92 110 110 1565 90 110 0.1932
10°7 1077 107!2 819 8&.13 125 125 3496 115 125 0.4451

DDASSL  10=* 10~* 341 3.35 381 373 550 46 0.1200
10-7 1077 5.69 5.69 1378 1369 1700 62 0.3972
GAMD 107 107 10°° 5.03 5.01 66 66 2116 66 66 0.2235

1077 1007 1072 779 T8 104 104 4760 104 104 0.5290
MEBDFI 10=* 10=* 107° 3.95 3.94 375 361 1238 70 70 0.2235
10°7 1077 107!2 744  7.43 826 803 2749 104 104 0.5046

PSIDE-1  10=* 10~* 5.16  5.00 118 83 1263 34 456 0.1776
1077 1077 718 7.12 159 145 2838 109 624 0.3445
RADAU 10% 107* 10° 3.87 3.82 93 93 47 60 93 0.0859
1077 1007 1072 6.93 6.92 100 100 1807 98 100  0.1972
VODE 0= 107* 2.84 2.84 364 359 506 10 62 0.0625
10=7 1077 5.62 5.61 1036 1023 1217 19 101 0.1571

characteristics, and the work-precision diagrams, respectively. The reference solution was computed
on the Cray C90, using PSIDE with Cray double precision and atol = rtol = 107!°. For the work-
precision diagrams, we used: rtol = 10~(*+m/8) 4 = 0,1,...,40; atol = rtol; h0 = 107> - rtol for
BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAUS5. Since some solution components
are zero, all scd values presented here denote absolute precision.
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5 EMEP problem

5.1

General information

I1-5-1

The problem is a stiff system of 66 ordinary differential equations. The ‘Mathematics and the Envi-
ronment’ project group at CWI contributed this problem to the test set. The software part of the
problem is in the file emep.f available at | ]

5.2 Mathematical description of the problem

The problem is of the form

with

dy
dt

y € R,

The initial vector g = (g;) is given by

= fty),

y(0) =g,

14400 <t < 417600.

((1.0-10° for i=1,
5.0-10°  for i€ {2,3),
38.10'2 for i=—4,
3.5-10'% for =35,

gi=1{ 1.0-107 for i€ {6,7,...,13},

5.0-10  for =14,
1.0-10>  for i€ {15,16,...,37},
1.0-1072 for 4 =38,

| 10-10°  for i€ {39,40,..., 66}

The function f has discontinuities in time at ¢ = 3600(4+244) and ¢t = 3600(—4+424¢) fori = 1,2,3,4,5.
Since f is too voluminous to be described here, we refer to the Fortran subroutine feval and to | ]
to get more insight in the function.

5.3 Origin of the problem

The problem is the chemistry part of the EMEP MSC-W ozone chemistry model, which is in devel-
opment at the Norwegian Meteorological Institute in Oslo, Norway. About 140 reactions with a total
of 66 species are involved. Below we give the correspondence between the solution vector y and the
chemical species.

y=(

NO,
NC4H10,
MEK,
CH302,
PAN,
PRRO2,
OH,
ISRO2,
BURO2H,
ISNT,
ISNTR,

NO2,
C2H4,
03,
C2H50H,
SECCA4H,
GLYOX,
oD,
MVK,
ETRO2H,
ISRO2H,
MVKO2H,

S02,
C3H6,
HO?2,
SA,
MEKO?2,
0XYO2,
NO3,
MVKO2,
PRRO2H,
MARO2,
CH2CHR,

Co,
OXYL,
HNO3,
CH302H,
R200H,
MAL,
N205,
CH30H,
MEKO2H,
MAPAN,
ISNO3H,

CH4,
HCHO,
H202,
C2H502,
ETRO?2,
MALO2,
ISOPRE,
RCO3H,
MALO2H,
CH2CCHS,
ISNIRH,

C2M6,
CH3CHO,
H2,
CH3CO0O0,
MGLYOX,
oP,
NITRAT,
OXYO2H,
MACR,
ISONO3,
MARO2H )T.
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TABLE 11.5.1: Reference solution at the end of the integration interval.

NO | =0.2564580511140732-10% || CH4 | =0.3459285326034955 - 10**
NO2 | =0.5146134770952715 - 10! || O3 =0.3150308585365321 - 10'?
SO2 | =0.2315679957701715 - 1012 || N205 | =0.7684596616753747 - 10°

The integration interval covers 112 hours. Rate coefficients are often variable. Some of them undergo
a discontinuity at sunrise and sunset, which correspond to ¢ = 3600(+4 + 24i), respectively, for
i =1,2,3,4,5. The unit of the species is number of molecules per cm?, the time ¢ is in seconds. The
test problem corresponds to the rural case in [ ]. From the plot of O3 versus time in Figure 11.5.1
we see that in this model the ozone concentration steadily grows over the integration interval. A more
elaborate description of the model can be found in | L[ ] and | ].

5.4 Numerical solution of the problem

Table I1.5.1 and Figure I1.5.1 present the value of reference solution at the end of the integration
interval ¢ = 417600 and the behavior of the solution over the integration interval of the components
of y corresponding to NO, NO2, SO2, CH4, O3 and N205 (i.e. y1, ¥2, Y3, U5, y14 and ysg). For the
complete reference solution at the end of the integration interval we refer to the Fortran subroutine
solut. The values at the horizontal axis in Figure I1.5.1 denote the time ¢ in hours modulo 24 hours.
Table I1.5.2 and Figures I1.5.2-11.5.5 contain the run characteristics and the work-precision diagrams,
respectively. Since components ysg and ysg are relatively very small and physically unimportant,
we did not include these components in the computation of the scd value. The reference solution
was computed using RADAUS5 with rtol = 1074, atol = 1078, h0 = 10~%. For the work-precision
diagrams, we used: rtol = 10~(+™/8) m =0,1,...,32; atol = 1 and h0 = 10~7 for BIMD, GAMD,
MEBDFDAE, MEBDFI, RADAU and RADAUS5.
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TABLE 11.5.2: Run characteristics.
solver rtol atol hO mescd  scd steps accept #I{  FJac #LU CPU
BIMD 1072 1 1077 1.63 2.48 300 278 4797 212 296 0.3250
107* 1 1077 2.39 2.39 509 485 8292 445 501 0.5553
1076 1 107 512 5.12 808 748 17116 639 793 1.0873
DDASSL 1072 1 1.57 1.82 741 701 1340 171 0.1200
107* 1 348 3.48 1938 1880 3322 254 0.2557
107% 1 5.35 5.35 3964 3851 6221 404 0.4714
GAMD 1072 1 1077 2.46 2.46 347 283 10656 283 347 0.4851
107¢ 1 107 2.92 292 335 300 13551 300 335 0.6188
1078 1 1077 4.66 4.64 607 503 28488 504 607 1.2629
MEBDFI 102 1 107 1.17 1.17 649 597 2537 130 130 0.1454
107* 1 10~7 3.53 3.53 1320 1252 4834 216 216  0.2772
1076 1 1077 480 4.80 2621 2458 9214 406 406 0.5407
PSIDE-1 1072 1 1.58 2.39 490 438 6954 175 1908 0.8462
107 1 2.29 2.29 509 447 9241 213 1980 0.9516
1076 1 3.97 3.95 769 650 15861 335 2716 1.4240
RADAU 1072 1 10~7 1.59 257 398 325 3510 224 398 0.6159
1007* 1 1077 2.68 2.68 542 492 4815 377 542  0.8433
107¢ 1 1077 3.62 3.60 463 390 10241 281 463 1.3566
VODE 1072 1 0.87 0.87 884 859 1409 62 272 0.1396
104 1 2.49 249 2296 2199 3547 64 383 0.2586
106 1 4.51 4.49 4302 4078 6090 82 637 0.4431
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6 Pleiades problem

6.1 General information

The problem consists of a nonstiff system of 14 special second order differential equations rewritten
to first order form, thus providing a nonstiff system of ordinary differential equations of dimension 28.
The formulation and data have been taken from [ ]. E. Messina contributed this problem to
the test set. Comments to eleonora.messina@unina.it.

The software part of the problem is in the file plei.f available at | ]

6.2 Mathematical description of the problem
The problem is of the form
2" = f(2), 2(0)=2z, 2'(0)=z, (I1.6.1)
with
zeR™, 0<¢t<3.

Defining z := (¢7,y")T, z,y € R", the function f : R — IR™ is given by f(2) = f(z,y) =
(fO(z, )T, fA(z,y)")T, where f1:2) : IR"™ = IR” read

3 ‘ 3 .
=S mpy —a) ey =Y mily - /ey i=1,0T (I1.6.2)
A i#i
Here, m; = ¢ and
rij = (@i — ;)% + (yi — y;)*

We write this problem to first order form by defining w = 2z', yielding a system of 28 non-linear

differential equations of the form
!
z w
= I1.6.3
(o) =(s6) e

with

The initial values are

Zo Ty = (373a_17_3a2’_272)T7
20 _ Yo Yo = (37 _37 27 07 07 _47 4)T7
(wo ) | o= | where z, = (0,0,0,0,0,1.75,—-1.5)T,
uh yo = (0,0,0,-1.25,1,0,0)

6.3 Origin of the problem

The Pleiades problem is a celestial mechanics problem of seven stars in the plane of coordinates x;,
y; and masses m; = ¢ (i = 1,...,7). We obtain the formulation of the problem by means of some
mechanical considerations. Let us consider the body i. According to the second law of Newton this
star is subjected to the action

F; = m;p, (11.6.4)

where p; := (z;,7;)T. On the other hand, the law of gravity states that the force working on body i
implied by body j, denoted by Fj;, is

T - 10s
T b - i3


http://www.dm.uniba.it/~testset/src/problems/plei.f

I1-6-2 ODE - Pleiades problem
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FIGURE I1.6.1: Trajectories of the first and third body on [0,2].

TABLE I1.6.1: Quasi-collisions in Pleiades problem. The squared distance between body ¢ and body j at t = 7 is listed
(values taken from [ 7).

i 1 1 3 1 2 5
J 7 3 5 7 6 7
T 1.23 1.46 1.63 1.68 1.94 2.14

llpi —p;l|2 | 0.0120 0.0193 0.0031 0.0011 0.1005 0.0700

Here, F;, Fy; € IR?, g is the gravitational constant, which is assumed to be one here, and di; =

ﬁ represents the direction of the distance between the two stars. According to the principle of
i —Di
superposition of actions, F; will be the sum of the interactions between body 4 and all the others,
Fy=)_Fy. (11.6.6)
7]

It is easily checked that (I1.6.4)—(I1.6.6) and (I1.6.2) are the same.

During the movement of the 7 bodies several quasi-collisions occur which are displayed in Ta-
ble I1.6.1. In Figure I1.6.1 the behaviors of the bodies 1 and 3 in the interval [0, 2] are shown; the
circles and the crosses represent data obtained every 0.05 sec, the link ‘—’ indicates the distance
occurring between the two stars at ¢ = 1.45.

6.4 Numerical solution of the problem

One should be aware of the fact that the Pleiades problem is a nonstiff ODE. Therefore we also include
the results obtained by the nonstiff solver DOPRI5[ ], which is based on an explicit Runge-Kutta
method.



ODE - Pleiades problem II-6-3

TABLE 11.6.2: Reference solution at the end of the integration interval.

T1 0.3706139143970502 y1 | —0.3943437585517392 - 10
T 0.3237284092057233 - 10 || y» | —0.3271380973972550 - 10
z3 | —0.3222559032418324 - 10 || ys 0.5225081843456543 - 10

T4 0.6597091455775310 ya | —0.2590612434977470 - 10
T 0.3425581707156584 Ys 0.1198213693392275 - 10
T 0.1562172101400631 - 10 || ys | —0.2429682344935824

z7 | —0.7003092922212495 Y7 0.1091449240428980 - 10

x} 0.3417003806314313 - 10 || v} | —0.3741244961234010 - 10
xh 0.1354584501625501 - 10 || y4 0.3773459685750630
z% | —0.2590065597810775 - 10 || v4 0.9386858869551073
xy 0.2025053734714242 - 10 || v 0.3667922227200571
xzf | —0.1155815100160448 - 10 || yi | —0.3474046353808490
zg | —0.8072988170223021 Y6 0.2344915448180937 - 10
x4 0.5952396354208710 y» | —0.1947020434263292 - 10

Tables 11.6.2-11.6.3 and Figures 11.6.2-11.6.4 present the reference solution at the end of the in-
tegration interval, the run characteristics, the behavior of the solution components x; and y; over
the integration interval and the work-precision diagrams, respectively. The computation of the scd
values is based on the first 14 components, since they refer to the physically important quantities.
The reference solution was computed on the Cray C90, using PSIDE with Cray double precision and
atol = rtol = 1016, For the work-precision diagrams, we used: rtol = 10~4+m/4) 1 =0,1,...,24;
atol = rtol; h0 = 1072 - rtol for BIMD, GAMD, RADAU, RADAU5 and MEBDFDAE.

With respect to the RADAU and RADAUS results in Table 11.6.3 and Figures 11.6.3-11.6.4, we
remark that for generality of the test set drivers, we did not use the facility to exploit the special
structure of problems of the form (I1.6.3). By setting the input parameter IWORK (9)=14, and adjusting
the Jacobian routine appropriately, RADAU and RADAUS5 produces considerably better results.

These results are listed for RADAU in Table 11.6.4.

References

[HNW93] E. Hairer, S.P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff
Problems. Springer-Verlag, second revised edition, 1993.

[HW96] E. Hairer and G. Wanner. DOPRI5, April 25, 1996. Bug fix release sep 18, 1998. Available
at http://www.unige.ch/~hairer/prog/nonstiff/doprib.f.

[MIO3]  F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
~testset.


http://www.unige.ch/~hairer/prog/nonstiff/dopri5.f
http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

II-6-4 ODE - Pleiades problem
TABLE 11.6.3: Run characteristics.
solver rtol atol hO mescd scd steps accept #t  #Jac #LU CPU
BIMD 10—4 10—* 106 2.69 2.12 113 105 1955 79 110 0.0449
10-7 10-7 10~° 5.38 4.81 138 127 4013 123 138  0.0888
1071 1071 10712 8.60 8.42 154 138 6947 129 152 0.1562
DDASSL 10¢ 1074 0.80 0.23 428 390 589 49 0.0185
1077 10~ 3.43 3.24 1237 1224 1674 59 0.0517
10~ 1010 5.88 5.72 3778 3773 4709 61 0.1425
DOPRI5 10~* 10—* 1.06 0.50 100 74 602 0.0059
107 1077 4.06 3.49 295 244 1772 0.0176
10~ 10710 8.06 7.83 940 940 5642 0.0566
GAMD 1074 1074 106 1.54 0.97 85 69 2751 69 85 0.0566
10-7 10-7 107° 4.81 4.57 122 104 5163 104 122 0.1083
10~ 1071 10-12 7.65 7.30 183 177 7927 173 183 0.1649
MEBDFI 10 % 1074 106 1.12 0.56 387 366 1339 56 56  0.0303
107 10~ 10~° 3.84 3.62 835 816 2764 86 86  0.0654
10710 10710 10712 7.14 6.94 1868 1868 6119 189 189 0.1454
PSIDE-1 10~* 10—4 2.23 1.82 102 76 1710 27 364 0.0410
10—7 10-7 5.26 4.70 248 223 3187 1 592  0.0712
10~10 1010 8.12 7.55 807 807 9095 1 604 0.1786
RADAU 1074 1074 106 2.67 2.11 151 138 1053 132 151  0.0303
107 1077 10~° 6.20 6.17 112 95 2153 83 112 0.0547
1079 1079 1072 9.41 9.20 130 119 3001 91 130  0.0742
VODE 10~* 10—* 0.40 -0.17 352 325 468 6 57 0.0117
10-7 10-7 2.76 2.57 1081 1043 1232 18 94 0.0303
10~ 1010 5.41 5.20 3120 3079 3351 51 203 0.0830
TABLE 11.6.4: Run characteristics obtained by RADAU with exploited special structure.
solver rtol atol hO mescd scd steps accept #f  #Jac #LU CPU
RADAU 10~* 10— 106 1.72 211 151 138 1053 132 151  0.0234
10~7 10-7 10~° 513 6.17 112 95 2153 83 112 0.0429
10710 10710 10712 8.27 9.20 130 119 3001 91 130  0.0586
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7 Problem BEAM

7.1 General information

The problem is originally described by a partial differential equation subject to boundary conditions.
The semi-discretization in space of this equation leads to a stiff system of n non-linear second order
differential equations which is rewritten to first order form, thus providing a stiff system of ordinary
differential equations of dimension 2n. The formulation and data have been taken from [ . The
INdAM-Bari Test Set group contributed this problem to the test set. The software part of the problem
is in the files beam.f available at [ ]

7.2 Mathematical description of the problem

The problem is of the form

2= f(tz,7), 2(0) =2 2'(0) =z,
with

z€R" t>0.
The function f: R™ — R™ is defined by
f(t,z,2") = Cv + Du.
Here C' is the tridiagonal n X n matrix whose entries are given by
C)1=1, (O)pn=3,and (C)y=2, 1=2,...,n—1,
(C)l,l-',-l = —COS(Z[—ZH_l), l:l,...,n—l,
(C)l,l—l = —COS(Zl —Z[_l), [ = 2,...,71,
and D is the n x n bidiagonal matrix whose lower and upper diagonal entries are

{ (D)ig41=—sin(z — z141), =1,...,n—1,
(D)1 = —sin(z; — z-1), 1=2,...,nm,

v = (v1,vs,...,0,) " is defined by
v = n4(zl,1 -2z +z141) + ng(cos(zl)Fy —sin(z)F,), I1=1,...,n
with zg = —21, 2n11 = zn, and w is the column vector of size n solution of the tridiagonal system
Cu=gyg
with ¢ = Dv + (22, 282,..., 25T,

We write this problem to first order form by defining w = z’, yelding a system of 2n non-linear

differential equations of the form
7
z _ w

(z,w)T € R*™, t>0.

with

The initial values are

20 _ 20 ZOZ(O,O....,O)T
(um)‘(za)’ where {zaz(o,o,...,O)T


http://www.dm.uniba.it/~testset/src/problems/beam.f

II-7-2 ODE - Problem BEAM

7.3 Origin of the problem

The BEAM problem originates from mechanics and describes the motion of an elastic beam which is
supposed inextensible, of length 1 and thin. Moreover, it is assumed that the beam is clamped at one
end and a force F' = (F,, F,) acts at the free end. As coordinate system it is used the angle § as a
function of arc length s and time ¢. The beam is then described by the equations

u(s,t):/ cos (o, t) do, v(s,t):/ sin0(o,t) do.
0 0

In order to obtain the equations of motion for this problem, the Lagrange theory is applied. Let 1" be
the kinetic and U the potential energy defined respectively as follows

To= / ((i(s,0))* + (0(s,1)?) ds
U = %/0 ((9I(Sat))2 ds — Fu(t)u(lat) - Fv(t)v(l’t)'

Here dots and primes denote derivatives with respect to ¢t and s, respectively.
Using the Hamilton principle, the equations of motion are derived. They are

/ G(s,0) cos(8(s,t) — (o, 1))0(0,t) do =
= 0" (s,t) + cosO(s,t)F,(t) — sin (s, t) F,(t) (I1.7.1)
/ G(s,0) sin(6(s, 1) — 8(c, 1)) (80, 1))? do
0,6)=0, 6 (1,1)=0
where
G(s,0) = 1 — max(s, o)

is the Green function for the problem —w" (s) = g(s),w (0) = w(1) = 0.
We discretize the integrals with the midpoint rule:

/f(e(o,t))do:%Zf(ek), 9k:9((k—%)%,t), k=1, .n
0 k=1

Equations (II.7.1) then become

Z a[kék = n4(9471 — 26, + 9[+1) + n2<C0894 F, —sinéb, Fu)
k=1
—Zgzk sin(f, — 01,)0%, (=1,...,n,
k=1
o = —91, 9n+1 = eny

where

1
Aok = Yok COS(Q{ — Qk), g =N+ 5 — max(ﬁ,k).



ODE - Problem BEAM II-7-3

TABLE I1.7.1: Run characteristics.

solver rtol atol  hO mescd scd  steps accept #t  #Jac #LU CPU
BIMD 10-* 10~* 10 3.53 3.58 60 60 1249 58 59  0.2137
10-7 1007 1077 5.61 6.97 777 77T 16197 722 744  2.7308
DDASSL 10°* 10°* 1.83 2.29 29120 28928 30700 243 3.1544
1007 1077 4.63 5.25 51757 51160 56908 768 6.4455
GAMD 10°¢ 107¢ 104 3.58 3.59 49 49 1715 49 49  0.2030

10=7 1077 1077 549 6.28 459 458 21156 458 459  2.2321
MEBDFI 10=* 10=* 107* 2.56 1.92 o978 959 6447 39 95 0.2284
1077 1007 1077 9.20 5.26 38693 38645 292234 2054 2054 12.7690

PSIDE-1  10°* 10°* 252 214 42 36 1096 29 168 0.2303
1077 1077 428 544 241 208 8006 192 964  1.4806
RADAU 10=* 107* 107* 3.57 249 62 55 406 43 61  0.2645
10=7 1077 1077 424 5.72 71 71 1653 46 60  0.5632
VODE 10=* 107* —0.25 1.09 60537 60519 145514 1009 3041  7.3727
107 1077 440 6.48 58132 57793 139394 967 3338  7.8080
In Hairer & Wanner | ] the exterior forces are chosen as
_ [ 1L5sin*t, 0<t<m,
Fa=-p. Fo=ol,  p={ 12 0SIST

and the initial conditions are taken to be

f(s,0) =0, 6(s,0) = 0.

7.4 Numerical solution of the problem

The resulting system of ODEs is integrated for 0 < ¢t < 5, using n = 40. Table I1.7.1 and Figures
I1.7.1-I1.7.3 present the run characteristics, the behavior of the solution components zig, 220, 230
and z49 over the interval and the work-precision diagrams, respectively. The computation of the scd
values is based on the first 40 components, since they refer to the physically important quantities.
The reference solution was computed by RADAU on an Alphaserver DS20E, with a 667 MHz EV67
processor, using double precision work(1) = uround = 1.01-107'%, rtol = atol = h0 = 1.1-107'8,
For the work-precision diagrams, we used: rtol = 10~(**™/4 = 0,...,16; atol = rtol; h0 = rtol for
BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAUS.

With respect to the RADAU and RADAUS results in Table 11.7.1 and Figures I1.7.2-11.7.5, we
remark that for generality of the test set drivers, we did not use the facility to exploit the special
structure of problems. By setting the input parameter IWORK(9)=40, and adjusting the Jacobian
routine appropriately, RADAU and RADAUS5 produce considerably better results.

These results are listed for RADAU in Table I1.7.2.
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TABLE 11.7.2: Run characteristics obtained by RADAU with exploited special structure.

solver rtol  atol  hO mescd  scd  steps accept #f  #Jac #LU CPU
RADAU 107* 10* 10 342 249 62 55 406 43 61 0.0869
1077 1007 107" 4.24  5.72 71 71 1653 46 60 0.1728
z[1 z[2d
1.6 T T T 1.6 T T T
1t

a.5¢

z(3

a 1 z 3 4 5 “a 1 2 a 4 5

FI1GURE II.7.1: Behavior of the solution components 219, 220, 230 and z4p over the integration interval
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[MIO3] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
~testset.
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8 Problem VDPOL

8.1 General information

The problem consists of a second order differential equation rewritten to first order form, thus providing
a system of ordinary differential equations of dimension 2. It was proposed by B. van der Pol in the
1920’s | | ]. The INAAM-Bari Test Set group contributed this problem to the test set.
Most of the documentation about this problem has been retrieved from | ]. The software part
of the problem is in the files vdpol.f and vdpolm.f available at | ]

8.2 Mathematical description of the problem

The problem is of the form

2= f(z’zl)7 Z(O):ZO ZI(O):ZG,

with
z€IR, te]0,T],

where the function f is given by
flz,2)=p(l =22)2 -2, pu>0. (I1.8.1)

We write this problem to first order form by defining y; = z and y» = 2’, yelding a system of 2
nonlinear differential equations of the form

( “ ) - ( Fnpe) ) (I1.8.2)

(ylva)Telea te [OaT]

with

A rescaling of the solutions of (IL.8.2) results in the following formulation

( iﬁ ) - ( }'(;fw) ) (11.8.3)

Flyn,92) = (L= 91)ys —w1) /e, €>0.
Problem (I1.8.2) will be referred to as vdpol,, and problem (I1.8.3) as vdpol.. The initial values are

()= (%) wee {225

8.3 Origin of the problem

where

The VDPOL problem originates from electronics and describes the behaviour of nonlinear vacuum
tube circuits. The circuit scheme, designed by Balthazar van der Pol in the 1920’s, is given in Figure
11.8.1. This is an RLC loop, but with the passive resistor of Ohm’s Law replaced by an active element
which would pump energy into the circuit whenever the amplitude of the current falls below a certain
level. In the 1920’s this active element was an array of vacuum tubes, now it is a semiconductor device.
The voltage drop at the semiconductor (which used to be RI) is given by a nonlinear function f(I) of


http://www.dm.uniba.it/~testset/src/problems/vdpol.f
http://www.dm.uniba.it/~testset/src/problems/vdpolm.f
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Ficure I1.8.1: Negative resistance oscillatory circuit

the current I. If we substitute f(I) for RI in the standard RLC-circuit equation LI" + RI'+1/C =0,
the current in the circuit turns out to be modeled by

LI"+ f()I' +I)C =0. (I1.8.4)

In a 1924 study of oscillator circuits in early commercial radios (at Philips research laboratories),
B. van der Pol assumed the voltage drop to be represented by the nonlinear function f(I) = bI® —al,
which with equation (I1.8.4) leads to

LI" + (3bI2 — a)I' + I/C = 0. (I1.8.5)

This equation is also closely related to the equation introduced by the British mathematical physi-
cist Lord Rayleigh (John William Strutt, 1842 - 1919) to model the oscillations of a clarinet reed. For
more details see | ]

If we denote by 7 the time variable in Eq. (I[.8.5) and make the substitutions I = pz and ¢ =
7/VLC, the result is

d’z Cdz

d?—l-(prgz2 —a) ZE_FZ:O'

With p = /a/(3b) and p = a+/C/L this gives the standard form
(=12 +2=0

of the van der Pol’s equation.

The van der Pol equation is often used as a test problem for ODEs solvers. It has two periodic
solutions, the constant solution, z(t) = 0, that is unstable, and the nontrivial periodic solution (roughly
corresponding to the initial conditions z(0) = 2, 2/(0) = 0), that is named ‘limit cycle’ because all the
other nontrivial solutions converge to this one as ¢t — oco.

This qualitative behavior is well shown in the phase plane plot in Figure 11.8.2 (for p = 2), where
outward and inward spiral trajectories converge to the limit cycle (the closed curve).

The parameter p > 0 weights the importance of the nonlinear part of the equation. When p is
‘large’ the approach to the limit cycle is quite rapid (see Figure 11.8.3 for u = 10%) and the van der
Pol equation is more interesting because of the non negligible influence of the nonlinear term. From
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FIGURE 11.8.2: Limit cycle for p =2

an analysis of the behavior of the limit cycle | ] it turns out that it can be described in terms of
portions where the solution components change slowly and the problem is quite stiff, alternating with
regions of very sharp change (quasi-discontinuities) where it is non-stiff. Thus, the problem switches
from stiff to non stiff with a very sharp changing solution that makes the equation quite challenging
for ODEs solvers.

The van der Pol equation may be treated in different ways, the most straightforward is to split the
equation into a system of two first order differential equations as in (I1.8.2). Note that if the second
of the equations is divided by u we get an equation that has the character of a singular perturbation
problem. Several other approaches may show other aspects on the nature of this problem. For example
Hairer and Wanner | ] introduce the following scaling transformation of (II.8.2) to make the
steady-state approximation independent of p:

z=t/p, wilzx)=y1(t), wlx)=py(t)

Substituting in (I1.8.2) and using again y for w and t for z, the equation (I1.8.3) is obtained with
e = 1/p?. The scaled version (I1.8.3) has the advantage that a small interval independent of the
parameter value can be considered to track at least one period of the solution.

8.4 Numerical solution of the problem
8.4.1 vdpol, with p = 10° and ¢ € [0,2y]

Tables 11.8.1, 11.8.2 and Figures I1.8.4, I1.8.6-11.8.9 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the first component of the solution over
the integration interval and the work-precision diagrams, respectively. The reference solution was
computed by RADAU on an Alphaserver DS20E, with a 667 MHz EV67 processor, using double
precision work(1) = uround = 1.01-107'%, rtol = atol = h0 = 1.1-107'%. For the work-precision
diagrams, we used: rtol = 10~4+™/4) m = 0,1,...,32; atol = rtol; h0 = 102 - rtol for BIMD,
GAMD, MEBDFDAE, MEBDFI, RADAU and RADAUS5.
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FIGURE 11.8.4: Behavior of the solution component y1 over the integration interval

8.4.2 vdpol, with e =107¢ and ¢ € [0, 2]

Tables 11.8.3, 11.8.4 and Figures 11.8.5, T1.8.10-I1.8.13 present the reference solution at the end of
the integration interval, the run characteristics, the behavior of the first component of the solution
over the integration interval and the work-precision diagrams, respectively. The reference solution
was computed by RADAU on an Alphaserver DS20E, with a 667 MHz EV67 processor, using double
precision work(1) = uround = 1.01-107'%, rtol = atol = h0 = 1.1-107 '8, For the work-precision

TABLE 11.8.1: Reference solution at the end of the integration interval.

Y 0.1706167732170469 - 10!
Yo | —0.8928097010248125 - 103
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TABLE 11.8.2: Run characteristics.

solver rtol atol hO mescd scd steps accept #f  #Jac #LU CPU

BIMD 10=*  10=* 10°°¢ 4.06  3.57 133 112 2801 104 133 0.0020
10°7 107" 107° 9.18  8.80 224 219 5072 209 224 0.0029
1071 10719 1072 | 11.17 10.32 250 248 10151 237 250 0.0078

DDASSL 10°* 1074 2.88 237 549 507 940 122 0.0020
10°7 1077 5.57  5.06 1342 1296 1980 129 0.0049
10710 10-10 825 773 4484 4445 5943 168 0.0166
GAMD 10°*  107* 10°° 4.86  4.30 129 90 5133 91 129 0.0039

1077 1077 10°° 7.55  6.71 173 137 9422 141 173 0.0078
10710 10710 10712 953 9.17 235 197 16067 201 235 0.0127
MEBDFI 10°* 10°* 10°¢ 331 2.86 477 435 1761 83 83 0.0029
10-7 107" 107° 6.11  5.60 1134 1083 3818 118 118 0.0059
10710 10710 10712 9.06 855 2135 2098 7215 208 208 0.0107

PSIDE-1  10=* 107* 6.42 343 181 149 2811 o7 648 0.0029
1077 1077 720  6.32 310 293 6141 92 756 0.0059
10710 1010 999 9.14 1000 990 15536 109 1156 0.0156

RADAU 107* 107* 107 448  4.28 210 172 1822 144 208 0.0010
10-7 107"  107° 856  8.18 240 222 3508 187 238 0.0020
1071 1071 107'2 | 10.63 9.24 209 176 6240 130 207 0.0039

VODE 104 104 3.29  3.08 545 487 779 19 117 0.0020
1077 1077 520 473 1614 1502 2145 30 223 0.0049
10710 1010 749  7.07 4350 4120 5266 72 516 0.0146

diagrams, we used: rtol = 10~¢*+m/Y) 1y = 0,1,...,32; atol = rtol; h0 = 1072 - rtol for GAMD,
MEBDFDAE, MEBDFI, RADAU and RADAUS5.

TABLE 11.8.3: Reference solution at the end of the integration interval.

Y 0.1706167732170483 - 10!
yo | —0.8928097010247975 - 10°

References

[EP02] C. H. Edwards and D. E. Penney. Differential Equations and Linear Algebra. Prentice Hall,
2002.

[HW96] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-
algebraic Problems. Springer-Verlag, second revised edition, 1996.

[MIO3] F. Mazzia and F. Iavernaro. Test Set for Initial Velue Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
~testset.


http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

I1-8-6

FIGURE 11.8.5:

vi1)on |0,2]
T

ODE - Problem VDPOL

=z

—-2.5h

[a]

L
06

L
1

L
1.2

L
1.4

L
16

L
1.e

Behavior of the solution component y1 over the integration interval (scaled equation)

TABLE 11.8.4: Run characteristics.

solver rtol atol hO mescd scd steps accept #t£  #Jac #LU CPU
BIMD 10-4 107* 10°¢ 4.31 3.98 170 155 3684 151 170  0.0029
10-7 107" 107° 9.06 8.73 301 293 7631 280 301 0.0059
10719 10710 1072 | 11.17 10.84 307 304 13339 292 307 0.0088
DDASSL 10°* 10°* 2.89  2.56 796 776 1260 127 0.0029
10077 1077 589  5.57 1943 1912 2796 149 0.0078
10~10 1010 8.96 8.64 6166 6110 7973 223 0.0234
GAMD 10— 107* 10°¢ 540  5.08 148 105 6999 105 148 0.0049
1077 107 10°° 6.52 6.19 163 133 12727 131 163 0.0098
10719 10710 1072 | 10.16 9.84 244 216 18095 215 244 0.0137
MEBDFI 10°* 10% 10°°¢ 3.86 3.53 638 591 2179 92 92 0.0029
10-7 1077 107° 6.99 6.67 1369 1317 4735 132 132 0.0078
10~1° 1071 10~ | 10.80 10.47 2862 2858  94R9 287 287 0.0146
PSIDE-1 10~* 10~* 570  5.38 235 166 4402 73 780 0.0049
1077 1077 872 8.39 414 38 7896 75 908 0.0078
1010 10-10 11.40 11.07 1388 1365 23066 131 1360 0.0224
RADAU 10~* 107* 10°¢ 4.77 444 242 207 2214 165 231 0.0020
10-7 1077 107° 8.28 7.95 186 149 5212 102 173 0.0029
1010 10710 10-'2 | 11.47 11.14 245 215 7589 148 224 0.0049
VODE 107¢ 107 293 261 788 702 1186 21 181 0.0029
1007 1077 565  5.32 2375 2200 3091 41 345 0.0088
10~ 10710 8.42  8.09 6426 6058 7814 106 794  0.0215

[Sha94] Lawrence F. Shampine. Numerical solution of ordinary differential equations. Chapman &
Hall, New York, 1994.

[vdP20] B. van der Pol. Radio Rev., 1:704-754, 1920.
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Problem WAM DER PCL
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van der Pol, Selected Scientific Papers, vol. I, North Holland Publ. Comp. Amsterdam, 1960.
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9 Problem OREGO

9.1 General information

The problem consists of a stiff system of 3 non-linear Ordinary Differential Equations. The name
Orego was given by Hairer & Wanner [ ] and refers to the Oregonator model which is described
by this ODE. The Oregonator model takes its name from the University of Oregon where in the
1972 Field, Koérés & Noyes [ ] proposed this model for the Belousov—Zhabotinskii reaction. The
INdAM-Bari Test Set group contributed this problem to the test set. The software part of the problem
is in the file orego.f available at | ]

9.2 Mathematical description of the problem
The problem is of the form
dy
dt

with
yeR3, 0<t<360.

The function f is defined by
5(3{2 — Y12 + Y1 — qy?)
fly) = g(_yz — Y192 +Y3)
w(yr — ys3)

The values of the parameters s, ¢ and w are

s =77.27
w = 0.161
g =28.375-1079,

The initial vector yq is given by (1,2,3)7T.

9.3 Origin of the problem

The OREGO problem originates from the celebrated Belousov—Zhabotinskii (BZ) reaction. When
certain reactans, like bromous acid, bromide ion and cerium ion, are combined, they exhibit a chemical
reaction which, after an induction period of inactivity, oscillates with change in structure and in color,
from red to blue and viceversa.

The color changes are caused by alternating oxidation—reductions in which the cerium switches its
oxidation state from Ce(III) to Ce(IV).

Field, Koros and Noyes formulated the following model for the most important parts of the kinetic
mechanism that gives rice to oscillation in the BZ reaction. This mechanism can be summarized as
three concurrent processes [ ]:

e the reduction of bromate (BrOj3) to bromine (Br) via the reducing agent bromide (Br—). Bro-
momalonic acid (BrMA) is produced;

e the increase of hypobromous acid (HBrQO;) at an accelerating rate and the production of Ce(IV).
Here we have a sudden change in color from red to blue;

e the reduction of Cerium catalyst Ce(IV) to Ce(IIT). Here we have a gradual change in color from
blue to red.


http://www.dm.uniba.it/~testset/src/problems/orego.f
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TABLE I1.9.1: Reference solution at the end of the integration interval.

t X =y Y =y 7 =y3
360 | 0.1000814870318523 - 101 | 0.1228178521549917 - 10* | 0.1320554942846706 - 10°

TABLE [1.9.2: Fauled runs.

solver m | reason
VODE | 2,4 | error test failed repeatedly

Then, from this mechanism the following Oregonator scheme is obtained

A+Y— X4P | r=k;AY
X+Y— 2P | 1=koXY
A+X— 2X+2Z | r=ksAX
X A+P | 1=k, X2
B+7Z— 1fY | 1=k.BZ

Here using the conventional notation as in [ ] the assignments and the effective concentration
are
hypobromous acid [HBrO,] =X 5.025 x 10~ 1!
bromide [Br]=Y 3.0 x 1077
cerium —4 [CE(IV)]|=Z 2412x1078

[

[

[
bromate [BrO;]=A

all oxidizable organic species |

[

The reaction rate equations for the intermediate species X, Y, and Z are

%{ = s(Y - XY +X—¢X?)
dy 1

— = —(-Y-XY+fZ
g S +f7)
dz

— = w(X-2).

o w ( )

with f =1, and s, w, and ¢ as in the previous subsection.

9.4 Numerical solution of the problem

Tables 11.9.1, 11.9.3 and Figures I1.9.1-11.9.7 present the reference solution at the end of the in-
tegration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagrams, respectively. The reference solution was computed by RADAU on
an Alphaserver DS20E, with a 667 MHz EV67 processor, using double precision work(1) = uround
= 1.01-107'%, rtol = atol = h0 = 1.1-107'8, atol = h0 = 1.1-107*°. For the work-precision
diagrams, we used: rtol = 10~(*4+m/4) m = 0,1,...,32; atol = rtol; h0 = 102 - rtol for BIMD,
GAMD, MEBDFDAE, MEBDFI, RADAU and RADAUS5. The failed runs are in Table 11.9.2; listed
are the name of the solver that failed, for which values of m this happened, and the reason for failing.
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TABLE 11.9.3: Run characteristics.
solver rtol atol hO mescd scd steps accept #f  F#Jac #LU CPU
BIMD 10°* 10°* 106 3.85 3.85 235 224 4393 215 235 0.0049
1007 1007 107° 7.87 7.86 347 339 9629 334 347 0.0107
10719 10710 1072 | 11.29 11.29 373 367 16863 359 373 0.0176
DDASSL 10~* 10~* 2.62 2.62 889 813 1505 124 0.0039
10-7 1077 558  5.57 2725 2671 4210 189 0.0137
10—10 1010 8.66 8.66 8192 8098 11119 274 0.0381
GAMD 10°* 10°* 1076 3.61 3.61 219 162 8510 163 219  0.0088
1007 1007 107° 6.90 6.89 251 205 16050 208 251 0.0176
1079 1079 107"2 9.50  9.50 291 268 22034 270 291 0.0234
MEBDFI 10-% 10=* 10-¢ 3.34 3.33 733 687 2707 103 103 0.0049
10-7 100" 107° 6.39 6.39 1586 1529 5399 174 174 0.0107
1071 1071 10712 9.59  9.59 3248 3232 10754 345 345 0.0205
PSIDE-1 10°* 10°* 474  4.73 221 178 4696 128 836  0.0059
10°7 1077 706  7.06 441 407 9235 148 1164 0.0117
10-10  10-10 10.77 10.47 1450 1412 26255 219 1788 0.0332
RADAU 10=% 10=* 10-°¢ 3.42 3.12 268 222 3416 200 267  0.0029
1077 107 10°° 7.48 7.48 267 216 6859 192 265 0.0059
10710 10710 10712 9.83 9.82 261 202 12917 176 257 0.0098
VODE 10* 10°¢ 2.15 2.15 1196 1101 1820 38 236  0.0049
10-7 107" 4.73  4.73 3083 2858 4348 64 454  0.0117
10~ 1010 7.51 7.51 7890 7430 9903 133 970 0.0293
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10 Problem ROBER

10.1 General information

The problem consists of a stiff system of 3 non-linear ordinary differential equations. It was proposed
by H.H. Robertson in 1966 | ]. The name ROBER was given by Hairer & Wanner | ]
The INdAM-Bari Test Set group contributed this problem to the test set. The software part of the
problem is in the file rober.f available at | ]

10.2 Mathematical description of the problem
The problem is of the form

with

The function f is defined by
—004y1 + 104y2y3
fly) = 0.04y; — 10*ysys — 3-107y3 (I11.10.1)
3-107y2

The initial vector yq is given by (1,0,0)7.

10.3 Origin of the problem
The ROBER problem describes the kinetics of an autocatalytic reaction given by Robertson (1966)

[ ]. The structure of the reactions is given in Table I1.10.1, where k1, k2, ks are the rate constants
and A, B and C are the chemical species involved. Under some idealized conditions [ ] and the
1. A Ig B
2. B+B ]2 C+B
: A
3 +C ]E +C

TABLE 11.10.1: Reaction scheme for problem ROBER

agsumption that the mass action law is applied for the rate functions, the following mathematical
model consisting of a set of three ODEs can be set up

” —kiy + ksyays
vy | = | kv — kay3 — ksyeys | (I.10.2)
yé k‘2y§

with (y1(0), 92(0), 3(0))" = (yor, o2, wos)”, where y1, ya, ys denote the concentrations of
A, B and C respectively and yo1, Yoz, Yos are the concentrations at time t = 0.

The ROBER problem is very popular in numerical studies [ ] and it is often used as a test
problem in the stiff integrators comparisons. The numerical values of the rate constants used in the
test problem are k; = 0.04, ky = 3-107and ks = 10, and the initial concentrations yo; = 1, Yoo =
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0, yo3 = 0. The large difference among the reaction rate constants is the reason for stiffness. As
is typical for problems arising in chemical kinetics this special system has a small very quick initial
transient. This phase is followed by a very smooth variation of the components where a large stepsize
would be appropriate for a numerical method.

Originally the problem was posed on the interval 0 < ¢ < 40, but it is convenient to integrate it
on much longer intervals. As a matter of fact Hindmarsh discovered that many codes fail if ¢ becomes
very large. In this case if y» accidentally becomes negative, it then tends to —oo, causing overflow

(see [EITWO0]).
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FIGURE I1.10.1: Behavior of the solution on [0,10'!]

10.4 Numerical solution of the problem

The system of ODEs is integrated for ¢ € [0, 10%!]. Tables I1.10.3-11.10.4 and Figures 11.10.1-11.10.5
present the reference solution at the end of the integration interval, the run characteristics, the behavior
of the components of the solution over part of the integration interval and the work-precision diagrams,
respectively. The reference solution was computed by RADAU on an Alphaserver DS20E, with a
667 MHz EV67 processor, using double precision work (1) = uround = 1.01-107'?, rtol = atol =
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ho = 1.1-10718.

TABLE 11.10.2: Failed runs.

solver

m

reason

DASSL

5,---,8,10,11,13,...,32

error test failed repeatedly

For the work-precision diagrams, we used: rtol = 10~¢+m/4) m = 0,1, ..

II-10-3

., 32;

atol = 10~%rtol; h0 = 10~2 -rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAUS5.
The failed runs are in Table 11.10.2; listed are the name of the solver that failed, for which values of
m this happened, and the reason for failing.

TABLE 11.10.3: Reference solution at the end of the integration interval.

2
Yo
Ys

0.2083340149701255 - 10=7
0.8333360770334713 - 10713

0.9999999791665050

TABLE I1.10.4: Run characteristics.

solver rtol atol hO mescd scd steps accept #f #Jac #LU CPU
BIMD 10=* 107% 1076 6.70 3.02 101 100 1904 97 101 0.0020
10-7 10711 107° 10.07 6.39 132 131 3883 125 132 0.0039
1010 10~ 1072 | 13.70 10.12 159 157 6529 148 159  0.0068
DDASSL 107* 108 4.51 0.83 473 453 682 62 0.0020
107 101 7.15 3.47 1278 1252 1549 108 0.0059
GAMD 107 10% 1076 6.27 2.59 62 62 2165 62 62 0.0020
10-7 10711 107° 9.94 6.05 93 91 4883 89 92 0.0059
1010 10~1* 107 | 12.41 8.73 169 169 9427 166 169 0.0107
MEBDFI 10°* 10°% 1076 6.25 2.56 401 398 1299 72 72 0.0029
1007 107 107° 8.95 5.27 804 802 2611 98 98 0.0049
10710 10714 10712 | 11.53 7.85 1614 1612 5252 186 186 0.0107
PSIDE-1 10~* 10°8 5.75 2.07 56 55 1295 36 224 0.0020
10-7 1071t 9.03 5.35 158 154 3128 39 496  0.0039
10-10 1014 11.29 7.61 570 563 9772 50 744  0.0127
RADAU 107* 10°% 1076 6.74 3.06 114 112 811 108 113  0.0010
1007 107 107° 9.35 5.67 112 110 1852 104 112 0.0020
10~ 10~* 107'2 | 11.21 7.53 108 106 3420 92 108  0.0029
VODE 10~* 10°8 3.66 —0.02 593 576 830 12 100 0.0020
10-7 1071 6.70 3.02 1292 1220 1686 22 199 0.0049
10719 1074 9.59 591 3306 3138 3873 56 408  0.0127
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11 Problem E5

11.1 General information

The problem consists of a stiff system of 4 non-linear ordinary differential equations. It was proposed
by Datta in 1967. The name E5 was given by Enright, Hull and Lindberg (1975) [ ]. The
formulation and data have been taken from [ ]. The Bari Test Set group contributed this problem
to the test set. The software part of the problem is in the file e5.f available at | ]

11.2 Mathematical description of the problem
The problem is of the form

with
y € R, te[0,T],
The function f is defined by
—Ay1 — By1ys
Ay — MCyays

Hy) = Ay — By1ys — MCyays + Cyy
Byiyz — Cya

(I1.11.1)

where A =7.89-10"1%, B=1.1-107, C = 1.13- 10°, and M = 10°.
The initial vector o is given by (1.76 - 1073,0,0,0)7.

11.3 Origin of the problem

The E5 problem is a model for chemical pyrolysis studied by Datta in 1967 and describes a reaction
involving six reactants. The reaction scheme is given in Table I1.11.1, where A;, i = 1,...,6 are the
chemical species and k1, ko, k3, k4 the rate of reaction constants. According to mass action kinetics,

A Ig Ay + As
Ay + Az kg As
A+ A kj Ay
Ay /% Az + Ag

TABLE I1.11.1: Reaction scheme for problem E5

the corresponding mathematical model is the following

Y1 = =k — ksyays
yh = kiyr — kayys

y% = klyl — k2y2y3 - k3y1y3 + k4y4 <11112>
Yi = kay1ys — kaya
Y5 = ka2yays

Yo = kaya
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TABLE I1.11.2: Failed runs.

solver m reason
DASSL | 0,1,2,6,7,8,9,11,13, 14,16,...,32 | error test failed repeatedly

where y; are the concentrations of the reactants A;. This set of ODEs is one of the test problems in
the stiff integrator comparison by Enright, Hull and Lindberg (1975) [ ]. The rate constants
used in the test problem were k; = 7.89-10719, ky = 1.13-10%, k3 = 1.1- 107, ks = 1.13- 10° and the
initial values were all set to zero except for y;(0) = 1.76 - 103, The fastly different rates of reaction
that occur in the same system are the cause for stiffness. With rate constants inserted in (11.11.2)
the system (IT.11.1) is obtained | ]. Note that the differential equation possesses the invariant
y2 —y3 — ya = 0 and it is recommended to use the relation y; = y5 — v} in the function subroutine in
order to avoid eventual cancellation of digits | .

Although the problem was originally posed on the interval 0 < ¢ < 1000, it is often integrated on a
much longer interval because of the interesting properties of the solutions for ¢ large | ]. In 1981
Shampine [ ] observed that since the solution components are badly scaled (|y;| < 21072 and
the magnitude of all the other components doesn’t exceed 4 - 10710), a scalar absolute error control is
quite unsuitable and a componentwise scaled absolute error control would be recommendable for this
problem.

11.4 Numerical solution of the problem

The system of ODEs is integrated for ¢ € [0,10'3]. Tables I1.11.3-11.11.4 present the reference solu-
tion at the end of the integration interval and the run characteristics, Figures I1.11.1-11.11.3 present
the behavior of the components of the solution over the integration interval and the work-precision
diagrams, respectively. The work precision diagrams were computed using the mescd since the so-
lution at the end of the integration interval is very close to zero. For the same reason, the scd
column in Table I1.11.4 has been skipped. The reference solution was computed by RADAU on an
Alphaserver DS20E, with a 667 MHz EV67 processor, using double precision work(1) = uround =
1.01-107", rtol = h0 = 1.1-107'®,atol = 1.1-107*0. For the work-precision diagrams, we used:
rtol = 10~¢+m/4) 'y =0,1,...,32; atol = 1.7-1072%; h0 = 102 - rtol for BIMD, GAMD, MEBDF-
DAE, MEBDFI, RADAU and RADAUS5. The failed runs are in Table 11.11.2; listed are the name of
the solver that failed, for which values of m this happened, and the reason for failing.

TABLE 11.11.3: Reference solution at the end of the integration interval.

y1 | 0.1152903278711829 - 1029 |[ 4 0.8854814626268838 - 10~22
ys | 0.8867655517642120 - 1022 || y4 | 0.0000000000000000000
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TABLE I1.11.4: Run characteristics.
solver rtol atol hO mescd  scd steps accept #f  #Jac #LU CPU
BIMD 10*  1.11072¢ 10°¢ 498 2.70 169 169 3438 162 169 0.0049
107 1.1107%% 10°° 8.34 3.05 174 174 6409 168 174 0.0088
10-19  1.11072* 10~ | 11.77 3.48 287 287 10726 282 287 0.0156
DDASSL 10-7 1.110~* 7.55 2.26 2516 2468 3443 148 0.0137
GAMD 10-*  1.11072* 10-¢ 5.52 3.24 103 101 4977 99 103 0.0068
107 111072 10°° 819 2.90 125 125 9167 122 125 0.0117
10710 111072 10712 | 11.13 2.8&4 154 154 13497 154 154  0.0166
MEBDFI 104 1.11072* 10°© 516 2.87 653 644 2145 86 86 0.0049
10-7 1.11072?* 107° 813 2.85 1048 1043 3423 122 122 0.0088
10-19  1.11072* 10~ | 10.56 2.27 1782 1779 5823 188 188  0.0137
PSIDE-1 10*4 1.1102* 3.94 1.65 137 112 3160 69 544 0.0049
107 1.1107% 7.99 271 255 243 5181 173 944  0.0078
10710 111072 11.46 3.18 707 704 13278 286 1512 0.0195
RADAU 10~* 1.1107%* 10-°¢ 472 243 100 99 2220 80 100 0.0029
10-7 1.11072?* 107° 842 3.14 148 145 3123 118 144 0.0039
1071 111072 10°'2 | 11.79 3.51 142 132 5733 106 141  0.0059
VODE 10 1.1107% 3.17 0.88 1238 1149 1718 27 260 0.0059
107 1.1107% 6.67 1.39 2655 2484 3464 47 397 0.0107
1010 1110~ 9.69 1.41 4003 3836 4776 70 458 0.0156
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12 Chemical Akzo Nobel problem

12.1 General information

This IVP is a stiff system of 6 non-linear DAEs of index 1 and has been taken from | ]. The
parallel-IVP-algorithm group of CWI contributed this problem to the test set in collaboration with
W.J.H. Stortelder. We acknowledge the remarks of Dotsikas Ioannis, which improved the formulation
of this problem considerably. The software part of the problem is in the file chemakzo.f available at

[MI03].
12.2 Mathematical description of the problem
The problem is of the form

M% = fl), y0)=yo, ¥'(0)=yo,

with
y € IRS, 0<t<180.

The matrix M is of rank 5 and given by

1 00 0 0O
01 00 0O
0 01 00O
M= 0 001 0O
0000 1O
0 000 0O
and the function f by
—2ry 4re —r3 —T4
—571 —ry —3r5s +Fy,
_ r1 —T9 +T’3
fy) = —ry  +r3 —2r4 ’
T2 —T3 +’I°5
Ks-y1-ya—ys
where the r; and Fj, are auxiliary variables, given by
1
o= ki-yloy3,
ro = ka-ys-ya,
.
3 = K Y1 - Ys,
ra = ks y1-vi,
1
rs = ki yg-yi,
F, = klA-(@—yg).

The values of the parameters ki, ko, k3, kq, K, klA, p(CO2) and H are

ki o= 187, ke = 042, K, = 11583,
ks = 0.58, K = 344, p(COs) = 0.9,
ks = 0.09, KA = 3.3, H = 737
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The consistent initial vectors are
yo = ( 0.444, 0.00123, 0, 0.007, 0, K, - go1 - %os )'  vb = F(Wo)-

It is clear from the definition of 1 and r5 that the function f can not be evaluated for negative
values of ys. In the Fortran subroutine that defines f, we set IERR=-1 if yo < 0 to prevent this
situation. See page I'V-ix of the description of the software part of the test set for more details on
IERR.

12.3 Origin of the problem

The problem originates from Akzo Nobel Central Research in Arnhem, The Netherlands. It describes
a chemical process, in which 2 species, FLLB and ZHU, are mixed, while carbon dioxide is continuously
added. The resulting species of importance is ZLA. In the interest of commercial competition, the
names of the chemical species are fictitious. The reaction equations, as given by Akzo Nobel | 1,
are given in Figure I1.12.1. The last reaction equation describes an equilibrium

k
2FLB + %co2 ! FLBT + H,0O
ks K
ZLA + FLB FLBT + ZHU
ko
k
FLB + 2ZHU + COy —2 + LB + nitrate
1 k4
FLB.ZHU + 5 CO; ZLA + H,0
FLB + ZHU FLB.ZHU

FI1GURE 11.12.1: Reaction scheme for Chemical Akzo Nobel problem.

[FLB.ZHU]

Ke = 5081 0]

The value of K, plays a role in parameter estimation. The other equations describe reactions with
velocities given by

r = k -[FLB]*-[CO,)z, (I1.12.1)
ro = ky-[FLBT]-[ZHU],
rs = 7=-[FLB]-[ZLA],
ry = ky-[FLB]-[ZHUJ]?, (I1.12.2)
rs = ky-[FLB.ZHU]?-[CO,]?, (11.12.3)

respectively. Here the square brackets ‘[ ]’ denote concentrations. One would expect from the reaction
scheme in Figure I1.12.1, that reaction velocities r1, 74 and r5 would read

ry = ki-[FLBJ?>-[CO,|?,
r4 = ks-[FLB]-[ZHUJ?-[CO,],
rs = ki-[FLB.ZHU]-[CO,]z.



DAE - Chemical Akzo Nobel problem II-12-3

However, it turns out that the chemical process under consideration is modeled more appropriately
using (I1.12.1)—(11.12.3).
The inflow of carbon dioxide per volume unit is denoted by Fj,, and satisfies

P = - (1522 0y,

where klA is the mass transfer coefficient, H is the Henry constant and p(CO») is the partial carbon
dioxide pressure. p(CO-) is assumed to be independent of [COs]. The parameters ki, ko, k3, kg, K,
kKlA, K¢, H and p(CO-) are given constants®.

The process is started by mixing 0.444 mol/liter FLB with 0.007 mol/liter ZHU. The concentration
of carbon dioxide at the beginning is 0.00123 mol/liter. Initially, no other species are present. The
simulation is performed on the time interval [0, 180 minutes].

Identifying the concentrations [FLB], [COs], [FLBT], [ZHU], [ZLA], [FLB.ZHU] with y1,...,¥s,
respectively, one easily arrives at the mathematical formulation of the preceding section.

12.4 Numerical solution of the problem

Tables 11.12.1-11.12.2 and Figures I11.12.2-11.12.6 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagrams, respectively. The reference solution was computed by PSIDE on
a Cray C90, using double precision, rtol = atol 107'?. To get more insight in the exact behavior
of the second component, we included a plot of y» on [0, 3] in Figure 11.12.2. For the work-precision
diagrams, we used: rtol = 10-&+"/4 ;= 0,1,...,20; atol = rtol; h0 = rtol for BIMD, GAMD,
MEBDFDAE, MEBDFI, RADAU and RADAUS5. The failed runs are in Table 11.12.3; listed are the

TABLE 11.12.1: Reference solution at the end of the integration interval.

y1 | 0.1150794920661702 ya | 0.3656156421249283 - 10~3
yo | 0.1203831471567715 - 102 || y5 | 0.1708010885264404 - 10~}
ys | 0.1611562887407974 ye | 0.4873531310307455 - 102

TABLE I1.12.2: Run characteristics.

solver rtol atol hO mescd scd steps accept #t  #Jac  #LU CPU
BIMD 101 1071 10~ | 12.39 10.61 41 41 1177 41 41 0.0039
DDASSL 10~'0 1010 10.04  8.33 522 515 649 38 0.0039
GAMD 101 1071 10710 | 11.89 9.82 35 35 1737 35 35 0.0039
MEBDFI 101 107!° 10719 | 1142 9.76 274 273 916 32 32 0.0029
PSIDE-1 10-'® 1010 11.41 991 87 85 1671 15 204 0.0039
RADAU 1099 10-!° 10719 | 10.71 8.39 43 41 696 30 43 0.0010

name of the solver that failed, for which values of m this happened, and the reason for failing.

*Apart from H, which is generally known, all parameters have been estimated by W. Stortelder | ]
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TABLE 11.12.3: Failed runs.

solver m reason
PSIDE-1 | 14,16,17,18,19,20 | stepsize too small

References
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13 Andrews’ squeezing mechanism

13.1 General information

The problem is a non-stiff second order DAE of index 3, consisting of 14 differential and 13 algebraic
equations. It has been promoted as a test problem by Giles | ] and Manning [ ]. The
formulation here corresponds to the one presented in Hairer & Wanner [ ]. The parallel-IVP-
algorithm group of CWI contributed this problem to the test set. The software part of the problem
is in the file andrews.f available at | ]

13.2 Mathematical description of the problem
The problem is of the form

d 1 1
KL = o), y0) =y, ¥(0)=uyh (IL13.1)
dt
where
q I O 0O O q
q O 1 0 O g
= 5| K= : = ) .
= 00 0 o0l W Myi- g0+ @
A O 0 0O O 9(q)
Here,
0 < t < 003,
qg € IR,
A e IRS,
M R" —» R™7
f B14—>B7,
g R" - IR,
_ 9y
G = 0"

The function M(q) = (M;;(q)) is given by:

Mii(g) = m -ra® +m2(rr2 — 2da - rr - cos ¢ +da2) + I + I,

My (q) = Mis(q) = mo(da® —da-rr-cosq) + I,

Mas(q) = ms-da® + I,

Mss(q) = mas(sa® + sb®) + I,

Mu(q) = mule—ea)® + 1y,

Msi(q) = Mis(q) = ma((e —ea)?® + zt(e — ea)sinqy) + Iy,

Mss(q) = ma(2t® + 22t(e — ea) sin gy + (e — ea)?) + ms(ta® + th?) + Iy + I,
Mes(q) = me(zf — fa)® + I,

Mr(q) = Mer(q) = me((2f — fa)* —u(zf — fa)sings) + I,

M(q) = me((2f — fa)* = 2u(zf — fa)sings + u?) + my(ua® + ub®) + I + I,
M;j(q) = 0 for all other cases.
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The function f = (fi(q,q)) reads:

filg,q) = mom —my-da-rr-¢a(d2 +2¢1) singa,
f2(q,q) = mao-da-rr- ¢ -sings,
fslg,§) = Fy(sc-cosqgs —sd-sings) + Fy(sd - cosgs + sc-sings),
fi(q,4) = my-zt(e —ea)d? - cosqy,
f5(q,4) = —my-zt(e —ea)qs(ds + 2qs) cos qu,
fo(g,4) = —mg-u(zf — fa)d? - cos g,
fr(g,4) = me-ulzf — fa)ds(de + 2¢7) cos ge.
F, and F), are defined by:
F, = F(zd- zc),
F, = F(yd-yo),
F = —c(L—1)/L,
L = (xd - zc)? + (yd - ye)?,
zd = sd-cosqs+ sc-sings + zb,
yd = sd-singz — sc-cosqgs + yb.

The function g = (g;(g)) is given by:

g1(q) = rr-cosqy —d-cos(q + q2) — ss - singz — xb,

g2(q) = rr-singg —d-sin(g + ¢2) + ss - cosgs — yb,

93(q) = rr-cosqu —d-cos(q +q2) —e-sin(qs + g5) — 2t - cos g5 — za,
ga(q) = rr-sings —d-sin(q1 +¢2) +e-cos(qs + q5) — 2t - sings — ya,

g5(q) = rr-cosqr —d-cos(q1 +q2) — zf -cos(gs + q7) — u - sing; — za,
g6(q) = rr-singg —d-sin(q +¢2) — zf -sin(gs + g7) + u - cos g7 — ya.

The constants arising in these formulas are given by:

my = 004325 |, = 2.194-107% | ss = 0.035
me = 0.00365 | I, = 4.410-1077 | sa = 0.01874
ms = 002373 | I3 = 5.255-107% | sb = 0.01043
mse = 0.00706 | I, = 5.667 107 | sc = 0.018
ms = 007050 | I5; = 1.169-107° | sd = 0.02
mg = 0.00706 | [y = 5.667 - 1077 | ta = 0.02308
my = 005498 | I; = 1.912-107° | tb = 0.00916
xa = -—0.06934|d = 0.028 w = 0.04
ya = —0.00227 |da = 0.0115 ua = 0.01228
b = -0.03635|e = 0.02 ub = 0.00449
yb = 003273 | ea = 0.01421 zf = 0.02
rce = 0014 | rr = 0.007 zt = 0.04
ye = 0.072 | ra = 0.00092 fa = 0.01421
o = 4530 | lp, = 0.07785 mom = 0.033

Consistent initial values are

Yo = (90, 40> Gos Mo)* and y§ = (do, do, To, o)™

>



DAE — Andrews’ squeezing mechanism II-13-3

where

—0.0617138900142764496358948458001
0
0.455279819163070380255912382449

g = 0.222668390165885884674473185609 |,
0.487364979543842550225598953530
—0.222668390165885884674473185609
1.23054744454982119249735015568

QO = qO = (07O7Oa0a07070)T7
14222.4439199541138705911625887

—10666.8329399655854029433719415
0
do = 0|,
0
0
0
98.5668703962410896057654982170
—6.12268834425566265503114393122
0
o = o |
0
0
Ao = (0,0,0,0,0,0)T.

The index of the ¢, ¢, § and A components in y is 1, 2, 3 and 3, respectively.

13.3 Origin of the problem
Formulation (I1.13.1) can be rewritten as

M(Q)i = flg,q) —G (@A
0 = g(q),

which is the general form of a constrained mechanical system. More precisely, the problem de-
scribes the motion of 7 rigid bodies connected by joints without friction. It was promoted by | ]
and | ] as a test problem for numerical codes. | , pp. 530-536] describes the system and
the modeling process in full detail.

13.4 Numerical solution of the problem

The Jacobian 8¢/0y, needed by the numerical solver, was approximated by

o1 0 O
O 0 I O
O 0 M G' |’
G 0O O O

which means that we neglect the derivatives of f(q,q) as well as those of M(q) and G(g). Note that
the evaluation of such a Jacobian does not cost anything, because M and G are already computed in
the evaluation of ¢. However, we did not exploit this in the numerical computations.
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Tables I1.13.2-11.13.3 and Figures 11.13.1-11.13.5 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagrams, respectively. In computing the scd values, only the first seven
components were considered, since they refer to the physically important quantities, in computing
the mescd values all the components were considered. The reference solution was computed on the
Cray €90, using PSIDE with Cray double precision and atol = rtol = 10~'4. For the work-precision
diagrams, we used: rtol = 10~(*4+7/8) 4y = 0,1,...,48; atol = rtol; h0 = rtol for BIMD, GAMD.
MEBDFDAE, MEBDFI, RADAU and RADAUS.

The failed runs are in Table I1.13.1; listed are the name of the solver that failed, for which values
of m this happened, and the reason for failing.

TABLE I1.13.1: Failed runs.

solver m reason
GAMD 3,4,6 | stepsize too small
RADAU | 55,56 | stepsize too small
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TABLE I1.13.2: Reference solution (first 7 components) at the end of the integration interval.

Y1 0.1581077119629904 - 10? ya | —0.5347301163226948 || ys | 0.5347301163226948
Yo | —0.1575637105984298 - 102 Ys 0.5244099658805304 || y7 | 0.1048080741042263 - 10
Y3 0.4082224013073101 - 101
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TABLE I1.13.3: Run characteristics.

solver rtol  atol  hO mescd scd steps accept #I  #Jac #LU CPU
BIMD 10-* 107* 107 0.27 3.05 46 41 1034 41 46  0.0185

10°7 1077 1077 2.82 5.38 122 122 2553 122 122 0.0459
GAMD 10-* 107* 107 0.35 2.82 82 58 2281 58 82 0.0293

10=7 1077 1077 1.53 4.54 128 116 5176 116 128 0.0693
MEBDFI 10-* 10=* 10=* | —-1.11 0.37 118 108 466 23 23 0.0078
10°7 1007 1077 1.25 3.50 300 287 1222 38 38 0.0195

PSIDE-1 10°* 10°* 0.22 2.95 92 75 1675 52 368 0.0410
1007 1077 2.10 4.98 113 93 2637 63 428 0.0615
RADAU 107* 107* 107* | —0.84 1.36 96 56 810 54 96 0.0137
10-7 107" 107" 0.47 4.45 114 95 1292 90 114 0.0195
whj g2 i) 1-12,1 e dll2 i
£ £
'D-———"”J/ / / 0 \ \
ol -2 _‘\\\
0 02 'IZIEIS 0 0.01 'IZIIDS
¥13) mod(2*p) y14) mod(2pi)
0.4 \/\\/\ ﬂ-% \/\V\
Ot . . N hyY . . .
0 0.01 0.02 0.03 0 0.01 0.08 0.03
¥i5) modi2*pi) i) modi2*pi)
o SR A
I el
0.5 g /W
0.4k - - — 0.2 - - ,
0 0.01 0.02 0.03 0 0.01 0.08 0.03
y(7) mod{2*pi)
N YAVAN
il

0 001 002 003

Ficure 11.13.1: Behavior of the solution modulo 27 over the integration interval.
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14 Transistor amplifier

14.1 General information

The problem is a stiff DAE of index 1 consisting of 8 equations P. Rentrop has received it from

K. Glashoff & H.J. Oberle and has documented it in [ ]. The formulation presented here has
been taken {rom [ ]. The parallel-IVP-algorithm group of CWI contributed this problem to the
test set.

The software part of the problem is in the file transamp.f available at | ]

14.2 Mathematical description of the problem
The problem is of the form

d !
ML =y, w0 =w V0 =

with
yeR®, 0<t<0.2.

The matrix M is of rank 5 and given by

-, ¢, 0 0 0 0 0 0

¢, -, 0 0 0 0 0 0

o 0 -C, 0 0 0 0 0

vol| 0 0o 0o -G & o 0o 0
=l o o o ¢ -cs 0o o 0o |’

O 0 0 0 0 -Ci 0 0

o 0 0 0 0 0 -C5 Cs

o 0 0 0 0 0 C5 —Cs

and the function f by

_% 4'3/2(1%1 + R%) —(a—=1)g(y2 — ys3)

—9(y2 —y3) + £

tw) _%‘F%‘Fag(yz—%)
yYy) = ,
_%Z +y5(R%, + R%;) — (a—=1)g(ys — ys)

—9(ys —ve) + £

—1% + & +ag(ys — ye)

ys
Rg

where g and U, are auxiliary functions given by

g(z) = B(ePr —1) and U.(t) = 0.1sin(2007t). (I1.14.1)
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The values of the technical parameters are:

U, = 6, Ro = 1000,
Up = 0.026, || R = 9000 for k=1,...,9,
a = 099, ||[Cy = k-107¢ for k=1,...,5.
B = 10
Consistent initial values at t = 0 are
0 51.338775
Up/(82 +1) 51.338775
Us/(F2 +1) —Up/(($ + 1)(Cs - R3))
B Uy . —24.9757667
L vy [0 %07 —24.9757667
Us/(F2 + 1) —Up/((£2 +1)(Cy - Br))
U, —10.00564453
0 —10.00564453

The first, fourth and seventh component of y;, were determined numerically. All components of y are
of index 1.

The definition of the function g(z) in (IL.14.1) may cause overflow if £ becomes too large. In the
Fortran subroutines feval and jeval that deﬁne the function f and the partlal derivatives of f with
respect to y, respectively, we set IERR=-1 if UF > 300 to prevent this situation. See page I'V-ix of the
description of the software part of the test set for more details on IERR.

14.3 Origin of the problem

The problem originates from electrical circuit analysis. It is a model for the transistor amplifier. The
diagram of the circuit is given in Figure 1[.14.1. Here U, is the input signal and Uy is the amplified

@) N =

Ficure 11.14.1: Circuit diagram of Transistor Amplifier (taken from [ ]).
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Drenin

Gerte

Source

FIGURE I1.14.2: Schematic representation of a transistor.

output voltage. The circuit contains two transistors of the form depicted in Figure 11.14.2. As a
simple model for the behavior of the transistors we assume that the currents through the gate, drain
and source, which are denoted by I, I'p and Ig, respectively, are

Ie = (1-a)g(Us —Us),
Ip = ag(Ug — Us),
Is = g(Uq —Us),

where Ug and Ug denote the voltage at the gate and source, respectively, and o = 0.99. For the

function g we take
U, —U;

gU; = Uj) = Ble 7r  —1),

where = 107 and Up = 0.026.

To formulate the governing equations, Kirchoff’s Current Law is used in each numbered node. This
law states that the total sum of all currents entering a node must be zero. All currents passing through
the circuit components can be expressed in terms of the unknown voltages Uy, ..., Us. Consider for
instance node 1. The current I, passing through capacitor C; is given by

d

dt(cl(U2 - U)),

Io, =

and the current I, passing through the resistor Ry by

_Ue_Ul

Ig, o

Here, the currents are directed towards node 1 if the current is positive. A similar derivation for the
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TABLE I1.14.1: Failed runs.

solver m reason
RADAU | 0,...,8,30 | solver cannot handle TERR=-1.
RADAUS5 | 0,...,8 solver cannot handle TERR=-1.

other nodes gives the system:

node 1:  L(Cy(U> — Un)) + Uj{?) - % = 0,
node 2: $(Ci(Uy —Us)) + £ — Us(g- + 7) + (@ — Dg(Us = Us) = 0,
node 3:  — % (CyUs) + g(Uy — Us) — 52 = 0,
node 4: —%(Cs(Us — Us)) + 5 — 5+ — ag(Uz — Us) = 0,
node 5: §(Cs(Us — Us)) + g — Us(g- + 2) + (@ — Dg(Us = Us) = 0,
node 6: — 5 (Cals) + g(Us — Us) — B2 = 0,
node 7: —%(05(U7 —Us)) + 1% — %; —ag(Us — Us) = 0.
node 8: —&(Cs5(Ur — Us)) + % = 0,

The input signal U, (t) is
U.(t) = 0.1sin(2007t).

To arrive at the mathematical formulation of the preceding subsection, one just has to identify U;
From the plot of output signal Ug = y(8) in Figure I1.14.2 we see that the amplitude of the input
signal U, is indeed amplified.

14.4 Numerical solution of the problem

Tables 11.14.2-11.14.3 and Figures 11.14.3-11.14.4 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagrams, respectively. The reference solution was computed on the Cray C90,
using PSIDE with Cray double precision and atol = rtol = 10~**. For the work-precision diagrams,
we used: rtol = 10=(4+m/8) = 0,1,...,40; atol = rtol; h0 = 102 - rtol for BIMD, GAMD,
MEBDFDAE, MEBDFI, RADAU and RADAUS5.

The failed runs are in Table I1.14.1; listed are the name of the solver that failed, for which values
of m this happened, and the reason for failing.

References
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TABLE 11.14.2: Reference solution at the end of the integration interval.

y1 | —0.5562145012262709 - 102 || y5 | 0.2704617865010554 - 10

Yo 0.3006522471903042 - 10 ye | 0.2761837778393145 - 10

Y3 0.2849958788608128 - 10 y7r | 0.4770927631616772 - 10

Y4 0.2926422536206241 - 10 ys | 0.1236995868091548 - 10

TABLE 11.14.3: Run characteristics.

solver rtol  atol  hO mescd scd  steps accept #f  #Jac #LU CPU
BIMD 10-* 107* 10°°¢ 5.85 5.63 466 408 8423 408 466  0.0322
10-7 1077 107° 8.62 8.34 618 975 19632 575 618 0.0752
DDASSL 10~* 107* 4.60 3.08 9759 6026 18381 7359 0.1113
10-7 1077 724 549 40810 23859 77402 33678 0.4743
GAMD 10-* 107* 10°°¢ 6.30 5.83 373 276 17204 276 373 0.0517
107 1077 107° 8.58 7.37 374 325 34320 326 374 0.1064
MEBDFI 10-* 10=* 107¢ 5.06 4.80 1580 1486 5949 256 256 0.0303
10-7 1077 107° 725 6.99 3628 3513 13324 419 419 0.0703
PSIDE-1 10~* 107 5.02 4.76 516 362 9742 253 2008 0.0351
107 1077 7.50 7.23 835 653 21914 419 2724 0.0732
RADAU 1077 1077 107° 711 6.83 1775 1551 17582 1541 1775 0.0517
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~testset.

P. Rentrop, M. Roche, and G. Steinebach. The application of Rosenbrock-Wanner type
methods with stepsize control in differential-algebraic equations. Numer. Math., 55:545—

963, 1989.
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15 Charge pump

15.1 General information

The problem is a stiff DAE of index 2, consisting of 3 differential and 6 algebraic equations. It has
been contributed by Michael Giinther, Georg Denk and Uwe Feldmann | ]
The software part of the problem is in the file pump.f available at | .

15.2 Mathematical description

The problem is of the form

M% = flt,y(®),  ¥(©0) =wo, ¥'(0) =y,

with
y € R?, 0<t<1.2-1076.

The 9 x 9 matrix M is the zero matrix except for the the minor M; 3. 5, that is given by

1 0 0 00O
Myzis=101 100
0 00 11
The function f is defined by
—Yo
0
0
—Ye + ‘/zn(t)
f(tvy) = Y1 — QG(U) )
y2 — Cs - yr
ys — Qs(v)
ya—Cp - ys
ys — Qp(v)

with v 1= (v1,v2,v3) = (¥6,%6 — ¥7,¥6 — ¥s), Cp = 0.4-107'2 and Cs = 1.6 - 107'2. The functions
Qa, Qs and Qp are given by:

1. If v; < Vpp := Upg — yV/® — @, then
Qa(v) = Cop(vi — Vrg),
Qs(v) = Qp(v) =0,
with Co = 410712, Upg = 0.2, v = 0.035 and & = 1.01.
2. If v; > Vpp and v, < Upg := Upo + 7(vV® — Ups — V@), then
Qa(v) = Cory (VO +01=Vin —7/2).,
Qs(v) = Qp(v)=0.

3. If v1 > Vg and v5 > Urg, then

UsprUast

Uspr + Ugsr

2
Qelv) = Con (3<UGDT + Ussr —

)-l-’)/ @—UBs),

Qs(v) = Qo) =~ (Qc~ Corr/®—TUs)
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Here, UBS, UGST and UGDT are given by

Ups = w2 —uy,

Ugst = vy —Urg,

U _ V3 — UTE for vg > UTEa
apr = 0 for V3 S UTE~

The function V;,(t) is defined using 7 = (10° - t) mod 120 by

0 if 7 <50,
V(1) = 20(7 — 50) if 50 <7 <060,
in 20 it 60<7T <110,
20(120 — 7) it 7> 110.

This means that the function f has discontinuities in its derivative at 7 = 50, 60,90, 110, 120.
Consistent initial values are

Yo = (QG(Ov 07 0)7 07 QS(Ov 07 0)7 07 QD(Ov 07 0)7 07 07 07 O)T and y(l) = (0: 07 07 07 07 07 07 07 O)T

The index of the first eight variables is 1, whereas the index of yg is 2.

15.3 Origin of the problem

The Charge-pump circuit shown in Figure I1.15.1 consists of two capacitors and an n-channel MOS-
transistor. The nodes gate, source, gate, and drain of the MOS-transistor are connected with the nodes
1, 2, 3, and Ground, respectively. In formulating the circuit equations, the transistor is replaced by
four non-linear current sources in each of the connecting branches. They model the transistor.

1

! T s

.l\D

Ground

FI1GURE 11.15.1: Circuit diagram of Charge-pump circuit (taken from [ ])

After inserting the transistor model in the circuit, we get the final circuit, which can be obtained
from the circuit in Figure I1.15.1 by applying the following changes:

e Remove the transistor and replace it by a solid line between the nodes 2 and 3. The point where
the lines 2-3 and 1-Ground cross each other becomes a node, which will be denoted by 7.

e Add current sources between nodes 1 and T, between 2 and T and between 3 and T. There
should also be a current source between the ground and node 7', but as the node Ground does
not enter the circuit equations, it will not be discussed. The currents produced by these sources
are written as the derivatives of charges: current from 1 to T: Q, from T to 2: Q% and from
T to 3: Q',. Here, the functions Q¢, Qs and @ p depend on the voltage drops Uy, Uy — U, and
U, — Us, where U; denotes the potential in node 3.
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The unknowns in the circuit are given by:

e The charges produced by the current sources: Yy, Yps, Yps. They are aliases for respectively
Qa, Qs and @ p. Consequently, Y7, is the current between node T' and node 1.

e The charges Ys and Yp in the capacitors Cg and Cp.
e Potentials in nodes 1 to 3: Uy, Us, Us.
e The current through the voltage source V;,(¢): I.

In terms of these physical variables, the vector y introduced earlier reads
Yy = (YT17Y57YT27YD7YT37 U17 U27 U37I)T‘

Now, the following equations hold:

Yﬂl“l = -1,
Yi+Y, = 0,
Y,+Yr = 0,

Ul = Vm(t)

The charges depend on the potentials and are given by

Yri = Qq(U, UL — Uy, Uy —Us),
Ys = Cs-Us,
Yrs = Qs(Up,Uy — Uy, Uy —Us),
Yp = Cp-Us,
Yrs = Qp(U1,U1 —Us,U; - Us).

The functions Q¢, Qs and Qp are given in the previous section.

Remark: the potential U; is known. Here, it is treated as an unknown in order to keep the formulation
general and leaving open the possibility to extend the circuit. In addition, removing U; by hand
contradicts a Computer Aided Design (CAD) approach in circuit simulation.

15.4 Numerical solution of the problem

The various components differ enormously in magnitude. Therefore, the absolute and relative input
tolerances atol and rtol were chosen to be component-dependent. Furthermore, we neglect the index
2 variable yg in the error control of DASSL. This leads to the following input tolerances:

atol(i) = Tol-107% for i=1,...,5,

atol(i) = Tol for i=6,...,8,

rtol(i) = Tol for i=1,...,8,
atol(9) = rtol(9) = 1000 for DASSL,
atol(9) = rtol(9) = Tol for other solvers.

The reference solution was computed using quadruple precision GAMD on an Alphaserver DS20E,
with a 667 MHz EV67 processor, atol = rtol = 1078, hy = 10737,

Table I1.15.1 and Figures II.15.3-11.15.4 present the run characteristics and the work-precision
diagram, respectively. For the computation of the number of significant correct digits (scd), only the
first component is taken into account. The second up to eighth component are ignored because these
components are zero in the true solution; the ninth component is neglected because it was excluded
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TABLE I1.15.1: Run characteristics.

solver Tol mescd scd steps accept #f  #Jac #LU CPU
BIMD 103 7.34 16.00 711 454 8827 454 711 0.0478
1077 8.65 16.00 1125 688 15367 688 1125 0.0820

DDASSL 107! 093 0.14 447 438 604 369 0.0088
1073 542  16.00 983 833 1659 853 0.0215
107° 6.71 343 1737 1487 2903 1309 0.0361
10~7 6.09 3.32 3059 2587 4945 2058 0.0595

GAMD 107t 211 181 320 200 3735 200 320 0.0166
1073 2.85  2.69 350 220 4786 220 350  0.0205
1075 478 512 620 370 14890 320 570  0.0547
1077 494 475 870 510 22340 410 770 0.0791
PSIDE-1 107! 117 0.37 938 839 9843 140 3752 0.0742
1073 2.64 447 1366 1068 13424 160 5424 0.1005
1077 9.05 16.00 2425 1555 24331 300 9616 0.1835

from DASSL’s error control. For the mescd we consider all the components. The first component of
the reference solution equals 0.1262800429876759 - 10712 at the end of the integration interval. We
remark that the magnitude of this component is at most 107'°. For the work-precision diagram,
we used: Tol = 10~U+m/2) m = 0,1,...,14; h0 = 10~ - Tol for BIMD, GAMD, MEBDFDAE,
MEBDFI, RADAU and RADAUS5. From Table 11.15.1 and Figure 11.15.3 we see that the numerical
solution computed by DASSL results for some rather large values of Tol in an scd value of 15.4, which
equals the accuracy of the reference solution.

Figure 11.15.2 shows the behavior of the solution over the integration interval. Only the last four
components have been plotted, since they are the physically important quantities. The other five
components refer to charge flows inside the transistor, which are quantities the user is not interested
in. These components have a similar behavior as the components 6, 7 and 8, but their magnitude is
at most 10710,

The failed runs are in Table 11.15.2; listed are the name of the solver that failed, for which values
of m this happened, and the reason for failing.

References
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TABLE I1.15.2: Failed runs.

solver m reason

BIMD 0 floating invalid

BIMD 4 too many consecutive Newton failures
BIMD 3,5,7 floating divide by zero

DASSL 2 error test failed repeatedly

DASSL 4,7 floating overflow

DASSL 14 corrector failed to converge repeatedly
MEBDFDAE | 0,1,...,14 stepsize too small

MEBDFI 0,1,...,10 floating invalid

MEBDFI 11,12,13,14 | stepsize too small

PSIDE-1 4,13,14 stepsize too small

RADAU 0,1,...,14 stepsize too small

RADAUS 0,1,...,10 floating invalid

RADAUS5S 11,...,14 stepsize too small

II-15-5
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16 Two bit adding unit

16.1 General Information

The problem is a stiff DAE of index 1, consisting of 175 differential equations and 175 algebraic
equations. It has been contributed by M. Giinther | , ]
The software part of the problem is in the file tha.l available at | .

16.2 Mathematical description of the problem
The problem is of the form

dy
v = f(t,x), (11.16.1)

where
y,x € R, f:R*® = R*° ¢:R*" 5 R*°, 0<t<320, y(0)=uyo, z(0)= 2.

Since the functions f(¢,z) and g(x) and the (consistent) initial values yy and zy are too voluminous
to be printed here, we refer to the subroutines feval and init for their definitions. The function f
has discontinuities in its derivative at ¢ = 0,5,10,...,320. The index of the components of z and y
equals 1.

The function f contains several square roots. It is clear that the function can not be evaluated if
one of the arguments of one of these square roots becomes negative. To prevent this situation, we set
IERR=-1 in the Fortran subroutine that defines f if this happens. See page I'V-ix of the description of
the software part of the test set for more details on IERR.

16.3 Origin of the problem

The two bit adding unit computes the sum of two base-2 numbers (each two digits long) and a carry
bit. These numbers are fed into the circuit in the form of input signals. As a result the circuit gives
their sum coded as three output signals.

The two bit adding unit circuit is a digital circuit. These circuits are used to compute boolean
expressions. This is accomplished by associating voltages with boolean variables. By convention the
boolean is true if the voltage exceeds 2V, and false if it is lower than 0.8V. In between the boolean
is undefined. Using CMOS technique, however, sharper bounds are possible for the representation of
booleans.

Digital circuits that compute elementary logical operations are called gates. An example of a gate
is the NAND gate of test problem 9. This circuit is used to compute the logical expression —(V; AV3),
where V] and V5 are the booleans that are fed into the circuit as input signals.

The two bit adding unit is depicted in Figure I1.16.1. In this figure the symbols ‘&’, ‘> 1’ and a
little white circle respectively stand for the AND, OR and NOT gate. A number of input signals and
output signals enter and leave the circuit. Fach signal is described by a time-dependent voltage and
the boolean it represents. For these two quantities we shall use one symbol: the symbol of this boolean
variable. Which one of the two quantities is meant by the symbol, is always clear from the context.
With this convention, the input signals are referred to by the boolean variable they represent.

The circuit is designed to perform the addition

Ay Ag+ By By +Cy, =C 51 5.
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FIGURE 11.16.1: Circuit diagram of the two bit adder (taken from [ 7).

The input signals representing the two numbers and the carry bit C;, are fed into the circuit at the
nodes indicated by A0, A1, BO, B1 and Cin. Here, a bar denotes the logical inversion. The output
signals are delivered by the nodes indicated by S0, S1 and C.

In Figure 11.16.1, a number of boxes are drawn using dashed lines. Each of them represents one
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TABLE 11.16.1: Characteristics of the gates that occur in the two bit adding unit.

Name logical expression # nodes # times
NOR -(V1 v Vo) 3-4+1=13 |3
NAND | - A Va) 3-442=14

(Vi
ANDOI —\(‘/1 \% (Vg N V3)) 4.-442=18
ORANI | ~(Vi A (Vo V V3)) | 4-442 =18

— T =

of the following gates: the NOR (first box to the left in the top-row), the ORANI gate (the box
besides S1), the NAND (the box besides the ORANT gate) and the ANDOI(the box at the bottom).
The circuit diagram of the NAND-gate is given in test problem 9. For the circuit diagrams of the
NOR, ANDOI and ORANTI gate see Figures 11.16.2, 11.16.3 and 11.16.4. What logical expressions they
compute, is listed in Table I1.16.1. The fourth column in this table lists the number of times the gate
occurs in the big circuit. The third column tabulates the number of nodes in the gate. These nodes
consist of two types. The first type of nodes consists of the internal nodes of the transistors due to the
MOS transistor model of Shichmann and Hodges | ]. Each transistor has four internal nodes that
are also the links between transistor and the rest of the circuit. The second type of nodes comprises
the usual nodes that are used to link circuit components together. These nodes are indicated by a
number placed inside a square. To prevent any misunderstanding, we remark that the big dots in
Figures I1.16.2-11.16.4 do not represent nodes.

The connection of a gate with the rest of the circuit consists of the input nodes and the output
node of the gate. The input signals enter the gate at the nodes with symbol Vi, V5 and V3. The
output signal leaves the gate from one of the numbered nodes. To ensure stability of the circuit, such
an output node is always connected to a capacitance (we refer to the Fortran driver: CLOAD denoting
the value of a load capacitance for the logical gates, and COUT for the output nodes Sp,S; and C).
Finally, three enhancement transistors are coupled with the ANDOI gate at the bottom for a correct
treatment of C;,,. This yields 12 internal nodes and two additional nodes, because the three transistors
are coupled in series. Counting all nodes we have 3-13+1-14+5-18 4+ 118 + 14 = 175 nodes.

Applying Kirchoff’s law to all nodes yields a system of 175 equations. This system is an integral
form DAE of the special form

A-q(V)=71@1V).

The function ¢ is a generally nonlinear function of node potentials V', which describes the charges
stored in all charge storing elements | ]. Assembling the charge flow at each node by an incidence
matrix A, the dynamic part A-¢(V') equals the contribution of static currents denoted by f(¢, V). If all
load capacitances at the output nodes are nonzero, then the integral form DAE has differential index 0.
If only one of the load capacitances equals zero, the generalized capacitance matrix A - 9q(V)/0V is
singular, yielding a system of differential index 1. This shows the regularization effects by applying
additional capacitances. Here, we use CLOAD=0 and COUT=2.0.

To make this problem suitable for the solvers used in this test set, the variable @ = A - ¢(V') of
assembled charges is introduced leading to

Q = f(t,V),
0 = Q—Aq(V).

This transformation of the integral form DAE into a linearly implicit system raises the differential
index by one. However, in the case of singular load capacitances, no higher index effects are detected
in the sense of an appropriate perturbation index | ].

Some of the 175 variables have a special meaning. These are the voltage variables of the nodes
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that deliver the output signals. The output signals Sy, S1 and C are given by the variables 49, 2130
and z14g, respectively. Only these variables are of interest to the engineer.
In the next section we shall see the two bit adder in operation. Every 10 units of time the addition

A1 Ao+ By By +Ciy, =C 51 5,

is carried out. The numbers that are added are represented by the input signals depicted in Fig-
ure [1.16.5. The outcome of the addition is represented by output signals given in Figure I1.16.6.
Often the output signals need time to adjust to changes in the input signal. Therefore, only during
certain periods the sum is correctly represented by the output signals. The two bit adding unit has
been designed in such a way that after each 10 units of time the output signal represents the sum
correctly.

To see the two bit adding unit performing an addition let us see what happens at ¢ = 200. Then
the input signals read:

Z():O, lel, §0:0,§1:0, Clnzl,
and the output signals are
So=1,8=0,C=0.

Recall, that a bar denotes the logical inverse. Clearly, the addition 014+11+1=101 has been carried
out.

16.4 Numerical solution of the problem

M. Giinther provided the source code that defines the problem.
Table 11.22.2 lists the voltages of the output signals in the reference solution. For the complete
reference solution at ¢ = 320 we refer to subroutine solut. Since these components refer to the output

TABLE 11.16.2: Value at the end of the integration interval of the components of the reference solution that correspond
to the output signals.

49 | 0.2040419147264534
z130 | 0.4997238455712048 - 10
z14g | 0.2038985905095614

signals Sp, S; and C, they are the physically relevant quantities.

Table 11.16.4 and Figures I11.16.6-11.16.10 present the run characteristics, the behavior of the output
signals over the integration interval and the work-precision diagram, respectively. In computing the scd
values, only x49, 130 and 148 were considered, since they refer to the physically important quantities.

The reference solution was computed using RADAUS without restarts in the discontinuities in
time of the derivative of the problem defining function f, with rtol = atol = 10~> and h0 = 4 - 1075.

For the work-precision diagram, we used: rtol = 10~(2+™/8) 4, =0,1,...,32; atol = rtol; h0 =
10 - rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAUS5. The failed runs are in
Table I1.16.3; listed are the name of the solver that failed, for which values of m this happened, and
the reason for failing.

Remark

M. Giinther also wrote a special purpose solver called CHORAL, which stands for CHarge-ORiented

ALgorithm [ , ] for integrating equations of the form
dy
—_— = t
Y=t

0 = y—q@).
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TABLE 11.16.3: Failed runs.

solver m reason

BIMD 27,...,32 | more than nmax steps are needed
DASSL 30,31, 32 corrector failed to converge repeatedly
GAMD 25, ...,29 | stepsize too small

MEBDFDAE | 0,1 stepsize too small

MEBDFDAE | 2,...,18 illegal function call

PSIDE-1 0,...,24 stepsize too small

RADAU 0,1,...,17 | solver cannot handle TERR=-1.
RADAUS 0,1,...,17 | solver cannot handle TERR=-1.

II-16-5

Most equations occurring in circuit analysis are of this form. In these equations the variables y and
x represent respectively (assembled) charges and voltages. CHORAL is based on Rosenbrock-Wanner
methods, while the special structure of the problem is exploited. The code eliminates the y variables,
reducing the linear algebra work to solving systems of order 175 instead of 350. Correspondingly, a
step size prediction and error control based directly on node potentials and currents is offered. For
more information see

http://www.math.uni-wuppertal.de/ guenther.
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TABLE I1.16.4: Run characteristics.
solver rtol  atol mescd scd steps accept #f  #Jac  #LU CPU
BIMD 1072 1072 10! 211 3.23 836 679 12440 679 836  29.4664
10-* 107* 1073 444 6.58 1688 1621 24239 1621 1688 62.4786
DDASSL 1072 1072 1.55 2.40 1892 1779 3674 786 21.3276
10-* 107* 3.60 4.54 6036 5736 9380 866 27.7379
GAMD 1072 1072 10! 2.72 4.66 735 597 20213 597 735 28.1996
10°* 107* 1073 268 3.32 1332 1225 43250 1234 1332 61.4255
MEBDFI 1072 1072 10! 1.96 3.14 2065 1818 194700 533 533 19.1911
10-* 107* 107 3.01 3.36 5269 4851 363601 982 082 38.9239
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17 The car axis problem

17.1 General information

The problem is a stiff DAE of index 3, consisting of 8 differential and 2 algebraic equations. It has
been taken from [ ]. Since not all initial conditions were given, we have chosen a counsistent set
of initial conditions. The software part of the problem is in the file caraxis.f available at | ].

17.2 Mathematical description of the problem
The problem is of the form

Y o= g (11.17.1)
K¢ = f(t,p,\), pg€eR, XeR?’ 0<t<3, (11.17.2)
0 = ¢t,p), (I1.17.3)

with initial conditions p(0) = po, ¢(0) = g0, p'(0) = qo, ¢'(0) = q§, A(0) = Ao and A'(0) = A;.
2

The matrix K reads ¢ % 4, where I, is the 4 x 4 identity matrix. The function f : B7 — IR* is
given by
x
(L() — Ll)fll +/\1:L‘b+2)\2 (l’l — .Tr)
oM
(Lo— L)+ +2ha(w — )~
I 2
f(tvp’ )‘) = Ty — Tp
(LO — Lr) 7 —2)\2 (ZL’[ — .TIT)
g M
(Lo — L) —an (g — )~
L, 2
Here, (z;, 91, Z,,yr)" := p, and L; and L, are given by
Vai+y?r and  (ze —a)? + (yr — )2
Furthermore, the functions x;(t) and y;(¢) are defined by
zp(t) = \/L? —yi(t), (I1.17.4)
yp(t) = hsin(wt). (I1.17.5)
The function ¢ : IR®> — IR? reads
TiTy + YiYp
t,p) = .
ot = (G - )
The constants are listed below.
L = 1 1072|h = 107t |w = 10
Ly = 1/2 0|7 = «/5
Consistent initial values are
0 —1/2
1/2 0 2
Po = 1/ y  Go = ~1/2 M Zf(o PosXo)s  Po = o, )‘0:>‘6:(0a0)T'
1/2 0

The index of the variables p, ¢ and X is 1, 2 and 3, respectively.
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II-17-2 DAE - The car axis problem

17.3 Origin of the problem

The car axis problem is an example of a rather simple multibody system, in which the behavior of a
car axis on a bumpy road is modeled by a set of differential-algebraic equations.
A simplification of the car is depicted in Figure 11.17.1. We model the situation that the left wheel

(T1,m1)

Fiqure 11.17.1: Modelnn of the car azis.

at the origin (0,0) rolls on a flat surface and the right wheel at coordinates (xy,y;) rolls over a hill of
height h every 7 seconds’. This means that y; varies over time according to (I1.17.5). The length of
the axis, denoted by L, remains constant over time, which means that z; has to fulfill (I1.17.4). Two
springs carry over the movement of the axis between the wheels to the chassis of the car, which is
represented by the bar (z;,y;)—(z,,y,) of mass M. The two springs are assumed to be massless and
have Hooke’s constant 1/€> and length Ly at rest.

There are two position constraints. Firstly, the distance between (z;,y;) and (x,,y,) must remain
constantly L and secondly, for simplicity of the model, we assume that the left spring remains orthog-
onal to the axis. If we identify p with the vector (z,y;, ., y,)T, then we see that Equation (I1.17.3)
reflects these constraints.

Using Lagrangian mechanics, the equations of motions for the car axis are given by
M d3%p
— = =Fu+G"\+F,. I1.17.6
o T aTE AT ( )

Here, GG is the 2 x 4 Jacobian matrix of the function ¢ with respect to p and A is the 2-dimensional
vector containing the so-called Lagrange multipliers. The factor M/2 is explained by the fact that
the mass M is divided equally over (x;,y;) and (z,,¥,). The force F represents the spring forces:

Fy = —(cos(ay) Fy,sin(ay) Fy, cos(a, ) F, sin(ar)Fr)T,

Tin the source fortran file the variable r stands for h
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where F; and F,. are the forces induced by the left and right spring, respectively, according to Hooke’s
law:

F = (L —Ly)/e,
F. = (L,—Ly)/é.

Here, L; and L, are the actual lengths of the left and right spring, respectively:
Ll = xlz + y[27
Lo = (& — )+ (yr — 1)

Furthermore, ¢ and a, are the angles of the left and right spring with respect to the horizontal axis
of the coordinate system:

oy = arctan(y;/z;),

ar = arctan((y, — yp)/(zr — 1))

Finally, F, represents the gravitational force
M
F, =—(0,1,0, 1)T79.

The original formulation | ] sets g = 1.
We rewrite (I1.17.6) as a system of first order differential equations by introducing the velocity
vector ¢, so that we obtain the first order differential equations (I1.17.1) and

M dq T
—— =F G A+ F;,. 11.17.7
2 @ H+ + Fy ( )
Setting f = Fiy + GTA + F,, it is easily checked that multiplying (I1.17.7) by & yields (I1.17.2).

To arrive at a consistent set of initial values pg, go and A, we have to solve the system of equations
consisting of the constraint

¢(to, po) = 0, (I1.17.8)

and the 1 up to k — 1 times differentiated constraint (I1.17.8), where k is the highest variable index.

To facilitate notation, we introduce 5 := (¢,p")" and its derivative § := & = (1,¢")T. The Jacobian

of ¢ with respect to p will be denoted by G. Here, k = 3, yielding the additional conditions
G (Bo)do = 0 (I1.17.9)
and 3
b53(P0) (G0, do) + G(Po)do = 0,

where ¢35 denotes the second derivative of ¢ with respect to p. Using (IL.17.6) and the fact that the
first component of ¢, vanishes, the latter condition equals

300 s ) + G o) (Fi(po) + G (o) o + Fy(pn) = 0. (IL.17.10)
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The equations (I1.17.8)—(11.17.10) are solved for

x. =L,
=0,
Yr = Y1 = Lo,
T =1 = _Lo2m ,
L
2
Y, = ri;M(?)\l = A2),

L?r L [—8X+2)
= (2N — A\) £ = —————,
i 27T£2hM( 2 ) eV M

Choosing Ay = Ay = 0, we arrive at the initial conditions listed in §17.2,

TABLE 11.17.1: Reference solution at the end of the integration interval.

1 0.493455784275402809122 - 10~ || ye 0.744686658723778553466 - 10~2

Y2 0.496989460230171153861 Y7 0.175568157537232222276 - 10—+
Y3 0.104174252488542151681 - 10 ys 0.770341043779251976443
Y4 0.373911027265361256927 yo | —0.473688659084893324729 - 102

ys | —0.770583684040972357970 - 10~ || y19 | —0.110468033125734368808 - 102

17.4 Numerical solution of the problem

Tables 11.17.1-11.17.2 and Figures I1.17.2-11.17.3 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of some solution components over the in-
tegration interval and the work-precision diagrams, respectively. The reference solution was com-
puted on using quadruple precision GAMD on an Alphaserver DS20E, with a 667 MHz EV67 pro-
cessor. atol = rtol = hy = 1072*. For the work-precision diagrams, we used: rtol = 10~ (*4+m/4),
m = 0,1,...,24; atol = rtol; h0 = rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and
RADAUS.
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TABLE I1.17.2: Run characteristics.
solver rtol atol hO mescd scd  steps accept #f  #Jac #LU CPU
BIMD 10—4 10— 10~ 2.19 0.34 71 71 1693 71 71 0.0088
10-7 107" 10~7 5.47 3.34 138 138 4511 138 138  0.0224
10~10 10710 10-10 8.01 5.35 235 235 9669 235 235 0.0488
GAMD 1074 1074 1074 1.98 0.39 39 39 2169 39 39 0.0088
1007 1077 107 4.82 2.64 98 98 7167 98 98 0.0293
1079 107'9 10710 6.50 3.84 179 179 18771 179 179  0.0742
MEBDFI 10~* 10—* 10~* 0.88 —0.23 280 278 1246 27 27 0.0059
10-7 1077 10~7 4.65 3.34 650 648 2797 47 47  0.0137
101 10710 10-10 4.21 2.08 1393 1391 5624 85 85 0.0264
PSIDE-1 10¢ 1074 0.83 —0.28 55 54 1403 42 220 0.0098
107 1077 4.41 2.27 179 172 4103 83 464  0.0273
10~ 1010 7.25 4.86 625 612 13751 115 964 0.0869
RADAU 10~* 10—* 10~* 1.34 0.19 98 97 850 95 98 0.0039
10°7 1077 107 3.73 2.51 289 288 2559 282 288 0.0127
101 10710 10-10 5.99 4.22 179 178 4281 169 179 0.0166
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18 Fekete problem

18.1 General information

The problem is an index 2 DAE from mechanics. The dimension is 8N, where N is a user supplied
integer. The numerical tests shown here correspond to N = 20. The problem is of interest for
the computation of the elliptic Fekete points | ]. The parallel-IVP-algorithm group of CWI
contributed this problem to the test set, in collaboration with W. J. H. Stortelder. The software part
of the problem is in the file fekete.f available at | ]

18.2 Mathematical description of the problem
The problem is of the form

d
mEY—

3 =W, y(0) =y, y'(0) = yp, (IL.18.1)

with
yafe-leNv OStStentb

Here, teng = 1000, N = 20 and M is the (constant) mass matrix given by

[ Ien O
u= (0.
where Igy is the identity matrix of dimension 6/N. For the definition of the function f, we refer to

§18.3.
The components yg,; of of the initial vector yy are defined by

Y0,3(j—1)+1 cos(w;) cos(B;)
Yos(j—1)+2 | = | sin(wy)cos(5)) for j=1,...,N,
Y0,3(j—1)+3 sin(5;)
where o
B; = %ﬂ' and w; = %]ﬂ—l—ll—gﬁ for j=1,...,3,
Bi = g oand w; = @ﬂ—l—%w for j=4,...,10,
B; = —12—57r and w; = nglo)w + %w for j=11,...,16,
B; = —&n and w; = x4 Lo for j=17,...,20,
and
Yo,i = 0 for i=3N+1,...,6N,
Yoon+; = 3(p;(0),f;) for j=1,...,N,
Yo,i =0 for i=7N+1,...,8N,
where .
Ys(j—1)+1 =N f3N+3 (j— 1)+1((p(0), 0,...,00%)
pi= | vsg-v+2 |, fi=1| fongsg—n)+2((p (0),0,...,0);) , (11.18.2)
Y3(j—1)+3 f3N+3 (j—1 +3(( (0),0,...,001)

and p = (y1,Y2,--.,ysn) . The initial derivative vector reads v}, = f(yo). These definitions of y, and
o vield consistent initial values. The first 6N components are of index 1, the last 2V of index 2.
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FIGURE 11.18.1: Final configuration for N = 20. The large ball is centered at the origin and only added to facilitate
the 3-D perception. (Taken from [PSS97] by courtesy of R. van Liere.)

18.3 Origin of the problem

This problem is of interest for the computation of the elliptic Fekete points. Let us define the unit
sphere in IR? by 82 and for any configuration z := (z1,2s,...,2n)" of points z; € S?, the function

V(z) =[] llzi — 25l (I1.18.3)
i<j
We denote the value of - for which V' reaches its global maximum by Z = (Z1,...,Zx). The points
T1,Ta2,...,Zn are called the elliptic Fekete points of order N. For example, for N = 4, the points of
the optimal solution form a tetrahedron. But, in case of 8 points, intuition fails; the elliptic Fekete
points do not form a cube in this case. A cube where, for example, the upper plane is rotated over 45°
with respect to the bottom plane, gives already a larger value of V. It turns out (see e.g. [Par95]) that
7 is difficult to compute as solution of a global optimization problem. For reasons that will become
clear later, we differentiate log(V') with respect to zj and apply the method of Lagrange multipliers,
to see that z fulfills R
Velog(V(@) |y = 5= Y b o = (., (IL18.4)
2 e — 31
where the (; are Lagrange multipliers.

We now discuss the Fekete points from another point of view. Consider on §? a number of N
particles, on which two forces are invoked: a repulsive force, by which the particles will start to move
away from each other, and an adhesion force, by which the particles will reach a stationary state after
a certain period of time.
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We denote the position in Cartesian coordinates of particle ¢ at time ¢ by p;(¢) and the configuration
of N points at time ¢ by p(t) = (pi(t),...,pn~(t))T. The stationary configuration is assumed to be
obtained at ¢ = tg, and will be denoted by p := (p1, pa, .. .,Dn), where P; := p;(stat). The repulsive

force on particle 7 caused by particle j is defined by

pi — pi

F,'j = lij,y
llpi — pjli3

Note that the choice v = 3 can be interpreted as an electrical force working on particles with unit
charge. The adhesion force working on particle 7 is denoted by A; and given by

Ai = —Qq;.

Here, ¢ is the velocity vector and « is valued 0.5.
We can compute the configuration of the particles as function of time, given that the particles
cannot leave the unit sphere, as solution of the DAE system

P o= q (I1.18.5)
¢ = gp,a) +G (P)A, (I1.18.6)
0 = ¢(p), (I1.18.7)

where G = 8¢/0p and X € IRYN. The function ¢ : IR*N — RN represents the constraint, which states
that the particles remain on the unit sphere:

bi(p) =Pl + iy +pis— L.

The function g : RSN — RN is given by g = (g;), i = 1,..., N, where

gi(p,q) = > Fij(p) + Ai(g).

J#i

The term G (p)X in (I1.18.6) represents the normal force which keeps the particle on S2.
Since we know that the speed of the final configuration at ¢ = tgat is 0, we can substitute ¢ = 0
and p = p in formula (II.18.6), thus arriving at

0= Fy;{®+G" A,

J#i
which is equal to L
P CHEE Y (I1.18.8)
2 1lp 51
Comparing (I1.18.4) and (I1.18.8) tells us that computing p for v = 2 gives the local optima of the
function V in (I1.18.3). In | ], it is showed that computing p by solving the system (I1.18.5)-

(T1.18.7) and then substituting = pin (I1.18.3), results in values of V' that are very competitive with
those obtained by global optimization packages. For more details on elliptic Fekete points, we refer

to | ] and | ]
The DAE system mentioned before is of index 3. To arrive at a more stable formulation of the
problem, we stabilize the constraint (see [ , - 153]) by replacing (I1.18.5) by

P =g+ G o), (IL18.9)
where p € IR, and appending the differentiated constraint

0 =G (11.18.10)
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TABLE 11.18.1: Reference solution at the end of the integration interval.

—0.4070263380333202
0.3463758772791802
0.8451942450030429

(1) y( 0.7100577833343567
(2) y(
3) y(
(4) 0.0775293475252155 || y(
(5) (
(6) y(

)

) | 0.1212948055586120

) | 0.6936177005172217

0) | 0.2348267744557627
—0.2628662719972299 1
0.9617122871829146 2

) | 0.7449277976923311
) | 0.6244509285956391

e e

The system (I1.18.9), (I1.18.6), (I1.18.7), (II.18.10) is now of index 2; the variables p and ¢ are of index
1, the variables A and p of index 2. We cast the system in the form (I1.18.1) by setting y = (p,q, A\, p) "
and f(y) = f(p,q, A\, 1) = (¢ + G, g+ GT X\, 6,Gq)", where p; is in Cartesian coordinates.

The choice for the initial configuration as defined in §18.2 is a rough attempt to spread out the
points over the sphere. To arrive at a consistent set of initial values we choose ¢(0) = 0, yielding

1#(0) = 0 and ¢}(0) = (2p;(0), ¢;(0)) = 0. Consequently,

1(0) = (2pi(0), ¢;(0))
= (2pi(0), g:(p(0), q(0)) + 2X;(0)pi(0)).

Requiring ¢} (0) = 0 gives

(pi(0), 9:(p(0), ¢(0))) 1
\i(0) = — = —5{pi(0), 9:(p(0),¢(0))).
() = LGB — (51 (0).5:(6(0).9(0))
The initial derivative vector y{ can be chosen equal to f(yo). For N < 20, tsay < 1000, therefore we
chose tena = 1000.

In Figure I1.18.1 the final configuration for 20 points is plotted.

18.4 Numerical solution of the problem

All the tests concern the case with NV = 20. Tables II.18.1-11.18.2 and Figures I1.18.2-I1.18.6 present
the reference solution at the end of the integration interval (first 12 components), the run character-
istics, the behavior of the first 6 solution components over the interval [0,20] and the work-precision
diagrams, respectively. In computing the scd values, only the first sixty components were consid-
ered, since they refer to the position of the particles. The reference solution was computed using
RADATUS, rtol = 1072, atol = 107!, and h0 = 107!2. For the work-precision diagrams, we used:
rtol = 10-G+7m/16) = 0,1,...,64; atol = rtol; h0 = rtol for BIMD, GAMD, MEBDFDAE,
MEBDFI, RADAU and RADAUS.
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TABLE I1.18.2: Run characteristics.
solver rtol  atol  hO mescd  scd steps accept #t  #Jac #LU CPU
BIMD 1072 1072 1072 4.12 2.63 30 29 415 29 30 0.2450
10~ 1073 1073 5.36 4.19 43 43 668 43 43 0.3445
10-* 107* 107 6.69 5.33 65 65 1094 65 65 0.5124
GAMD 1072 1072 1072 4.16 2.99 26 24 526 24 26 0.2147
1072 1073 1073 4.79 3.78 26 26 947 26 26 0.3006
10~* 107* 10~* 5.76 4.45 38 38 1319 38 38 0.4119
MEBDFI 102 1072 1072 3.56  2.10 60 57 192 15 15 0.1064
1072 1073 1073 4.58 3.23 129 128 428 18 18 0.1513
10 107* 10¢ 5.81 4.81 218 216 707 23 23 0.2176
PSIDE-1 102 102 3.66  2.20 73 533 693 16 288 1.3137
103 1073 4.40 3.19 88 59 779 11 344  1.4357
10~* 10~ 5.32 4.12 114 75 967 9 448  1.7363
RADAU 1072 1072 1072 3.43 1.97 33 30 274 27 32 0.5065
1072 1073 1073 4.11 2.65 43 41 315 38 43  0.5993
107 100* 10¢ 5.36 4.29 61 58 442 54 61 0.7662
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19 Slider Crank

19.1 General Information

This problem was contributed by Bernd Simeon, March 1998. The slider crank shows some typical
properties of simulation problems in flexible multibody systems, i.e., constrained mechanical systems
which include both rigid and elastic bodies. It is also an example of a stiff mechanical system since it
features large stiffness terms in the right hand side. Accordingly, there are some fast variables with
high frequency oscillations.

This problem is originally described by a second order system of differential-algebraic equations
(DAEs), but transformed to first order and semi-explicit system of dimension 24. The index of the
problem is originally 3, but an index 1 and index 2 formulation are supplied as well. By default, the
subroutines provide the index 2 formulation.

Comments to simeon®@ma.tum.de.

The software part of the problem is in the file crank.f available at [ ]

19.2 Mathematical description of the problem

The original problem has the form

0 = glpg +r(),

where 0 <t <01, peR, ge R NeIR> M. IR" - IR" xR, f:R* 5 R, g: IR" - IR?,
r: IR — IR? and G = dg/9(p,q). The matrix M(p,q) is symmetric positive semi-definite and rank
M (p,q) is 3, which implies that the DAE (I1.19.1) is of index 3. For the index 2 formulation, the
position constraints are replaced by the velocity constraints

d P .
0= (a0 +r0) =) ( 7 ) +it0 (1119.2)
Additionally, the system is transformed to first order and semi explicit form
() = (%)
q Vq ’
ap
( a, ) , (I1.19.3)

M(p,q) ( @ ) — Fropa,v) + Gl ) A

aq

N

S .

SIS

N———
I

o
I

0 = G ()i,

q

which increases the dimension of the problem to 24. If we define y := (p, q,v,, vy, ap, ag, A\)T, then the
consistent values are given by y(0) := yp and y'(0) := y{. The components of yo are zero, except for
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I11-19-2 DAE - Slider crank

Yo,3 0.450016933 -10° Yo.16 | —1.344541576709835 103
Yo,6 0.103339863-10~* || yo17 | —5.062194924490193 -10°
Yo,7 0.169327969 10~ || yo,15 | —6.829725665986310-10~°
Yo,8 0.150000000 -103 Yo,19 1.813207639590617 - 1020

Y00 | —0.7499576703969453 10> Yo20 | —4.268463266810281 -10°
Y010 | —0.2689386719979040 107" || yo,21 2.098339029337557 -10~*
Yo,11 0.4448961125815990 -10° Yo.22 | —6.552727150584648 -10~8
Yo,12 0.4634339319238670 102 || yo,23 3.824589509350831 -102
Yo,13 | —0.1785910760000550 107" || yo 24 | —4.635908708561371-10~°
Y014 | —0.2689386719979040-10~°

The first 14 components of yg read yg ; = yo,iy7, @ = 1,...,14; the last 10 are zero.

For the index 2 formulation, the index of the variables p, ¢, v, and v, equals 1 and that of a,,
aq and X equals 2. The equations are given in detail in the next subsections, in which already some

references to the origin of the problem, treated in §19.3, are given.

19.2.1 Equations of motion

The position or gross motion coordinates p are

01 crank angle
p:=| ¢ connecting rod angle
x3 sliding block displacement

The deformation coordinates ¢ (of the elastic connecting rod, see below) are

a1 first lateral modesin(mz/ls)
I second lateral mode sin(27x/I2)
7= q3 longitudinal displacement midpoint
q4 longitudinal displacement endpoint
The mass matrix M reads
M, (p) + M.(p,q) C(p,q)"
M(p,q) =
C(p7 q) MA
with rigid motion mass matrix
Jl +M2l% 1/21112’[’”2 COS(¢1 —¢2) O
M»,-(p) = 1/21112777,2 COS(¢1 — ¢2) J2 0 s
0 0 mg
coupling blocks
0 pli(cos(¢r — ¢g2)ct +sin(¢1 — ¢2)es )q
Me(p,q) = | pli(cos(¢py — ¢2)ci + sin(dy — ¢2)c )q g Maq + 2pclaq
0 0

and
pli(—sin(¢1 — ¢o)ci + cos(¢1 — da)c3 )
Clp.q)" = peay +quTB :
0

0

0
0
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and elastic body space discretization mass matrix

1/2 0 0 0

_ 0 1/2 0 0

Ma=pdhla| 4 o g 1

0 0 1 2

The forces are given by
| SrD) + fe(ppig:4)
fp,p,q,9) = . s
fA(pap7qaq) - gra‘d WA(q) - DAq

where the rigid motion terms are collected in

—1/201(y(my + 2m2) cos ¢1 + lyma gl sin(¢r — ¢2))
fr(p,]i) = —1/2 lz’ymz COS ¢2 + 1/2 lllgmquﬁf Sin(¢1 — ¢2)
0

For the force term f.(p, p,q, ¢) we have

pl1d3(—sin(¢1 — @)l + cos(d1 — ¢a)cd Vg — 2plypz(cos(dy — po)el + sin(dy — do)cs )d

phgR(sin(gr — go)ef — cos(¢1 — ¢a)c3 )g — 2pdaclsd — 2024 Mag
—p§" B — pry(cos dacl g — sin ¢acy q)
0
and for fa(p,p,q,q) the expression
P3Maq + P(qgclz + 1163 (cos(p1 — a)er +sin(¢y — da)ea) + 2&234) - PW’(SiH $2c1 + cos (25202) .

The gradient of the elastic potential Wa(g) in case of linear elasticity (which is the default) is
grad Wa(q) = Kaq with stiffness matrix

w[24(h/12)? 0 0 0

_ 0 w2/3(h/1)> 0 0
Ka=Edh/l 0 0 16/3 —8/3
0 0 -8/3  7/3

Alternatively, in case of the nonlinear beam model (IPAR(1) = 1, see below), it holds grad Wa(q) =
Kaq+ ka(a),

0194 — Ba2(—4qs3 + 2q4)

kalg) = 1/27 Edh/i3 | 929 %;—qfﬁ% 200 | 5 =80/ (9m2).

1/2¢7 + 265 — 2Bq1q2

The damping matrix Dp is by default zero. The coupling matrices and vectors arising from the space
discretization read

0 0 -16/7% 8/m® —1/n
_ 0 0 0 1/(2m)
B =dnl; 16/7° 0 0 0

1/m—8/m% —1/(27) 0 0
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Figure 11.19.1: The multibody system with crank, connecting rod, sliding block.

and
c = dhly(0,0,2/3,1/6)T,
o = dhly(2/7,0,0,0)7T,
c12 = dhl3(0,0,1/3,1/6)1,
co1 = dhi3(1/mx, =1/(27),0,0)T.

Finally, the position constraints 0 = g(p, ¢) + r(¢) are given by

0 = lisingy + lysin o + g4 sin ¢o,
0 = x3—1icos¢y — Iy cosps — gy cos s,
0 = ¢ —Qt.

19.2.2 Parameters

For the simulation, the following data are used:

The bodies have lengths I; = 0.15, I; = 0.30[m)].

The masses of the bodies are m; = 0.36, me = 0.151104, m3 = 0.075552[kg].
The moments of inertia are J; = 0.002727, J» = 0.0045339259[kg m?].

The flexible connecting rod has height and width h = d = 0.008[m].

The mass density p = 7870[kg/m?], and Young’s modulus E = 2. - 1011[N/m?].
The gravity constant was set to zero since gravitation plays no role here, v = 0.
The angular velocity of the prescribed crank motion is = 150[rad/s].

19.3 Origin of the problem

The planar slider crank mechanism, see Figure 11.19.1, consists of a rigid crank (body 1), an elastic
connecting rod (body 2), a rigid sliding block (body 3) and two revolving and one translational joint.
Koppens [ ] and Jahnke | ] investigated this example using an ODE model in minimum
coordinates. In | ], an alternative DAE approach is introduced.
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The mathematical model outlined above is derived in two steps. First, the elastic connecting rod
is discretized in space. The geometry of the rod allows to apply an Euler-Bernoulli beam

ur(z,y) = wi(z) - ywy(z),
us(z,y) = wo(z),

to describe the longitudinal and lateral displacements u; and ws of material point (z,y) in the body-
fixed coordinate system. For the longitudinal displacement w; of the neutral fiber, a simple quadratic
model
wi(z) = (—4qs + 2q1) + E(4qs —q1),  E=x/ly,
is sufficient to show the basic effects. The lateral displacement ws is approximated by the first two
sinus shape functions
wa () = sin(wf)qr + sin(2w) g .

These functions satisfy the boundary conditions wy(0) = 0, w2(0) = 0, wa(lz) = 0. Accordingly, the
body-fixed coordinate system’s origin is placed in (z,y) = (0,0), and its z-axis passes through the
point (l2 + wq(x),0).

As already mentioned in §19.2, we provide two versions of the problem. The first one (default)
assumes linear elasticity while the second takes the coupling of longitudinal and lateral displacements
in terms of ka(g) into account. Set IPAR(1) = 1 to switch to this nonlinear beam model. See below
for a comparison of the results.

In the second step, the equations of motion of the overall multibody system are assembled. Due
to the choice of ¢, as gross motion coordinate, there is no constraint equation necessary to express
the revolving joint between crank and connecting rod. The revolving joint between sliding block and
connecting rod and the translational joint lead to two constraints that depend on the deformation
variable ¢;. The third constraint equation defines the crank motion using 7(¢) = (0, 0, —Q¢t)T. Here,
other functions for the crank motion could also be prescribed.

The model described so far features no dissipation. Consequently, the solutions show a purely
oscillatory behavior. We supply also a nonzero damping matrix Da which can be activated by setting
IPAR(2) = 1. Then, 0.5 percent dissipation is included in the right hand side of the elastic connecting
rod.

In §19.4, we investigate the dynamic behavior of the slider crank model corresponding to the
nonlinear model without damping with the initial values listed in §19.2, which were calculated such
that the motion is almost smooth, using an asymptotic expansion technique | ]. In Figure 11.19.4
we see the behavior of the numerical solution for this setting of the model. A close look at these
plots reveals that both lateral displacements q1,¢> as well as longitudinal displacements g3, g4 still
show some small oscillations. The corresponding frequencies as solutions of the eigenvalue problem
w?Maq = Kaq are

wp = 1277, we = 5107, w3 =6841, w4 = 24613 [rad/s].

In particular, g3 and ¢4 are characterized by the relatively large frequency wy. Any explicit discretiza-
tion in time will need stepsizes smaller than the shortest period of oscillation, even for tracking a
smooth solution. On the other hand, the challenge for implicit methods is to be able to take larger
steps. In this simulation the gross motion coordinates p differ only slightly from the motion of a
mechanism with rigid connecting rod.

The subroutines that describe the model offer several possibilities to test other variants of the
model than those tested in §19.4. We now discuss some of them.

Oscillatory solution

We provide also a second set of initial values (subroutine init2) which lead to a strongly oscillatory
solution. Here, the initial deformation as well as the corresponding velocity were set to zero, ¢(0) =
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F1qURE I1.19.2: Solution of slider crank for ‘rigid’ initial values, i.e., deformation ¢(0) = vq(0) = 0.
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FIGURE 11.19.3: Left: Comparison of linear and nonlinear beam model. Right: Oscillatory solution with physical
damping.

v4(0) = 0, which is equivalent to consistent initial values on a rigid motion trajectory. Figure I1.19.2
plots the behavior of ¢;, g2 and g4 for this setting. Both lateral and longitudinal modes oscillate now
with different frequencies.

Nonlinear beam model and damping

The left and right plot in Figure I1.19.3 show the effects of setting IPAR(1) = 1 and IPAR(2) = 1,
respectively. On the left, the difference between linear and nonlinear beam model is illustrated, with
initial values close to the smooth motion. In particular, the components g3 and g4 change if the
nonlinear model is employed. At points of maximum bending, the longitudinal displacement has now
much smaller minima. If we increase the crank’s angular velocity, the resulting forces acting on the
connecting rod are much larger and we can then even observe how the sharp needles turn into a
singularity, the buckling phenomenon.

On the right of Figure 11.19.3, the damping was activated by IPAR(2) = 1, with initial values on
a rigid motion trajectory (init2). Obviously, the oscillation shown in Figure 11.19.2 on the right is
now slowly damped out.
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TABLE I1.19.1: Failed runs.

solver m reason

MEBDFDAE | 19,...,24 stepsize too small

MEBDFI 21,22,23,24 | stepsize too small

PSIDE-1 17,18, ...,24 | iteration matrix singular

RADAU 24 core dump / overflow in decomposition
RADAU5 24 core dump / overflow in decomposition

TABLE 11.19.2: Reference solution at the end of the integration interval.

y1 | 1.500000000000104 - 10" || 415 | 4.974111734266989 - 10—+
ys | —3.311734988256260 - 107" || y14 | 1.105560003626645 - 103
ys | 1.697373328427860 - 10~ || y15 0

ys | 1.893192899613509 - 10~* || y1s | 6.488737541276957 - 10°
ys | 2.375751249879174-107° || y17 | 2.167938629509884 - 10°
ye | —5.323896770569702 - 10~ ¢ || y15 |  3.391137060286523 - 10*
yr | —8.363313279112129 - 1076 || y1o | 1.715134772216488 - 10~
ys | 1.500000000000000 - 102 || yao | —1.422449408912512 - 10°
yo | 6.025346755138369 - 100 || ya1 | 1.003946428124810 - 10°
Y10 | —8.753116326670527 - 10° || y2o | —6.232935833287916 - 10*
y11 | —3.005541400289738 - 1072 || y23 | —1.637920993367306 - 10
Y12 | —5.500431812571696 - 1072 || yos |  2.529857947066878 - 10*

19.4 Numerical solution of the problem

The results presented here refer to index 2 formulation of the linear model without damping, using
the initial values corresponding to a smooth solution.

Tables 11.19.2-11.19.3 and Figures 11.19.4-11.19.8 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of some of the solution components over the
integration interval and the work-precision diagrams, respectively. In computing the scd values, only
the first seven and the last three components were taken into account, since they refer to the physically
important quantities. The reference solution was computed using MEBDFI with atol = 10~* and
rtol = 107!* and h0 = 10~!2. For the work-precision diagrams, we used: rtol = 10~(*4+7m/4 m =
0,...,24; atol = rtol; h0 = 1072 - rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU5 and
RADAU. The failed runs are in Table 11.19.1; listed are the name of the solver that failed, for which
values of m this happened, and the reason for failing.

Remarks

e The slider crank is an example for a stiff mechanical system given in DAFE form. See Lubich
[ ] for an investigation of such systems and the implications for numerical methods in the
ODE case.

e The nonlinear beam model leads to a higher computational effort but does not provoke con-
vergence failures of Newton’s method in RADAUS5, as might be expected in case of nonlinear
stiffness terms.
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TABLE 11.19.3: Run characteristics.

solver rtol atol  hO mescd scd steps accept #f  #Jac #LU CPU

BIMD 10=* 10=* 1076 0.23 2.50 102 102 1762 102 102 0.0420
10=¢ 10-% 10°8 0.39 3.38 1155 1155 22548 1155 1155 0.5144
1078 107% 10710 250 5.49 992 992 35662 992 992 0.7086
GAMD 1074 107% 10°¢ 0.23 2.28 60 60 1983 60 60 0.0342
107¢ 10°% 1078 —-0.16 2.83 534 527 25206 527 534 0.4089
10-% 107% 10710 1.70 4.69 650 650 46109 650 650 0.7271
MEBDFI 10-* 10=%* 1076 0.22 149 250 242 1593 28 28 0.0176
10°¢ 107% 1078 0.03 3.03 3328 3324 15099 170 170 0.2011
107 107% 10710 272 571 6316 6315 28395 313 313 0.3845

PSIDE-1 10°* 10°* -0.05 0.93 45 41 858 29 180 0.0234
10=¢ 106 0.16 2.43 259 235 5020 147 888 0.1298
10-% 1078 1.66 4.66 1639 1445 31526 54 2324 0.6412
RADAU 10=* 10=* 1076 0.20 1.90 104 92 717 89 104  0.0224

107¢ 10°% 10°8 0.14 2.89 132 131 3367 123 131  0.0654
107 107% 10710 1.65 4.65 420 419 10589 397 414 0.2089

e Ag an alternative to stiff solvers, it is still possible to apply methods based on explicit dis-
cretizations, e.g., half-explicit or projection methods for constrained mechanical systems. The
code MDOP5 | ], a projection method based on DOPRI5, uses 2260 integration steps to
solve this problem in the default setting, with atol = 10~% and rtol = 10~?, and initial values
close to the smooth motion. Thus, the stiffness is no that severe in case of this carefully chosen
one-dimensional elastic body model.

e There is also an extended version of the slider crank with a two-dimensional FE grid for the
connecting rod. There, explicit methods do not work any longer. An animation of the system
motion can be found at http://www.mathematik.tu-darmstadt.de/” simeon/ .
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Slider Crank
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20 Water tube system

20.1 General information

This IVP is an index 2 system of 49 non-linear Differential-Algebraic Equations and describes the water
flow through a tube system, taking into account turbulence and the roughness of the tube walls. The
parallel-IVP-algorithm group of CWI contributed this problem to the test set in cooperation with
B. Koren (CWTI) and Paragon Decision Technology B.V.

The software part of the problem is in the file water.f available at [ ]

20.2 Mathematical description of the problem
The problem is of the form

dy

M
dt

fty),  y(0) =y, ¥'(0) =y, (I1.20.1)

where 0 < ¢ < 17- 3600 and y € IR*®. Furthermore,

M¢ O O
M=| o o o |, (I1.20.2)
0O 0 M?

where M? € IR™*1® and MP € IR'*'3 are given by

v fori=j Cy fori=j=1,

¢ _ i =J P _ s

Mij= { 0 otherwise. M=y ¢ fori=j=2
0  otherwise,

The first 38 components of y are of index 1, the last 11 are of index 2. For the definition of f and the
values of C5, Cs and v we refer to §20.3.
The initial vectors yo and y;, are given by

0 for i=1,2,...,18
yo = { 0.047519404529185280807 for 4 =19,20,...,36 and y) =(0,...,0)T. (11.20.3)
109800 for i=37,38,...,49

The function f contains several square roots. It is clear that the function can not be evaluated if
one of the arguments of one of these square roots becomes negative. To prevent this situation, we set
IERR=-1 in the Fortran subroutine that defines f if this happens. See page I'V-ix of the the description
of the software part of the test set for more details on IERR.

20.3 Origin of the problem

This test example describes how water flows through a water tube system. The system is represented
by a set of nodes, which are connected by tubes. The structure of the water tube system is depicted
in Figure I1.20.1. There are two types of nodes: normal nodes and buffer nodes, to which a buffer
is attached. We denote the set of all nodes by A/, and the set of buffer nodes by B. For the system
under consideration, B = {5,8}. The rectangles in Figure 11.20.1 represent the buffers. The pipes are
in the horizontal plane; the buffers are connected to the nodes perpendicular to this plane. The pipes
from the buffer nodes to the rectangles are virtual; in reality the buffers are directly attached to the
buffer nodes. In the model every node can have inflow and outflow, which are denoted by ei(¢) and
e?ut(¢). In our example, inflow occurs only at node 1 and node 13, whereas only node 10 has outflow.


http://www.dm.uniba.it/~testset/src/problems/water.f
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FI1GURE 11.20.1: Structure of water tube system.

The unit of time in the model is second. Defining the time in hours by # = /3600, these flows are
defined by

ér(t) = (1—cos(e ? —1))/200,
ely(t) = (1—cos(e™ —1))/80,
eSut(t) = *(3t* — 92 + 720)/10°.

Figure 11.20.2 shows plots of these flows as function of #. Note that the outflow has a peak at 8 AM
and is increasing again after 3 PM.

Although it seems that node 6 and node 9 could be omitted, we include them in the model, to
leave open the possibility that these nodes have inflow or outflow. The arrows in Figure I1.20.1 denote
the direction in which we compute the flows. For example, if there is a flow from node 4 to node 3,
then this flow will be negative.

To model the flow of the water, we introduce some symbols, which are listed in Table 11.20.1. The
roughness k; ; = 2-107* is measured as the average height of the obstacles on the tube wall. The
structure .S; ; is defined as

g = 1 if there is a tube from ¢ to j,
371 0 otherwise.
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Ficure 11.20.2: Inflows and outflow in m3/s as function of time in hours.

From Figure 11.20.1 we see that

010 0
0010
000 1
000 0
000 0
000 0

S=100 0 1
000 0
000 0
000 0
000 0
000 0
(000 0

Some of the quantities in Table I1.20.1 can be computed directly from others:

7
i (1)
A
miJ

R ;(t)

,J

The definition of R; ;(t) was taken from [

SO OO OO OHMHEOO

OO OO O OO0 OO O
OFRF OO OO O
OHRH OO HOFRF OOOOoOOO
OO OO OO OO OO0
OO OO OO OO OOOO
—H—_ OO OO OoO O
[eRRen i e I an oo Bl an B en B e B an B e B el en |
OO OO O OO OO OOOo 0o

= v-p,
uij(t) - Aij,
= ’/T'dzz,j/47
Aijlig-ps
= u;;(t) - d;j;/v.

, p. 816].

II-20-3
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TABLE 11.20.1: List of symbols for modeling flow in tubes.

Symbol Unit Meaning

®i,;(t) m3/s flow through tube from i to j at time ¢

u; (%) m/s mean velocity of flow through tube from i to j at time ¢
Fii(t) N total force on water in tube from ¢ to j at time ¢
F(t) N adhesion force on water in tube from i to j at time ¢
Ai i (t) - coefficient of resistance of tube from i to j at time ¢
R; ;(t) - Reynolds number of flow through tube from i to j at time ¢
pi(t) N/m? pressure in i at time t

Sij - incidence matrix for structure of the tube system

m; kg mass of water in tube from i to j

di ; m diameter of tube from ¢ to j

lij m length of tube from ¢ to j

A m? area of tube from i to j

ki j m roughness of wall of tube from ¢ to j

el (t) m3/s inflow at i at time ¢

e?ut(t) m3/s outflow at 7 at time ¢

B, (ieB m? area of buffer ¢

Rerit - critical Reynolds number

g m/s? gravity constant

p kg/m? density of water

7] kg/(m - s) | viscosity of water

v m?/s kinematic viscosity of water

v kg/m* auxiliary vector, see (I1.20.15)

We now explain how to model the flow through a tube, using Newton’s second Law, which states

that du (1)
Uq,j5
mi,j djt = Fi7j(t).

Assuming that gravity has no influence on the water flow in all tubes (remember that the pipes are

(11.20.4)

pi(t)

F1GURE 11.20.3: Forces on water in tube.
in the horizontal plane), we see from Figure 11.20.3 that the total force on the water in a tube equals

Fyj(t) = Aij(pi(t) — pi(t) — F5(1). (11.20.5)
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The magnitude of the adhesion force depends on the type of flow. For laminar flows (|R; ;(t)| < RY),
we use the formula [ , p. 12]

Ff;j (t)/AiJ' = 32/1 . liﬂ' s U g (t)/di] (11206)
For turbulent flows (|R; ;(t)| > R*), we have | , b- 597]
Ff;j(t)/AiJ = )\i’j(t) P li’j . ui,j(t)Q/dm, (11207)
where the resistance X; ;(¢) is computed from Colebrook and White’s formula | , p. 621]:
1 2k; ; 18.7
0= —— —1.74 + 2log 44 : (11.20.8)
Aii(t) ( dij  |Rij(t)|y/ Auj(t))

Although for laminar flows the adhesion force does not depend on the resistance coefficient (cf.
(I1.20.6)), we have to choose a value for A;; in case of laminar flows. We compute this value by
replacing R; ; in (I1.20.8) by Rt ie., we choose the value such that if a flow changes from laminar
into turbulent, the resistance coefficient changes gradually.

For the normal nodes, Kirchoff’s law holds, which states that

VneN -B: = Y piaO)+ERE) = D pny(t) — e (t) (11.20.9)

i|Sin=1 J1Sn, ;=1

For the buffer nodes, we add a term ,,(t) that represents the flow to the buffer:

VneB: ()= D Gin®)+elt) = D n(t) — e () (11.20.10)

i|Sin=1 18n, ;=1

We now explain how to compute v, (t). A buffer can be interpreted as the water column in
Figure 11.20.4, with ground area B,, and height h. Due to the flow v, (f) the height of the buffer
changes at a rate ¢, (t)/B,. The difference between the pressure at the top and bottom of the column
satisfies

Pn—Do=g-p-h

Consequently, the pressure difference changes at a rate given by

d(pn — po) dh Pn(t)
dpn =po) _ . dh _ - Unll) 11.20.11
i 9Py =9P B, (IL.20.11)

Notice that the pressure pg is constant and therefore drops out in this formula. Substituting (I11.20.11)
n (II.20.10) gives

VneB: dp" = N i@ RO — D payt) — e (), (I1.20.12)

i|Sin=1 J18n, ;=1

where the quantity C,, := B, /(p - g) can be interpreted as the capacity of the buffer at node n.
We arrive at the formulation in §20.2 by setting

y=1( ¢12(1),02:3(),P2,6(t), #3,4(t), #3,5(1), Pa,5(t), B5,10(t), Po.5(), P7,4(t),
P7.8(t), 98,5(t), #8,10(t), Po8(t), p11,0(t), d11,12(t), P12,7(t), P12.,8(1), P1311(t),
Ai2(t), Ao 3(t), Ao 6(t), Asa(t), A 5(t), Aa5(t), As,10(t), A6 5(2), Ara(t), (11.20.13)
A7a(t), Ag,5(t), Ag,10(t), Ao,s(t), Ar1,0(f), A1 12(t), Ai2,7 (), Ai2,s(t), A1s11(t),
Ps(8):ps(8),p1 (1), p2(1), - .-, pa(t), p6(1), pr (1), Do (1), Pro(t), - - -, P13 (t) )T
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Figure 11.20.4: Representation of water buffer.

All pressures are of index 2, except for those at the buffer nodes. The reordering of the pressures in
(I1.20.13) is such that the elements in y appear in order of increasing index, as required by RADAU,
RADAU5 and MEBDFDAE.

The first 18 equations in (I1.20.1) are obtained by first substituting (I1.20.5) in (I1.20.4). Next, we
divide both sides by A; ;, thus yielding

p-li;de ;(t)
AL]' dt

Finally, (11.20.6) and (I1.20.7) are substituted in (I1.20.14). Consequently, if we define V; ; = p-l; ; /A ;,
then the vector v in (I1.20.2) is given by

v={_( Vipo,Vas,Va6,V54,V35,Vas, V510, Ve,5, V4,
T
Vis, Vas, Va0, Voos, Vite, Vir 2, Vie 7, Vias, Vizin ).

=pi(t) —pi(t) — F{;(8)/Ai- (11.20.14)

(11.20.15)

The next 18 equations in (I1.20.1) equal (I1.20.8), whereas the last 13 equations are given by (I11.20.9)
and (I1.20.12).

In this model, all tubes and buffers are equal with characteristics as specified in Table I1.20.2.
Moreover, we assume that the temperature is constant. The values for the physical constants are
listed in Table 11.20.3. The values for p and v correspond to a temperature of 10°C. The value for
R was taken from [ , p- 39].

We now discuss how we derived the initial conditions in (I1.20.3). First we note that (I.20.9) is an
index 2 constraint. Therefore, the initial values also have to satisfy the once differentiated constraint
(the so-called hidden constraint)

VneN—B: 0= 3 @@+t — 3 g0 — e (). (I1.20.16)

i|Sin=1 JlSn,;=1
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TABLE 11.20.2: Characteristics of tubes.

Quantity Value
li; 1000

ki 0.0002
d@j 1

B; 200

TABLE 11.20.3: Values of physical constants.

Constant Value

v 1.31-107°
g 9.8

P 1.0 -103
Rerit 2.3 -10°

II-20-7

We are free to choose initial flows ¢; ;(0) as long as they satisfy (I1.20.9); we chose these all equal
to zero. This means that the resistance coefficients equal the value for the case of laminar flows,
i.e., 0.047519... The pressures at the buffer nodes, which can be selected freely, are chosen to be
10° + g - p, which corresponds to initial heights of one meter in the water columns, assuming that pg
in Figure 11.20.4 equals one bar. From (I1.20.12) it follows that p,(0) = 0, n € B (note that the in-
and outflows are initially zero). The initial pressures p,(0), n € N'— B, and the initial derivative flows
i.;(0) follow from (I1.20.14) and (I1.20.16). Since the derivatives of the in- and outflows are initially
zero, the initial values in (I1.20.3) satisfy these equations. The other initial values, A; ;(0) and p;,(0),
n € N — B, appear neither in the system, nor in the hidden constraints, and can be chosen freely. We
set these equal to 0.
Several observations can be made from the behavior of the flows, resistance coeflicients and pres-

sures, which are plotted in Figure 11.20.6-11.20.8:

o The rise and fall of the outflow in node 10 cause the flows to node 10 to change from laminar
to turbulent and back, as can be seen from the resistance coeflicients A5 19 and Ag19, which
correspond to y25 and y3g-

e At 8 AM, the pressures in the buffer nodes drop below their original level, which means that
some of the water that was present in the buffers initially, is used to meet the peak demand.

e The time period in which the flows to node 10 have become laminar again (this period is indicated
by the vertical dashed lines in the plots of y25 and y3q, causes an irregular behavior (indicated
again by dashed lines) of the solution components ys, ¥s, ¥o, y10 and yi; which correspond to
the flow from node 3 to node 4 and the flows in the cycle 4-7-8-5, respectively.

e Some of the flows contain high-frequent oscillations of small amplitude. To see this more clearly,
we plotted ¢34 for 6878 < ¢t < 17- 3600 in Figure 11.20.5.

20.4 Numerical solution of the problem

Tables 11.20.4-11.20.5 and Figures 11.20.6-11.20.8 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagrams, respectively.
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FIGURE I1.20.5: Behavior of ¢34 for 6878 < t < 17 -3600.

Since the 13 last solution components (the pressures) are so much larger in magnitude than the
other components, we used the following vector-valued input tolerances:

atol(i) = atol for i =1,...,36,
atol(i) = 10% - atol for ¢ = 37,...,49,
rtol(i) = rtol for i =1,...,49.

The reference solution was computed by PSIDE with rtol = atol = 107'4. For the work-
precision diagrams, we used: rtol = 10~(4+7/%) 1 = 0,1,...,24; atol = rtol; h0 = rtol for BIMD,
GAMD, MEBDFDAE, MEBDFI, RADAU and RADAUS5.

The failed runs are in Table I1.20.6; listed are the name of the solver that failed, for which values
of m this happened, and the reason for failing.
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TABLE 11.20.4: Reference solution at the end of the integration interval.

y1 | 0.2298488296477430 - 107902 || yog | 0.4751940452918529 - 107001

yo | 0.1188984650746585 - 107902 || 457 | 0.4751940452918529 - 10001

ys | 0.1109503645730845 - 107902 || yag | 0.4751940452918529 - 10001

ys | 0.1589620100314825 - 107903 || 409 | 0.4751940452918529 - 10001

ys | 0.1030022640715102 - 107902 || y3¢ | 0.4249217433601160 - 107901

ye | 0.8710606306836165 - 10703 || y3; | 0.4732336439609648 - 10~001

yr | 0.3243571480903489 - 107902 || y35 | 0.4732336439609648 - 10001

ys | 0.1109503645730845 - 1092 || y35 | 0.4270002118868241 - 10~

yo | 0.7120986206521341 - 107903 || y3, | 0.4751940452918529 - 10001

Y10 | 0.6414613963833099 - 107993 || yz5 | 0.4751940452918529 - 10~

y11 | 0.9416978549524347 - 107908 || ys6 | 0.3651427026675656 - 1000

Y12 | 0.3403428519096511 - 107°9% || ys7 | 0.1111268591478108 - 107006

13 | 0.2397639310739395 - 10792 || ys5 | 0.1111270045592387 - 101006

Y14 | 0.2397639310739395 - 107992 || yg9 | 0.1111271078730254 - 101006

y15 | 0.3348581430454180 - 107992 || y4o | 0.1111269851929858 - 10106

16 | 0.1353560017035444 - 107°9% || g3 | 0.1111269255355337 - 107006

y17 | 0.1995021413418736 - 10702 || g4 | 0.1111269322658045 - 107006

18 | 0.5746220741193575 - 107°9% || g5 | 0.1111269221703983 - 101006

Y19 | 0.4751940452918529 - 10" || 444 | 0.1111270121140691 - 101006

Y20 | 0.4751940452918529 - 1091 || yy5 | 0.1111274419515807 - 101006

yo1 | 0.4751940452918529 - 109 || y46 | 0.1111255158881087 - 10106

Yoo | 0.4751940452918529 - 10701 || g7 | 0.1111278793439227 - 101006

Y23 | 0.4751940452918529 - 107" || 445 | 0.1111270995171642 - 10006

yoa | 0.4751940452918529 - 10291 || gy | 0.1111298338971779 - 101006

o5 | 0.4311196778792902 - 10001

TABLE 11.20.5: Run characteristics.

solver rtol atol hO mescd scd steps accept #f  #Jac  #LU CPU
BIMD 10-*  107* 107* 355 1.23 17 16 250 16 17 0.0420

107 1077 1077 6.05 3.45 333 314 5830 314 333 0.8989

1071 10710 10710 | 922 732 673 586 17454 586 673 2.1101
GAMD 100* 10* 10¢ 351 1.18 18 16 340 16 18 0.0439

107 1077 1077 594 340 233 202 8038 204 233 0.7642

10710 10710 10~ | 932 7.18 554 458 22018 448 536 1.9744
MEBDFI 10~* 10=* 10~* 3.85 1.83 81 77 1197 18 18  0.0488

107 1007 1077 6.32 3.30 1267 1171 13926 192 192 0.5846

1071 10710 10719 | 9.09 7.18 3189 3037 28403 351 351 1.2561
PSIDE-1 107* 10°* 4.37 245 64 50 799 16 244 0.1015

10°7 1077 580 3.09 134 104 2320 40 468 0.2723

10-10 1010 786 545 827 719 14105 39 1292 1.2102
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F1GURE 11.20.8: Behavior of pressures over the integration interval.
TABLE 11.20.6: Failed runs.
solver m reason
RADAU | 0,...6,8,9,11,12,13,14,16,...,20,24 | solver cannot handle IERR=-1.
RADAUS5 | 6 stepsize too small
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21 NAND gate

21.1 General information

The problem is a system of 14 stiff IDEs of index 1. It has been contributed by Michael Giinther and
Peter Rentrop [ ]
The software part of the problem is in the file nand.{ available at [ .

21.2 Mathematical description of the problem
The problem is of the form:

Cum) Y = Jew), w0 =v, O =4, (m21.1)

with
y € R*, 0<t<80.

The equations are given by:

Y1 —Ys

Cas - (s — ) = ips(y¥a — Y1,¥5 — Y1,Y3 — Y5, Y5 — Y2,Y1 — Vpp) + Ros (I1.21.2)
) v _ D y¥2— Vbbp
Cap - (U5 —92) = —ips(W2 — Y1,¥5 — Y1,¥3 — Ys5,¥s — Y2,Y1 — Vpp) + T Rep (I.21.3)
. ) -V :
Cs(ys = ys) - (s — ) = “ 122 — iR (s — vs), (11.21.4)
BS
) -V .
Cp(ys — Vop) - (=) = y4R7BB — i (ys — Vo), (11.21.5)
BD
Cas 1 +Cap 92 +Css(ys —ys) -3 — (Cas + Cap + Cps(ys —ys) + C5) - U5 : )
11.21.6
~Cip(ys —ys) - (5 —99) = Y2 +igs(ys —ys) + B2 +igp(ys — ys),
Cas U6 = —ips(yr — ye, Vi(t) — Y6, ys — y10, Vi (£) —y7,y9—ys) + Cas - Vi(t) — y(;%_f;o (I1.21.7)
Cap - 97 = 185 (yr — y6, Vi(t) — Y6, ys — Y10, Vi(t) — yr,y9 — y5) + Cap - Vi(t) — y;,;gg): (11.21.8)
) ) -V )
Crs(ys — yo) - (Us — $10) = —ng7BB +ips(ys — y10), (I.21.9)
BS
. . -V .
Cep(yo —ys) - (Yo — U5) = —:UQRJ +ipp(ye — ys), (I1.21.10)
BD
Cs(ys — y10) - (Ws — ¥10) — CBp (Y14 — Y10) - (Y10 — 14) + Cl0 - Y10 ( )
11.21.11

_ Yi0—Ye B yio—yi2 B
=10 4 igs(ys — yio) + P22 4 igp(Y1a — Y10),

Cas 11 = —iBg(yia — y11, Va(t) — y11, 13, Va(t) — Y12, 414 — y10) + Cas-Valt) — Igi*ls’ (I1.21.12)
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V12— Y0

Cap e = ihs(yr2—y11, Valt) =11, y13, Va(£) =12, Y14 —410) + Cap - Va(t) Rop | (I1.21.13)
. yis—Ve g
Cps(y13) - s = T R +ips(Y13), (I1.21.14)
BS
. . y14— VBB .g
Cpp(y1a — y10) - (Y14 — Y10) = T +4E (14 — y10). (I1.21.15)

The functions Cgp and Cgg read
Ch -
Cep(U) =CpsU) =4 ° (

with Cg = 0.24-10"* and ¢p = 0.87.
The functions i§g and if¢ have the same form denoted by igs. The only difference between
them is that the constants used in igg depend on the superscript D and E. The same holds for the

functions igj/DE and igéE. The functions ips,ipp and ips are defined by
ins(Ups) = s (eXp([{}BTS) - 1) for Ups <0,
for Upg >0,
ipp(Upp) = ~is (eXp(Ul}%D) B 1) for- Upp <0,
for Ugp >0,

GDS+(UD5, Uas, UBS) for Ups >0,
ips(Ups,Uas,Uss,Uap,Upp) =4 0 for Ups =0,
GDS_(Ups,UGD,UBD) for Upg < 0,

where

GDS,(Ups,Ugs,Ups) =

O for UGS — UTE S O,
—B-(146-Ups) - (Ugs — Urp)? for 0<Ugs —Urg < Ups,
—B-Ups-(1+68-Ups)-(2-(Ugs —Urg) —Upsg) for 0<Ups < Ugs— Urg,
with
Urp = Uro + 7 (\/m_ \/5) : (IL.21.16)
and
GDS_(Ups,Uap,Upp) =
0 for Uap —Urg <0,
B8-(1=6-Ups)- (Usp — Urg)® for 0<Ugp —Urg < =Ups,

_B‘UDS . (1 —(5-UD5) . (2'(UG‘D — UTE) —I—Ups) for 0< —Ups < Ugp — UTE,
with

Urg =Uro + v - (\/ ® - Upgp — \/6) . (11.21.17)

The constants used in the definition of ¢gs,ipp and ipg carry a superscript D or E. Using
for example the constants with superscript £ in the functions igg yields the function i55. These
constants are shown in Table II.21.1. The other constants are given by
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TABLE I1.21.1: Dependence of constants on D and E for ips, igp and ips.

E D E D
is | 104 104 | | 3] 1.748-10-% | 5.35-10*
Ur | 25.85 | 25.85 v 0.035 0.2
Uro 0.2 —2.43 1) 0.02 0.02
(0] 1.01 1.28
Ve = -=-2.5,
Vop = 5,
Cs = Cip=05- 1074,

Rgs = Rgp =4,

Rps = Rpp =10,

Cgs = Cap=06- 10—4.

The functions Vi (¢) and V,(¢) are

(20 —tm if 15 < tm < 20,
5 if 10 < tm < 15,
i) =9 tm—5 if B5<tm<l10,
L 0 if tm <5,
with tm = ¢t mod 20 and
(40 — tm if 35 < tm < 40,
5 if 20 < tm < 35,
Va=9 415 i 15<tm <20,
0 it tm <15,

\

with tm = t mod 40. From these definitions for V;(¢) and V5(¢) we see that the function f in (IT.21.1)
has discontinuities in its derivative at tm = 5,10,15,20. Therefore, we restart the solvers at ¢t =
5,10,...,75.

Consistent initial values are given by y, = 0 and

Y1 = Y2 =¥ys = yr = 5.0,

Y3 =Y4 = Y8 = Yo = Y13 = y1a = Vpp = —2.5,
Y6 = Y10 = Y12 = 3.62385,

y11 = 0.

All components of y are of index 1.

It is clear from Formulas (I1.21.16) and (I1.21.17) that the function f can not be evaluated if one
of the values ® — Ugg, ® — Ugp or ® becomes negative. To prevent this situation, we set ITERR=-1
in the Fortran subroutine that defines f if this happens. See page I'V-ix of the the description of the
software part of the test set for more details on IERR.

21.3 Origin of the problem

The NAND gate in Figure I1.21.1 consists of two n-channel enhancement MOSFETs (ME), one n-
channel depletion MOSFET (MD) and two load capacitances C5 and C19. MOSFETSs are special
transistors, which have four terminals: the drain, the bulk, the source and the gate, see also Fig-
ure I1.21.3. The drain voltage of MD is constant at Vpp = 5[V]. The bulk voltages are constantly
Ves = —2.5[V]. The gate voltages of both enhancement transistors are controlled by two voltage
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FI1GURE 11.21.1: Circuit diagram of the NAND gate (taken from [

V2
LOW | HIGH
V1 LOW | HIGH | HIGH
HIGH | HIGH | LOW

Ficure 11.21.2: Response of the NAND gate

)

IDE - NAND gate

sources V1 and V5. Depending on the input voltages, the NAND gate generates a response at node 5
as shown in Figure I1.21.2. If we represent the logical values 1 and 0 by high respectively low voltage
levels, we see that the NAND gate executes the Not AND operation. This behavior can be explained
from Figure I1.21.1 as follows. Roughly speaking, a transistor acts as a switch between drain and
source; it closes if the voltage between gate and source drops below a certain threshold value. The
circuit is constructed such that the voltage at node 10 drops to zero unless V; is high and V5 is low,
in which case it is approximately 5[V]. This means that as soon either Vi or V; is low, then the
corresponding enhancement transistors lock; the voltage at node 5 is high at Vpp = 5[V] due to MD.
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If both V; and V5 exceed a given threshold voltage, then a drain current through both enhancement
transistors occurs. The MOSFETSs open and the voltage at node 5 breaks down. The response is low.
In the circuit analysis the three MOSFETSs are replaced by the circuit shown in Figure I1.21.3. Here,

|

i -

C\?.
() W i [
C

“ i

Source | N 3

FI1GURE 11.21.3: Companion model of a MOSFET (taken from [ 7)

the well-known companion model of Shichmann and Hodges [ ] is used. The characteristics of
the circuit elements can differ depending on the MD or ME case. This circuit has four internal nodes
indicated by 1, 2, 3 and 4. The static behavior of the transistor is described by the drain current
ips- To include secondary effects, load capacitances like Rgs, Rgp, Rps, and Rpp are introduced.
The so-called pn-junction between source and bulk is modeled by the diode iggs and the non-linear
capacitance C'gg. Analogously, igpp and C'gp model the pn-junction between bulk and drain. Linear
gate capacitances Cgs and Cgp are used to describe the intrinsic charge flow effects roughly.

To formulate the circuit equations, we note that the circuit consists of 14 nodes. These 14 nodes
are the nodes 5 and 10 and the 12 internal nodes of the three transistors. For every node a variable is
introduced that represents the voltage in that node. Table 11.21.2 shows the variable—node correspon-
dence. In terms of these voltages the circuit equations are formulated by using the Kirchoff Current
Law (KCL) along with the transistor model shown in Figure 11.21.3. In Figure I1.21.4, we check the
behavior of the NAND gate by plotting V; and V5 together with the numerical value for the voltage at
node 5, which is obtained as y1q in §21.4. The picture confirms that the NAND gate produces a high
signal in the intervals [0, 5], [10, 15], [20, 25], [40,45], [50, 55] and [60, 65], whereas the output signal
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TABLE 11.21.2: Correspondence between variables and nodes

variables nodes
14 internal nodes MD-transistor
5 node 5
6-9 internal nodes ME]1-transistor
10 node 10
11-14 internal nodes ME2-transistor

Input signal V3

Output signal at node 5

Input signal Vs

Jul 20 40 &0 Bﬁ/

Fi1Gure 11.21.4: Plots of V1, Vo and the output of the NAND gate.

on [30,35] and [70, 75] is low.
We remark that in this description the unit of time is the nanosecond, while in the report | ]
the unit of time is the second.

21.4 Numerical solution of the problem

Tables 11.21.3-11.21.4 and Figures I1.21.5-11.21.7 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagram, respectively. In computing the scd values, only y;, the response of
the gate at node 5, was considered. The reference solution was computed on the Cray C90, using
PSIDE with Cray double precision and atol = rtol = 107, For the work-precision diagram, we used:
rtol = 10~4+7/8) m =0,1,...,64; atol = rtol, h0 = rtol for MEBDFI. .
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TABLE 11.21.3: Reference solution at the end of the integration interval.
1 0.4971088699385777 - 10 || ys | —0.2500077409198803 - 10
Y2 0.4999752103929311 - 10 || y9 | —0.2499998781491227 - 10
ys3 | —0.2499998781491227 - 10 || y10 | —0.2090289583878100
Y4 | —0.2499999999999975 - 10 || y11 | —0.2399999999966269 - 103
Ys 0.4970837023296724 - 10 || 12 | —0.2091214032073855
ye | —0.2091214032073855 113 | —0.2499999999999991 - 10
yr 0.4970593243278363 - 10 || y14 | —0.2500077409198803 - 10
TABLE 11.21.4: Run characteristics.
solver rtol  atol  hO mescd scd steps accept #f  #Jac #LU CPU
DDASSL 10~* 10~ 3.69 5.25 1037 951 1639 246 0.0459
1077 1077 6.22 8.81 3825 3604 5207 638 0.1376
MEBDFI 10~* 10=* 10~ 3.76 4.57 1120 1006 7693 249 249  0.0683
1077 1077 1077 6.24 7.50 3786 3429 24487 755 755 0.2255
PSIDE-1  10~* 1074 2.39 3.33 464 411 6574 109 1796 0.0927
1077 1077 5.28 8.48 773 643 13134 222 2760 0.1796
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F1Gure 11.21.6: Work-precision diagram (scd versus CPU-time).
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Ficurg 11.21.7: Work-precision diagram (mescd versus CPU-time).
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22 Wheelset

22.1 General Information

The wheelset is an IDE of dimension 17 which shows some typical properties of simulation problems in

contact mechanics, i.e., friction, contact conditions, stiffness, etc.. This problem is originally described

by an index 3 IDE with additional index 1 equations, but can be reduced to index 2. Test results are

based on the index-2 formulation. This problem was contributed by Bernd Simeon, Claus Fiihrer, Peter

Rentrop, Nov. 1995. Comments to simeon@ma.tum.de or Claus.Fuhrer@na.lu.se. See also | ]
The software part of the problem is in the file wheel.f available at [ ]

22.2 Mathematical description of the problem

The index 3 formulation of the wheelset problem reads

P = o, (11.22.1)
M (p) ( Z ) = ( flu) = (agb((lz)q)/ap)T @ ) : (I1.22.2)
0 = a9, (I1.22.3)
0 = g9, (11.22.4)

where u := (p,v,3,¢,\)T € R'", pv € R>, B € R, g € R*, A € IR?> and C is a scalar constant.
Furthermore, M : IR° — RS x RS, f : R'™ — IR®, d: IR'" — IR, g, : IR® — IR? and g- : IR? — IR*.
The integration interval is from 0 to 10 [s].

For the index 2 formulation of the problem (I1.22.3) is replaced by

0= (991 (p, )/ 9p) v. (1L.22.5)

The non-zero components of the consistent initial values u(0) := ug and u'(0) := uf, are given by

Ug,1 0.1494100000000000 1072 || ug 12 7.4122380357667139 -10~°
Ug,2 0.4008900000000000 -107¢ || ug 13 0.1521364296121248
Ug,3 0.1124100000000000 -107° || g 14 7.5634406395172940 -10~°
ug 4 | —0.2857300000000000-1072 || ug 15 0.1490635714733819
U 5 0.2645900000000000 -10~2 || ug 16 | —0.8359300000000000 - 102
ug 17 | —0.7414400000000000 -10~2

up g | —1.9752588940112850 upg | —5.5333628217315490
up 7 | —1.0898297102811276 1073 | ug 1o | —0.3487021489546511
up g 7.8855083626142589 -10 2 ug 1y | —2.1329687243809270

The other components of ug and wuy are zero. For the index 3 formulation, the index of variables p, v,
B, q and A equals 1, 2, 2, 1 and 3. For the index 2 problem, these numbers read 1, 1, 1, 1 and 2.

The equations are given in detail in the next subsections, in which some references to the origin
of the problem, treated in §22.3, are already given. Table I1.22.1 lists all problem parameters.

22.2.1 Differential equations
The position coordinates p are defined as

lateral displacement
vertical displacement
longitudinal displacement
yaw angle

roll angle

3
I
S e 8
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and the contact variables as ¢* := (v & ¢r &g ) with

§L)r = coordinate of the contact point left/right,
Yrir = shift angle left/right.

The first three equations in (I1.22.2) yield the momentum equations:

mri = mpg (2v0/<a cosa s +vi K cosoz(l—l-/ﬂ(mcosa—ysina)))

+TL1 +TR1 +Q1 —ng sina—bm )\1 —bl’g /\2 —QCIZL‘,

mgri = —mg (21}0/@ sinaz +vj K sina(l—l—m(wcosa—ysina)))

+Tp, + TR, + Q2 —mpgcosa — by Ay — b2 Ay,

mr% = mpg (—QUOm(:tcosa—ysina) +v3 mzz)

+1'ry +Tr, + Q3+ Fa —ba1 Ar — b3 2 A,
where b; ; denotes the (4, j) element of the constraint Jacobian 0g1(p, q)/Op. The next three equations
yield the spin equations:
L6 cosp = —égbsingo + vo K(gb(sinacosﬁcosgo + cosasing) — ésinasinﬁsingo)
=1 (wo + B) (¢ — voksin b sin @)
—( - L) (9 sin ¢ — vg k (cos B cos p sin a + sin @ cos a))
(cp — vg K sin asin 9)

+ { —(&psinf + R(&y) sin)y, cosBcosp) T,
—R(¢L) sin¢psing Ty,
+(—& cos8 + R(&L) sinepy, sin @ cos ) TLS}
+{ corresponding terms of the right side ]
—cosf Sin(le + COSQOMQ + sin 6 Sing&Mg — b471 )\1 — b4’2 )\2 y
Ly = I, 8vy K sina cosd
+I1 (wo + B) (9 cos ¢ + vg k (cos f sin p sin a — cos p cos a))
+(I - ) (9 sin ¢ — vg £(cos B cos @ sin o + sin ¢ cos a))
(9 cos ¢ + vg k(cos 0 sin @ sin a — cos p cos a))
+ [ —(&p, cosfsiny — R(&r,) cos vy, cosbcos ) T,
+(€x cosep + R(€x) cos Y sin ) T,
+(&L sinfsing — R(&L) cospy, sinf cos ) T, }

+[ corresponding terms of the right side ]
+Sin9M1 + COSGMg — b571 )\1 — b5’2 /\2 s
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L (B +8sing) = B@cosy—vgk (p(cosacose — sinacosfsin ) — fsin asin f cos )
+ [ —R(&1) (costpr sinf + sinpr cos@sin ) Tr,
+R(&y) sinyy, cosp T,
—R(&r) (costpp cos — sinpp sin@sin ) Tr, ]
+[ corresponding terms of the right side ]
+ cos® cosp My + sinp Ms —sinf cosyp Mz + L4 .

The forces ¢ and moments M of the wagon body satisfy the following equations:

Q1 = Zad (vgg” — tan a) (lateral force),
Q2 = —magcosa (1;37;; tan a + 1) (vertical force),
Qs = —2c¢.z (longitudinal force),
My = 0
M, = @Qax (yaw moment),
Ms; = —hasQ (roll moment),
0 = cos@M; —sinf M; (no pitch moment).

The creep forces Tr, , , and Tk, , , of the left and right contact point are obtained via the transfor-
mation

Tr g, sinff  cosflcosAp g FcosfsinAp g Ti, n
TL‘RQ = 0 :I:sinAL‘R COSAL|R TQL‘R 5
Tr|R, cos) —sinflcosApp EsinfsinApg 0

where T1,,, and T, , denote the creep forces with respect to the local reference frame of the contact
point and + stands for the left and right side, respectively. The creep forces are approximated by

GCMCQ
TlL\R = _NNL\Rtanh ( MNL|R "

G02262 GCQgCS
T := —ulNp gtanh
2L|R MV L R L1 (MNL|R Vo NNL|R 3

and corrected by

if T +75 > (uN)?, then
. T
T 1

RV

T

—————uN
NieEsria

pN and Th:=

The constant parameters

#, G, C11, Caa, Cas
(friction coefficient, glide module, Kalker coefficients) are listed in Table I1.22.1. For the computation
of ¢, the size of contact ellipse, which uses the parameters o, G and €, we refer to | ]. For

alternative creep force models see also | ]
The normal forces N are given by

NL _ COS AR —sin AR bl,l b172 Al
NR =7 — COS AL —sin AL b271 b272 /\2 ’
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where
B 1

sin Az cosAp +sin AgcosAp

Here, Ar g denotes the contact angles and is defined as

(R'(&1) cos o — sin @ costpy) cosf + sinyy, sing
—R'(&L)sinp — costpr, cos ’

(R'(€R) cos ¢ — sin @ costr) cosf + sin g sin 8
+R'(€r)siny + cos g cos g ’

tallle; =

taIIZX}g =

For the creepages we have the relations

1
vy = (sin fv,1 + cosbu,3)
Uroll
1
vy = (cos 6 cos A gvr1 £5in Ap gvps — sinf cos A gvrs)
Uroll
1 .
w3 = (:FsinAL|R(w + B —vo k sina) 4+ cos A (0 — vo /icosa))
Uroll

where v;1 2.3 (relative velocity at the contact point) and v, (rolling velocity) are given by (corre-
spondingly for the right side)

vy = & —6O(R(€L)(sinfsinpcostr, + cossinyyr) + &7 sinf cos )
—@cosB(&p sing — R(EL) cos pcosr)
+(wo + B)R(EL)(—sin B cospr — sinpcos O sinyy,)
+vgk cos a(R(EL)(sin B sin ¢ cosypr, + cosBsinpr) + &g sin b cos p — z),

U2 = Y+ @& cosp+ R(Ey)sinpcos ) + (wo + B)R(EL) cos psinyy,
+vgk sin oz — & sinf cos p — R(EL)(sinfsin costpr, + cosfsinr)),

Ups = 24 vg + vok(xcosa — ysin )
—B(&, cosBcos @ + R(Er)(cos Bsin @ cos iy, — sinfsin 1y, ))
+@sin§(&y, sinp — R(&r) cosp cospr)
+(w+ B)R(£L)(sinBsin psinpy, — cosf cospr)
—vgk sin a(€r sinp — R(&L) cos p cospr)
+ug cosa(€r, cosf cos p + R(Er)(cosfsin p cosypr, — sinfsine)yr)),

and
1 —21x 4 2vgKz cos Vp1
Upoll = = —2y — 2ugkzsin o + | vpo
—2% — 2ug — 2uok(z cosa — ysin ) V3

2

22.2.2 Constraints
The constraints (I1.22.3) read

( G(Er) —y — Epsing + R(EL) cospcosty, ) -0
G(Er) —y — Ersinp + R(ER) cos pcosPr
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L 2
po
77777777777 Y
po : nominal rolling radius ao : nominal gauge/2
p1 : radius track b1,b2 : wheel boundaries
do : angle of wheel cone/2 c1,c2 : track boundaries

F1cure 11.22.1: Profile functions (left side).

with profile functions R (wheel) and G (rail), see Figure 11.22.1,

R(§) = po+tandg (ao — [€]) for ag — Aa < €] < by

~ 2 N
\/p% — (|§| —ap— p1 sin&o) — po — €os & p1 for g < [€] < 2.

Q
—~~
oy
~—

Il

Here, £ stands for the left or right coordinate ¢z /g, respectively, and é is defined by
éL‘R :=ax + & rcosfcosp + R(EpR) (cos@singpcosz/q,m —sin6 SiIl’(/JL|R) )
The constraints (I1.22.4) read

G'(€) (R'(€1) sin + cospcosihr) + R'(£) cos B cos ¢
—cosfsinpcosyy +sinfsiny;, = 0,

R'(£1)sinf cosp — sinfsinp cos P, — cosfsiney;, = 0,

G'(€g) (R'(€R) sin ¢ 4 cos p cos hr) + R'(€x) cos 6 cos ¢
—cosfsingpcostgp +sinfsinyr = 0,

R'(€g) sinf cos ¢ — sinfsin g cospr — cosfsinpgp = 0,

where G'({p|g) = dé(leG(éMR) ,R'(ELR) = ﬁR(fL\R)'

22.3 Origin of the problem

The motion of a simple wheelset on a rail track exhibits a lot of the difficulties which occur in the
simulation of contact problems in mechanics. The state space form approach for this class of problems
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TaBLE 11.22.1: Parameter values according to |.

IDE - Wheelset

], where a hardware bogie model, scaled 1:4, is investigated.

Parameter Meaning Unit Value

mpg mass wheelset kg 16.08

g gravity constant m/s?  9.81

Vo nominal velocity m/s 30.0

Fy propulsion force N 0

Ly propulsion moment kgm? 0

K describes track geometry 0

@ describes track geometry rad 0

wo nominal angular velocity 1/s vo/po

I lateral moment of inertia ke m?  0.0605

I vertical moment of inertia kg m?  0.366

my mass of wagon body kg 0.0

ha height of wagon body m 0.2

Cy spring constant N/m  6400.0

Cz spring constant N/m  6400.0

xy width of wheelset /2 m 0.19

0o cone angle/2 rad 0.0262

Po nominal radius m 0.1

ag gauge/2 m 0.1506

o1 radius track m 0.06

7 friction coefficient 0.12

G glide module N/m? 7.92 -10'°
Ci1 Kalker coeflicient 4.72772197
Coys Kalker coefficient 4.27526987
Coys Kalker coefficient 1.97203505
G parameter for computation of contact ellipse 0.7115218
€ parameter for computation of contact ellipse 1.3537956
o parameter for computation of contact ellipse 0.28

C scaling factor for Lagrange multipliers 104

requires simplifications and table look ups in order to eliminate the nonlinear constraints. The above
example provides thus an alternative by using the IDE approach.

Figure 11.22.2 shows the mechanical model. The coordinates p denote the displacements and
rotations of the wheelset with respect to the reference frame which is centered in the middle of the
track. The wheelset is subjected to

e the gravity and centrifugal forces;
e creep forces in the contact points of wheel and rail;

e forces of the wagon body, which is represented by a frame connected to the wheelset via springs
and dampers and proceeding with constant speed vy;

e constraint forces which enforce the contact of wheel and rail on both sides.

We are particularly interested in a complete and correct formulation of the nonlinear constraint equa-
tions. An elimination of the constraints without severe simplifications or the introduction of tables for
the dependent variables is impossible. In this example thus a reduction to state space form involves
various obstacles, whereas the IDE formulation is straightforward.
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y v,

contact points

(b) I |

FIGURE 11.22.2: The wheelset and the track. (a) View from above, (b) lateral cross section.

Equations (I1.22.1)—(11.22.2) stand for the kinematic and dynamic equations with positive definite
mass matrix M (p). By means of the profile functions R and G which describe the cross sections of
wheel and rail depending on the contact points we first express the constraint equations as 0 = gy, see
Figure 11.22.3. These constraints are of index 3 and enforce that the contact points of wheel and rail
coincide on both sides. Additionally, we have to guarantee that wheel and rail do not intersect, which
is accomplished by the conditions 0 = go. Note that 0¢2/0q is regular, which means that we can
apply formally the implicit function theorem to eliminate the additional contact variables g and that
these constraints are of index 1. The equations of motion of the wheelset are then derived by applying
the formalism of Newton and Euler. Here we used the property that this class of contact problems
(891/8)q ¢ = 0. This also implies that if we, in order to get the index 2 formulation, differentiate the
constraint (I1.22.3) with respect to ¢, then we get

0=, 00, Om . 00, g (09:)7 Opo
dt b,q dq appa

which simplifies to (I1.22.5).

8pp (9qq_ app Jq

Remarks

e N(p,q,)\) € IR? denotes the normal forces which act in the contact points. They are necessary
to evaluate the creep forces.

e The variable § € IR denotes the deviation of the angular velocity and is given by an additional
differential equation.

e The parameters x and « describe the track geometry. The setting x = a = 0 refers to a straight
track.
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2 4

contact point

longitudinal cross section lateral cross section

Ficure 11.22.3: Shift angle and coordinate of contact point on the left side.

TABLE 11.22.2: Reference solution at the end of the integration interval.

Uy 0.86355386965811 - 1072 || w1 | —0.13633468454173 - 1071
Uy 0.13038281022727 - 104 || uyy | —0.24421377661131
uz | —0.93635784016818 - 10~ 4 || w2 | —0.33666751972196 - 103
uy | —0.13642299804033 - 107" || wy3 | —0.15949425684022
Us 0.15292895005422 - 1072 || uyy4 0.37839614386969 - 10~3
ug | —0.76985374142666 - 10~ || w15 0.14173214964613
uy | —0.25151106429207 - 1073 || u16 | —0.10124044903201 - 10~ *
ug 0.20541188079539 - 1072 || w17 | —0.56285630573753 - 102
ug | —0.23904837703692

e The constant C in (I[.22.2) means that we internally scaled the Lagrange multipliers.

The initial values correspond to a setting in which the dynamic behavior of the wheelset model
is investigated when the wheelset starts with an initial deflection in lateral direction (z-direction) of
0.14941 [cm]. In | ], a limit cycle was observed for this problem and the model data given above.
This type of limit cycle, the so-called hunting motion, is a well known phenomenon in railway vehicle
dynamics. In Figure I1.22.4 we see this limit cycle as computed by DASSL applied to the index-2
formulation of the problem. The results are in good agreement with those given in | ], which were
obtained by a state space form approach and with measurements on a hardware model.

22.4 Numerical solution of the problem

Tables 11.22.2-11.22.3 present the reference solution at the end of the integration interval, and the run
characteristics, respectively. Figure 11.22.5 shows the the behavior of the components of p and the
angular velocity § over the integration interval. Figures I1.22.6- I1.22.7 contain the work-precision
diagrams. For this diagrams, we used: rtol = 10~(4+™/8) m =0,1,...,48; atol = rtol, h0 = rtol for
MEBDFTI. .
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FIGURE 11.22.4: Limit cycle or ‘hunting motion’ of wheelset.

Remarks

e The Jacobian was computed internally by the solvers.

e For the runs with DASSL, we excluded the Lagrange multipliers from the error control by setting
atol(16)=atol(17)=rtol(16)=atol(17)=10'0.

e The reference solution was computed using DASSL with atol = rtol = 10~? for p, v and ¢, and
atol = rtol = 10'° for .
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TABLE 11.22.3: Run characteristics.

solver rtol atol  hO mescd scd  steps accept #f  #Jac  #LU CPU
DDASSL 10~* 10~* 1.35 0.15 5949 5117 10304 1407 0.3250
1075 107° 2.78 1.40 9888 8667 16150 1815 0.4782
10-¢ 1076 3.67 232 16010 14298 25256 2577 0.7213

MEBDFI 10°* 10°* 104 132 012 5758 5188 42694 1185 1185 0.4031
107 107°% 10°° 3.93 259 9317 8485 64945 1765 1765 0.6266
10=¢ 1076 1076 4.89 3.22 13240 12255 86260 2248 2248 (.8560

PSIDE-1  10=* 10~* 1.53 042 1276 945 22090 047 4920 0.5134
107° 107° 281 1.67 2335 1507 39204 608 8752 0.8384
10°¢ 10°¢ 452 334 3070 2068 54074 571 10736 1.0775

A PET
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0.o1f 1f
D005} D5}
] 0
=D.005} -D.A¢
oo} -}
-D.015 -1.3
0 3 10 0 3 10
THETA (g PH
0.02 2
o.of 1r
0 0
oo} 1}
-0.02 —2 .
0 L& 10 0 3 10 0 3 10
FI1GURE 11.22.5: Behavior of some solution components over the integration interval.
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