
Department of Mathematics

University of Bari

ITALY

via E.Orabona 4

I-70125 Bari (ITALY)

Reports

Test Set for Initial Value

Problem Solvers

Francesca Mazzia, Cecilia Magherini and Felice Iavernaro

Report 43/2006

Test Set for Initial Value Problem Solvers

Francesca Mazzia�, Cecilia Magherini�� and Felice Iavernaro�
� Dipartimento di Matematica, Universit�a degli studi di Bari, Italy

�� Dipartimento di Matematica, Universit�a di Firenze
(mazzia@dm.uniba.it,magherini@math.uni�.it,felix@dm.uniba.it)

Release 2.3 September 2006

Abstract

The test set for IVP solvers presents a collection of Initial Value Problems to test solvers for
implicit di�erential equations. This test set can both decrease the e�ort for the code developer to
test his software in a reliable way, and cross the bridge between the application �eld and numerical
mathematics, by helping people working in several branches of scienti�c disciplines in choosing the
code most suitable for their problems. This document contains the descriptive part of the test set.
It describes the solvers used in the comparisons, the test problems and their origin, and reports on
the behavior of the solvers on these problems. The latest version of this document and the software
part of the test set is available via the world wide web at http://www.dm.uniba.it/�testset.
The software part serves as a platform on which one can test the performance of a solver on a
particular test problem oneself. Instructions how to use this software are in this paper as well.
The idea to develop this test set was discussed at the workshop ODE to NODE, held in Geiranger,
Norway, 19{22 June 1995 and was developed by the CWI group. After the workshop ANODE01,
held in Auckland, New Zealand, 2001, the testset moved to the University of Bari.

1991 Mathematics Subject Classi�cation: Primary: 65Y20, Secondary: 65-04, 65C20, 65L05.
Computing Reviews Classi�cation System: G.1.7, G.4.
Keywords and Phrases:test problems, software, IVP, IDE, ODE, DAE.

Acknowledgements: This work has been supported by the PRIN 2004-2006 project We thanks
the GNCS-INDAM that supported �nancially the project form 2001 to 2005 and made possible
the use of supercomputer facilities in 2002. We thanks the CWI group, that formerly maintained
the testset, for providing useful software. We thank all contributors to this test set, without whom
it would not be possible to collect problems from such a wide variety of application �elds.

1

http://www.dm.uniba.it/~testset

Contents

I. Introduction I-i

II. Format of problem descriptions II-i

III. Format of solver descriptions III-i

IV. The software part of the test set IV-i

Part I - SOLVERS

Name problems type Page

BIMD ODEs and DAE (index � 3) I-1-1

DASSL ODEs and IDEs/DAE (index � 1) I-2-1

GAMD ODE and DAE (index � 3) I-3-1

MEBDFDAE ODE and DAE (index � 3) I-4-1

MEBDFI ODEs and IDEs/DAE (index � 3) I-5-1

PSIDE ODEs and IDEs/DAE (index upto 3) I-6-1

RADAU ODE and DAE (index � 3) I-7-1

RADAU5 ODE and DAE (index � 3) I-8-1

VODE ODE I-9-1

Part II - Problems

ODE Test problems

Name Dimension Page

Problem HIRES 8 II-1-1

Pollution problem 20 II-2-1

Ring Modulator 15 II-3-1

Medical Akzo Nobel problem 400 II-4-1

EMEP problem 66 II-5-1

Pleiades problem 28 II-6-1

Beam 80 II-7-1

Van der Pol 2 II-8-1

Oregonator 3 II-9-1

Robertson 3 II-10-1

E5 4 II-11-1

DAE Test problems

Name Dimension Index Page

Chemical Akzo Nobel problem 6 1 II-12-1

Andrews' squeezing mechanism 27 3 II-13-1

Transistor ampli�er 8 1 II-14-1

Charge pump 9 2 II-15-1

Two bit adding unit 350 1 II-16-1

Car axis problem 10 3 II-17-1

Fekete problem 160 2 II-18-1

Slider crank 24 2 II-19-1

Water tube system 49 2 II-20-1

IDE Test problems

Name Dimension Index Page

NAND gate 14 1 II-21-1

Wheelset 17 2 II-22-1

Introduction I-i

I Introduction

I.1 The idea behind this test set

Both engineers and computational scientists alike will bene�t greatly from having a standard test set
for Initial Value Problems (IVPs) which includes documentation of the test problems, experimental
results from a number of proven solvers, and Fortran subroutines providing a common interface to
the de�ning problem functions. Engineers will be able to see at a glance which methods will be most
e�ective for their class of problems. Researchers will be able to compare their new methods with the
results of existing ones without incurring additional programming workload; they will have a reference
with which their colleagues are familiar. This test set tries to ful�ll these demands and tries to set a
standard for IVP solver testing. We hope that the following features of this test set will enable the
achievement of this goal:

� uniform presentation of the problems,

� ample description of the origin of the problems,

� robust interfaces between problem and drivers,

� portability among di�erent platforms,

� contributions by people from several application �elds,

� presence of real-life problems,

� being used, tested and debugged by a large, international group of researchers,

� comparisons of the performance of well-known solvers,

� interpretation of the numerical solution in terms of the application �eld,

� ease of access and use.

There exist other test sets, e.g., NSDTST and STDTST by Enright & Pryce [EP87], PADETEST
by Bellen [Bel92], the Geneva test set by Hairer & Wanner [HW] and the Test Frame for Ordinary
Di�erential Equations by Nowak and Gebauer [NG97], which all have their own qualities.

I.2 Structure of this test set

The test set consists of a descriptive part and a software part. The �rst part describes solvers and
test problems and reports on the behavior of the solvers when applied to these problems. Section II
explains how this information is presented. The software serves as a platform to test the performance
of a solver on a particular test problem by a user of the test set. In Section IV we specify the format of
the Fortran subroutines and explain how to run test problems with the help of drivers that make these
codes suitable for runs with a number of solvers. Currently, BIMD, DASSL, GAMD, MEBDFDAE,
MEBDFI, PSIDE, RADAU, RADAU5 and VODE are supported.

I.3 How to submit new test problems

We invite people to contribute new test problems to this test set. To restrict the amount of time
required for the maintainers of the test set to incorporate new problems, it is important that the
submissions are in the prescribed format. Firstly, every problem should have a description containing
the 4 sections mentioned in Section II, preferably as a LATEX-�le. Secondly, a set of Fortran subroutines
that is necessary for the implementation has to be supplied in the format speci�ed in Section IV

Submissions can be sent by e-mail to testset@dm.uniba.it

I-ii Introduction

I.4 How to obtain this test set

The latest release of this test set can be obtained via the WWW page with URL

http://www.dm.uniba.it/�testset ,

The �rst release of this test set appeared in [LSV96], the second release in [LS98], the third release in
[MI03].

I.5 Acknowledgements

We gratefully acknowledge Jacek Kierzenka for his help in de�ning the interface that that allow the
use of the IVP test set problems in the MATLAB environment, the CWI group that set up the �rst
two versions of the testset: P.J. van der Houwen , W. Ho�mann, B.P. Sommeijer, W.M. Lioen, W.A.
van der Veen, J.J.B. de Swart, J.E. Frank. In particular we wish to thank P.J. van der Houwen and
Walter Lioen, who helped us during the installation procedure.

I.6 People involved

This test set is maintained by the INdAM Bari unit project group Codes and test problems for Di�er-
ential Equations (coordinator F. Mazzia). The revision 2.3 has been sponsored by the project PRIN
2004 "Metodi numerici e software matematico per le applicazioni" (coordinator L. Brugnano, local
coordinator F. Mazzia) and by the project "Metodi Numerici per equazioni di�erenziali" (coordinator
P. Amodio), sponsored by the University of Bari. In January 2002 a steering committee of A. Bellen
(Universit�a di Trieste, Italy) , J. R. Cash (Imperial College, London, U.K.), E. Hairer (Universit�e
de Gen�eve, Switzerland), F. Krogh (Math �a la Carte, Tujiunga, California, U.S.A), L. Petzold (Uni-
versity of California, Snata Barbara, U.S.A), B. Simeon, G. Soderlind (Lund University,Sweden), D.
Trigiante (Universit�a di Firenze, Italy) and P.J. van der Houwen (formerly at CWI, Amsterdam, The
Netherlands) has been set up to oversee this project.

References

[Bel92] A. Bellen. PADETEST: a set of real-life test di�erential equations for parallel computing.
Technical Report 103, Dipartimento di Scienze Matematiche, Universit�a di Trieste, 1992.

[EP87] W.H. Enright and J.D. Pryce. Two Fortran packages for assessing initial value methods.
ACM Transactions on Mathematical Software, 13-I:1{27, 1987.

[HW] E. Hairer and G. Wanner. Testset of Sti� ODEs. Geneva. Available at http://www.unige.
ch/math/folks/hairer/testset/testset.html.

[LS98] W.M. Lioen and J.J.B. de Swart. Test Set for Initial Value Problem Solvers, dec 1998.
Available at http://www.dm.uniba.it/�testset.

[LSV96] W.M. Lioen, J.J.B. de Swart, and W.A. van der Veen. Test set for IVP solvers. Technical
Report NM-R9615, CWI, Amsterdam, 1996.

[MI03] F. Mazzia and F. Iavernaro. Test set for initial value problem solvers. Technical Report 40,
Department of Mathematics, University of Bari, 2003. Available at http://www.dm.uniba.
it/�testset.

[NG97] Ulrich Nowak and Susanna Gebauer. A new test frame for ordinary di�erential equations.
Technical Report SC 97-68, Konrad-Zuse-Zentrum f�ur Informationstechnik, Berlin, 1997.

http://www.dm.uniba.it/~testset
http://www.unige.ch/math/folks/hairer/testset/testset.html
http://www.unige.ch/math/folks/hairer/testset/testset.html
http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

Format of the problem descriptions II-i

II Format of the problem descriptions

Every problem description contains the four sections described below.

II.1 General information

The problem identi�cation is given: the type of problem (IDE, ODE or DAE), its dimension and
index. The contributor and any further relevant information are listed too. What is meant here by
IDE, ODE, DAE and index, is explained in xIV.

II.2 Mathematical description of the problem

All ingredients that are necessary for implementation are given in mathematical formulas.

II.3 Origin of the problem

A brief description of the origin of the problem, in order to give its physical interpretation. References
to the literature are given for further details.

II.4 Numerical solution of the problem

This section contains:

1. Reference solution at the end of the integration interval. The values of (some of) the
components of a reference solution at the end of the integration interval are listed.

2. Run characteristics. Integration statistics, if applicable, of runs with BIMD, DASSL, GAMD,
MEBDFDAE, MEBDFI, PSIDE, RADAU, RADAU5, and VODE serve to give insight in the
numerical di�culty of the problem.

The experiments were done on an Alphaserver DS20E, with a 667 MHz EV67 processor. We
used the Fortran 90 compiler with optimization: f90 -O5 <source code>. If a run did not
produce correct results then we report what went wrong.

The characteristics are in the following format:

� solver

The name of the numerical solver with which the run was performed.

� rtol

The user supplied relative error tolerance.

� atol

The user supplied absolute error tolerance.

� h0

The user supplied initial step size (if relevant).

� scd

The scd values denote the minimum number of signi�cant correct digits in the numerical
solution at the end of the integration interval, i.e.

scd := � log10(k relative error at the end of the integration interval k1): (.II.1)

If some components of the solution vector are not taken into account for the computation
of the scd value, or if the absolute error is computed instead of the relative error, then this
is speci�ed locally.

II-ii Format of the problem descriptions

� mescd

mescd := � log10(k absolute error ./ (atol./rtol + j ytrue j) k1): (.II.2)

where the absolute error is computed at the end of the integration interval, atol and rtol
are the input tolerances, ytrue is the exact solution at the end of the integration interval
and := and :� are element by element operators. In this case all the components of the
solution are taken into account.

� steps

Total number of steps taken by the solver (including rejected steps due to error test failures
and/or convergence test failures).

� accept

The number of accepted steps.

� # f and # Jac

The number of evaluations of the derivative function and its Jacobians, respectively.

� # LU

The number of LU-decompositions (not for DASSL). The codes, except for RADAU and
RADAU5, count the LU-decompositions of systems of dimension d, where d is the dimension
of the test problem.

RADAU and RADAU5 use an s-stage Radau IIA method. For RADAU5, s = 3 and for
RADAU, s = 3, 5 or 7. Every iteration of the inexact Newton process, used for solving
systems of non-linear equations, requires the solution of a linear system of dimension sd.
By means of transformations, this linear system is reduced to (s + 1)=2 linear systems of
dimension d. Of these systems, one system is real, and (s� 1)=2 systems are complex. The
decompositions of all (s+ 1)=2 linear systems are counted by RADAU and RADAU5 as 1
LU-decomposition.

� CPU

The CPU time in seconds to perform the run on the aforementioned computer. Since
timings may depend on other processes (like e.g. daemons), we perform 10 runs, discard
the maximum and minimum values and list the medium of the CPU times.

PSIDE { Parallel Software for Implicit Di�erential Equations { is a Fortran 77 code for solving
IDE problems. It is developed for parallel, shared memory computers. The integration char-
acteristics in the tables refer to a one-processor computer. Since PSIDE can do four function
evaluations and four linear system solves concurrently on a computer with four processors, one
may divide the number of function evaluations, decompositions and solves in the tables by four
to obtain the analogous e�ective characteristics for four-processor machines.

3. Behavior of the numerical solution. Plots of (some of) the solution components over (part
of) the integration interval are presented.

4. Work-precision diagrams. For every relevant solver, a range of input tolerances and, if
necessary, a range of initial stepsizes, were used to produce plots of the resulting scd or mescd
values, de�ned in Formulas (.II.1) and (.II.2), against the number of CPU seconds needed for
the run on the aforementioned computer, with the setting as described before. Here we took
again the medium of the CPU times of 10 runs, after discarding the maximum and minimum
values. The format of these diagrams is as in Hairer & Wanner [HW96, pp. 166{167, 324{325].
The range of input tolerances and initial stepsizes is problem dependent and speci�ed locally.
The input parameters for the runs in the tables with run characteristics are such that these runs
appear in the work-precision diagrams as well. The code PSIDE has been performed only on
one processor.

Format of the problem descriptions II-iii

We want to emphasize that the reader should be careful with using these diagrams

for a mutual comparison of the solvers. The diagrams just show the result of runs

with the prescribed input on the speci�ed computer. A more sophisticated setting

of the input parameters, another computer or compiler, as well as another range

of tolerances might change the diagrams considerably.

References

[HW96] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-

algebraic Problems. Springer-Verlag, second revised edition, 1996.

II-iv Format of the problem descriptions

Format of the solver descriptions III-i

III Format of the solver descriptions

Every solver description contains the four sections described below.

III.1 General information

The name of the solver, the type of problem it solves (ODE, IDE or DAE), the authors, the date of the
�rst release, the language, the o�cial link where it is possible to retrieve the software and any further
relevant information are listed. What is meant here by IDE, ODE, DAE and index, is explained in
xIV.

III.2 Numerical method

General details about the numerical method implemented in the code and references to the literature
are given.

III.3 Implementation details

A brief description of the implementation choices used in the codes, like the step variation strategy,
the numerical solution of linear and non linear systems and any other useful information together with
references to the literature are given.

III.4 How to solve test problems with the solver

This section contains a description of the compiling sequence and explains how to solve test problems
in the test set format.

III-ii Format of the solver descriptions

The software part of the test set IV-i

IV The software part of the test set

IV.1 Classi�cation of test problems

We have categorized the test problems in three classes: IDEs, ODEs and DAEs.
In this test set, we call a problem an IDE (system of Implicit Di�erential Equations) if it is of the

form
f(t; y; y0) = 0; t0 � t � tend;

y; f 2 Rd;
y(t0) and y

0(t0) are given.

A problem is named an ODE (system of Ordinary Di�erential Equations), if it has the form

y0 = f(t; y); t0 � t � tend;
y; f 2 Rd;
y(t0) is given,

whereas the label DAE is given to problems which can be cast in the form

My0 = f(t; y); t0 � t � tend;
y; f 2 Rd; M 2 Rd�d;
y(t0) and y

0(t0) are given,

where M is a constant, possibly singular matrix. Note that ODEs and DAEs are subclasses of IDEs.

IV.2 How to perform tests

You can perform one of the following types of tests:

� solve test set problems with solvers that are supported in the test set,

� solve test set problems with your own solver,

� solve your own problem with solvers that are supported in the test set,

� solve a test set problem using the web facility,

� solve your own problem using the web facility,

� solve test set problems using a MATLAB solver,

� solve you own problem in the test set format using a MATLAB solver.

For the �rst �ve types of tests, four types of codes are involved: a solver, a driver, a problem code
and auxiliary routines, for the last two types of tests the matlab interface of the problem is generated
using two axiliary routines. The solvers available are described in xI-1-1{I-9-1. Currently, there are 9
solvers available:

1. BIMD for ODEs and DAEs of index less than or equal to 3,

2. DASSL for ODEs and IDEs/DAEs of index less than or equal to 1,

3. GAMD for ODEs and DAEs of index less than or equal to 3,

4. MEBDFDAE for ODEs and DAEs of index less than or equal to 3,

5. MEBDFI for ODEs and IDEs/DAEs of index less than or equal to 3,

IV-ii The software part of the test set

6. PSIDE for ODEs and IDEs/DAEs of index upto at least 3,

7. RADAU for ODEs and DAEs of index less than or equal to 3,

8. RADAU5 for ODEs and DAEs of index less than or equal to 3, and

9. VODE for ODEs.

These solvers can be obtained via [MI03] in the �les bimd.f, ddassl.f, gamd.f90, mebdfd.f, mebdfi.f,
pside.f, radau.f, radau5.f and vode.f. These �les contain versions of the solvers with which the
numerical experiments were conducted. The o�cial links to the solvers, which possibly direct to more
recent versions, can be found at [MI03] too.

The drivers bimdd.f, dassld.f, gamdd.f, mebdfdaed.f, mebdfid.f, psided.f, radaud.f, radau5d.f
and voded.f, which are available at [MI03], are such that runs can be performed that solve the problem
numerically with the aforementioned solvers.

For every test problem, the �le problem.f contains a set of nine Fortran 77 subroutines de�ning
the problem. Although the format of the subroutines is the same for all three classes, the meaning of
the arguments may depend on the problem class. Section IV.3 describes the format of the problem
codes.

The auxiliary linear algebra routines for the solvers are in bimda.f, dassla.f, gamda.f90, psidea.f,
radaua.f (for both RADAU and RADAU5) and vodea.f. For MEBDFDAE/MEBFI, the linear al-
gebra routines are included in mebdfdae.f/mebdfi.f. The auxiliary �le report.f contains a user
interface. All these �les are available at [MI03] as well.

IV.2.1 How to solve test problems with available solvers

Compiling

f77 -o dotest solverd.f problem.f solvera.f solver.f report.f,

for the solvers written in Fortran 77, will yield an executable dotest that solves the problem, of which
the Fortran routines in the format described in Section IV.3 are in the �le problem.f. A complete
description of each solver toghether with some examples are reported in the SOLVERS sections xI-2-
1{I-9-1. A makefile is also available in the [MI03] to help in the compilation steps.

IV.2.2 How to solve test problems with your own solver

The following guidelines serve to test your own solver with the test set problems.

� Write your own solver in a format similar to existing solvers in the �le own.f.

� (Optional) You may like to put the linear algebra subroutines in a separate �le owna.f. In this
way you can, for example, use the linear algebra of an existing solver.

� Write driver subroutines in the �le ownd.f. If the format of your solver is similar to that of a
solver that is already available in the test set, then this will only require minor modi�cations of
the driver routines of that solver.

� Adjust the �le report.f as indicated in the comment lines of this �le. This will only be a minor
modi�cation.

� Compiling

f77 -o dotest ownd.f problem.f own.f owna.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines are in
the �le problem.f

The software part of the test set IV-iii

IV.2.3 How to solve your own problem with available solvers

The following guidelines serve to solve your own problem with the solvers that are supported in the
test set.

� Write your own problem in a format similar to that of the test set problems in the �le newprob.f.
This format is described precisely in Section IV.3.

� Adjust the �le report.f as indicated in the comment lines of this �le. This will only be a minor
modi�cation.

� To solve your problem with, for example, DASSL, compiling

f77 -o dotest dassld.f newprob.f ddassl.f dassla.f report.f,

will give you the desired executable dotest.

IV.2.4 How to solve a test set problem using the web facility

In [MI03], following the link \compile and run on line" it is possible to solve a test set problem on-line,
using the supported solvers. The user input are the relative tolerance rtol, the absolute tolerance atol
and the initial stepsize h0 for the solvers that need it. As a results the solution computed in the last
point, the scd and mescd and some integration characteristics, as described in xII.4, are displayed.
The plots of some component of the solution are also visualized.

IV.2.5 How to solve your own problem using the web facility

In [MI03], following the link \compile and run on line" it is possible to upload a �le containing the
subroutines describing the problem written using the format described precisely in xIV.3. Then it is
possible to choose one of the supported solver for the solution of the problem. The user input are the
relative tolerance rtol, the absolute tolerance atol and the initial stepsize h0 for the solvers that need
it. As a results the solution computed in the last point, the scd and mescd if the reference solution is
available and some integration characteristics, as described in xII.4, are displayed. The plots of the
components of the solution de�ned in the subroutine setoutput are also visualized.

IV.2.6 How to solve test set problems using a MATLAB solver

The MATLAB [Mat] function minterface.m toghether with the fortran function matlab_interface.F,
allow to construct the mex �les to runs problems in the MATLAB environment. The only restriction
is that you need to put the problems and the auxiliary routines in the correct directory. We suggest
to download the complete distribution tree of the IVP test set in [MI03] if you want to use the matlab
interface.

The MATLAB instruction:

MPROB = minterface(problem)

returns a function handle to a MEX-Function interface to problem problem. If needed, the Fortran
MEX-Function interface is automatically generated and compiled, you need a Fortran compiler com-
patible with the MATLAB environment to complete the compilation steps. Moreover, before using,
for the �rst time, this utilities, at the MATLAB prompt type

mex -setup

and select the Fortran compiler you want to use.
The interface mprob supports the following calling sequences:

IV-iv The software part of the test set

PROB = MPROB('Prob')

[Y0,YP0,CONSIST] = MPROB('Init',NEQ,T0)

[ATOL,RTOL] = MPROB('Tolerances',NEQN,ATOL,RTOL)

[F,IERR,RPAR,IPAR] = MPROB('Feval',NEQ,T,Y,YP,RPAR,IPAR)

[J,IERR,RPAR,IPAR] = MPROB('Jeval',LDIM,NEQ,T,Y,YP,RPAR,IPAR)

[M,IERR,RPAR,IPAR] = MPROB('Meval',LDIM,NEQ,T,Y,YP,RPAR,IPAR)

Y = MPROB('Solut',NEQ,TFINAL)

[MESCD,SCD] = MPROB('Report',NEQ,YREF,Y,PROBNM,TOLVEC,ATOL,RTOL)

The input parameters are the same de�ned in IV.3 for the fortran functions de�ning the problem.
The functions odetest_61.m, odetest_65.m, odetest_70.m and idetest_70.m contain a user

interface to run and compile the problems in the MATLAB environment (the number means the
MATLAB version). As an example, on MATLAB 7.0 or upper, the instruction:

>> [sol,stats] = odetest_70(problem,'ode15s',1e-5,1e-4,1)

solves the problem using the matlab solver 'ode15s', with absolute tolerance equal to 1e-5, relative
tolerance equal to 1e-4, the �rst component of the solution is plotted using the MATLAB function
'odeplot'. The output variable sol contains information about the solution.

Use the MATLAB help to have information about the input/output parameters of the functions.

IV.2.7 How to solve you own problem in the test set format using a MATLAB solver

Write your own problem in a format similar to that of the test set problems, as described in Section IV.3
in the �le newprob.f. Then put the �le in the correct directory in the testset distribution. The
instruction:

MPROB = minterface(newprob)

returns a function handle to a MEX-Function interface to problem newprob.
Using the user interface odetest_70

>> [sol,stats] = odetest_70(newprob,'ode15s',1e-5,1e-4,1)

will automatically generate the function handle and solve the problem with the MATLAB solver
ode15s.

IV.3 Format of the problem codes

The eight subroutines that de�ne the problem are called PROB, INIT, SETTOLERANCES, SETOUTPUT,
FEVAL, JEVAL, MEVAL, and SOLUT. The following subsections describe the format of these subroutines
in full detail. An additional function PIDATE allows to check the problem interface date, for the current
release this function should be equal to:

integer function pidate()

pidate = 20060828

return

end

In the sequel, the variables listed under INTENT(IN), INTENT(INOUT), and INTENT(OUT) are input,
update and output variables, respectively.

The software part of the test set IV-v

IV.3.1 Subroutine PROB

This routine gives some general information about the test problem.

SUBROUTINE PROB(FULLNM,PROBLM,TYPE,

+ NEQN,NDISC,T,

+ NUMJAC,MLJAC,MUJAC,

+ NUMMAS,MLMAS,MUMAS,

+ IND)

CHARACTER*(*) FULLNM, PROBLM, TYPE

INTEGER NEQN,NDISC,MLJAC,MUJAC,MLMAS,MUMAS,IND(*)

DOUBLE PRECISION T(0:*)

LOGICAL NUMJAC, NUMMAS

C INTENT(OUT) FULLNM,PROBLM,TYPE,NEQN,NDISC,T,NUMJAC,MLJAC,

C + MUJAC,NUMMAS,MLMAS,MUMAS,IND

Meaning of the arguments:

FULLNM

This character string contains the long name of the problem, e.g. Chemical Akzo Nobel problem.

PROBLM

This character string contains the short name of the problem, e.g. chemakzo, and corresponds
to the name of the Fortran source �le.

TYPE

This character string takes the value IDE, ODE or DAE, depending on the type of problem.

NEQN

The dimension d of the problem, which is the number of equations to be solved.

NDISC

The number of discontinuities in time of the function f or its derivative. The solver is restarted
at every such discontinuity by the driver.

T

An array containing time points.

{ If NDISC .EQ. 0, then T(0) contains t0 and T(1) contains tend.

{ If NDISC .GT. 0, then T(0) contains t0, T(NDISC+1) contains tend and T(1) . . . T(NDISC)
are the time points where the function f or its derivative has a discontinuity in time.

NUMJAC

To solve the problem numerically, it is necessary to use the partial derivative J := @f=@y. If
J is available analytically, then NUMJAC = .FALSE. and J is provided via subroutine JEVAL. If
J is not available, then NUMJAC = .TRUE. and JEVAL is a dummy subroutine. In this case, the
solvers approximate J by numerical di�erencing.

MLJAC and MUJAC

These integers contain information about the structure of J := @f=@y. If J is a full matrix, then
MLJAC = NEQN, otherwise MLJAC and MUJAC equal the number of nonzero lower co-diagonals and
the number of nonzero upper co-diagonals of J , respectively.

NUMMAS

Only relevant for IDEs.

IV-vi The software part of the test set

{ For IDEs, it is necessary to use the partial derivative M := @f=@y0. If M is available
analytically, then NUMMAS = .FALSE. and M is provided via subroutine MEVAL. If M is
not available, then NUMMAS = .TRUE. and MEVAL is a dummy subroutine. In this case, the
solvers have to approximate M by numerical di�erencing.

{ For DAEs and ODEs, NUMMAS is not referenced.

MLMAS and MUMAS

These integers contain information about the structure of the constant matrix M (for DAEs) or
the matrix M := @f=@y0 (for IDEs).

{ For IDEs and DAEs: If M is a full matrix, then MLMAS = NEQN, otherwise MLMAS and
MUMAS equal the number of nonzero lower co-diagonals and the number of nonzero upper
co-diagonals of M , respectively.

{ For ODEs, MLMAS and MUMAS are not referenced.

IND

Connected to IDEs and DAEs is the concept of index.

{ For ODEs, IND is not referenced.

{ For IDEs and DAEs, IND is an array of length NEQN and IND(I) speci�es the index of
variable I.

IV.3.2 Subroutine INIT

This routine contains the initial values y(t0) and y
0(t0).

SUBROUTINE INIT(NEQN,T,Y,YPRIME,CONSIS)

INTEGER NEQN

DOUBLE PRECISION T,Y(NEQN),YPRIME(NEQN)

LOGICAL CONSIS

C INTENT(IN) NEQN,T

C INTENT(OUT) Y,YPRIME,CONSIS

Meaning of the arguments:

NEQN

The dimension of the problem.

Y(NEQN)

Contains the initial value y(t0).

YPRIME(NEQN)

Only relevant for IDEs and DAEs.

{ For IDEs and DAEs, YPRIME contains the initial value y0(t0).

{ For ODEs, YPRIME is not set. If needed by the solver, it is computed in the driver as
y0(t0) = f(t0; y0).

CONSIS

Only relevant for IDEs and DAEs.

The software part of the test set IV-vii

{ For IDEs and DAEs, CONSIS is a switch for the consistency of the initial values. If
CONSIS .EQ. .TRUE., then y(t0) and y

0(t0) are assumed to be consistent. If CONSIS .EQ.

.FALSE., then y(t0) and y
0(t0) are possibly inconsistent. Solvers with a facility to compute

consistent initial values internally, will try to do so in this case. Currently, all problems in
the test set have consistent initial values.

{ For ODEs, CONSIS is not referenced.

IV.3.3 Subroutine SETTOLERANCES

This routine de�nes the input tolerances RTOL and ATOL.

SUBROUTINE SETTOLERANCES(NEQN,RTOL,ATOL,TOLVEC)

INTEGER NEQN

LOGICAL TOLVEC

DOUBLE PRECISION RTOL(NEQN), ATOL(NEQN)

C INTENT(IN) NEQN

C INTENT(INOUT) RTOL, ATOL

C INTENT(OUT) TOLVEC

Meaning of the arguments:

NEQN

The dimension of the problem.

RTOL

Contains the relative tolerances.

{ In input contains the value RTOL(1).

{ In output could contain a vector valued RTOL, with di�erent values for the relative tolerances
in each component.

ATOL

Contains the absolute tolerances.

{ In input contains the value ATOL(1).

{ In output could contain a vector valued ATOL, with di�erent values for the absolute toler-
ances in each component.

TOLVEC

Logical output variable.

{ TOLVEC = .TRUE. if all the component of RTOL and ATOL are initialized.

{ TOLVEC = .FALSE. if only the �rst component of RTOL and ATOL is initialized.

IV.3.4 Subroutine SETOUTPUT

This routine contains information about the required output.

SUBROUTINE SETOUTPUT(NEQN,SOLREF,PRINTSOLOUT,

+ NINDSOL,INDSOL)

LOGICAL SOLREF, PRINTSOLOUT

INTEGER NEQN, NINDSOL

IV-viii The software part of the test set

INTEGER INDSOL(NEQN)

C INTENT(IN) NEQN

C INTENT(OUT) NINDSOL, INDSOL(NEQN), PRINTSOLOUT, SOLREF

Meaning of the arguments:

NEQN

The dimension of the problem.

SOLREF

Contains information about the reference solution.

{ SOLREF = .TRUE. means that the reference solution is available in the function solut.

{ SOLREF = .FALSE.means that the reference solution is not available, the subroutine SOLOUT
must be a dummy subroutine.

PRINTSOLOUT

Contains information about the required output.

{ PRINTSOLOUT=.TRUE. means that some components of the intermediate computed values
of the solution are printed in the output �le called problemSOLVER.txt.

{ This option is not activated for the code pside. Moreover a MATLAB �le called prob-
lemSOLVER.m and a SCILAB �le called problemSOLVER.sci are generated as utilities to
generate the plots of the printed components of the solution.

{ PRINTSOLOUT=.FALSE. means that no intermediate values are printed.

NINDSOL

If PRINTSOLOUT=.TRUE., NINDSOL contains the number of components to be printed.

INDSOL

If PRINTSOLOUT=.TRUE., INDSOL(1:NINDSOL) contains the index of the NINDSOL components to
be printed.

IV.3.5 Subroutine FEVAL

This subroutine evaluates the function f .

SUBROUTINE FEVAL(NEQN,T,Y,YPRIME,F,IERR,RPAR,IPAR)

INTEGER NEQN,IERR,IPAR(*)

DOUBLE PRECISION T,Y(NEQN),YPRIME(NEQN),F(NEQN),RPAR(*)

C INTENT(IN) NEQN,T,Y,YPRIME

C INTENT(INOUT) RPAR,IPAR

C INTENT(OUT) F,IERR

Meaning of the arguments:

NEQN

The dimension of the problem.

T

The time point where the function is evaluated.

Y(NEQN)

The value of y in which the function is evaluated.

The software part of the test set IV-ix

YPRIME(NEQN)

Only relevant for IDEs.

{ For IDEs, this is the value of y0 in which the function f is evaluated.

{ For ODEs and DAEs, YPRIME is not referenced.

F(NEQN)

The resulting function value f(T; Y) (for ODEs and DAEs), or f(T; Y; YPRIME) (for IDEs).

IERR

IERR is an integer
ag which is always equal to zero on input. Subroutine FEVAL sets IERR = -1

if FEVAL can not be evaluated for the current values of T, Y and YPRIME. Some solvers have the
facility to attempt to prevent the occurrence of IERR = -1, or return to the driver in that case.

IERR has an analogous meaning in subroutines JEVAL and MEVAL.

RPAR and IPAR

RPAR and IPAR are double precision and integer arrays, respectively, which can be used for
communication between the driver and the subroutines FEVAL, JEVAL and MEVAL. If RPAR and
IPAR are not needed, then these parameters are ignored by treating them as dummy arguments.

RPAR and IPAR have the same meaning in subroutines JEVAL and MEVAL.

IV.3.6 Subroutine JEVAL

This subroutine evaluates the derivative (or Jacobian) of the function f with respect to y.

SUBROUTINE JEVAL(LDIM,NEQN,T,Y,YPRIME,DFDY,IERR,RPAR,IPAR)

INTEGER LDIM,NEQN,IERR,IPAR(*)

DOUBLE PRECISION T,Y(NEQN),YPRIME(NEQN),DFDY(LDIM,NEQN),RPAR(*)

C INTENT(IN) LDIM,NEQN,T,Y,YPRIME

C INTENT(INOUT) RPAR,IPAR

C INTENT(OUT) DFDY,IERR

Meaning of the arguments:

LDIM

The leading dimension of the array DFDY.

NEQN

The dimension of the problem.

T

The time point where the derivative is evaluated.

Y(NEQN)

The value of y in which the derivative is evaluated.

YPRIME(NEQN)

Only relevant for IDEs.

{ For IDEs, this is the value of y0 in which the derivative @f(t; y; y0)=@y is evaluated.

{ For ODEs and DAEs, YPRIME is not referenced.

DFDY(LDIM,NEQN)

The array with the resulting Jacobian matrix.

IV-x The software part of the test set

{ If @f=@y is a full matrix (MLJAC = NEQN), then DFDY(I,J) contains @fI=@yJ.

{ If @f=@y is a band matrix (0 � MLJAC < NEQN), then DFDY(I-J+MUJAC+1,J) contains
@fI=@yJ (LAPACK / LINPACK / BLAS storage).

IERR, RPAR and IPAR

See the description of subroutine FEVAL.

IV.3.7 Subroutine MEVAL

For ODEs, MEVAL is not called and a dummy subroutine is supplied. For DAEs, it supplies the constant
matrix M . For IDEs, it evaluates the matrix M := @f=@y0.

SUBROUTINE MEVAL(LDIM,NEQN,T,Y,YPRIME,DFDDY,IERR,RPAR,IPAR)

INTEGER LDIM,NEQN,IERR,IPAR(*)

DOUBLE PRECISION T,Y(NEQN),YPRIME(NEQN),DFDDY(LDIM,NEQN),RPAR(*)

C INTENT(IN) LDIM,NEQN,T,Y,YPRIME

C INTENT(INOUT) RPAR,IPAR

C INTENT(OUT) DFDDY,IERR

Meaning of the arguments:

LDIM

The leading dimension of the matrix M .

NEQN

The dimension of the problem.

T

The time point where M is evaluated. (For DAEs, T is not referenced.)

Y(NEQN)

The value of y in which M is evaluated. (For DAEs, Y is not referenced.)

YPRIME(NEQN)

The value of y0 in which M is evaluated. (For DAEs, YPRIME is not referenced.)

DFDDY(LDIM,NEQN)

This array contains the constant matrix M (for DAEs) or M := @f=@y0 (for IDEs).

{ IfM is a full matrix (MLMAS = NEQN), then DFDDY(I,J) containsMI;J for DAEs and @fI=@y
0
J

for IDEs.

{ If M is a band matrix (0 � MLMAS < NEQN), then DFDDY(I-J+MUMAS+1,J) contains MI;J for
DAEs and @fI=@y

0
J
for IDEs. (LAPACK / LINPACK / BLAS storage).

IERR, RPAR and IPAR

See the description of subroutine FEVAL.

IV.3.8 Subroutine SOLUT

This routine contains the reference solution.

SUBROUTINE SOLUT(NEQN,T,Y)

INTEGER NEQN

DOUBLE PRECISION T,Y(NEQN)

C INTENT(IN) NEQN,T

C INTENT(OUT) Y

The software part of the test set IV-xi

Meaning of the arguments:

NEQN

The dimension of the problem.

T

The value of t, in which the reference solution is given (normally tend).

Y(NEQN)

This array contains the reference solution in t = T.

IV.4 Format of the solver codes

The following guidelines serve to write a solver that could be easily inserted in the test set.

� Write your own solver in a format similar to existing solvers in the �le own.f.

� Put the linear algebra subroutines in a separate �le owna.f.

� Write driver subroutines in the �le ownd.f. If the format of your solver is similar to that of a
solver that is already available in the test set, then this will only require minor modi�cations of
the driver routines of that solver.

� Adjust the �le report.f as indicated in the comment lines of this �le. This will only be a minor
modi�cation.

References

[Mat] The Mathworks. Matlab. http://www.mathworks.com/.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of Math-
ematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/�testset.

http://www.mathworks.com/
http://www.dm.uniba.it/~testset

IV-xii The software part of the test set

SOLVERS I-1

Part I

Solvers

This part contains a brief description of the solvers used in the comparisons. The description is not
meant in substitution of the information given by the authors of the solvers, but just to provide the
users with some general speci�cs of the solvers supported and to collect the most useful bibliography.

Also, some suggestions on how to use the codes in combination with the software provided in the
test set home page are given.

I-2 SOLVERS

SOLVER - BiMD I-1-1

1 Solver BiMD

1.1 General information

Authors: C. Magherini and L. Brugnano
�rst version: October, 2005
last update: September, 2006
language: Fortran 77
availability: the code BiMD is freely available (in the public domain)
o�cial link: http://www.math.unifi.it/�brugnano/BiM/index.html

problem type: ODEs, DAEs up to index 3
IVPtestset �les: solver: bimd.f

driver: bimdd.f
auxiliary �les: bimda.f (auxiliary routines)

1.2 Numerical method

The code BiMD (written in FORTRAN 77) is based on Blended Implicit Methods of orders 4, 6, 8,
10 and 12. These are a class of L-stable Block Implicit Methods de�ned as a suitable combination
(blending) of two equivalent forms of a basic method in order to favorably meet implementation
requirements [BT01, BM02, BMM06, Mag04].

1.3 Implementation details

Nonlinear systems are solved by means of an iterative procedure, called blended iteration, based on
a nonlinear splitting \naturally" associated to the methods. The strategies for the variation of both
the stepsize of integration and the order of the method rely on an estimate of the local truncation
errors, obtained through a deferred correction-like procedure, and on an estimate of the convergence
properties of the blended iteration. Almost all the details concerning the construction of the code are
described in [BM04, BM05, BM06]. The style used during the formulation of the code is very similar
to the one used in the codes RADAU and GAM, from which the authors imported some subroutines
and comments. Moreover, the name and the meaning of a number of input parameters and local
variables have been fully inherited from such codes.

1.4 How to solve test problems with BiMD

Compiling

f90 -o dotest bimdd.f problem.f bimda.f bimd.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the �le problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure I.1.1 shows what
one has to do.

References

[BM02] L. Brugnano and C. Magherini. Blended implementation of block implicit methods for odes.
Appl. Numer. Math., 42:19{45, 2002.

[BM04] L. Brugnano and C. Magherini. The bim code for the numerical solution of odes. J. Comput.
Appl. Math., 164-165:145{158, 2004.

http://www.math.unifi.it/~brugnano/BiM/index.html
http://www.dm.uniba.it/~testset/src/solvers/bimd.f
http://www.dm.uniba.it/~testset/src/drivers/bimdd.f
http://www.dm.uniba.it/~testset/src/auxil/bimda.f

I-1-2 SOLVER - BiMD

$ f90 -O5 -o dotest bimdd.f hires.f bimda.f bimd.f report.f

$./dotest

Test Set for IVP Solvers (release 2.3)

Solving Problem HIRES using BiMD

User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

give initial stepsize:

1d-4

Numerical solution:

scd

solution component --------------------------- ignore

mixed abs rel mix - abs,rel

---------------------------------- ----- ----- ----- -------------

y(1) = 0.7370390869868378E-003 7.04 7.04 3.90

y(2) = 0.1442309432867305E-003 7.75 7.75 3.91

y(3) = 0.5886726446999230E-004 7.70 7.70 3.47

y(4) = 0.1175514405948053E-002 6.86 6.86 3.93

y(5) = 0.2382225270095926E-002 5.38 5.38 2.76

y(6) = 0.6222129415035646E-002 4.78 4.77 2.57

y(7) = 0.2849350956905541E-002 6.19 6.19 3.64

y(8) = 0.2850649043094471E-002 6.19 6.19 3.64

used components for scd 8 8 8

scd of Y (maximum norm) 4.78 4.77 2.57

using mixed error yields mescd 4.78

using relative error yields scd 2.57

Integration characteristics:

number of integration steps 36

number of accepted steps 33

number of f evaluations 559

number of Jacobian evaluations 30

number of LU decompositions 36

CPU-time used: 0.0020 sec

Figure I.1.1: Example of performing a test run, in which we solve problem HIRES with BiMD. The experiment was
done on an ALPHAserver DS20E, with a 667MHz EV67 processor. We used the Fortran 90 compiler f90 with the
optimization
ag -O5.

SOLVER - BiMD I-1-3

[BM05] L. Brugnano and C. Magherini. Some linear algebra issues concerning the implementation
of blended implicit methods. Numer. Linear Alg. Appl., 12:305{314, 2005.

[BM06] L. Brugnano and C. Magherini. Economical error estimates for block implicit methods for
odes via deferred correction. Appl. Numer. Math., 56:608{617, 2006.

[BMM06] L. Brugnano, C. Magherini, and F. Mugnai. Blended implicit methods for the numerical
solution of dae problems. J. Comput. Appl. Math., 189:34{50, 2006.

[BT01] L. Brugnano and D. Trigiante. Block implicit methods for odes. Recent Trends in Numerical

Analysis, D. Trigiante Ed. Nova Science Publ. Inc., pages 81{105, 2001.

[Mag04] C. Magherini. Numerical Solution of Sti� ODE-IVPs via Blended Implicit Methods: Theory

and Numerics. PhD thesis, Dipartimento di Matematica U. Dini, Universit�a degli Studi di
Firenze, September 2004.

I-1-4 SOLVER - BiMD

SOLVER - DASSL I-2-1

2 Solver DASSL

2.1 General information

Author: L. Petzold
�rst version: March 15, 1983
last update: July 11, 2000
language: Fortran 77
availability: the code DASSL is freely available (in the public domain)
o�cial link: http://www.netlib.org/ode/ddassl.f

problem type: IDEs/DAEs of index less or equal to 1
IVPtestset �les: solver: ddassl.f

driver: dassld.f
auxiliary �les: dassla.f (auxiliary linear algebra routines)

2.2 Numerical method

This code implements the Backward Di�erentiation Formulas of orders one through �ve to solve an
IDE for y and y0. Values for y and y0 at the initial time must be given as input. These values must
be consistent, (that is, if t0; y0; y

0
0 are the given initial values, they must satisfy f(t0; y0; y

0
0) = 0)

[BCP96].

2.3 Implementation details

The subroutine solves the system from t0 to tout (�nal integration time). It allows to continue the
solution to get results at additional tout. This is the interval mode of operation. Intermediate re-
sults can also be obtained easily by using the intermediate-output capability. The derivatives are
approximated by backward di�erentiation formulae (BDFs), and the resulting nonlinear system at
each time-step is solved by Newton's method. The linear systems are solved using routines from the
LINPACK subroutine package. Error handling is accomplished using routines from the SLATEC com-
mon mathematical library package. This code is good for sti� ODEs and for DAEs of moderate size,
where it is appropriate to treat the Jacobian matrix with dense or banded direct LU decomposition.
For large-scale sti� ODE and DAE problems, the user should consider DASPK. For ODE or DAE
problems which must stop at the root of a given function of the solution, the user should consider
DASKR. The code includes an extensive amount of documentation.

2.4 How to solve test problems with DASSL

Compiling

f90 -o dotest dassld.f problem.f ddassl.f dassla.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the �le problem.f.

Although DASSL is a code written for problems of index � 1, it can handle some of the higher
index problems by adjusting the error control. If possible, this is done in the driver dassld.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure I.2.1 shows what
one has to do.

http://www.netlib.org/ode/ddassl.f
http://www.dm.uniba.it/~testset/src/solvers/ddassl.f
http://www.dm.uniba.it/~testset/src/drivers/dassld.f
http://www.dm.uniba.it/~testset/src/auxil/dassla.f

I-2-2 SOLVER - DASSL

$ f90 -O5 -o dotest dassld.f hires.f ddassl.f dassla.f report.f

$./dotest

Test Set for IVP Solvers (release 2.3)

Solving Problem HIRES using DASSL

User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

Numerical solution:

scd

solution component --------------------------- ignore

mixed abs rel mix - abs,rel

---------------------------------- ----- ----- ----- -------------

y(1) = 0.7437259735671353E-003 5.18 5.18 2.05

y(2) = 0.1455514426118115E-003 5.89 5.89 2.04

y(3) = 0.6009984916041035E-004 5.92 5.92 1.69

y(4) = 0.1188134706173305E-002 4.90 4.90 1.97

y(5) = 0.2577046600086416E-002 3.72 3.72 1.10

y(6) = 0.6824947575510993E-002 3.23 3.23 1.03

y(7) = 0.2989385921555588E-002 3.86 3.86 1.31

y(8) = 0.2710614078444423E-002 3.86 3.86 1.31

used components for scd 8 8 8

scd of Y (maximum norm) 3.23 3.23 1.03

using mixed error yields mescd 3.23

using relative error yields scd 1.03

Integration characteristics:

number of integration steps 108

number of accepted steps 99

number of f evaluations 173

number of Jacobian evaluations 31

CPU-time used: 0.0010 sec

Figure I.2.1: Example of performing a test run, in which we solve problem HIRES with DASSL. The experiment was
done on an ALPHAserver DS20E, with a 667MHz EV67 processor. We used the Fortran 90 compiler f90 with the
optimization
ag -O5.

SOLVER - DASSL I-2-3

References

[BCP96] K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial{Value Problems
in Di�erential{Algebraic Equations. SIAM, second edition, 1996.

I-2-4 SOLVER - DASSL

SOLVER - GAMD I-3-1

3 Solver GAMD

3.1 General information

Authors: F. Iavernaro and F. Mazzia
�rst version: August 1997 (GAM)
last update: February, 2006
language: Fortran 90
availability: the code GAMD is freely available (in the public domain)
o�cial link: http://www.dm.uniba.it/�mazzia/ode/readme.html

problem type: ODEs, DAEs of index less than 3
IVPtestset �les: solver: gamd.f90

driver: gamdd.f
auxiliary �les: gamda.f90 (auxiliary routines)

3.2 Numerical method

The code GAMD (written in FORTRAN 90) uses the Generalized Adams Methods in block form, of
orders 3, 5, 7 and 9. These are A-stable formulae belonging to the class of Boundary Value Methods
[BT98, IM99].

3.3 Implementation details

The solution of nonlinear systems is obtained by means of a one-step splitting Newton iteration.
The order variation and stepsize selection strategies are based upon an estimation of the local
truncation errors for the current, lower and upper order formulae, obtained by means of a de-
ferred correction-like procedure [IM98]. The philosophy and the style used during the formulation
of the code are very similar to those characterizing the code RADAU5, from which the authors im-
ported some subroutines, comments and implementation techniques, leaving unchanged the name
and the meaning of a number of variables. A preprocessed version of the code GAMD, that al-
lows the user to switch beetwen quadruple and double precision, is also available at the o�cial link
http://www.dm.uniba.it/�mazzia/ode/readme.html.

3.4 How to solve test problems with GAMD

Some machines need more virtual memory to compile the subroutine gamda.f90 ; for example if you
are using an ALPHAserver DS20E, with a 667MHz, EV67 processor, execute the following command
before the compilation: ulimit -Sd 241000 . Compiling

f90 -o dotest gamdd.f problem.f gamda.f90 gamd.f90 report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the �le problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure I.3.1 shows what
one has to do.

References

[BT98] L. Brugnano and D. Trigiante. Solving Di�erential Problems by Multistep Initial and Boundary

Value Methods. Gordon & Breach, Amsterdam, 1998.

http://www.dm.uniba.it/~mazzia/ode/readme.html
http://www.dm.uniba.it/~testset/src/solvers/gamd.f90
http://www.dm.uniba.it/~testset/src/drivers/gamdd.f
http://www.dm.uniba.it/~testset/src/auxil/gamda.f90
http://www.dm.uniba.it/~mazzia/ode/readme.html

I-3-2 SOLVER - GAMD

$ f90 -O5 -o dotest gamdd.f hires.f gamda.f90 gamd.f90 report.f

$ dotest

Test Set for IVP Solvers (release 2.3)

Solving Problem HIRES using GAMD90

User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

give initial stepsize:

1d-4

Numerical solution:

scd

solution component --------------------------- ignore

mixed abs rel mix - abs,rel

---------------------------------- ----- ----- ----- -------------

y(1) = 0.7370189658683070E-003 6.95 6.95 3.82

y(2) = 0.1442269592313960E-003 7.67 7.67 3.82

y(3) = 0.5886363518265143E-004 7.63 7.63 3.40

y(4) = 0.1175477661507891E-002 6.76 6.76 3.83

y(5) = 0.2381655379215545E-002 5.33 5.33 2.71

y(6) = 0.6221249713391935E-002 4.75 4.75 2.55

y(7) = 0.2848304918830136E-002 5.77 5.77 3.23

y(8) = 0.2851695081169868E-002 5.77 5.77 3.23

used components for scd 8 8 8

scd of Y (maximum norm) 4.75 4.75 2.55

using mixed error yields mescd 4.75

using relative error yields scd 2.55

Integration characteristics:

number of integration steps 29

number of accepted steps 24

number of f evaluations 967

number of Jacobian evaluations 24

number of LU decompositions 29

CPU-time used: 0.0020 sec

Figure I.3.1: Example of performing a test run, in which we solve problem HIRES with GAMD. The experiment was
done on an ALPHAserver DS20E, with a 667MHz EV67 processor. We used the Fortran 90 compiler f90 with the
optimization
ag -O5.

SOLVER - GAMD I-3-3

[IM98] F. Iavernaro and F. Mazzia. Solving ordinary di�erential equations by generalized adams
methods: properties and implementation techniques. Appl. Num. Math., 28:107{126, 1998.

[IM99] F. Iavernaro and F. Mazzia. Block-boundary value methods for the solution of ordinary
di�erential equations. SIAM J. Sci. Comput., 21(1):323{339, 1999.

I-3-4 SOLVER - GAMD

SOLVER - MEBDFDAE I-4-1

4 Solver MEBDFDAE

4.1 General information

Author: J. Cash
�rst version: November , 1998
last update: February, 2006
language: Fortran 77
availability: the code MEBDFDAE is freely available (in the public domain)
o�cial link: http://www.ma.ic.ac.uk/�jcash/IVP software/mebdftest/mebdfdae.f

problems type: ODEs and DAEs of index less than or equal to 3
IVPtestset �les: solver: mebdfdae.f

driver: mebdfd.f
auxiliary �les: the linear algebra routines are included in medbdfdae.f.

4.2 Numerical method

The code MEBDFDAE uses the Modi�ed Extended Backward Di�erentiation Formulas of Cash, that
increase the absolute stability regions of the classical BDFs [Cas79, Cas83, Cas03, Hin83, HW96].
These methods are A-stable up to the order 4 and sti�y stable for orders up to 9; therefore they are
especially suited for the solution of sti� systems of ODEs [CC92]. The orders of the implemented
formulae range from 1 to 8.

4.3 Implementation details

The formulae implemented are three-stages general linear methods with the same Jacobian to be used
in the Newton iteration for all the stages. Blas and Lapack auxiliary routines are also used. Versions
of this solver for the solutions of ODEs are MEBDF and MEBDFSO, the last one is designed to
solve sti� Initial Value Problems for very large sparse systems of ODEs, where the linear equation
solver is replaced by the sparse solver YSMP [EGSS77]. Extensions of MEBDFDAE for the solution
of very large sparse systems of DAEs is given by the solver MEBDFSD, where the sparse solver
used is MA28 [I.S77]. A MATLAB translation of MEBDFDAE is available at the o�cial link http:

//www.ma.ic.ac.uk/�jcash/MATLAB software/MEBDF.m.

4.4 How to solve test problems with MEBDFDAE

Compiling

f90 -o dotest mebdfdaed.f problem.f mebdfdae.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the �le problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure I.4.1 shows what
one has to do.

References

[Cas79] J. Cash. Stable Recursions with applications to the numerical solution of sti� systems.
Academic Press, New York, 1979.

[Cas83] J. Cash. The integration of sti� initial value problems in o.d.e.s using modi�ed extended
backward di�erentiation formulae. Comp. and Maths. with Applics., 9:645{657, 1983.

http://www.ma.ic.ac.uk/~jcash/IVP_software/mebdftest/mebdfdae.f
http://www.dm.uniba.it/~testset/src/solvers/mebdfdae.f
http://www.dm.uniba.it/~testset/src/drivers/mebdfd.f
http://www.ma.ic.ac.uk/~jcash/MATLAB_software/MEBDF.m
http://www.ma.ic.ac.uk/~jcash/MATLAB_software/MEBDF.m

I-4-2 SOLVER - MEBDFDAE

$ f90 -O5 -o dotest mebdfdaed.f hires.f mebdfdae.f report.f

$ dotest

Test Set for IVP Solvers (release 2.3)

Solving Problem HIRES using MEBDFDAE

User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

give initial stepsize:

1d-4

Numerical solution:

scd

solution component --------------------------- ignore

mixed abs rel mix - abs,rel

---------------------------------- ----- ----- ----- -------------

y(1) = 0.7324251767207330E-003 5.33 5.33 2.19

y(2) = 0.1433221554010029E-003 6.03 6.03 2.19

y(3) = 0.5800420518076766E-004 6.05 6.05 1.82

y(4) = 0.1166962417102632E-002 5.06 5.06 2.13

y(5) = 0.2241753919183594E-002 3.84 3.84 1.22

y(6) = 0.5760280012688669E-002 3.32 3.32 1.12

y(7) = 0.2767358761415102E-002 4.08 4.08 1.54

y(8) = 0.2932641238585708E-002 4.08 4.08 1.54

used components for scd 8 8 8

scd of Y (maximum norm) 3.32 3.32 1.12

using mixed error yields mescd 3.32

using relative error yields scd 1.12

Integration characteristics:

number of integration steps 97

number of accepted steps 94

number of f evaluations 168

number of Jacobian evaluations 21

number of LU decompositions 21

CPU-time used: 0.0020 sec

Figure I.4.1: Example of performing a test run, in which we solve problem HIRES with MEBDFDAE. The experiment
was done on an ALPHAserver DS20E, with a 667MH EV67 processor. We used the Fortran 90 compiler f90 with the
optimization
ag -O5.

SOLVER - MEBDFDAE I-4-3

[Cas03] J. Cash. E�cient numerical methods for the solution of sti� initial-value problems and
di�erential algebraic equations. Proc. Roy. Soc. London, A, 459:797{815, 2003.

[CC92] J. Cash and S. Considine. An mebdf code for sti� initial value problems. Acm Trans Math

Software, pages 142{158, 1992.

[EGSS77] S.C. Eisenstat, M.C. Gursky, M.H. Schultz, and A.H. Sherman. Yale sparse matrix package
ii. the nonsymmetric codes. Technical Report 114, Department of Computer Science, Yale
University, New Haven, CT, 1977.

[Hin83] Alan C. Hindmarsh. ODEPACK, a systemized collection of ODE solvers. In R. Steple-
man et al., editors, Scienti�c Computing, pages 55{64, Amsterdam, 1983. IMACS, North-
Holland Publishing Company.

[HW96] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-

algebraic Problems. Springer-Verlag, second revised edition, 1996.

[I.S77] I.S.Du�. Ma28-a set of fortran subroutines for sparse unsymmetric linear equations. Tech-
nical report, Technical Report AERE-R8730, Harwell, 1977.

I-4-4 SOLVER - MEBDFDAE

SOLVER - MEBDFI I-5-1

5 Solver MEBDFI

5.1 General information

Authors: T.J. Abdulla and J.R. Cash
�rst version: October 31, 2003
last update: February, 2006
language: Fortran 77
availability: the code MEBDFI is freely available (in the public domain)
o�cial link: http://www.ma.ic.ac.uk/�jcash/IVP software/itest/mebdfi.f

problems type: ODEs, DAEs and IDEs of index less than or equal to 3
IVPtestset �les: solver: mebd�.f

driver: mebd�d.f
auxiliary �les: the linear algebra routines are included in mebdfi.f.

5.2 Numerical method

The code MEBDFI is an extension of MEBDFDAE for the solution of implicit di�erential equations
and uses the Modi�ed Extended Backward Di�erentiation Formulas of Cash, that increase the absolute
stability regions of the classical BDFs [Cas79, Cas83, Cas03, Hin83, HW96]. These methods are A-
stable up to the order 4 and sti�y stable for orders up to 9; therefore they are especially suited for
the solution of sti� systems of ODEs [CC92]. The orders of the implemented formulae range from 1
to 8.

5.3 Implementation details

The formulae implemented are three-stages general linear methods with the same Jacobian to be used
in the Newton iteration for all the stages. Blas and Lapack auxiliary routines are also used. A Fortran
95 translation of MEBDFI made by Bill Paxton is available at the o�cial link of MESA (Modules
for Experiments in Stellar Astrophysics) http://theory.kitp.ucsb.edu/�paxton/mesa/mesa doc/

index.html.

5.4 How to solve test problems with MEBDFI

Compiling

f90 -o dotest mebdfid.f problem.f mebdfi.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the �le problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure I.5.1 shows what
one has to do.

References

[Cas79] J. Cash. Stable Recursions with applications to the numerical solution of sti� systems. Aca-
demic Press, New York, 1979.

[Cas83] J. Cash. The integration of sti� initial value problems in o.d.e.s using modi�ed extended
backward di�erentiation formulae. Comp. and Maths. with Applics., 9:645{657, 1983.

http://www.ma.ic.ac.uk/~jcash/IVP_software/itest/mebdfi.f
http://www.dm.uniba.it/~testset/src/solvers/mebdfi.f
http://www.dm.uniba.it/~testset/src/drivers/mebdfid.f
http://theory.kitp.ucsb.edu/~paxton/mesa/mesa_doc/index.html
http://theory.kitp.ucsb.edu/~paxton/mesa/mesa_doc/index.html

I-5-2 SOLVER - MEBDFI

$ f90 -O5 -o dotest mebdfid.f hires.f mebdfi.f report.f

$ dotest

Test Set for IVP Solvers (release 2.3)

Solving Problem HIRES using MEBDFI

User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

give initial stepsize:

1d-4

Numerical solution:

scd

solution component --------------------------- ignore

mixed abs rel mix - abs,rel

---------------------------------- ----- ----- ----- -------------

y(1) = 0.7360756579676240E-003 5.98 5.98 2.84

y(2) = 0.1440435009167338E-003 6.69 6.69 2.85

y(3) = 0.5867365037055238E-004 6.67 6.67 2.44

y(4) = 0.1173828077122226E-002 5.74 5.74 2.81

y(5) = 0.2347013337886003E-002 4.41 4.41 1.78

y(6) = 0.6023708667056447E-002 3.67 3.67 1.46

y(7) = 0.2893696909773767E-002 4.36 4.36 1.81

y(8) = 0.2806303090227050E-002 4.36 4.36 1.81

used components for scd 8 8 8

scd of Y (maximum norm) 3.67 3.67 1.46

using mixed error yields mescd 3.67

using relative error yields scd 1.46

Integration characteristics:

number of integration steps 92

number of accepted steps 89

number of f evaluations 311

number of Jacobian evaluations 18

number of LU decompositions 18

CPU-time used: 0.0010 sec

Figure I.5.1: Example of performing a test run, in which we solve problem HIRES with MEBDFI. The experiment
was done on an ALPHAserver DS20E, with a 667MH EV67 processor. We used the Fortran 90 compiler f90 with the
optimization
ag -O5.

SOLVER - MEBDFI I-5-3

[Cas03] J. Cash. E�cient numerical methods for the solution of sti� initial-value problems and
di�erential algebraic equations. Proc. Roy. Soc. London, A, 459:797{815, 2003.

[CC92] J. Cash and S. Considine. An mebdf code for sti� initial value problems. Acm Trans Math

Software, pages 142{158, 1992.

[Hin83] Alan C. Hindmarsh. ODEPACK, a systemized collection of ODE solvers. In R. Stepleman
et al., editors, Scienti�c Computing, pages 55{64, Amsterdam, 1983. IMACS, North-Holland
Publishing Company.

[HW96] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-

algebraic Problems. Springer-Verlag, second revised edition, 1996.

I-5-4 SOLVER - MEBDFI

SOLVER - PSIDE I-6-1

6 Solver PSIDE

6.1 General information

Authors: J.J.B. de Swart, W.M. Lioen, and W.A. van der Veen
�rst version: November 28 1997 (version 1.0)
last update: November 25 1998 (version 1.3)
language: Fortran 77
availability: the code PSIDE is freely available (in the public domain)
o�cial link: http://www.cwi.nl/cwi/projects/PSIDE/

problem type: IDEs/DAEs of index upto at least 3
IVPtestset �les: solver: pside.f

driver: psided.f
auxiliary �les: psidea.f (auxiliary linear algebra routines)

6.2 Numerical method

The code uses the four-stage Radau IIA method.

6.3 Implementation details

PSIDE is a Parallel Software for Implicit Di�erential Equations [SLV97a, SLV97b]. It has been
designed for working on shared memory parallel computers, using the OPENMP parallel tools.

The nonlinear systems are solved by a modi�ed Newton process, in which every Newton iterate
itself is computed by means of the Parallel Iterative Linear system Solver for Runge-Kutta (PILSRK)
proposed in [HS97]. This process is constructed such that the four stage values can be computed
simultaneously, thereby making PSIDE suitable for execution on four processors. Full details about
the algorithmic choices and the implementation of PSIDE can be found in [SLV97c].

6.4 How to solve test problems with PSIDE

Compiling

f90 -o dotest psided.f problem.f pside.f psidea.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the �le problem.f. In order to have the correct solution, before the
compilation, change the auxiliary routine I1MACH and D1MACH, in the �le dassla.f because they
are machine dependent.

As an example, we perform a test run, in which we solve problem HIRES. Figure I.6.1 shows what
one has to do.

References

[HS97] P.J. van der Houwen and J.J.B. de Swart. Parallel linear system solvers for Runge{Kutta
methods. Advances in Computational Mathematics, 7:157{181, 1997.

[SLV97a] J.J.B. de Swart, W.M. Lioen, and W.A. van der Veen. PSIDE, December 1997. Available
at http://www.cwi.nl/cwi/projects/PSIDE/.

[SLV97b] J.J.B. de Swart, W.M. Lioen, and W.A. van der Veen. PSIDE Users' Guide, 1997. Available
at http://www.cwi.nl/cwi/projects/PSIDE/.

http://www.cwi.nl/cwi/projects/PSIDE/
http://www.dm.uniba.it/~testset/src/solvers/pside.f
http://www.dm.uniba.it/~testset/src/drivers/psided.f
http://www.dm.uniba.it/~testset/src/auxil/psidea.f
http://www.cwi.nl/cwi/projects/PSIDE/
http://www.cwi.nl/cwi/projects/PSIDE/

I-6-2 SOLVER - PSIDE

$ f90 -O5 -o dotest psided.f hires.f pside.f psidea.f report.f

$./dotest

Test Set for IVP Solvers (release 2.3)

Solving Problem HIRES using PSIDE

User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

Numerical solution:

scd

solution component --------------------------- ignore

mixed abs rel mix - abs,rel

---------------------------------- ----- ----- ----- -------------

y(1) = 0.7371770832059414E-003 7.34 7.34 4.21

y(2) = 0.1442575715381605E-003 8.05 8.05 4.20

y(3) = 0.5889602259243881E-004 8.06 8.06 3.83

y(4) = 0.1175734704403569E-002 7.08 7.08 4.15

y(5) = 0.2387823243162753E-002 5.83 5.83 3.21

y(6) = 0.6244778711349675E-002 5.24 5.24 3.03

y(7) = 0.2850043711924880E-002 7.34 7.34 4.80

y(8) = 0.2849956288075124E-002 7.34 7.34 4.80

used components for scd 8 8 8

scd of Y (maximum norm) 5.24 5.24 3.03

using mixed error yields mescd 5.24

using relative error yields scd 3.03

Integration characteristics:

number of integration steps 43

number of accepted steps 37

number of f evaluations 665

number of Jacobian evaluations 20

number of LU decompositions 168

CPU-time used: 0.0029 sec

Figure I.6.1: Example of performing a test run, in which we solve problem HIRES with PSIDE. The experiment was
done on an ALPHAserver DS20E, with a 667MHz EV67 processor. We used the Fortran 90 compiler f90 with the
optimization
ag -O5.

SOLVER - PSIDE I-6-3

[SLV97c] J.J.B. de Swart, W.M. Lioen, and W.A. van der Veen. Speci�cation of PSIDE. CWI, 1997.
Available at http://www.cwi.nl/cwi/projects/PSIDE/.

http://www.cwi.nl/cwi/projects/PSIDE/

I-6-4 SOLVER - PSIDE

SOLVER - RADAU I-7-1

7 Solver RADAU

7.1 General information

Authors: E. Hairer and G. Wanner
�rst version: April 23, 1998
last update: January 18, 2002
language: Fortran 77
availability: the code RADAU is freely available (in the public domain)
o�cial link: http://www.unige.ch/�hairer/prog/stiff/radau.f

problem type: ODEs and DAEs of index less than or equal to 3
IVPtestset �les: solver: radau.f

driver: radaud.f
auxiliary �les: radaua.f (auxiliary linear algebra routines)

7.2 Numerical method

The code RADAU is based on implicit Runge-Kutta methods (Radau IIa) of orders 5, 9 and 13. These
methods are L-stable and were �rstly implemented in �xed order mode in the code RADAUP [HW96].
It is written for problems of the form My0 = f(t; y) with a possibly singular matrix M . It is therefore
also suitable for the solution of di�erential-algebraic problems.

7.3 Implementation details

All the implementation techniques described for RADAU5 hold here as well. The code has been
provided with an order variation strategy. This is based upon the observation that high order methods
perform better than low order methods as soon as the convergence of the simpli�ed Newton iteration
is su�ciently fast (a measure of the rate of convergence is the so called contractivity factor) [HW99].

7.4 How to solve test problems with RADAU

Compiling

f90 -o dotest radaud.f problem.f radau.f radaua.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the �le problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure I.7.1 shows what
one has to do.

References

[HW96] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-

algebraic Problems. Springer-Verlag, second revised edition, 1996.

[HW99] E. Hairer and G. Wanner. Sti� di�erential equations solved by radau methods. J. Comput.
Appl. Math., 111:93{111, 1999.

http://www.unige.ch/~hairer/prog/stiff/radau.f
http://www.dm.uniba.it/~testset/src/solvers/radau.f
http://www.dm.uniba.it/~testset/src/drivers/radaud.f
http://www.dm.uniba.it/~testset/src/auxil/radaua.f

I-7-2 SOLVER - RADAU

$ f90 -O5 -o dotest radaud.f hires.f radau.f radaua.f report.f

$./dotest

Test Set for IVP Solvers (release 2.3)

Solving Problem HIRES using RADAU

User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

give initial stepsize:

1d-4

Numerical solution:

scd

solution component --------------------------- ignore

mixed abs rel mix - abs,rel

---------------------------------- ----- ----- ----- -------------

y(1) = 0.7485152484440879E-003 4.94 4.94 1.81

y(2) = 0.1464912389469645E-003 5.65 5.65 1.81

y(3) = 0.6101426280653334E-004 5.67 5.67 1.44

y(4) = 0.1196763210067838E-002 4.68 4.68 1.75

y(5) = 0.2731889907948499E-002 3.46 3.46 0.84

y(6) = 0.7347017643277632E-002 2.96 2.96 0.75

y(7) = 0.3074620885907540E-002 3.65 3.65 1.10

y(8) = 0.2625379114092413E-002 3.65 3.65 1.10

used components for scd 8 8 8

scd of Y (maximum norm) 2.96 2.96 0.75

using mixed error yields mescd 2.96

using relative error yields scd 0.75

Integration characteristics:

number of integration steps 38

number of accepted steps 31

number of f evaluations 295

number of Jacobian evaluations 20

number of LU decompositions 37

CPU-time used: 0.0010 sec

Figure I.7.1: Example of performing a test run, in which we solve problem HIRES with RADAU. The experiment was
done on an ALPHAserver DS20E, with a 667MHz EV67 processor. We used the Fortran 90 compiler f90 with the
optimization
ag -O5.

SOLVER - RADAU5 I-8-1

8 Solver RADAU5

8.1 General information

Authors: E. Hairer and G. Wanner
last update: January 18, 2002
language: Fortran 77
availability: the code RADAU5 is freely available (in the public domain)
o�cial link: http://www.unige.ch/�hairer/prog/stiff/radau5.f

problem type: ODEs and DAEs of index less than or equal to 3
IVPtestset �les: solver: radau5.f

driver: radau5d.f
auxiliary �les: radaua.f (auxiliary linear algebra routines)

8.2 Numerical method

The code RADAU5 uses an implicit Runge-Kutta method (Radau IIa) of order 5 (three stages) with
step size control and continuous output. It is written for problems of the form My0 = f(t; y) with
a possibly singular matrix M . It is therefore also suitable for the solution of di�erential-algebraic
problems.

8.3 Implementation details

Nonlinear systems are solved by a simpli�ed Newton iteration. A similarity transformation on the
inverse of the Butcher array is performed in order to reduce the computational cost associated to
the solution of linear systems (see [HW96], page 121) so that, each time the Jacobian is updated, a
factorization of one real and one complex matrix of the same dimension as that of the continuous
problem is needed.

8.4 How to solve test problems with RADAU5

Compiling

f90 -o dotest radau5d.f problem.f radau5.f radaua.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the �le problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure I.8.1 shows what
one has to do.

References

[HW96] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-

algebraic Problems. Springer-Verlag, second revised edition, 1996.

http://www.unige.ch/~hairer/prog/stiff/radau5.f
http://www.dm.uniba.it/~testset/src/solvers/radau5.f
http://www.dm.uniba.it/~testset/src/drivers/radau5d.f
http://www.dm.uniba.it/~testset/src/auxil/radaua.f

I-8-2 SOLVER - RADAU5

$ f90 -O5 -o dotest radau5d.f hires.f radau5.f radaua.f report.f

$./dotest

Test Set for IVP Solvers (release 2.3)

Solving Problem HIRES using RADAU5

User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

give initial stepsize:

1d-4

Numerical solution:

scd

solution component --------------------------- ignore

mixed abs rel mix - abs,rel

---------------------------------- ----- ----- ----- -------------

y(1) = 0.7485152484440879E-003 4.94 4.94 1.81

y(2) = 0.1464912389469645E-003 5.65 5.65 1.81

y(3) = 0.6101426280653334E-004 5.67 5.67 1.44

y(4) = 0.1196763210067838E-002 4.68 4.68 1.75

y(5) = 0.2731889907948499E-002 3.46 3.46 0.84

y(6) = 0.7347017643277632E-002 2.96 2.96 0.75

y(7) = 0.3074620885907540E-002 3.65 3.65 1.10

y(8) = 0.2625379114092413E-002 3.65 3.65 1.10

used components for scd 8 8 8

scd of Y (maximum norm) 2.96 2.96 0.75

using mixed error yields mescd 2.96

using relative error yields scd 0.75

Integration characteristics:

number of integration steps 38

number of accepted steps 31

number of f evaluations 295

number of Jacobian evaluations 20

number of LU decompositions 36

CPU-time used: 0.0010 sec

Figure I.8.1: Example of performing a test run, in which we solve problem HIRES with RADAU5. The experiment
was done on an ALPHAserver DS20E, with a 667MHz EV67 processor. We used the Fortran 90 compiler f90 with the
optimization
ag -O5.

SOLVER - VODE I-9-1

9 Solver VODE

9.1 General information

Authors: Peter N. Brown, George D. Byrne and Alan C. Hindmarsh
�rst version: June 15 1989
last update: April 30, 2000
language: Fortran 77
availability: the code VODE is freely available (in the public domain)
o�cial link: http://www.netlib.org/ode/vode.f

problem type: ODE
IVPtestset �les: solver: vode.f

driver: voded.f
auxiliary �les: vodea.f (auxiliary linear algebra routines)

9.2 Numerical method

The code is based upon linear multistep methods used with variable coe�cients (but �xed leading
term) to take account for the stepsize change. It allows the use of Adams and BDFs methods to
handle both non sti� and sti� problems [Byr75].

9.3 Implementation details

VODE [BBA89] is a package based on the EPISODE and EPISODEB packages [HB77, BH76], and
on the ODEPACK user interface standard [Hin83], with minor modi�cations. The code may switch
between two di�erent techniques, namely functional iteration and the modi�ed Newton method, to
solve nonlinear systems at each time-step. Recently, a FORTRAN 90 version of this solver has been
made available at the URL http://www.radford.edu/�thompson/vodef90web/.

9.4 How to solve test problems with VODE

Compiling

f90 -o dotest voded.f problem.f vode.f vodea.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines in the format
described in Section IV.3 are in the �le problem.f.

As an example, we perform a test run, in which we solve problem HIRES. Figure I.9.1 shows what
one has to do.

References

[BBA89] P. N. Brown, G. D. Byrne, and Hindmarsh A.C. Vode: A variable coe�cient ode solver.
SIAM J. Sci. Stat. Comput., 10:1038{1051, 1989. Also, LLNL Report UCRL-98412, June
1988.

[BH76] G. D. Byrne and A. C. Hindmarsh. Episodeb: An experimental package for the integration
of systems of ordinary di�erential equations with banded jacobians. Technical Report UCID-
30132, April 1976., LLNL, 1976.

[Byr75] A. C. Byrne, G. D.and Hindmarsh. A polyalgorithm for the numerical solution of ordinary
di�erential equations. Acm Trans Math Software, 1:71{96, 1975.

http://www.netlib.org/ode/vode.f
http://www.dm.uniba.it/~testset/src/solvers/vode.f
http://www.dm.uniba.it/~testset/src/drivers/voded.f
http://www.dm.uniba.it/~testset/src/auxil/vodea.f
http://www.radford.edu/~thompson/vodef90web/

I-9-2 SOLVER - VODE

$ f90 -O5 -o dotest voded.f hires.f vode.f vodea.f report.f

$ dotest

Test Set for IVP Solvers (release 2.3)

Solving Problem HIRES using VODE

User input:

give relative error tolerance:

1d-4

give absolute error tolerance:

1d-4

Numerical solution:

scd

solution component --------------------------- ignore

mixed abs rel mix - abs,rel

---------------------------------- ----- ----- ----- -------------

y(1) = 0.7405428802164954E-003 5.47 5.47 2.33

y(2) = 0.1449232356407335E-003 6.17 6.17 2.33

y(3) = 0.5951034500912568E-004 6.21 6.21 1.98

y(4) = 0.1182096389331148E-002 5.19 5.19 2.26

y(5) = 0.2483586047844519E-002 4.01 4.01 1.39

y(6) = 0.6494848234786107E-002 3.59 3.59 1.39

y(7) = 0.2954272405089350E-002 3.98 3.98 1.44

y(8) = 0.2745727594910732E-002 3.98 3.98 1.44

used components for scd 8 8 8

scd of Y (maximum norm) 3.59 3.59 1.39

using mixed error yields mescd 3.59

using relative error yields scd 1.39

Integration characteristics:

number of integration steps 133

number of accepted steps 131

number of f evaluations 191

number of Jacobian evaluations 10

number of LU decompositions 25

CPU-time used: 0.0010 sec

Figure I.9.1: Example of performing a test run, in which we solve problem HIRES with VODE. The experiment was
done on an ALPHAserver DS20E, with a 667MHz EV67 processor. We used the Fortran 90 compiler f90 with the
optimization
ag -O5.

SOLVER - VODE I-9-3

[HB77] A. C. Hindmarsh and G. D. Byrne. Episode: An e�ective package for the integration of
systems of ordinary di�erential equations. Technical Report UCID-30112, Rev. 1, April
1977, LLNL, 1977.

[Hin83] Alan C. Hindmarsh. ODEPACK, a systemized collection of ODE solvers. In R. Stepleman
et al., editors, Scienti�c Computing, pages 55{64, Amsterdam, 1983. IMACS, North-Holland
Publishing Company.

PROBLEMS II-1

Part II

Problems

This part is the core of the report. All the test problems collected are described. The problems are
ordered as ODEs, DAEs and IDEs.

II-2 PROBLEMS

ODE - Problem HIRES II-1-1

1 Problem HIRES

1.1 General information

This IVP is a sti� system of 8 non-linear Ordinary Di�erential Equations. It was proposed by Sch�afer
in 1975 [Sch75]. The name HIRES was given by Hairer & Wanner [HW96]. It refers to `High Irradiance
RESponse', which is described by this ODE. The parallel-IVP-algorithm group of CWI contributed
this problem to the test set. The software part of the problem is in the �le hires.f available at [MI03].

1.2 Mathematical description of the problem

The problem is of the form

dy

dt
= f(y); y(0) = y0;

with
y 2 IR8; 0 � t � 321:8122:

The function f is de�ned by

f(y) =

0BBBBBBBBBB@

�1:71y1 +0:43y2 +8:32y3 +0:0007
1:71y1 �8:75y2

�10:03y3 +0:43y4 +0:035y5
8:32y2 +1:71y3 �1:12y4

�1:745y5 +0:43y6 +0:43y7
�280y6y8 +0:69y4 +1:71y5 �0:43y6 +0:69y7
280y6y8 �1:81y7

�280y6y8 +1:81y7

1CCCCCCCCCCA
:

The initial vector y0 is given by (1; 0; 0; 0; 0; 0; 0; 0:0057)T.

1.3 Origin of the problem

The HIRES problem originates from plant physiology and describes how light is involved in morpho-
genesis. To be precise, it explains the `High Irradiance Responses' (HIRES) of photomorphogenesis
on the basis of phytochrome, by means of a chemical reaction involving eight reactants. It has been
promoted as a test problem by Gottwald in [Got77]. The reaction scheme is given in Figure II.1.1.

Pr and Pfr refer to the red and far-red absorbing form of phytochrome, respectively. They can be
bound by two receptors X and X0, partially in
uenced by the enzyme E. The values of the parameters
were taken from [HW96]

k1 = 1:71
k2 = 0:43

k3 = 8:32
k4 = 0:69

k5 = 0:035
k6 = 8:32

k+ = 280
k� = 0:69

k� = 0:69
oks = 0:0007

For more details, we refer to [Sch75].
Identifying the concentrations of Pr, Pfr, PrX, PfrX, PrX

0, PfrX
0, PfrX

0E and E with yi, i 2
f1; : : : ; 8g, respectively, the di�erential equations mentioned in x1.2 easily follow. See [SL98] for a
more detailed description of this modeling process.

The end point of the integration interval, 321:8122, was chosen arbitrarily[Wan98].

http://www.dm.uniba.it/~testset/src/problems/hires.f

II-1-2 ODE - Problem HIRES

oks - Pr

k1 -�
k2

Pfr

PrX

k6

6

k1-�
k2

PfrX

k3

?

PrX
0

k5

6

k1-�
k2

PfrX
0

k4

?

E + PrX
0 �k2 PfrX

0E
k�-�
k+

PfrX
0 + E

Pfr
0 + E

k�

?

Figure II.1.1: Reaction scheme for problem HIRES.

1.4 Numerical solution of the problem

Tables II.1.1{II.1.2 and Figures II.1.2{II.1.6 present the reference solution at the end of the integration
interval, the run characteristics, the behavior of the solution over (part of) the integration interval and
the work-precision diagrams, respectively. The reference solution was computed by RADAU5 on a
Cray C90, using double precision, work(1) = uround = 1:01�10�19, rtol = atol = h0 = 1:1�10�18.
For the work-precision diagrams, we used: rtol = 10�(5+m=4), m = 0; 1; : : : ; 28; atol = rtol; h0 =
10�2 � rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5.

Table II.1.1: Reference solution at the end of the integration interval.

y1 0:7371312573325668 � 10�3
y2 0:1442485726316185 � 10�3
y3 0:5888729740967575 � 10�4
y4 0:1175651343283149 � 10�2

y5 0:2386356198831331 � 10�2
y6 0:6238968252742796 � 10�2
y7 0:2849998395185769 � 10�2
y8 0:2850001604814231 � 10�2

References

[Got77] B.A. Gottwald. MISS - ein einfaches Simulations-System f�ur biologische und chemische
Prozesse. EDV in Medizin und Biologie, 3:85{90, 1977.

[HW96] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-

algebraic Problems. Springer-Verlag, second revised edition, 1996.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

[Sch75] E. Sch�afer. A new approach to explain the `high irradiance responses' of photomorphogenesis
on the basis of phytochrome. J. of Math. Biology, 2:41{56, 1975.

[SL98] J.J.B. de Swart and W.M. Lioen. Collecting real-life problems to test solvers for implicit
di�erential equations. CWI Quarterly, 11(1):83{100, 1998.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

ODE - Problem HIRES II-1-3

Table II.1.2: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�7 10�7 10�9 8:42 6:21 48 47 1395 42 48 0.0039
10�10 10�10 10�12 11:49 9:28 89 89 2854 82 88 0.0088

DDASSL 10�7 10�7 6:02 3:81 380 369 591 32 0.0039
10�10 10�10 8:99 6:78 1160 1148 1557 45 0.0098

GAMD 10�7 10�7 10�9 8:51 6:00 38 34 2167 33 38 0.0049
10�10 10�10 10�12 10:26 7:82 55 50 4164 51 55 0.0098

MEBDFI 10�7 10�7 10�9 6:45 4:24 218 214 767 29 29 0.0029
10�10 10�10 10�12 9:51 7:30 420 416 1492 46 46 0.0068

PSIDE-1 10�7 10�7 7:24 4:88 68 60 1208 25 252 0.0039
10�10 10�10 11:06 8:85 152 151 2528 35 344 0.0068

RADAU 10�7 10�7 10�9 7:11 4:91 51 40 985 22 51 0.0020
10�10 10�10 10�12 10:65 8:03 69 58 1511 29 68 0.0039

VODE 10�7 10�7 6:19 3:98 415 390 608 9 70 0.0029
10�10 10�10 8:75 6:20 933 880 1224 15 134 0.0059

[Wan98] G. Wanner, 1998. Private communication.

II-1-4 ODE - Problem HIRES

Figure II.1.2: Behavior of the solution over the integration interval.

ODE - Problem HIRES II-1-5

Figure II.1.3: Work-precision diagram (scd versus CPU-time).

II-1-6 ODE - Problem HIRES

Figure II.1.4: Work-precision diagram (scd versus CPU-time).

ODE - Problem HIRES II-1-7

Figure II.1.5: Work-precision diagram (mescd versus CPU-time).

II-1-8 ODE - Problem HIRES

Figure II.1.6: Work-precision diagram (mescd versus CPU-time).

ODE - Pollution problem II-2-1

2 Pollution problem

2.1 General information

This IVP is a sti� system of 20 non-linear Ordinary Di�erential Equations. It is the chemical reaction
part of the air pollution model developed at The Dutch National Institute of Public Health and En-
vironmental Protection (RIVM) and it is described by Verwer in [Ver94]. The parallel-IVP-algorithm
group of CWI contributed this problem to the test set.

The software part of the problem is in the �le pollu.f available at [MI03].

2.2 Mathematical description of the problem

The problem is of the form

dy

dt
= f(y); y(0) = y0; (II.2.1)

with
y 2 IR20; 0 � t � 60:

The function f is de�ned by

f =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
X

j2f1;10;14;23;24g

rj +
X

j2f2;3;9;11;12;22;25g

rj

�r2 � r3 � r9 � r12 + r1 + r21
�r15 + r1 + r17 + r19 + r22
�r2 � r16 � r17 � r23 + r15
�r3 + 2r4 + r6 + r7 + r13 + r20
�r6 � r8 � r14 � r20 + r3 + 2r18
�r4 � r5 � r6 + r13
r4 + r5 + r6 + r7
�r7 � r8
�r12 + r7 + r9
�r9 � r10 + r8 + r11
r9
�r11 + r10
�r13 + r12
r14
�r18 � r19 + r16
�r20
r20
�r21 � r22 � r24 + r23 + r25
�r25 + r24

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

where the ri are auxiliary variables, given in Table II.2.1. The values of the parameters kj are in
Table II.2.2. Finally, the initial vector y0 is given by

y0 = (0; 0:2; 0; 0:04; 0; 0; 0:1; 0:3; 0:01; 0; 0; 0; 0; 0; 0; 0; 0:007; 0; 0; 0)T:

2.3 Origin of the problem

The problem is a chemical model consisting of 25 reactions and 20 reacting compounds. Figure II.2.1
shows the reaction scheme. Writing down the reaction velocities rj for every reaction equation and
making the identi�cation in Table II.2.3, which also lists the concentrations at t = 0, one arrives at
the system of di�erential equations (II.2.1). The time interval [0,60] represents the behavior of the
reactants su�ciently.

http://www.dm.uniba.it/~testset/src/problems/pollu.f

II-2-2 ODE - Pollution problem

Table II.2.1: Auxiliary variables.

r1 = k1 � y1
r2 = k2 � y2 � y4
r3 = k3 � y5 � y2
r4 = k4 � y7
r5 = k5 � y7
r6 = k6 � y7 � y6
r7 = k7 � y9
r8 = k8 � y9 � y6
r9 = k9 � y11 � y2

r10 = k10 � y11 � y1
r11 = k11 � y13
r12 = k12 � y10 � y2
r13 = k13 � y14
r14 = k14 � y1 � y6
r15 = k15 � y3
r16 = k16 � y4
r17 = k17 � y4
r18 = k18 � y16

r19 = k19 � y16
r20 = k20 � y17 � y6
r21 = k21 � y19
r22 = k22 � y19
r23 = k23 � y1 � y4
r24 = k24 � y19 � y1
r25 = k25 � y20

Table II.2.2: Parameter values.

k1 = 0:350
k2 = 0:266 � 102
k3

y = 0:123 � 105
k4 = 0:860 � 10�3
k5 = 0:820 � 10�3
k6 = 0:150 � 105
k7 = 0:130 � 10�3
k8 = 0:240 � 105
k9 = 0:165 � 105

k10 = 0:900 � 104
k11 = 0:220 � 10�1
k12 = 0:120 � 105
k13 = 0:188 � 10
k14 = 0:163 � 105
k15 = 0:480 � 107
k16 = 0:350 � 10�3
k17 = 0:175 � 10�1
k18 = 0:100 � 109

k19 = 0:444 � 1012
k20 = 0:124 � 104
k21 = 0:210 � 10
k22 = 0:578 � 10
k23 = 0:474 � 10�1
k24 = 0:178 � 104
k25 = 0:312 � 10

y Notice that this constant has a typing error in [Ver94].

1. NO2 ! NO+O3P
2. NO+O3 ! NO2
3. HO2+NO ! NO2+OH
4. HCHO ! 2 HO2+CO
5. HCHO ! CO
6. HCHO+OH ! HO2+CO
7. ALD ! MEO2+HO2+CO
8. ALD+OH ! C2O3
9. C2O3+NO ! NO2+MEO2+CO2
10. C2O3+NO2 ! PAN
11. PAN ! C2O3+NO2
12. MEO2+NO ! CH3O+NO2
13. CH3O ! HCHO+HO2

14. NO2+OH ! HNO3
15. O3P ! O3
16. O3 ! O1D
17. O3 ! O3P
18. O1D ! 2 OH
19. O1D ! O3P
20. SO2+OH ! SO4+HO2
21. NO3 ! NO
22. NO3 ! NO2+O3P
23. NO2+O3 ! NO3
24. NO3+NO2 ! N2O5
25. N2O5 ! NO3+NO2

Figure II.2.1: Reaction scheme.

ODE - Pollution problem II-2-3

Table II.2.3: Identi�cation of variables with species. The square brackets `[]' denote concentrations.

variable species initial value
y1 [NO2] 0
y2 [NO] 0.2
y3 [O3P] 0
y4 [O3] 0.04
y5 [HO2] 0
y6 [OH] 0
y7 [HCHO] 0.1
y8 [CO] 0.3
y9 [ALD] 0.01
y10 [MEO2] 0

variable species initial value
y11 [C2O3] 0
y12 [CO2] 0
y13 [PAN] 0
y14 [CH3O] 0
y15 [HNO3] 0
y16 [O1D] 0
y17 [SO2] 0.007
y18 [SO4] 0
y19 [NO3] 0
y20 [N2O5] 0

Table II.2.4: Reference solution at the end of the integration interval.

y1 0:5646255480022769 � 10�1
y2 0:1342484130422339
y3 0:4139734331099427 � 10�8
y4 0:5523140207484359 � 10�2
y5 0:2018977262302196 � 10�6
y6 0:1464541863493966 � 10�6
y7 0:7784249118997964 � 10�1
y8 0:3245075353396018
y9 0:7494013383880406 � 10�2
y10 0:1622293157301561 � 10�7

y11 0:1135863833257075 � 10�7
y12 0:2230505975721359 � 10�2
y13 0:2087162882798630 � 10�3
y14 0:1396921016840158 � 10�4
y15 0:8964884856898295 � 10�2
y16 0:4352846369330103 � 10�17
y17 0:6899219696263405 � 10�2
y18 0:1007803037365946 � 10�3
y19 0:1772146513969984 � 10�5
y20 0:5682943292316392 � 10�4

2.4 Numerical solution of the problem

Tables II.2.4{II.2.5 and Figures II.2.2{II.2.6 present the reference solution at the end of the integration
interval, the run characteristics, the behavior of the solution over the interval [0,12] and the work-
precision diagrams, respectively. The reference solution was computed by RADAU5 on a Cray C90,
using double precision, work(1) = uround = 1:01 � 10�19, rtol = atol = h0 = 1:1 � 10�18. For the
work-precision diagrams, we used: rtol = 10�(5+m=4), m = 0; 1; : : : ; 32; atol = rtol; h0 = rtol for
BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5.

.

References

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of Math-
ematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/�testset.

[Ver94] J.G. Verwer. Gauss-Seidel iteration for sti� ODEs from chemical kinetics. SIAM J. Sci.

Comput., 15(5):1243{1259, 1994.

http://www.dm.uniba.it/~testset

II-2-4 ODE - Pollution problem

Table II.2.5: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�7 10�7 10�7 9:25 5:63 25 25 572 22 25 0.0039
10�10 10�10 10�10 11:73 8:73 41 41 1257 27 41 0.0107

DDASSL 10�7 10�7 5:94 4:13 135 135 188 23 0.0039
10�10 10�10 9:04 5:91 536 532 669 38 0.0107

GAMD 10�7 10�7 10�7 8:16 6:31 23 23 625 23 23 0.0049
10�10 10�10 10�10 11:35 5:36 36 36 1401 36 36 0.0098

MEBDFI 10�7 10�7 10�7 8:46 6:46 120 118 391 20 20 0.0039
10�10 10�10 10�10 11:45 9:32 235 235 763 33 33 0.0078

PSIDE-1 10�7 10�7 7:51 4:84 31 29 465 9 124 0.0049
10�10 10�10 10:64 8:04 63 62 970 12 188 0.0098

RADAU 10�7 10�7 10�7 5:59 3:78 32 29 227 21 32 0.0029
10�10 10�10 10�10 10:00 7:75 35 35 449 21 35 0.0049

VODE 10�7 10�7 6:61 3:32 149 149 208 4 27 0.0029
10�10 10�10 8:79 4:78 393 375 528 7 61 0.0059

ODE - Pollution problem II-2-5

Figure II.2.2: Behavior of the solution over the interval [0,12].

II-2-6 ODE - Pollution problem

Figure II.2.3: Work-precision diagram (scd versus CPU-time).

ODE - Pollution problem II-2-7

Figure II.2.4: Work-precision diagram (scd versus CPU-time).

II-2-8 ODE - Pollution problem

Figure II.2.5: Work-precision diagram (mescd versus CPU-time).

ODE - Pollution problem II-2-9

Figure II.2.6: Work-precision diagram (mescd versus CPU-time).

II-2-10 ODE - Pollution problem

ODE - Ring modulator II-3-1

3 Ring modulator

3.1 General information

The type of the problem depends on the parameter Cs. If Cs 6= 0, then it is a sti� system of 15
non-linear ordinary di�erential equations. For Cs = 0 we have a DAE of index 2, consisting of
11 di�erential equations and 4 algebraic equations. The numerical results presented here refer to
Cs = 2 � 10�12. The problem has been taken from [KRS92], where the approach of Horneber [Hor76]
is followed. The parallel-IVP-algorithm group of CWI contributed this problem to the test set.

The software part of the problem is in the �le ringmod.f available at [MI03].

3.2 Mathematical description of the problem

For the ODE case, the problem is of the form

dy

dt
= f(t; y); y(0) = y0;

with
y 2 IR15; 0 � t � 10�3:

The function f is de�ned by

f(t; y) =

0BBBBBBBBBBBBBBBBBBBBBBBB@

C�1(y8 � 0:5y10 + 0:5y11 + y14 �R�1y1)
C�1(y9 � 0:5y12 + 0:5y13 + y15 �R�1y2)
C�1
s (y10 � q(UD1) + q(UD4))

C�1
s (�y11 + q(UD2)� q(UD3))

C�1
s (y12 + q(UD1)� q(UD3))

C�1
s (�y13 � q(UD2) + q(UD4))

C�1
p (�R�1

p y7 +q(UD1) + q(UD2)� q(UD3)� q(UD4))

�L�1h y1
�L�1h y2
L�1s2 (0:5y1 � y3 �Rg2y10)
L�1s3 (�0:5y1 + y4 �Rg3y11)
L�1s2 (0:5y2 � y5 �Rg2y12)
L�1s3 (�0:5y2 + y6 �Rg3y13)
L�1s1 (�y1 + Uin1(t)� (Ri +Rg1)y14)
L�1s1 (�y2 � (Rc +Rg1)y15)

1CCCCCCCCCCCCCCCCCCCCCCCCA

: (II.3.1)

The auxiliary functions UD1; UD2; UD3; UD4; q; Uin1 and Uin2 are given by

UD1 = y3 � y5 � y7 � Uin2(t);

UD2 = �y4 + y6 � y7 � Uin2(t);

UD3 = y4 + y5 + y7 + Uin2(t);

UD4 = �y3 � y6 + y7 + Uin2(t);

q(U) =
(e�U � 1); (II.3.2)

Uin1(t) = 0:5 sin(2000�t);

Uin2(t) = 2 sin(20000�t):

The values of the parameters are:

http://www.dm.uniba.it/~testset/src/problems/ringmod.f

II-3-2 ODE - Ring modulator

C = 1:6 � 10�8
Cs = 2 � 10�12
Cp = 10�8

Lh = 4:45
Ls1 = 0:002
Ls2 = 5 � 10�4
Ls3 = 5 � 10�4

 = 40:67286402 � 10�9

R = 25000
Rp = 50
Rg1 = 36:3
Rg2 = 17:3
Rg3 = 17:3
Ri = 50
Rc = 600
� = 17:7493332

The initial vector y0 is given by

y0 = (0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0)T:

The de�nition of the function q(U) in (II.3.2) may cause over
ow if �U becomes too large. In
the Fortran subroutine that de�nes f , we set IERR=-1 if �U > 300 to prevent this situation. See
page IV-ix of the description of the software part of the test set for more details on IERR.

3.3 Origin of the problem

The problem originates from electrical circuit analysis. It describes the behavior of the ring modulator,
of which the circuit diagram is given in Figure II.3.1. Given a low-frequency signal Uin1 and a high-
frequency signal Uin2, the ring modulator produces a mixed signal in U2.

Figure II.3.1: Circuit diagram for Ring Modulator (taken from [KRS92]).

Every capacitor in the diagram leads to a di�erential equation:

C _U = I:

ODE - Ring modulator II-3-3

Applying Kirchho�'s Current Law yields the following di�erential equations:

C _U1 = I1 �0:5I3 + 0:5I4 + I7 �R�1U1;

C _U2 = I2 �0:5I5 + 0:5I6 + I8 �R�1U2;

Cs _U3 = I3 �q(UD1) + q(UD4);

Cs _U4 = �I4 +q(UD2)� q(UD3);

Cs _U5 = I5 +q(UD1)� q(UD3);

Cs _U6 = �I6 �q(UD2) + q(UD4);

Cp _U7 = �R�1
p U7 + q(UD1) + q(UD2)� q(UD3)� q(UD4);

where UD1; UD2; UD3 and UD4 stand for:

UD1 = U3 � U5 � U7 � Uin2;
UD2 = �U4 + U6 � U7 � Uin2;
UD3 = U4 + U5 + U7 + Uin2;
UD4 = �U3 � U6 + U7 + Uin2:

The diode function q is given by
q(U) =
(e�U � 1);

where
 and � are �xed constants.
Every inductor leads to a di�erential equation as well:

L _I = U:

Applying Kircho�'s Voltage Law to closed loops that contains an inductor, results in another 8
di�erential equations:

Lh _I1 = �U1;

Lh _I2 = �U2;

Ls2 _I3 = 0:5U1 � U3 � Rg2I3;

Ls3 _I4 = �0:5U1 + U4 � Rg3I4;

Ls2 _I5 = 0:5U2 � U5 � Rg2I5;

Ls3 _I6 = �0:5U2 + U6 � Rg3I6;

Ls1 _I7 = �U1 + Uin1 � (Ri +Rg1)I7;

Ls1 _I8 = �U2 � (Rc +Rg1)I8:

Initially, all voltages and currents are zero.
Identifying the voltages with y1; : : : ; y7 and the currents with y8; : : : ; y15, we obtain the 15 dif-

ferential equations (II.3.1). From the plot of y2 = U2 in Figure II.3.2 we see how the low and high
frequency input signals are mixed by the ring modulator.

3.4 Numerical solution of the problem

Tables II.3.2{II.3.3 and Figures II.3.2{II.3.7 present the reference solution at the end of the integration
interval, the run characteristics, the behavior of the solution over the integration interval and the
work-precision diagrams, respectively. The reference solution was computed using PSIDE with atol

= rtol = 10�13. For the work-precision diagrams, we used: rtol = 10�(4+m=4), m = 0; 1; : : : ; 32;
atol = rtol; h0 = 10�2 � rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5. The
failed runs are in Table II.3.1; listed are the name of the solver that failed, for which values of m this
happened, and the reason for failing.

II-3-4 ODE - Ring modulator

Table II.3.1: Failed runs.

solver m reason
RADAU 0; 1; : : : ; 26 solver cannot handle IERR=-1.
RADAU5 0; 1; : : : ; 9 solver cannot handle IERR=-1.
VODE 0 solver cannot handle IERR=-1.
VODE 2 error test failed repeatedly.

Table II.3.2: Reference solution at the end of the integration interval.

y1 �0:2339057358486745 � 10�1
y2 �0:7367485485540825 � 10�2
y3 0:2582956709291169
y4 �0:4064465721283450
y5 �0:4039455665149794
y6 0:2607966765422943
y7 0:1106761861269975
y8 0:2939904342435596 � 10�6

y9 �0:2840029933642329 � 10�7
y10 0:7267198267264553 � 10�3
y11 0:7929487196960840 � 10�3
y12 �0:7255283495698965 � 10�3
y13 �0:7941401968526521 � 10�3
y14 0:7088495416976114 � 10�4
y15 0:2390059075236570 � 10�4

Table II.3.3: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�6 2:89 2:20 19415 19089 455877 17614 19127 3.0793
10�7 10�7 10�9 7:08 6:28 26590 25880 824318 25865 26585 5.5886

DDASSL 10�4 10�4 1:18 0:49 88627 86091 116778 3538 1.4230
10�7 10�7 3:22 2:53 252827 249239 318196 7777 4.0123

GAMD 10�4 10�4 10�6 2:34 1:65 12420 11264 474866 11264 12420 2.7572
10�7 10�7 10�9 6:11 5:42 18798 16913 1049423 16909 18793 6.0502

MEBDFI 10�4 10�4 10�6 2:54 1:85 61426 61208 201899 5374 5374 1.6416
10�7 10�7 10�9 5:28 4:59 148609 148298 483689 12471 12471 3.9831

PSIDE-1 10�4 10�4 1:29 0:60 9791 8241 267721 6834 38184 1.6709
10�7 10�7 5:21 4:53 55345 45636 886724 3984 111508 5.4656

RADAU5 10�7 10�7 10�9 4:49 3:80 102515 93113 545282 12316 54746 3.7742
VODE 10�7 10�7 2:84 2:15 217383 207569 261396 3605 22598 2.4019

ODE - Ring modulator II-3-5

References

[Hor76] E.H. Horneber. Analyse nichtlinearer RLC �U-Netzwerke mit Hilfe der gemischten Potential-

funktion mit einer systematischen Darstellung der Analyse nichtlinearer dynamischer Netz-

werke. PhD thesis, Universit�at Kaiserslautern, 1976.

[KRS92] W. Kampowski, P. Rentrop, and W. Schmidt. Classi�cation and numerical simulation of
electric circuits. Surveys on Mathematics for Industry, 2(1):23{65, 1992.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

II-3-6 ODE - Ring modulator

Figure II.3.2: Behavior of the �rst eight solution components solution over the integration interval.

ODE - Ring modulator II-3-7

Figure II.3.3: Behavior of the last seven solution components solution over the integration interval.

II-3-8 ODE - Ring modulator

Figure II.3.4: Work-precision diagram (scd versus CPU-time).

ODE - Ring modulator II-3-9

Figure II.3.5: Work-precision diagram (scd versus CPU-time).

II-3-10 ODE - Ring modulator

Figure II.3.6: Work-precision diagram (mescd versus CPU-time).

ODE - Ring modulator II-3-11

Figure II.3.7: Work-precision diagram (mescd versus CPU-time).

II-3-12 ODE - Ring modulator

ODE - Medical Akzo Nobel problem II-4-1

4 Medical Akzo Nobel problem

4.1 General information

The problem consists of 2 partial di�erential equations. Semi-discretization of this system yields a
sti� ODE. The parallel-IVP-algorithm group of CWI contributed this problem to the test set in
collaboration with R. van der Hout from Akzo Nobel Central Research.

The software part of the problem is in the �le medakzo.f available at [MI03].

4.2 Mathematical description of the problem

The problem is of the form

dy

dt
= f(t; y); y(0) = g; (II.4.1)

with
y 2 IR2N ; 0 � t � 20:

Here, the integer N is a user-supplied parameter. The function f is given by

f2j�1 = �j
y2j+1 � y2j�3

2��
+ �j

y2j�3 � 2y2j�1 + y2j+1
(��)2

� k y2j�1y2j ;

f2j = �k y2jy2j�1;

where

�j =
2(j�� � 1)3

c2
;

�j =
(j�� � 1)4

c2
:

Here, j ranges from 1 to N , �� = 1
N , y�1(t) = �(t), y2N+1 = y2N�1 and g 2 IR2N is given by

g = (0; v0; 0; v0; : : : ; 0; v0)
T:

The function � is given by

�(t) =

�
2 for t 2 (0; 5];
0 for t 2 (5; 20]:

which means that f undergoes a discontinuity in time at t = 5. Suitable values for the parameters k,
v0 and c are 100, 1 and 4, respectively.

4.3 Origin of the problem

The Akzo Nobel research laboratories formulated this problem in their study of the penetration of
radio-labeled antibodies into a tissue that has been infected by a tumor [Hou94]. This study was
carried out for diagnostic as well as therapeutic purposes.

Let us consider a reaction di�usion system in one spatial dimension:

@u

@t
=

@2u

@x2
� kuv; (II.4.2)

@v

@t
= �kuv; (II.4.3)

http://www.dm.uniba.it/~testset/src/problems/medakzo.f

II-4-2 ODE - Medical Akzo Nobel problem

which originates from the chemical reaction

A+B
k! C:

Here A, the radio-labeled antibody, reacts with substrate B, the tissue with the tumor, and k denotes
the rate constant. The concentrations of A and B are denoted by u and v, respectively. In the
derivation of the equations (II.4.2) and (II.4.3) it was assumed that the reaction is governed by mass
action kinetics and in addition that the chemical A is mobile while B is immobile.

Consider a clean semi-in�nite slab, in which the substrate B is uniformly distributed. When the
slab is exposed at its surface to the chemical A, this chemical starts to penetrate into the slab.

To model this penetration, the equations (II.4.2) and (II.4.3) are considered in the strip

ST = f(x; t) : 0 < x <1; 0 < t < Tg for some T;

along with the following initial and boundary conditions:

u(x; 0) = 0; v(x; 0) = v0 for x > 0;

where v0 is a constant, and
u(0; t) = �(t) for 0 < t < T:

In order to solve the problem numerically, we transform the variable x in such a way that the semi-
in�nite slab is transformed into a �nite one. A suitable transformation is provided by the following
special family of M�obius transformations:

� =
x

x+ c
; with c > 0:

Each transformation in this class transforms ST into the slab:

f(�; t) : 0 < � < 1; 0 < t < Tg:

In terms of � the problem now reads:

@u

@t
=

(� � 1)4

c2
@2u

@�2
+
2(� � 1)3

c2
@u

@�
� kuv; (II.4.4)

@v

@t
= �kuv; (II.4.5)

with initial conditions
u(�; 0) = 0; v(�; 0) = v0 for � > 0; (II.4.6)

and boundary conditions

u(0; t) = �(t);
@u

@�
(1; t) = 0 for 0 < t < T: (II.4.7)

The last boundary condition is derived from @u
@x (1; t) = 0.

The system consisting of (II.4.4), (II.4.5), (II.4.6) and (II.4.7) will be written as a system of
ordinary di�erential equations by using the method of lines, i.e. by discretizing the spatial derivatives.
We use the uniform grid f�jgj=1;:::;N de�ned by:

�j = j ���; j = 1; : : : ; N; �� =
1

N
:

ODE - Medical Akzo Nobel problem II-4-3

Let uj and vj denote the approximations of u(�j ; t) and v(�j ; t), respectively. Obviously, uj and vj
are functions of t. In terms of the function uj , our choices for the discretization of the spatial �rst
and second order derivatives read

@uj
@�

=
uj+1 � uj�1

2��
and

@2uj
@�2

=
uj�1 � 2uj + uj+1

(��)2
;

respectively, where j = 1; : : : ; N . Suitable values for u0 and uN+1 are obtained from the boundary
conditions. They are given by u0 = �(t) and uN+1 = uN .

De�ning y(t) by y = (u1; v1; u2; v2; : : : ; uN ; vN)
T; and choosing T = 20, this semi-discretized

problem is precisely the ODE (II.4.1).
To give an idea of the solution to the PDE (II.4.4){(II.4.7), Figure II.4.1 plots u and v as function

of x and t. We nicely see that injection of chemical A (locally) destroys B.

Figure II.4.1: u and v as function of time and space.

4.4 Numerical solution of the problem

The numerical experiments were done for the case N = 200. In Table II.4.1 we give the value of
some components of the reference solution at the end of the integration interval. These components
correspond to the values of u and v in x = 1, 2:4, 4:0 and 6:0. For the complete reference solution we
refer to the Fortran subroutine solut. Figure II.4.2 plots the behavior of the solution components yi
for i 2 f79; 80; 133; 134; 171; 172; 199; 200g, which correspond to approximations of the PDE solutions
u and v on the grid lines x = 1, 2, 3 and 4. Table II.4.2 and Figures II.4.3{II.4.6 show the run

II-4-4 ODE - Medical Akzo Nobel problem

Table II.4.1: Reference solution at the end of the integration interval.

y79 0:2339942217046434 � 10�3
y80 �0:1127916494884468 � 10�141
y149 0:3595616017506735 � 10�3
y150 0:1649638439865233 � 10�86

y199 0:11737412926802 � 10�3
y200 0:61908071460151 � 10�5
y239 0:68600948191191 � 10�11
y240 0:99999973258552

Table II.4.2: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�9 4:94 4:92 110 110 1565 90 110 0.1932
10�7 10�7 10�12 8:19 8:13 125 125 3496 115 125 0.4451

DDASSL 10�4 10�4 3:41 3:35 381 373 550 46 0.1200
10�7 10�7 5:69 5:69 1378 1369 1700 62 0.3972

GAMD 10�4 10�4 10�9 5:03 5:01 66 66 2116 66 66 0.2235
10�7 10�7 10�12 7:79 7:78 104 104 4760 104 104 0.5290

MEBDFI 10�4 10�4 10�9 3:95 3:94 375 361 1238 70 70 0.2235
10�7 10�7 10�12 7:44 7:43 826 803 2749 104 104 0.5046

PSIDE-1 10�4 10�4 5:16 5:00 118 83 1263 34 456 0.1776
10�7 10�7 7:18 7:12 159 145 2838 109 624 0.3445

RADAU 10�4 10�4 10�9 3:87 3:82 93 93 747 60 93 0.0859
10�7 10�7 10�12 6:93 6:92 100 100 1807 58 100 0.1972

VODE 10�4 10�4 2:84 2:84 364 359 506 10 62 0.0625
10�7 10�7 5:62 5:61 1036 1023 1217 19 101 0.1571

characteristics, and the work-precision diagrams, respectively. The reference solution was computed
on the Cray C90, using PSIDE with Cray double precision and atol = rtol = 10�10. For the work-
precision diagrams, we used: rtol = 10�(4+m=8), m = 0; 1; : : : ; 40; atol = rtol; h0 = 10�5 � rtol for
BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5. Since some solution components
are zero, all scd values presented here denote absolute precision.

References

[Hou94] R. van der Hout, 1994. Private communication.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

ODE - Medical Akzo Nobel problem II-4-5

Figure II.4.2: Behavior of some solution components over the integration interval.

II-4-6 ODE - Medical Akzo Nobel problem

Figure II.4.3: Work-precision diagram (scd versus CPU-time).

ODE - Medical Akzo Nobel problem II-4-7

Figure II.4.4: Work-precision diagram (scd versus CPU-time).

II-4-8 ODE - Medical Akzo Nobel problem

Figure II.4.5: Work-precision diagram (mescd versus CPU-time).

ODE - Medical Akzo Nobel problem II-4-9

Figure II.4.6: Work-precision diagram (mescd versus CPU-time).

II-4-10 ODE - Medical Akzo Nobel problem

ODE - EMEP problem II-5-1

5 EMEP problem

5.1 General information

The problem is a sti� system of 66 ordinary di�erential equations. The `Mathematics and the Envi-
ronment' project group at CWI contributed this problem to the test set. The software part of the
problem is in the �le emep.f available at [MI03].

5.2 Mathematical description of the problem

The problem is of the form

dy

dt
= f(t; y); y(0) = g;

with
y 2 IR66; 14400 � t � 417600:

The initial vector g = (gi) is given by

gi =

8>>>>>>>>>>>><>>>>>>>>>>>>:

1:0 � 109 for i = 1;
5:0 � 109 for i 2 f2; 3g;
3:8 � 1012 for i = 4;
3:5 � 1013 for i = 5;
1:0 � 107 for i 2 f6; 7; : : : ; 13g;
5:0 � 1011 for i = 14;
1:0 � 102 for i 2 f15; 16; : : : ; 37g;
1:0 � 10�3 for i = 38;
1:0 � 102 for i 2 f39; 40; : : : ; 66g:

The function f has discontinuities in time at t = 3600(4+24i) and t = 3600(�4+24i) for i = 1; 2; 3; 4; 5.
Since f is too voluminous to be described here, we refer to the Fortran subroutine feval and to [VS94]
to get more insight in the function.

5.3 Origin of the problem

The problem is the chemistry part of the EMEP MSC-W ozone chemistry model, which is in devel-
opment at the Norwegian Meteorological Institute in Oslo, Norway. About 140 reactions with a total
of 66 species are involved. Below we give the correspondence between the solution vector y and the
chemical species.

y = (NO, NO2, SO2, CO, CH4, C2H6,
NC4H10, C2H4, C3H6, OXYL, HCHO, CH3CHO,
MEK, O3, HO2, HNO3, H2O2, H2,
CH3O2, C2H5OH, SA, CH3O2H, C2H5O2, CH3COO,
PAN, SECC4H, MEKO2, R2OOH, ETRO2, MGLYOX,
PRRO2, GLYOX, OXYO2, MAL, MALO2, OP,
OH, OD, NO3, N2O5, ISOPRE, NITRAT,
ISRO2, MVK, MVKO2, CH3OH, RCO3H, OXYO2H,
BURO2H, ETRO2H, PRRO2H, MEKO2H, MALO2H, MACR,
ISNI, ISRO2H, MARO2, MAPAN, CH2CCH3, ISONO3,
ISNIR, MVKO2H, CH2CHR, ISNO3H, ISNIRH, MARO2H)T.

http://www.dm.uniba.it/~testset/src/problems/emep.f

II-5-2 ODE - EMEP problem

Table II.5.1: Reference solution at the end of the integration interval.

NO =0:2564580511140732 � 108
NO2 =0:5146134770952715 � 1011
SO2 =0:2315679957701715 � 1012

CH4 =0:3459285326034955 � 1014
O3 =0:3150308585365321 � 1013
N2O5 =0:7684596616753747 � 109

The integration interval covers 112 hours. Rate coe�cients are often variable. Some of them undergo
a discontinuity at sunrise and sunset, which correspond to t = 3600(�4 + 24i), respectively, for
i = 1; 2; 3; 4; 5. The unit of the species is number of molecules per cm3, the time t is in seconds. The
test problem corresponds to the rural case in [VS94]. From the plot of O3 versus time in Figure II.5.1
we see that in this model the ozone concentration steadily grows over the integration interval. A more
elaborate description of the model can be found in [VS94], [Sim93] and [SASJ93].

5.4 Numerical solution of the problem

Table II.5.1 and Figure II.5.1 present the value of reference solution at the end of the integration
interval t = 417600 and the behavior of the solution over the integration interval of the components
of y corresponding to NO, NO2, SO2, CH4, O3 and N2O5 (i.e. y1, y2, y3, y5, y14 and y40). For the
complete reference solution at the end of the integration interval we refer to the Fortran subroutine
solut. The values at the horizontal axis in Figure II.5.1 denote the time t in hours modulo 24 hours.
Table II.5.2 and Figures II.5.2{II.5.5 contain the run characteristics and the work-precision diagrams,
respectively. Since components y36 and y38 are relatively very small and physically unimportant,
we did not include these components in the computation of the scd value. The reference solution
was computed using RADAU5 with rtol = 10�14, atol = 10�8, h0 = 10�8. For the work-precision
diagrams, we used: rtol = 10�(2+m=8), m = 0; 1; : : : ; 32; atol = 1 and h0 = 10�7 for BIMD, GAMD,
MEBDFDAE, MEBDFI, RADAU and RADAU5.

References

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

[SASJ93] D. Simpson, Y. Andersson-Skold, and M.E. Jenkin. Updating the chemical scheme for the
EMEP MSC-W model: Current status. Report EMEP MSC-W Note 2/93, The Norwegian
Meteorological Institute, Oslo, 1993.

[Sim93] D. Simpson. Photochemical model calculations over Europe for two extended summer
periods: 1985 and 1989. model results and comparisons with observations. Atmospheric

Environment, 27A:921{943, 1993.

[VS94] J.G. Verwer and D. Simpson. Explicit methods for sti� ODEs from atmospheric chemistry.
Report NM-R9409, CWI, Amsterdam, 1994.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

ODE - EMEP problem II-5-3

Table II.5.2: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�2 1 10�7 1:63 2:48 300 278 4797 212 296 0.3250
10�4 1 10�7 2:39 2:39 509 485 8292 445 501 0.5553
10�6 1 10�7 5:12 5:12 808 748 17116 639 793 1.0873

DDASSL 10�2 1 1:57 1:82 741 701 1340 171 0.1200
10�4 1 3:48 3:48 1938 1880 3322 254 0.2557
10�6 1 5:35 5:35 3964 3851 6221 404 0.4714

GAMD 10�2 1 10�7 2:46 2:46 347 283 10656 283 347 0.4851
10�4 1 10�7 2:92 2:92 335 300 13551 300 335 0.6188
10�6 1 10�7 4:66 4:64 607 503 28488 504 607 1.2629

MEBDFI 10�2 1 10�7 1:17 1:17 649 597 2537 130 130 0.1454
10�4 1 10�7 3:53 3:53 1320 1252 4834 216 216 0.2772
10�6 1 10�7 4:80 4:80 2621 2458 9214 406 406 0.5407

PSIDE-1 10�2 1 1:58 2:39 490 438 6954 175 1908 0.8462
10�4 1 2:29 2:29 509 447 9241 213 1980 0.9516
10�6 1 3:97 3:95 769 650 15861 335 2716 1.4240

RADAU 10�2 1 10�7 1:59 2:57 398 325 3510 224 398 0.6159
10�4 1 10�7 2:68 2:68 542 492 4815 377 542 0.8433
10�6 1 10�7 3:62 3:60 463 390 10241 281 463 1.3566

VODE 10�2 1 0:87 0:87 884 859 1409 62 272 0.1396
10�4 1 2:49 2:49 2296 2199 3547 64 383 0.2586
10�6 1 4:51 4:49 4302 4078 6090 82 637 0.4431

II-5-4 ODE - EMEP problem

Figure II.5.1: Behavior of the solution over the integration interval.

ODE - EMEP problem II-5-5

Figure II.5.2: Work-precision diagram (scd versus CPU-time).

II-5-6 ODE - EMEP problem

Figure II.5.3: Work-precision diagram (scd versus CPU-time).

ODE - EMEP problem II-5-7

Figure II.5.4: Work-precision diagram (mescd versus CPU-time).

II-5-8 ODE - EMEP problem

Figure II.5.5: Work-precision diagram (mescd versus CPU-time).

ODE - Pleiades problem II-6-1

6 Pleiades problem

6.1 General information

The problem consists of a nonsti� system of 14 special second order di�erential equations rewritten
to �rst order form, thus providing a nonsti� system of ordinary di�erential equations of dimension 28.
The formulation and data have been taken from [HNW93]. E. Messina contributed this problem to
the test set. Comments to eleonora.messina@unina.it.

The software part of the problem is in the �le plei.f available at [MI03].

6.2 Mathematical description of the problem

The problem is of the form

z00 = f(z); z(0) = z0; z0(0) = z00; (II.6.1)

with
z 2 IR14; 0 � t � 3:

De�ning z := (xT; yT)T, x; y 2 IR7, the function f : IR14 ! IR14 is given by f(z) = f(x; y) =
(f (1)(x; y)T; f (2)(x; y)T)T, where f (1;2) : IR14 ! IR7 read

f
(1)
i =

X
j 6=i

mj(xj � xi)=r
3

2

ij ; f
(2)
i =

X
j 6=i

mj(yj � yi)=r
3

2

ij ; i = 1; : : : ; 7: (II.6.2)

Here, mi = i and
rij = (xi � xj)

2 + (yi � yj)
2:

We write this problem to �rst order form by de�ning w = z0, yielding a system of 28 non-linear
di�erential equations of the form �

z
w

�0
=

�
w
f(z)

�
(II.6.3)

with
(zT; wT)T 2 IR28; 0 � t � 3:

The initial values are

�
z0
w0

�
=

0BB@
x0
y0
x00
y00

1CCA ; where

8>><>>:
x0 = (3; 3;�1;�3; 2;�2; 2)T;
y0 = (3;�3; 2; 0; 0;�4; 4)T;
x00 = (0; 0; 0; 0; 0; 1:75;�1:5)T;
y00 = (0; 0; 0;�1:25; 1; 0; 0)T:

6.3 Origin of the problem

The Pleiades problem is a celestial mechanics problem of seven stars in the plane of coordinates xi,
yi and masses mi = i (i = 1; : : : ; 7). We obtain the formulation of the problem by means of some
mechanical considerations. Let us consider the body i. According to the second law of Newton this
star is subjected to the action

Fi = mip
00
i ; (II.6.4)

where pi := (xi; yi)
T. On the other hand, the law of gravity states that the force working on body i

implied by body j, denoted by Fij , is

Fij = g
mi �mj

kpi � pjk22
dij : (II.6.5)

http://www.dm.uniba.it/~testset/src/problems/plei.f

II-6-2 ODE - Pleiades problem

Figure II.6.1: Trajectories of the �rst and third body on [0; 2].

Table II.6.1: Quasi-collisions in Pleiades problem. The squared distance between body i and body j at t = � is listed
(values taken from [HNW93]).

i 1 1 3 1 2 5
j 7 3 5 7 6 7
� 1:23 1:46 1:63 1:68 1:94 2:14

kpi � pjk
2

2
0:0129 0:0193 0:0031 0:0011 0:1005 0:0700

Here, Fi, Fij 2 IR2, g is the gravitational constant, which is assumed to be one here, and dij =
pj�pi

kpj�pik2
represents the direction of the distance between the two stars. According to the principle of

superposition of actions, Fi will be the sum of the interactions between body i and all the others,

Fi =
X
i6=j

Fij : (II.6.6)

It is easily checked that (II.6.4){(II.6.6) and (II.6.2) are the same.
During the movement of the 7 bodies several quasi-collisions occur which are displayed in Ta-

ble II.6.1. In Figure II.6.1 the behaviors of the bodies 1 and 3 in the interval [0; 2] are shown; the
circles and the crosses represent data obtained every 0:05 sec, the link `{{' indicates the distance
occurring between the two stars at t = 1:45.

6.4 Numerical solution of the problem

One should be aware of the fact that the Pleiades problem is a nonsti� ODE. Therefore we also include
the results obtained by the nonsti� solver DOPRI5[HW96], which is based on an explicit Runge{Kutta
method.

ODE - Pleiades problem II-6-3

Table II.6.2: Reference solution at the end of the integration interval.

x1 0:3706139143970502
x2 0:3237284092057233 � 10
x3 �0:3222559032418324 � 10
x4 0:6597091455775310
x5 0:3425581707156584
x6 0:1562172101400631 � 10
x7 �0:7003092922212495
x01 0:3417003806314313 � 10
x02 0:1354584501625501 � 10
x03 �0:2590065597810775 � 10
x04 0:2025053734714242 � 10
x05 �0:1155815100160448 � 10
x06 �0:8072988170223021
x07 0:5952396354208710

y1 �0:3943437585517392 � 10
y2 �0:3271380973972550 � 10
y3 0:5225081843456543 � 10
y4 �0:2590612434977470 � 10
y5 0:1198213693392275 � 10
y6 �0:2429682344935824
y7 0:1091449240428980 � 10
y01 �0:3741244961234010 � 10
y02 0:3773459685750630
y03 0:9386858869551073
y04 0:3667922227200571
y05 �0:3474046353808490
y06 0:2344915448180937 � 10
y07 �0:1947020434263292 � 10

Tables II.6.2{II.6.3 and Figures II.6.2{II.6.4 present the reference solution at the end of the in-
tegration interval, the run characteristics, the behavior of the solution components x1 and y1 over
the integration interval and the work-precision diagrams, respectively. The computation of the scd
values is based on the �rst 14 components, since they refer to the physically important quantities.
The reference solution was computed on the Cray C90, using PSIDE with Cray double precision and
atol = rtol = 10�16. For the work-precision diagrams, we used: rtol = 10�(4+m=4), m = 0; 1; : : : ; 24;
atol = rtol; h0 = 10�2 � rtol for BIMD, GAMD, RADAU, RADAU5 and MEBDFDAE.

.
With respect to the RADAU and RADAU5 results in Table II.6.3 and Figures II.6.3{II.6.4, we

remark that for generality of the test set drivers, we did not use the facility to exploit the special
structure of problems of the form (II.6.3). By setting the input parameter IWORK(9)=14, and adjusting
the Jacobian routine appropriately, RADAU and RADAU5 produces considerably better results.

These results are listed for RADAU in Table II.6.4.

References

[HNW93] E. Hairer, S.P. N�rsett, and G. Wanner. Solving Ordinary Di�erential Equations I: Nonsti�
Problems. Springer-Verlag, second revised edition, 1993.

[HW96] E. Hairer and G. Wanner. DOPRI5, April 25, 1996. Bug �x release sep 18, 1998. Available
at http://www.unige.ch/�hairer/prog/nonstiff/dopri5.f.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

http://www.unige.ch/~hairer/prog/nonstiff/dopri5.f
http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

II-6-4 ODE - Pleiades problem

Table II.6.3: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�6 2:69 2:12 113 105 1955 79 110 0.0449
10�7 10�7 10�9 5:38 4:81 138 127 4013 123 138 0.0888
10�10 10�10 10�12 8:60 8:42 154 138 6947 129 152 0.1562

DDASSL 10�4 10�4 0:80 0:23 428 390 589 49 0.0185
10�7 10�7 3:43 3:24 1237 1224 1674 59 0.0517
10�10 10�10 5:88 5:72 3778 3773 4709 61 0.1425

DOPRI5 10�4 10�4 1:06 0:50 100 74 602 0.0059
10�7 10�7 4:06 3:49 295 244 1772 0.0176
10�10 10�10 8:06 7:83 940 940 5642 0.0566

GAMD 10�4 10�4 10�6 1:54 0:97 85 69 2751 69 85 0.0566
10�7 10�7 10�9 4:81 4:57 122 104 5163 104 122 0.1083
10�10 10�10 10�12 7:65 7:30 183 177 7927 173 183 0.1649

MEBDFI 10�4 10�4 10�6 1:12 0:56 387 366 1339 56 56 0.0303
10�7 10�7 10�9 3:84 3:62 835 816 2764 86 86 0.0654
10�10 10�10 10�12 7:14 6:94 1868 1868 6119 189 189 0.1454

PSIDE-1 10�4 10�4 2:23 1:82 102 76 1710 27 364 0.0410
10�7 10�7 5:26 4:70 248 223 3187 1 592 0.0712
10�10 10�10 8:12 7:55 807 807 9095 1 604 0.1786

RADAU 10�4 10�4 10�6 2:67 2:11 151 138 1053 132 151 0.0303
10�7 10�7 10�9 6:20 6:17 112 95 2153 83 112 0.0547
10�10 10�10 10�12 9:41 9:20 130 119 3001 91 130 0.0742

VODE 10�4 10�4 0:40 �0:17 352 325 468 6 57 0.0117
10�7 10�7 2:76 2:57 1081 1043 1232 18 94 0.0303
10�10 10�10 5:41 5:20 3120 3079 3351 51 203 0.0830

Table II.6.4: Run characteristics obtained by RADAU with exploited special structure.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

RADAU 10�4 10�4 10�6 1:72 2:11 151 138 1053 132 151 0.0234
10�7 10�7 10�9 5:13 6:17 112 95 2153 83 112 0.0429
10�10 10�10 10�12 8:27 9:20 130 119 3001 91 130 0.0586

ODE - Pleiades problem II-6-5

Figure II.6.2: Behavior of the two solution components corresponding to the �rst body over the integration interval.

II-6-6 ODE - Pleiades problem

Figure II.6.3: Work-precision diagram (scd versus CPU-time).

ODE - Pleiades problem II-6-7

Figure II.6.4: Work-precision diagram (scd versus CPU-time).

II-6-8 ODE - Pleiades problem

Figure II.6.5: Work-precision diagram (mescd versus CPU-time).

ODE - Pleiades problem II-6-9

Figure II.6.6: Work-precision diagram (mescd versus CPU-time).

ODE - Problem BEAM II-7-1

7 Problem BEAM

7.1 General information

The problem is originally described by a partial di�erential equation subject to boundary conditions.
The semi-discretization in space of this equation leads to a sti� system of n non-linear second order
di�erential equations which is rewritten to �rst order form, thus providing a sti� system of ordinary
di�erential equations of dimension 2n. The formulation and data have been taken from [HW96].The
INdAM-Bari Test Set group contributed this problem to the test set.The software part of the problem
is in the �les beam.f available at [MI03].

7.2 Mathematical description of the problem

The problem is of the form

z00 = f(t; z; z0); z(0) = z0 z0(0) = z00;

with

z 2 Rn; t � 0:

The function f : Rn ! Rn is de�ned by

f(t; z; z0) = Cv +Du:

Here C is the tridiagonal n� n matrix whose entries are given by8<:
(C)11 = 1; (C)nn = 3; and (C)ll = 2; l = 2; : : : ; n� 1;
(C)l;l+1 = � cos(zl � zl+1); l = 1; : : : ; n� 1;
(C)l;l�1 = � cos(zl � zl�1); l = 2; : : : ; n;

and D is the n� n bidiagonal matrix whose lower and upper diagonal entries are�
(D)l;l+1 = � sin(zl � zl+1); l = 1; : : : ; n� 1;
(D)l;l�1 = � sin(zl � zl�1); l = 2; : : : ; n;

v = (v1; v2; : : : ; vn)
T is de�ned by

vl = n4(zl�1 � 2zl + zl+1) + n2(cos(zl)Fy � sin(zl)Fx); l = 1; : : : ; n

with z0 = �z1, zn+1 = zn, and u is the column vector of size n solution of the tridiagonal system

Cu = g

with g = Dv + (z021 ; z
02
2 ; : : : ; z

02
n)

T:
We write this problem to �rst order form by de�ning w = z0, yelding a system of 2n non-linear

di�erential equations of the form �
z
w

�0
=

�
w

f(t; z; w)

�
with

(z; w)T 2 R2n; t � 0:

The initial values are�
z0
w0

�
=

�
z0
z00

�
; where

�
z0 = (0; 0: : : : ; 0)T

z00 = (0; 0; : : : ; 0)T

http://www.dm.uniba.it/~testset/src/problems/beam.f

II-7-2 ODE - Problem BEAM

7.3 Origin of the problem

The BEAM problem originates from mechanics and describes the motion of an elastic beam which is
supposed inextensible, of length 1 and thin. Moreover, it is assumed that the beam is clamped at one
end and a force F = (Fu; Fv) acts at the free end. As coordinate system it is used the angle � as a
function of arc length s and time t: The beam is then described by the equations

u(s; t) =

Z s

0

cos �(�; t) d�; v(s; t) =

Z s

0

sin �(�; t) d�:

In order to obtain the equations of motion for this problem, the Lagrange theory is applied. Let T be
the kinetic and U the potential energy de�ned respectively as follows

T =
1

2

Z 1

0

((_u(s; t))2 + (_v(s; t))2) ds

U =
1

2

Z 1

0

((�
0

(s; t))2 ds� Fu(t)u(1; t)� Fv(t)v(1; t):

Here dots and primes denote derivatives with respect to t and s; respectively.
Using the Hamilton principle, the equations of motion are derived. They areZ 1

0

G(s; �) cos(�(s; t)� �(�; t))��(�; t) d� =

= �
00

(s; t) + cos �(s; t)Fv(t)� sin �(s; t)Fu(t) (II.7.1)

�
Z 1

0

G(s; �) sin(�(s; t)� �(�; t))(_�(�; t))2 d�

�(0; t) = 0; �
0

(1; t) = 0

where

G(s; �) = 1�max(s; �)

is the Green function for the problem �w00

(s) = g(s); w
0

(0) = w(1) = 0:
We discretize the integrals with the midpoint rule:Z 1

0

f(�(�; t)) d� =
1

n

nX
k=1

f(�k); �k = �
�
(k � 1

2
)
1

n
; t
�
; k = 1; : : : ; n:

Equations (II.7.1) then become

nX
k=1

a`k��k = n4(�`�1 � 2�` + �`+1) + n2(cos �` Fv � sin �` Fu)

�
nX

k=1

g`k sin(�` � �k) _�
2
k; ` = 1; : : : ; n;

�0 = ��1; �n+1 = �n;

where

a`k = g`k cos(�` � �k); g`k = n+
1

2
�max(`; k):

ODE - Problem BEAM II-7-3

Table II.7.1: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�4 3:53 3:58 60 60 1249 58 59 0.2137
10�7 10�7 10�7 5:61 6:97 777 777 16197 722 744 2.7308

DDASSL 10�4 10�4 1:83 2:29 29120 28928 30700 243 3.1544
10�7 10�7 4:63 5:25 51757 51160 56908 768 6.4455

GAMD 10�4 10�4 10�4 3:58 3:59 49 49 1715 49 49 0.2030
10�7 10�7 10�7 5:49 6:28 459 458 21156 458 459 2.2321

MEBDFI 10�4 10�4 10�4 2:56 1:92 578 559 6447 55 55 0.2284
10�7 10�7 10�7 5:20 5:26 38693 38645 292234 2054 2054 12.7690

PSIDE-1 10�4 10�4 2:52 2:14 42 36 1096 29 168 0.2303
10�7 10�7 4:28 5:44 241 208 8006 192 964 1.4806

RADAU 10�4 10�4 10�4 3:57 2:49 62 55 406 43 61 0.2645
10�7 10�7 10�7 4:24 5:72 71 71 1653 46 60 0.5632

VODE 10�4 10�4 �0:25 1:09 60537 60519 145514 1009 3041 7.3727
10�7 10�7 4:40 6:48 58132 57793 139394 967 3338 7.8080

In Hairer & Wanner [HW96] the exterior forces are chosen as

Fu = �'(t); Fv = '(t); '(t) =

�
1:5 sin2 t; 0 � t � �;

0; � � t;

and the initial conditions are taken to be

�(s; 0) = 0; _�(s; 0) = 0:

7.4 Numerical solution of the problem

The resulting system of ODEs is integrated for 0 � t � 5, using n = 40. Table II.7.1 and Figures
II.7.1-II.7.3 present the run characteristics, the behavior of the solution components z10; z20; z30
and z40 over the interval and the work-precision diagrams, respectively. The computation of the scd
values is based on the �rst 40 components, since they refer to the physically important quantities.
The reference solution was computed by RADAU on an Alphaserver DS20E, with a 667 MHz EV67
processor, using double precision work(1) = uround = 1:01 �10�19, rtol = atol = h0 = 1:1 �10�18.
For the work-precision diagrams, we used: rtol = 10�(4+m=4), m = 0; : : : ; 16; atol = rtol; h0 = rtol for
BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5.

With respect to the RADAU and RADAU5 results in Table II.7.1 and Figures II.7.2{II.7.5, we
remark that for generality of the test set drivers, we did not use the facility to exploit the special
structure of problems. By setting the input parameter IWORK(9)=40, and adjusting the Jacobian
routine appropriately, RADAU and RADAU5 produce considerably better results.

These results are listed for RADAU in Table II.7.2.

References

[HW96] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-

algebraic Problems. Springer-Verlag, second revised edition, 1996.

II-7-4 ODE - Problem BEAM

Table II.7.2: Run characteristics obtained by RADAU with exploited special structure.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

RADAU 10�4 10�4 10�4 3:42 2:49 62 55 406 43 61 0.0869
10�7 10�7 10�7 4:24 5:72 71 71 1653 46 60 0.1728

Figure II.7.1: Behavior of the solution components z10; z20; z30 and z40 over the integration interval

ODE - Problem BEAM II-7-5

Figure II.7.2: Work-precision diagram (scd versus CPU-time).

II-7-6 ODE - Problem BEAM

Figure II.7.3: Work-precision diagram (scd versus CPU-time).

ODE - Problem BEAM II-7-7

Figure II.7.4: Work-precision diagram(mescd versus CPU-time) .

II-7-8 ODE - Problem BEAM

Figure II.7.5: Work-precision diagram (mescd versus CPU-time) .

ODE - Problem BEAM II-7-9

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

II-7-10 ODE - Problem BEAM

ODE - Problem VDPOL II-8-1

8 Problem VDPOL

8.1 General information

The problem consists of a second order di�erential equation rewritten to �rst order form, thus providing
a system of ordinary di�erential equations of dimension 2. It was proposed by B. van der Pol in the
1920's [vdP20], [vdP26]. The INdAM-Bari Test Set group contributed this problem to the test set.
Most of the documentation about this problem has been retrieved from [EP02]. The software part
of the problem is in the �les vdpol.f and vdpolm.f available at [MI03].

8.2 Mathematical description of the problem

The problem is of the form

z00 = f(z; z0); z(0) = z0 z0(0) = z00;

with
z 2 IR; t 2 [0; T];

where the function f is given by

f(z; z0) = �(1� z2)z0 � z; � > 0: (II.8.1)

We write this problem to �rst order form by de�ning y1 = z and y2 = z0, yelding a system of 2
nonlinear di�erential equations of the form�

y1
y2

�0
=

�
y2

f(y1; y2)

�
(II.8.2)

with
(y1; y2)

T 2 IR2; t 2 [0; T]:

A rescaling of the solutions of (II.8.2) results in the following formulation�
y1
y2

�0
=

�
y2ef(y1; y2)

�
; (II.8.3)

where ef(y1; y2) = ((1� y21)y2 � y1)=�; � > 0:

Problem (II.8.2) will be referred to as vdpol� and problem (II.8.3) as vdpol�. The initial values are�
y1(0)
y2(0)

�
=

�
z0
z00

�
where

�
z0 = 2
z00 = 0

:

8.3 Origin of the problem

The VDPOL problem originates from electronics and describes the behaviour of nonlinear vacuum
tube circuits. The circuit scheme, designed by Balthazar van der Pol in the 1920's, is given in Figure
II.8.1. This is an RLC loop, but with the passive resistor of Ohm's Law replaced by an active element
which would pump energy into the circuit whenever the amplitude of the current falls below a certain
level. In the 1920's this active element was an array of vacuum tubes, now it is a semiconductor device.
The voltage drop at the semiconductor (which used to be RI) is given by a nonlinear function f(I) of

http://www.dm.uniba.it/~testset/src/problems/vdpol.f
http://www.dm.uniba.it/~testset/src/problems/vdpolm.f

II-8-2 ODE - Problem VDPOL

Figure II.8.1: Negative resistance oscillatory circuit

the current I. If we substitute f(I) for RI in the standard RLC-circuit equation LI 00+RI 0+ I=C = 0,
the current in the circuit turns out to be modeled by

LI 00 + f 0(I)I 0 + I=C = 0: (II.8.4)

In a 1924 study of oscillator circuits in early commercial radios (at Philips research laboratories),
B. van der Pol assumed the voltage drop to be represented by the nonlinear function f(I) = bI3� aI,
which with equation (II.8.4) leads to

LI 00 + (3bI2 � a)I 0 + I=C = 0: (II.8.5)

This equation is also closely related to the equation introduced by the British mathematical physi-
cist Lord Rayleigh (John William Strutt, 1842 - 1919) to model the oscillations of a clarinet reed. For
more details see [EP02].

If we denote by � the time variable in Eq. (II.8.5) and make the substitutions I = pz and t =
�=
p
LC, the result is

d2z

dt2
+ (3bp2z2 � a)

r
C

L

dz

dt
+ z = 0:

With p =
p
a=(3b) and � = a

p
C=L this gives the standard form

z00 + �(z2 � 1)z0 + z = 0

of the van der Pol's equation.
The van der Pol equation is often used as a test problem for ODEs solvers. It has two periodic

solutions, the constant solution, z(t) � 0, that is unstable, and the nontrivial periodic solution (roughly
corresponding to the initial conditions z(0) = 2; z0(0) = 0), that is named `limit cycle' because all the
other nontrivial solutions converge to this one as t!1.

This qualitative behavior is well shown in the phase plane plot in Figure II.8.2 (for � = 2), where
outward and inward spiral trajectories converge to the limit cycle (the closed curve).

The parameter � > 0 weights the importance of the nonlinear part of the equation. When � is
`large' the approach to the limit cycle is quite rapid (see Figure II.8.3 for � = 103) and the van der
Pol equation is more interesting because of the non negligible in
uence of the nonlinear term. From

ODE - Problem VDPOL II-8-3

Figure II.8.2: Limit cycle for � = 2

an analysis of the behavior of the limit cycle [Sha94] it turns out that it can be described in terms of
portions where the solution components change slowly and the problem is quite sti�, alternating with
regions of very sharp change (quasi-discontinuities) where it is non-sti�. Thus, the problem switches
from sti� to non sti� with a very sharp changing solution that makes the equation quite challenging
for ODEs solvers.

The van der Pol equation may be treated in di�erent ways, the most straightforward is to split the
equation into a system of two �rst order di�erential equations as in (II.8.2). Note that if the second
of the equations is divided by � we get an equation that has the character of a singular perturbation
problem. Several other approaches may show other aspects on the nature of this problem. For example
Hairer and Wanner [HW96] introduce the following scaling transformation of (II.8.2) to make the
steady-state approximation independent of �:

x = t=�; w1(x) = y1(t); w2(x) = �y2(t)

Substituting in (II.8.2) and using again y for w and t for x, the equation (II.8.3) is obtained with
" = 1=�2. The scaled version (II.8.3) has the advantage that a small interval independent of the
parameter value can be considered to track at least one period of the solution.

8.4 Numerical solution of the problem

8.4.1 vdpol� with � = 103 and t 2 [0; 2�]

Tables II.8.1, II.8.2 and Figures II.8.4, II.8.6{II.8.9 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the �rst component of the solution over
the integration interval and the work-precision diagrams, respectively. The reference solution was
computed by RADAU on an Alphaserver DS20E, with a 667 MHz EV67 processor, using double
precision work(1) = uround = 1:01 �10�19, rtol = atol = h0 = 1:1 �10�18. For the work-precision
diagrams, we used: rtol = 10�(4+m=4), m = 0; 1; : : : ; 32; atol = rtol; h0 = 10�2 � rtol for BIMD,
GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5.

II-8-4 ODE - Problem VDPOL

Figure II.8.3: Limit cycle for � = 103

Figure II.8.4: Behavior of the solution component y1 over the integration interval

8.4.2 vdpol� with � = 10�6 and t 2 [0; 2]

Tables II.8.3, II.8.4 and Figures II.8.5, II.8.10{II.8.13 present the reference solution at the end of
the integration interval, the run characteristics, the behavior of the �rst component of the solution
over the integration interval and the work-precision diagrams, respectively. The reference solution
was computed by RADAU on an Alphaserver DS20E, with a 667 MHz EV67 processor, using double
precision work(1) = uround = 1:01 �10�19, rtol = atol = h0 = 1:1 �10�18. For the work-precision

Table II.8.1: Reference solution at the end of the integration interval.

y1 0:1706167732170469 � 101
y2 �0:8928097010248125 � 10�3

ODE - Problem VDPOL II-8-5

Table II.8.2: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�6 4:05 3:57 133 112 2801 104 133 0.0020
10�7 10�7 10�9 9:18 8:80 224 219 5072 209 224 0.0029
10�10 10�10 10�12 11:17 10:32 250 248 10151 237 250 0.0078

DDASSL 10�4 10�4 2:88 2:37 549 507 940 122 0.0020
10�7 10�7 5:57 5:06 1342 1296 1980 129 0.0049
10�10 10�10 8:25 7:73 4484 4445 5943 168 0.0166

GAMD 10�4 10�4 10�6 4:86 4:30 129 90 5133 91 129 0.0039
10�7 10�7 10�9 7:55 6:71 173 137 9422 141 173 0.0078
10�10 10�10 10�12 9:53 9:17 235 197 16067 201 235 0.0127

MEBDFI 10�4 10�4 10�6 3:31 2:86 477 435 1761 83 83 0.0029
10�7 10�7 10�9 6:11 5:60 1134 1083 3818 118 118 0.0059
10�10 10�10 10�12 9:06 8:55 2135 2098 7215 208 208 0.0107

PSIDE-1 10�4 10�4 6:42 3:43 181 149 2811 57 648 0.0029
10�7 10�7 7:20 6:32 310 293 6141 52 756 0.0059
10�10 10�10 9:99 9:14 1000 990 15536 109 1156 0.0156

RADAU 10�4 10�4 10�6 4:48 4:28 210 172 1822 144 208 0.0010
10�7 10�7 10�9 8:56 8:18 240 222 3508 187 238 0.0020
10�10 10�10 10�12 10:63 9:24 209 176 6240 130 207 0.0039

VODE 10�4 10�4 3:29 3:08 545 487 779 19 117 0.0020
10�7 10�7 5:20 4:73 1614 1502 2145 30 223 0.0049
10�10 10�10 7:49 7:07 4350 4120 5266 72 516 0.0146

diagrams, we used: rtol = 10�(4+m=4), m = 0; 1; : : : ; 32; atol = rtol; h0 = 10�2 � rtol for GAMD,
MEBDFDAE, MEBDFI, RADAU and RADAU5.

Table II.8.3: Reference solution at the end of the integration interval.

y1 0:1706167732170483 � 101
y2 �0:8928097010247975 � 100

References

[EP02] C. H. Edwards and D. E. Penney. Di�erential Equations and Linear Algebra. Prentice Hall,
2002.

[HW96] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-

algebraic Problems. Springer-Verlag, second revised edition, 1996.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

II-8-6 ODE - Problem VDPOL

Figure II.8.5: Behavior of the solution component y1 over the integration interval (scaled equation)

Table II.8.4: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�6 4:31 3:98 170 155 3684 151 170 0.0029
10�7 10�7 10�9 9:06 8:73 301 293 7631 280 301 0.0059
10�10 10�10 10�12 11:17 10:84 307 304 13339 292 307 0.0088

DDASSL 10�4 10�4 2:89 2:56 796 776 1260 127 0.0029
10�7 10�7 5:89 5:57 1943 1912 2796 149 0.0078
10�10 10�10 8:96 8:64 6166 6110 7973 223 0.0234

GAMD 10�4 10�4 10�6 5:40 5:08 148 105 6999 105 148 0.0049
10�7 10�7 10�9 6:52 6:19 163 133 12727 131 163 0.0098
10�10 10�10 10�12 10:16 9:84 244 216 18095 215 244 0.0137

MEBDFI 10�4 10�4 10�6 3:86 3:53 638 591 2179 92 92 0.0029
10�7 10�7 10�9 6:99 6:67 1369 1317 4735 132 132 0.0078
10�10 10�10 10�12 10:80 10:47 2862 2858 9489 287 287 0.0146

PSIDE-1 10�4 10�4 5:70 5:38 235 166 4402 73 780 0.0049
10�7 10�7 8:72 8:39 414 386 7896 75 908 0.0078
10�10 10�10 11:40 11:07 1388 1365 23066 131 1360 0.0224

RADAU 10�4 10�4 10�6 4:77 4:44 242 207 2214 165 231 0.0020
10�7 10�7 10�9 8:28 7:95 186 149 5212 102 173 0.0029
10�10 10�10 10�12 11:47 11:14 245 215 7589 148 224 0.0049

VODE 10�4 10�4 2:93 2:61 788 702 1186 21 181 0.0029
10�7 10�7 5:65 5:32 2375 2200 3091 41 345 0.0088
10�10 10�10 8:42 8:09 6426 6058 7814 106 794 0.0215

[Sha94] Lawrence F. Shampine. Numerical solution of ordinary di�erential equations. Chapman &
Hall, New York, 1994.

[vdP20] B. van der Pol. Radio Rev., 1:704{754, 1920.

[vdP26] B. van der Pol. On relaxation oscillations. Phil. Mag., 2:978{992, 1926. reproduced in: B.

ODE - Problem VDPOL II-8-7

Figure II.8.6: Work-precision diagram (scd versus CPU-time).

II-8-8 ODE - Problem VDPOL

Figure II.8.7: Work-precision diagram (scd versus CPU-time).

ODE - Problem VDPOL II-8-9

Figure II.8.8: Work-precision diagram (mescd versus CPU-time).

II-8-10 ODE - Problem VDPOL

Figure II.8.9: Work-precision diagram (mescd versus CPU-time).

ODE - Problem VDPOL II-8-11

Figure II.8.10: Work-precision diagram (scd versus CPU-time).

II-8-12 ODE - Problem VDPOL

Figure II.8.11: Work-precision diagram (scd versus CPU-time).

ODE - Problem VDPOL II-8-13

Figure II.8.12: Work-precision diagram (mescd versus CPU-time).

II-8-14 ODE - Problem VDPOL

Figure II.8.13: Work-precision diagram (mescd versus CPU-time).

ODE - Problem VDPOL II-8-15

van der Pol, Selected Scienti�c Papers, vol. I, North Holland Publ. Comp. Amsterdam, 1960.

II-8-16 ODE - Problem VDPOL

ODE - Problem OREGO II-9-1

9 Problem OREGO

9.1 General information

The problem consists of a sti� system of 3 non-linear Ordinary Di�erential Equations. The name
Orego was given by Hairer & Wanner [HW96] and refers to the Oregonator model which is described
by this ODE. The Oregonator model takes its name from the University of Oregon where in the
1972 Field, K�or�os & Noyes [FKN72] proposed this model for the Belousov{Zhabotinskii reaction. The
INdAM-Bari Test Set group contributed this problem to the test set. The software part of the problem
is in the �le orego.f available at [MI03].

9.2 Mathematical description of the problem

The problem is of the form

dy

dt
= f(y); y(0) = y0;

with
y 2 R3; 0 � t � 360:

The function f is de�ned by

f(y) =

0B@ s(y2 � y1y2 + y1 � qy21)
1

s
(�y2 � y1y2 + y3)

w(y1 � y3)

1CA :

The values of the parameters s, q and w are

s = 77:27
w = 0:161
q = 8:375 � 10�6:

The initial vector y0 is given by (1; 2; 3)T.

9.3 Origin of the problem

The OREGO problem originates from the celebrated Belousov{Zhabotinskii (BZ) reaction. When
certain reactans, like bromous acid, bromide ion and cerium ion, are combined, they exhibit a chemical
reaction which, after an induction period of inactivity, oscillates with change in structure and in color,
from red to blue and viceversa.

The color changes are caused by alternating oxidation{reductions in which the cerium switches its
oxidation state from Ce(III) to Ce(IV).

Field, K�or�os and Noyes formulated the following model for the most important parts of the kinetic
mechanism that gives rice to oscillation in the BZ reaction. This mechanism can be summarized as
three concurrent processes [Gra02]:

� the reduction of bromate (BrO�
3) to bromine (Br) via the reducing agent bromide (Br�). Bro-

momalonic acid (BrMA) is produced;

� the increase of hypobromous acid (HBrO2) at an accelerating rate and the production of Ce(IV).
Here we have a sudden change in color from red to blue;

� the reduction of Cerium catalyst Ce(IV) to Ce(III). Here we have a gradual change in color from
blue to red.

http://www.dm.uniba.it/~testset/src/problems/orego.f

II-9-2 ODE - Problem OREGO

Table II.9.1: Reference solution at the end of the integration interval.

t X = y1 Y = y2 Z = y3
360 0:1000814870318523 � 101 0:1228178521549917 � 104 0:1320554942846706 � 103

Table II.9.2: Failed runs.

solver m reason
VODE 2,4 error test failed repeatedly

Then, from this mechanism the following Oregonator scheme is obtained

A+Y! X+P r=k3AY
X+Y! 2P r=k2XY

A+X! 2X+2Z r=k5AX
2X! A+P r=k4X

2

B+Z! 1
2fY r=kcBZ

Here using the conventional notation as in [FKN72] the assignments and the e�ective concentration
are

hypobromous acid [HBrO2] = X 5:025� 10�11

bromide [Br�] = Y 3:0� 10�7

cerium� 4 [CE(IV)] = Z 2:412� 10�8

bromate [BrO�
3] = A

all oxidizable organic species [Org] = B
[HOBr] = P :

The reaction rate equations for the intermediate species X, Y , and Z are

dX

dt
= s

�
Y �XY +X � qX2

�
dY

dt
=

1

s
(�Y �XY + fZ)

dZ

dt
= w (X � Z) :

with f = 1, and s; w, and q as in the previous subsection.

9.4 Numerical solution of the problem

Tables II.9.1, II.9.3 and Figures II.9.1{II.9.7 present the reference solution at the end of the in-
tegration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagrams, respectively. The reference solution was computed by RADAU on
an Alphaserver DS20E, with a 667 MHz EV67 processor, using double precision work(1) = uround

= 1:01 � 10�19, rtol = atol = h0 = 1:1 � 10�18, atol = h0 = 1:1 � 10�40. For the work-precision
diagrams, we used: rtol = 10�(4+m=4), m = 0; 1; : : : ; 32; atol = rtol; h0 = 10�2 � rtol for BIMD,
GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5. The failed runs are in Table II.9.2; listed
are the name of the solver that failed, for which values of m this happened, and the reason for failing.

ODE - Problem OREGO II-9-3

Table II.9.3: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�6 3:85 3:85 235 224 4393 215 235 0.0049
10�7 10�7 10�9 7:87 7:86 347 339 9629 334 347 0.0107
10�10 10�10 10�12 11:29 11:29 373 367 16863 359 373 0.0176

DDASSL 10�4 10�4 2:62 2:62 889 813 1505 124 0.0039
10�7 10�7 5:58 5:57 2725 2671 4210 189 0.0137
10�10 10�10 8:66 8:66 8192 8098 11119 274 0.0381

GAMD 10�4 10�4 10�6 3:61 3:61 219 162 8510 163 219 0.0088
10�7 10�7 10�9 6:90 6:89 251 205 16050 208 251 0.0176
10�10 10�10 10�12 9:50 9:50 291 268 22034 270 291 0.0234

MEBDFI 10�4 10�4 10�6 3:34 3:33 733 687 2707 103 103 0.0049
10�7 10�7 10�9 6:39 6:39 1586 1529 5399 174 174 0.0107
10�10 10�10 10�12 9:59 9:59 3248 3232 10754 345 345 0.0205

PSIDE-1 10�4 10�4 4:74 4:73 221 178 4696 128 836 0.0059
10�7 10�7 7:06 7:06 441 407 9235 148 1164 0.0117
10�10 10�10 10:77 10:47 1450 1412 26255 219 1788 0.0332

RADAU 10�4 10�4 10�6 3:42 3:12 268 222 3416 200 267 0.0029
10�7 10�7 10�9 7:48 7:48 267 216 6859 192 265 0.0059
10�10 10�10 10�12 9:83 9:82 261 202 12917 176 257 0.0098

VODE 10�4 10�4 2:15 2:15 1196 1101 1820 38 236 0.0049
10�7 10�7 4:73 4:73 3083 2858 4348 64 454 0.0117
10�10 10�10 7:51 7:51 7890 7430 9903 133 970 0.0293

II-9-4 ODE - Problem OREGO

Figure II.9.1: Behavior of the solution component y1 over the integration interval

Figure II.9.2: Behavior of the solution component y2 over the integration interval

Figure II.9.3: Behavior of the solution component y3 over the integration interval

ODE - Problem OREGO II-9-5

References

[FKN72] R. J. Field, E. K�or�os, and R.M Noyes. Oscillation in chemical systems, part. 2. thorough
analysis of temporal oscillations in the bromate{cerium{malonic acid system. Journal of the
American Society, 94:8649{8664, 1972.

[Gra02] C. Gray. An analysis of the Belousov-Zhabotinskii reaction. Rose-Hulman Undergraduate

Mathematics Journal, 3(1), 2002. http://www.rose-hulman.edu/mathjournal/.

[HW96] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-

algebraic Problems. Springer-Verlag, second revised edition, 1996.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

http://www.rose-hulman.edu/mathjournal/
http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

II-9-6 ODE - Problem OREGO

Figure II.9.4: Work-precision diagram (scd versus CPU-time).

ODE - Problem OREGO II-9-7

Figure II.9.5: Work-precision diagram (scd versus CPU-time).

II-9-8 ODE - Problem OREGO

Figure II.9.6: Work-precision diagram (mescd versus CPU-time).

ODE - Problem OREGO II-9-9

Figure II.9.7: Work-precision diagram (mescd versus CPU-time).

II-9-10 ODE - Problem OREGO

ODE - Problem ROBER II-10-1

10 Problem ROBER

10.1 General information

The problem consists of a sti� system of 3 non-linear ordinary di�erential equations. It was proposed
by H.H. Robertson in 1966 [Rob66]. The name ROBER was given by Hairer & Wanner [HW96].
The INdAM-Bari Test Set group contributed this problem to the test set. The software part of the
problem is in the �le rober.f available at [MI03].

10.2 Mathematical description of the problem

The problem is of the form

dy

dt
= f(y); y(0) = y0;

with
y 2 IR3; t 2 [0; T];

The function f is de�ned by

f(y) =

0@ �0:04y1 + 104y2y3
0:04y1 � 104y2y3 � 3 � 107y22
3 � 107y22

1A (II.10.1)

The initial vector y0 is given by (1; 0; 0)T .

10.3 Origin of the problem

The ROBER problem describes the kinetics of an autocatalytic reaction given by Robertson (1966)
[Rob66]. The structure of the reactions is given in Table II.10.1, where k1; k2; k3 are the rate constants
and A, B and C are the chemical species involved. Under some idealized conditions [Aik85] and the

1. A k1�! B

2. B +B k2�! C +B

3. B + C k3�! A+ C

Table II.10.1: Reaction scheme for problem ROBER

assumption that the mass action law is applied for the rate functions, the following mathematical
model consisting of a set of three ODEs can be set up0@ y01

y02
y03

1A =

0@ �k1y1 + k3y2y3
k1y1 � k2y

2
2 � k3y2y3

k2y
2
2

1A ; (II.10.2)

with (y1(0); y2(0); y3(0))
T = (y01; y02; y03)

T , where y1; y2; y3 denote the concentrations of
A; B and C respectively and y01; y02; y03 are the concentrations at time t = 0.

The ROBER problem is very popular in numerical studies [Eds74] and it is often used as a test
problem in the sti� integrators comparisons. The numerical values of the rate constants used in the
test problem are k1 = 0:04; k2 = 3 � 107and k3 = 104, and the initial concentrations y01 = 1; y02 =

http://www.dm.uniba.it/~testset/src/problems/rober.f

II-10-2 ODE - Problem ROBER

0; y03 = 0. The large di�erence among the reaction rate constants is the reason for sti�ness. As
is typical for problems arising in chemical kinetics this special system has a small very quick initial
transient. This phase is followed by a very smooth variation of the components where a large stepsize
would be appropriate for a numerical method.

Originally the problem was posed on the interval 0 � t � 40, but it is convenient to integrate it
on much longer intervals. As a matter of fact Hindmarsh discovered that many codes fail if t becomes
very large. In this case if y2 accidentally becomes negative, it then tends to �1, causing over
ow
(see [HW96]).

Figure II.10.1: Behavior of the solution on [0; 1011]

10.4 Numerical solution of the problem

The system of ODEs is integrated for t 2 [0; 1011]. Tables II.10.3{II.10.4 and Figures II.10.1{II.10.5
present the reference solution at the end of the integration interval, the run characteristics, the behavior
of the components of the solution over part of the integration interval and the work-precision diagrams,
respectively. The reference solution was computed by RADAU on an Alphaserver DS20E, with a
667 MHz EV67 processor, using double precision work(1) = uround = 1:01 � 10�19, rtol = atol =

ODE - Problem ROBER II-10-3

Table II.10.2: Failed runs.

solver m reason
DASSL 5; � � � ; 8; 10; 11; 13; : : : ; 32 error test failed repeatedly

h0 = 1:1 � 10�18. For the work-precision diagrams, we used: rtol = 10�(4+m=4), m = 0; 1; : : : ; 32;
atol = 10�4rtol; h0 = 10�2 � rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5.
The failed runs are in Table II.10.2; listed are the name of the solver that failed, for which values of
m this happened, and the reason for failing.

Table II.10.3: Reference solution at the end of the integration interval.

y1 0:2083340149701255 � 10�7
y2 0:8333360770334713 � 10�13
y3 0:9999999791665050

Table II.10.4: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�8 10�6 6:70 3:02 101 100 1904 97 101 0.0020
10�7 10�11 10�9 10:07 6:39 132 131 3883 125 132 0.0039
10�10 10�14 10�12 13:70 10:12 159 157 6529 148 159 0.0068

DDASSL 10�4 10�8 4:51 0:83 473 453 682 62 0.0020
10�7 10�11 7:15 3:47 1278 1252 1549 108 0.0059

GAMD 10�4 10�8 10�6 6:27 2:59 62 62 2165 62 62 0.0020
10�7 10�11 10�9 9:94 6:05 93 91 4883 89 92 0.0059
10�10 10�14 10�12 12:41 8:73 169 169 9427 166 169 0.0107

MEBDFI 10�4 10�8 10�6 6:25 2:56 401 398 1299 72 72 0.0029
10�7 10�11 10�9 8:95 5:27 804 802 2611 98 98 0.0049
10�10 10�14 10�12 11:53 7:85 1614 1612 5252 186 186 0.0107

PSIDE-1 10�4 10�8 5:75 2:07 56 55 1295 36 224 0.0020
10�7 10�11 9:03 5:35 158 154 3128 39 496 0.0039
10�10 10�14 11:29 7:61 570 563 9772 50 744 0.0127

RADAU 10�4 10�8 10�6 6:74 3:06 114 112 811 108 113 0.0010
10�7 10�11 10�9 9:35 5:67 112 110 1852 104 112 0.0020
10�10 10�14 10�12 11:21 7:53 108 106 3420 92 108 0.0029

VODE 10�4 10�8 3:66 �0:02 593 576 830 12 100 0.0020
10�7 10�11 6:70 3:02 1292 1220 1686 22 199 0.0049
10�10 10�14 9:59 5:91 3306 3138 3873 56 408 0.0127

II-10-4 ODE - Problem ROBER

References

[Aik85] R.C. Aiken. Sti� Computation. Oxford University Press, 1985.

[Eds74] L. Edsberg. Integration Package for Chemical Kinetics, pages 81{94. Plenum Press, New
York, 1974.

[HW96] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-

algebraic Problems. Springer-Verlag, second revised edition, 1996.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

[Rob66] H.H. Robertson. The solution of a set of reaction rate equations, pages 178{182. Academ
Press, 1966.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

ODE - Problem ROBER II-10-5

Figure II.10.2: Work-precision diagram (scd versus CPU-time.

II-10-6 ODE - Problem ROBER

Figure II.10.3: Work-precision diagram (scd versus CPU-time.

ODE - Problem ROBER II-10-7

Figure II.10.4: Work-precision diagram (mescd versus CPU-time.

II-10-8 ODE - Problem ROBER

Figure II.10.5: Work-precision diagram (mescd versus CPU-time.

ODE - Problem E5 II-11-1

11 Problem E5

11.1 General information

The problem consists of a sti� system of 4 non-linear ordinary di�erential equations. It was proposed
by Datta in 1967. The name E5 was given by Enright, Hull and Lindberg (1975) [EHL75]. The
formulation and data have been taken from [HW96]. The Bari Test Set group contributed this problem
to the test set. The software part of the problem is in the �le e5.f available at [MI03].

11.2 Mathematical description of the problem

The problem is of the form

dy

dt
= f(y); y(0) = y0;

with
y 2 IR4; t 2 [0; T];

The function f is de�ned by

f(y) =

0BB@
�Ay1 �By1y3
Ay1 �MCy2y3
Ay1 �By1y3 �MCy2y3 + Cy4
By1y3 � Cy4

1CCA (II.11.1)

where A = 7:89 � 10�10; B = 1:1 � 107; C = 1:13 � 103; andM = 106.
The initial vector y0 is given by (1:76 � 10�3; 0; 0; 0)T .

11.3 Origin of the problem

The E5 problem is a model for chemical pyrolysis studied by Datta in 1967 and describes a reaction
involving six reactants. The reaction scheme is given in Table II.11.1, where Ai; i = 1; : : : ; 6 are the
chemical species and k1; k2; k3; k4 the rate of reaction constants. According to mass action kinetics,

A1 k1�! A2 +A3

A2 +A3 k2�! A5

A1 +A3 k3�! A4

A4 k4�! A3 +A6

Table II.11.1: Reaction scheme for problem E5

the corresponding mathematical model is the following8>>>>>><>>>>>>:

y01 = �k1y1 � k3y1y3
y02 = k1y1 � k2y2y3
y03 = k1y1 � k2y2y3 � k3y1y3 + k4y4
y04 = k3y1y3 � k4y4
y05 = k2y2y3
y06 = k4y4

(II.11.2)

http://www.dm.uniba.it/~testset/src/problems/e5.f

II-11-2 ODE - Problem E5

Table II.11.2: Failed runs.

solver m reason
DASSL 0,1,2,6,7,8,9,11,13, 14,16,. . . ,32 error test failed repeatedly

where yi are the concentrations of the reactants Ai. This set of ODEs is one of the test problems in
the sti� integrator comparison by Enright, Hull and Lindberg (1975) [EHL75]. The rate constants
used in the test problem were k1 = 7:89 � 10�10, k2 = 1:13 � 109, k3 = 1:1 � 107, k4 = 1:13 � 103 and the
initial values were all set to zero except for y1(0) = 1:76 � 10�3. The fastly di�erent rates of reaction
that occur in the same system are the cause for sti�ness. With rate constants inserted in (II.11.2)
the system (II.11.1) is obtained [Aik85]. Note that the di�erential equation possesses the invariant
y2 � y3 � y4 = 0 and it is recommended to use the relation y03 = y02 � y04 in the function subroutine in
order to avoid eventual cancellation of digits [HW96].

Although the problem was originally posed on the interval 0 � t � 1000, it is often integrated on a
much longer interval because of the interesting properties of the solutions for t large [HW96]. In 1981
Shampine [Sha81] observed that since the solution components are badly scaled (jy1j � 2 � 10�3 and
the magnitude of all the other components doesn't exceed 4 � 10�10), a scalar absolute error control is
quite unsuitable and a componentwise scaled absolute error control would be recommendable for this
problem.

11.4 Numerical solution of the problem

The system of ODEs is integrated for t 2 [0; 1013]. Tables II.11.3{II.11.4 present the reference solu-
tion at the end of the integration interval and the run characteristics, Figures II.11.1{II.11.3 present
the behavior of the components of the solution over the integration interval and the work-precision
diagrams, respectively. The work precision diagrams were computed using the mescd since the so-
lution at the end of the integration interval is very close to zero. For the same reason, the scd
column in Table II.11.4 has been skipped. The reference solution was computed by RADAU on an
Alphaserver DS20E, with a 667 MHz EV67 processor, using double precision work(1) = uround =

1:01 � 10�19, rtol = h0 = 1:1 � 10�18,atol = 1:1 � 10�40. For the work-precision diagrams, we used:
rtol = 10�(4+m=4), m = 0; 1; : : : ; 32; atol = 1:7 � 10�24; h0 = 10�2 � rtol for BIMD, GAMD, MEBDF-
DAE, MEBDFI, RADAU and RADAU5. The failed runs are in Table II.11.2; listed are the name of
the solver that failed, for which values of m this happened, and the reason for failing.

Table II.11.3: Reference solution at the end of the integration interval.

y1 0:1152903278711829 � 10�290
y2 0:8867655517642120 � 10�22

y3 0:8854814626268838 � 10�22
y4 0:0000000000000000000

References

[Aik85] R.C. Aiken. Sti� Computation. Oxford University Press, 1985.

ODE - Problem E5 II-11-3

Figure II.11.1: - Behavior of the solution over the integration interval in double logarithmic scale.

[EHL75] W.H. Enright, T.E. Hull, and B. Lindberg. Comparing numerical methods for sti� systems
of ODEs. BIT, 15:10{48, 1975.

[HW96] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-

algebraic Problems. Springer-Verlag, second revised edition, 1996.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

[Sha81] L.F. Shampine. Evaluation of a test set for sti� ode solvers. ACM Trans. Math. Soft.,
8:93{113, 1981.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

II-11-4 ODE - Problem E5

Table II.11.4: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 1:110�24 10�6 4:98 2:70 169 169 3438 162 169 0.0049
10�7 1:110�24 10�9 8:34 3:05 174 174 6409 168 174 0.0088
10�10 1:110�24 10�12 11:77 3:48 287 287 10726 282 287 0.0156

DDASSL 10�7 1:110�24 7:55 2:26 2516 2468 3443 148 0.0137
GAMD 10�4 1:110�24 10�6 5:52 3:24 103 101 4977 99 103 0.0068

10�7 1:110�24 10�9 8:19 2:90 125 125 9167 122 125 0.0117
10�10 1:110�24 10�12 11:13 2:84 154 154 13497 154 154 0.0166

MEBDFI 10�4 1:110�24 10�6 5:16 2:87 653 644 2145 86 86 0.0049
10�7 1:110�24 10�9 8:13 2:85 1048 1043 3423 122 122 0.0088
10�10 1:110�24 10�12 10:56 2:27 1782 1779 5823 188 188 0.0137

PSIDE-1 10�4 1:110�24 3:94 1:65 137 112 3160 69 544 0.0049
10�7 1:110�24 7:99 2:71 255 243 5181 173 944 0.0078
10�10 1:110�24 11:46 3:18 707 704 13278 286 1512 0.0195

RADAU 10�4 1:110�24 10�6 4:72 2:43 100 99 2220 80 100 0.0029
10�7 1:110�24 10�9 8:42 3:14 148 145 3123 118 144 0.0039
10�10 1:110�24 10�12 11:79 3:51 142 132 5733 106 141 0.0059

VODE 10�4 1:110�24 3:17 0:88 1238 1149 1718 27 260 0.0059
10�7 1:110�24 6:67 1:39 2655 2484 3464 47 397 0.0107
10�10 1:110�24 9:69 1:41 4003 3836 4776 70 458 0.0156

ODE - Problem E5 II-11-5

Figure II.11.2: Work-precision diagram (mescd versus CPU-time).

II-11-6 ODE - Problem E5

Figure II.11.3: Work-precision diagram (mescd versus CPU-time).

DAE - Chemical Akzo Nobel problem II-12-1

12 Chemical Akzo Nobel problem

12.1 General information

This IVP is a sti� system of 6 non-linear DAEs of index 1 and has been taken from [Sto98]. The
parallel-IVP-algorithm group of CWI contributed this problem to the test set in collaboration with
W.J.H. Stortelder. We acknowledge the remarks of Dotsikas Ioannis, which improved the formulation
of this problem considerably. The software part of the problem is in the �le chemakzo.f available at
[MI03].

12.2 Mathematical description of the problem

The problem is of the form

M
dy

dt
= f(y); y(0) = y0; y0(0) = y00;

with
y 2 IR6; 0 � t � 180:

The matrix M is of rank 5 and given by

M =

0BBBBBB@
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

1CCCCCCA
and the function f by

f(y) =

0BBBBBB@
�2r1 +r2 �r3 �r4
� 1

2r1 �r4 � 1
2r5 +Fin

r1 �r2 +r3
�r2 +r3 �2r4
r2 �r3 +r5

Ks � y1 � y4 � y6

1CCCCCCA ;

where the ri and Fin are auxiliary variables, given by

r1 = k1 � y41 � y
1

2

2 ;

r2 = k2 � y3 � y4;
r3 =

k2
K
� y1 � y5;

r4 = k3 � y1 � y24 ;
r5 = k4 � y26 � y

1

2

2 ;

Fin = klA � (p(CO2)

H
� y2):

The values of the parameters k1, k2, k3, k4, K, klA, p(CO2) and H are

k1 = 18:7;
k2 = 0:58;
k3 = 0:09;

k4 = 0:42;
K = 34:4;
klA = 3:3;

Ks = 115:83;
p(CO2) = 0:9;

H = 737:

http://www.dm.uniba.it/~testset/src/problems/chemakzo.f

II-12-2 DAE - Chemical Akzo Nobel problem

The consistent initial vectors are

y0 =
�

0:444; 0:00123; 0; 0:007; 0; Ks � y0;1 � y0;4
�T

y00 = f(y0):

It is clear from the de�nition of r1 and r5 that the function f can not be evaluated for negative
values of y2. In the Fortran subroutine that de�nes f , we set IERR=-1 if y2 < 0 to prevent this
situation. See page IV-ix of the description of the software part of the test set for more details on
IERR.

12.3 Origin of the problem

The problem originates from Akzo Nobel Central Research in Arnhem, The Netherlands. It describes
a chemical process, in which 2 species, FLB and ZHU, are mixed, while carbon dioxide is continuously
added. The resulting species of importance is ZLA. In the interest of commercial competition, the
names of the chemical species are �ctitious. The reaction equations, as given by Akzo Nobel [CBS93],
are given in Figure II.12.1. The last reaction equation describes an equilibrium

2FLB +
1

2
CO2

k1- FLBT +H2O

ZLA+ FLB
k2=K-�

k2
FLBT + ZHU

FLB + 2ZHU+ CO2
k3- LB + nitrate

FLB:ZHU+
1

2
CO2

k4- ZLA +H2O

FLB + ZHU -� FLB:ZHU

Figure II.12.1: Reaction scheme for Chemical Akzo Nobel problem.

Ks =
[FLB:ZHU]

[FLB] � [ZHU] :

The value of Ks plays a role in parameter estimation. The other equations describe reactions with
velocities given by

r1 = k1 � [FLB]4 � [CO2]
1

2 ; (II.12.1)

r2 = k2 � [FLBT] � [ZHU];
r3 =

k2
K
� [FLB] � [ZLA];

r4 = k3 � [FLB] � [ZHU]2; (II.12.2)

r5 = k4 � [FLB:ZHU]2 � [CO2]
1

2 ; (II.12.3)

respectively. Here the square brackets `[]' denote concentrations. One would expect from the reaction
scheme in Figure II.12.1, that reaction velocities r1, r4 and r5 would read

r1 = k1 � [FLB]2 � [CO2]
1

2 ;

r4 = k3 � [FLB] � [ZHU]2 � [CO2];

r5 = k4 � [FLB:ZHU] � [CO2]
1

2 :

DAE - Chemical Akzo Nobel problem II-12-3

However, it turns out that the chemical process under consideration is modeled more appropriately
using (II.12.1){(II.12.3).

The in
ow of carbon dioxide per volume unit is denoted by Fin, and satis�es

Fin = klA � (p(CO2)

H
� [CO2]);

where klA is the mass transfer coe�cient, H is the Henry constant and p(CO2) is the partial carbon
dioxide pressure. p(CO2) is assumed to be independent of [CO2]. The parameters k1, k2, k3, k4, K,
klA, Ks, H and p(CO2) are given constants�.

The process is started by mixing 0.444 mol/liter FLB with 0.007 mol/liter ZHU. The concentration
of carbon dioxide at the beginning is 0.00123 mol/liter. Initially, no other species are present. The
simulation is performed on the time interval [0; 180 minutes].

Identifying the concentrations [FLB], [CO2], [FLBT], [ZHU], [ZLA], [FLB:ZHU] with y1; : : : ; y6,
respectively, one easily arrives at the mathematical formulation of the preceding section.

12.4 Numerical solution of the problem

Tables II.12.1{II.12.2 and Figures II.12.2{II.12.6 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagrams, respectively. The reference solution was computed by PSIDE on
a Cray C90, using double precision, rtol = atol 10�19. To get more insight in the exact behavior
of the second component, we included a plot of y2 on [0; 3] in Figure II.12.2. For the work-precision
diagrams, we used: rtol = 10�(8+m=4), m = 0; 1; : : : ; 20; atol = rtol; h0 = rtol for BIMD, GAMD,
MEBDFDAE, MEBDFI, RADAU and RADAU5. The failed runs are in Table II.12.3; listed are the

Table II.12.1: Reference solution at the end of the integration interval.

y1 0:1150794920661702
y2 0:1203831471567715 � 10�2
y3 0:1611562887407974

y4 0:3656156421249283 � 10�3
y5 0:1708010885264404 � 10�1
y6 0:4873531310307455 � 10�2

Table II.12.2: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�10 10�10 10�10 12:39 10:61 41 41 1177 41 41 0.0039
DDASSL 10�10 10�10 10:04 8:33 522 515 649 38 0.0039
GAMD 10�10 10�10 10�10 11:89 9:82 35 35 1737 35 35 0.0039
MEBDFI 10�10 10�10 10�10 11:42 9:76 274 273 916 32 32 0.0029
PSIDE-1 10�10 10�10 11:41 9:91 87 85 1671 15 204 0.0039
RADAU 10�10 10�10 10�10 10:71 8:39 43 41 696 30 43 0.0010

name of the solver that failed, for which values of m this happened, and the reason for failing.

�Apart from H, which is generally known, all parameters have been estimated by W. Stortelder [Sto95].

II-12-4 DAE - Chemical Akzo Nobel problem

Table II.12.3: Failed runs.

solver m reason
PSIDE-1 14,16,17,18,19,20 stepsize too small

References

[CBS93] CBS-reaction-meeting K�oln. Handouts, May 1993. Br/ARLO-CRC.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

[Sto95] W.J.H. Stortelder, 1995. Private communication.

[Sto98] W.J.H. de Stortelder. Parameter Estimation in Nonlinear Dynamical Systems. PhD thesis,
University of Amsterdam, March 12, 1998.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

DAE - Chemical Akzo Nobel problem II-12-5

Figure II.12.2: Behavior of the solution over the integration interval.

II-12-6 DAE - Chemical Akzo Nobel problem

Figure II.12.3: Work-precision diagram (scd versus CPU-time).

DAE - Chemical Akzo Nobel problem II-12-7

Figure II.12.4: Work-precision diagram (scd versus CPU-time).

II-12-8 DAE - Chemical Akzo Nobel problem

Figure II.12.5: Work-precision diagram (mescd versus CPU-time).

DAE - Chemical Akzo Nobel problem II-12-9

Figure II.12.6: Work-precision diagram (mescd versus CPU-time).

II-12-10 DAE - Chemical Akzo Nobel problem

DAE { Andrews' squeezing mechanism II-13-1

13 Andrews' squeezing mechanism

13.1 General information

The problem is a non-sti� second order DAE of index 3, consisting of 14 di�erential and 13 algebraic
equations. It has been promoted as a test problem by Giles [Gil78] and Manning [Man81]. The
formulation here corresponds to the one presented in Hairer & Wanner [HW96]. The parallel-IVP-
algorithm group of CWI contributed this problem to the test set. The software part of the problem
is in the �le andrews.f available at [MI03].

13.2 Mathematical description of the problem

The problem is of the form

K
dy

dt
= �(y); y(0) = y0; y0(0) = y00; (II.13.1)

where

y =

0BB@
q
_q
�q
�

1CCA ; K =

2664
I O O O
O I O O
O O O O
O O O O

3775 ; �(y) =

0BB@
_q
�q

M(q)�q � f(q; _q) +GT(q)�
g(q)

1CCA :

Here,

0 � t � 0:03;

q 2 IR7;

� 2 IR6;

M : IR7 ! IR7�7;

f : IR14 ! IR7;

g : IR7 ! IR6;

G =
@g

@q
:

The function M(q) = (Mij(q)) is given by:

M11(q) = m1 � ra2 +m2(rr
2 � 2da � rr � cos q2 + da2) + I1 + I2;

M21(q) = M12(q) = m2(da
2 � da � rr � cos q2) + I2;

M22(q) = m2 � da2 + I2;

M33(q) = m3(sa
2 + sb2) + I3;

M44(q) = m4(e� ea)2 + I4;

M54(q) = M45(q) = m4((e� ea)2 + zt(e� ea) sin q4) + I4;

M55(q) = m4(zt
2 + 2zt(e� ea) sin q4 + (e� ea)2) +m5(ta

2 + tb2) + I4 + I5;

M66(q) = m6(zf � fa)2 + I6;

M76(q) = M67(q) = m6((zf � fa)2 � u(zf � fa) sin q6) + I6;

M77(q) = m6((zf � fa)2 � 2u(zf � fa) sin q6 + u2) +m7(ua
2 + ub2) + I6 + I7;

Mij(q) = 0 for all other cases.

http://www.dm.uniba.it/~testset/src/problems/andrews.f

II-13-2 DAE { Andrews' squeezing mechanism

The function f = (fi(q; _q)) reads:

f1(q; _q) = mom�m2 � da � rr � _q2(_q2 + 2 _q1) sin q2;

f2(q; _q) = m2 � da � rr � _q21 � sin q2;
f3(q; _q) = Fx(sc � cos q3 � sd � sin q3) + Fy(sd � cos q3 + sc � sin q3);
f4(q; _q) = m4 � zt(e� ea) _q25 � cos q4;
f5(q; _q) = �m4 � zt(e� ea) _q4(_q4 + 2 _q5) cos q4;

f6(q; _q) = �m6 � u(zf � fa) _q27 � cos q6;
f7(q; _q) = m6 � u(zf � fa) _q6(_q6 + 2 _q7) cos q6:

Fx and Fy are de�ned by:

Fx = F (xd� xc);

Fy = F (yd� yc);

F = �c0(L� l0)=L;

L =
p
(xd� xc)2 + (yd� yc)2;

xd = sd � cos q3 + sc � sin q3 + xb;

yd = sd � sin q3 � sc � cos q3 + yb:

The function g = (gi(q)) is given by:

g1(q) = rr � cos q1 � d � cos (q1 + q2)� ss � sin q3 � xb;

g2(q) = rr � sin q1 � d � sin (q1 + q2) + ss � cos q3 � yb;

g3(q) = rr � cos q1 � d � cos (q1 + q2)� e � sin (q4 + q5)� zt � cos q5 � xa;

g4(q) = rr � sin q1 � d � sin (q1 + q2) + e � cos (q4 + q5)� zt � sin q5 � ya;

g5(q) = rr � cos q1 � d � cos (q1 + q2)� zf � cos (q6 + q7)� u � sin q7 � xa;

g6(q) = rr � sin q1 � d � sin (q1 + q2)� zf � sin (q6 + q7) + u � cos q7 � ya:

The constants arising in these formulas are given by:

m1 = 0:04325 I1 = 2:194 � 10�6 ss = 0:035
m2 = 0:00365 I2 = 4:410 � 10�7 sa = 0:01874
m3 = 0:02373 I3 = 5:255 � 10�6 sb = 0:01043
m4 = 0:00706 I4 = 5:667 � 10�7 sc = 0:018
m5 = 0:07050 I5 = 1:169 � 10�5 sd = 0:02
m6 = 0:00706 I6 = 5:667 � 10�7 ta = 0:02308
m7 = 0:05498 I7 = 1:912 � 10�5 tb = 0:00916
xa = �0:06934 d = 0:028 u = 0:04
ya = �0:00227 da = 0:0115 ua = 0:01228
xb = �0:03635 e = 0:02 ub = 0:00449
yb = 0:03273 ea = 0:01421 zf = 0:02
xc = 0:014 rr = 0:007 zt = 0:04
yc = 0:072 ra = 0:00092 fa = 0:01421
c0 = 4530 l0 = 0:07785 mom = 0:033

Consistent initial values are

y0 = (q0; _q0; �q0; �0)
T and y00 = (_q0; �q0;

...
q 0; _�0)

T;

DAE { Andrews' squeezing mechanism II-13-3

where

q0 =

0BBBBBBBB@

�0:0617138900142764496358948458001
0

0:455279819163070380255912382449
0:222668390165885884674473185609
0:487364979543842550225598953530

�0:222668390165885884674473185609
1:23054744454982119249735015568

1CCCCCCCCA
;

_q0 =
...
q 0 = (0; 0; 0; 0; 0; 0; 0)T;

�q0 =

0BBBBBBBB@

14222:4439199541138705911625887
�10666:8329399655854029433719415

0
0
0
0
0

1CCCCCCCCA
;

�0 =

0BBBBBB@
98:5668703962410896057654982170

�6:12268834425566265503114393122
0
0
0
0

1CCCCCCA ;

_�0 = (0; 0; 0; 0; 0; 0)T:

The index of the q, _q, �q and � components in y is 1, 2, 3 and 3, respectively.

13.3 Origin of the problem

Formulation (II.13.1) can be rewritten as

M(q)�q = f(q; _q)�GT(q)�;

0 = g(q);

which is the general form of a constrained mechanical system. More precisely, the problem de-
scribes the motion of 7 rigid bodies connected by joints without friction. It was promoted by [Gil78]
and [Man81] as a test problem for numerical codes. [HW96, pp. 530{536] describes the system and
the modeling process in full detail.

13.4 Numerical solution of the problem

The Jacobian @�=@y, needed by the numerical solver, was approximated by2664
O I O O
O O I O
O O M GT

G O O O

3775 ;
which means that we neglect the derivatives of f(q; _q) as well as those of M(q) and G(q). Note that
the evaluation of such a Jacobian does not cost anything, because M and G are already computed in
the evaluation of �. However, we did not exploit this in the numerical computations.

II-13-4 DAE { Andrews' squeezing mechanism

Tables II.13.2{II.13.3 and Figures II.13.1{II.13.5 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagrams, respectively. In computing the scd values, only the �rst seven
components were considered, since they refer to the physically important quantities, in computing
the mescd values all the components were considered. The reference solution was computed on the
Cray C90, using PSIDE with Cray double precision and atol = rtol = 10�14. For the work-precision
diagrams, we used: rtol = 10�(4+m=8), m = 0; 1; : : : ; 48; atol = rtol; h0 = rtol for BIMD, GAMD.
MEBDFDAE, MEBDFI, RADAU and RADAU5.

The failed runs are in Table II.13.1; listed are the name of the solver that failed, for which values
of m this happened, and the reason for failing.

Table II.13.1: Failed runs.

solver m reason
GAMD 3,4,6 stepsize too small
RADAU 55; 56 stepsize too small

References

[Gil78] D.R.A. Giles. An algebraic approach to A-stable linear multistep-multiderivative integration
formulas. BIT, 14:382{406, 1978.

[HW96] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-

algebraic Problems. Springer-Verlag, second revised edition, 1996.

[Man81] D.W. Manning. A computer technique for simulating dynamic multibody systems based on

dynamic formalism. PhD thesis, Univ. Waterloo, Ontario, 1981.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

Table II.13.2: Reference solution (�rst 7 components) at the end of the integration interval.

y1 0:1581077119629904 � 102
y2 �0:1575637105984298 � 102
y3 0:4082224013073101 � 10�1

y4 �0:5347301163226948
y5 0:5244099658805304

y6 0:5347301163226948
y7 0:1048080741042263 � 10

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

DAE { Andrews' squeezing mechanism II-13-5

Table II.13.3: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�4 0:27 3:05 46 41 1034 41 46 0.0185
10�7 10�7 10�7 2:82 5:38 122 122 2553 122 122 0.0459

GAMD 10�4 10�4 10�4 0:35 2:82 82 58 2281 58 82 0.0293
10�7 10�7 10�7 1:53 4:54 128 116 5176 116 128 0.0693

MEBDFI 10�4 10�4 10�4 �1:11 0:37 118 108 466 23 23 0.0078
10�7 10�7 10�7 1:25 3:50 300 287 1222 38 38 0.0195

PSIDE-1 10�4 10�4 0:22 2:95 92 75 1675 52 368 0.0410
10�7 10�7 2:10 4:98 113 93 2637 63 428 0.0615

RADAU 10�4 10�4 10�4 �0:84 1:36 96 56 810 54 96 0.0137
10�7 10�7 10�7 0:47 4:45 114 95 1292 90 114 0.0195

Figure II.13.1: Behavior of the solution modulo 2� over the integration interval.

II-13-6 DAE { Andrews' squeezing mechanism

Figure II.13.2: Work-precision diagram (scd versus CPU-time).

DAE { Andrews' squeezing mechanism II-13-7

Figure II.13.3: Work-precision diagram (scd versus CPU-time).

II-13-8 DAE { Andrews' squeezing mechanism

Figure II.13.4: Work-precision diagram (mescd versus CPU-time).

DAE { Andrews' squeezing mechanism II-13-9

Figure II.13.5: Work-precision diagram (mescd versus CPU-time).

II-13-10 DAE { Andrews' squeezing mechanism

DAE - Transistor Ampli�er II-14-1

14 Transistor ampli�er

14.1 General information

The problem is a sti� DAE of index 1 consisting of 8 equations P. Rentrop has received it from
K. Glasho� & H.J. Oberle and has documented it in [RRS89]. The formulation presented here has
been taken from [HLR89]. The parallel-IVP-algorithm group of CWI contributed this problem to the
test set.

The software part of the problem is in the �le transamp.f available at [MI03].

14.2 Mathematical description of the problem

The problem is of the form

M
dy

dt
= f(t; y); y(0) = y0; y0(0) = y00;

with
y 2 IR8; 0 � t � 0:2:

The matrix M is of rank 5 and given by

M =

0BBBBBBBBBB@

�C1 C1 0 0 0 0 0 0
C1 �C1 0 0 0 0 0 0
0 0 �C2 0 0 0 0 0
0 0 0 �C3 C3 0 0 0
0 0 0 C3 �C3 0 0 0
0 0 0 0 0 �C4 0 0
0 0 0 0 0 0 �C5 C5

0 0 0 0 0 0 C5 �C5

1CCCCCCCCCCA
;

and the function f by

f(t; y) =

0BBBBBBBBBBBBBBBBBBBBBBBBB@

�Ue(t)
R0

+ y1
R0

�Ub
R2

+ y2(
1
R1

+ 1
R2

)� (�� 1)g(y2 � y3)

�g(y2 � y3) +
y3
R3

�Ub
R4

+ y4
R4

+ �g(y2 � y3)

�Ub
R6

+ y5(
1
R5

+ 1
R6

)� (�� 1)g(y5 � y6)

�g(y5 � y6) +
y6
R7

�Ub
R8

+ y7
R8

+ �g(y5 � y6)

y8
R9

1CCCCCCCCCCCCCCCCCCCCCCCCCA

;

where g and Ue are auxiliary functions given by

g(x) = �(e
x
UF � 1) and Ue(t) = 0:1 sin(200�t): (II.14.1)

http://www.dm.uniba.it/~testset/src/problems/transamp.f

II-14-2 DAE - Transistor Ampli�er

The values of the technical parameters are:

Ub = 6;
UF = 0:026;
� = 0:99;
� = 10�6;

R0 = 1000;
Rk = 9000 for k = 1; : : : ; 9;
Ck = k � 10�6 for k = 1; : : : ; 5:

Consistent initial values at t = 0 are

y0 =

0BBBBBBBBBBB@

0
Ub=(

R2

R1

+ 1)

Ub=(
R2

R1

+ 1)

Ub
Ub=(

R6

R5

+ 1)

Ub=(
R6

R5

+ 1)

Ub
0

1CCCCCCCCCCCA
; y00 =

0BBBBBBBBBB@

51:338775
51:338775

�Ub=((R2

R1

+ 1)(C2 �R3))

�24:9757667
�24:9757667

�Ub=((R6

R5

+ 1)(C4 �R7))

�10:00564453
�10:00564453

1CCCCCCCCCCA
:

The �rst, fourth and seventh component of y00 were determined numerically. All components of y are
of index 1.

The de�nition of the function g(x) in (II.14.1) may cause over
ow if x
UF

becomes too large. In the
Fortran subroutines feval and jeval that de�ne the function f and the partial derivatives of f with
respect to y, respectively, we set IERR=-1 if x

UF
> 300 to prevent this situation. See page IV-ix of the

description of the software part of the test set for more details on IERR.

14.3 Origin of the problem

The problem originates from electrical circuit analysis. It is a model for the transistor ampli�er. The
diagram of the circuit is given in Figure II.14.1. Here Ue is the input signal and U8 is the ampli�ed

Figure II.14.1: Circuit diagram of Transistor Ampli�er (taken from [HLR89]).

DAE - Transistor Ampli�er II-14-3

Figure II.14.2: Schematic representation of a transistor.

output voltage. The circuit contains two transistors of the form depicted in Figure II.14.2. As a
simple model for the behavior of the transistors we assume that the currents through the gate, drain
and source, which are denoted by IG, ID and IS , respectively, are

IG = (1� �)g(UG � US);

ID = �g(UG � US);

IS = g(UG � US);

where UG and US denote the voltage at the gate and source, respectively, and � = 0:99. For the
function g we take

g(Ui � Uj) = �(e
Ui�Uj
UF � 1);

where � = 10�6 and UF = 0:026.
To formulate the governing equations, Kircho�'s Current Law is used in each numbered node. This

law states that the total sum of all currents entering a node must be zero. All currents passing through
the circuit components can be expressed in terms of the unknown voltages U1; : : : ; U8. Consider for
instance node 1. The current IC1

passing through capacitor C1 is given by

IC1
=

d

dt
(C1(U2 � U1));

and the current IR0
passing through the resistor R0 by

IR0
=
Ue � U1

R0
:

Here, the currents are directed towards node 1 if the current is positive. A similar derivation for the

II-14-4 DAE - Transistor Ampli�er

Table II.14.1: Failed runs.

solver m reason
RADAU 0; : : : ; 8; 30 solver cannot handle IERR=-1.
RADAU5 0; : : : ; 8 solver cannot handle IERR=-1.

other nodes gives the system:

node 1: d
dt (C1(U2 � U1)) +

Ue(t)
R0

� U1

R0

= 0;

node 2: d
dt (C1(U1 � U2)) +

Ub
R2

� U2(
1
R1

+ 1
R2

) + (�� 1)g(U2 � U3) = 0;

node 3: � d
dt (C2U3) + g(U2 � U3)� U3

R3

= 0;

node 4: � d
dt (C3(U4 � U5)) +

Ub
R4

� U4

R4

� �g(U2 � U3) = 0;

node 5: d
dt (C3(U4 � U5)) +

Ub
R6

� U5(
1
R5

+ 1
R6

) + (�� 1)g(U5 � U6) = 0;

node 6: � d
dt (C4U6) + g(U5 � U6)� U6

R7

= 0;

node 7: � d
dt (C5(U7 � U8)) +

Ub
R8

� U7

R8

� �g(U5 � U6) = 0:

node 8: � d
dt (C5(U7 � U8)) +

U8

R9

= 0;

The input signal Ue(t) is
Ue(t) = 0:1 sin(200�t):

To arrive at the mathematical formulation of the preceding subsection, one just has to identify Ui
with yi.

From the plot of output signal U8 = y(8) in Figure II.14.2 we see that the amplitude of the input
signal Ue is indeed ampli�ed.

14.4 Numerical solution of the problem

Tables II.14.2{II.14.3 and Figures II.14.3{II.14.4 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagrams, respectively. The reference solution was computed on the Cray C90,
using PSIDE with Cray double precision and atol = rtol = 10�14. For the work-precision diagrams,
we used: rtol = 10�(4+m=8), m = 0; 1; : : : ; 40; atol = rtol; h0 = 10�2 � rtol for BIMD, GAMD,
MEBDFDAE, MEBDFI, RADAU and RADAU5.

The failed runs are in Table II.14.1; listed are the name of the solver that failed, for which values
of m this happened, and the reason for failing.

References

[HLR89] E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of Di�erential-Algebraic Sys-

tems by Runge{Kutta Methods. Lecture Notes in Mathematics 1409. Springer-Verlag, 1989.

DAE - Transistor Ampli�er II-14-5

Table II.14.2: Reference solution at the end of the integration interval.

y1 �0:5562145012262709 � 10�2
y2 0:3006522471903042 � 10
y3 0:2849958788608128 � 10
y4 0:2926422536206241 � 10

y5 0:2704617865010554 � 10
y6 0:2761837778393145 � 10
y7 0:4770927631616772 � 10
y8 0:1236995868091548 � 10

Table II.14.3: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�6 5:85 5:63 466 408 8423 408 466 0.0322
10�7 10�7 10�9 8:62 8:34 618 575 19632 575 618 0.0752

DDASSL 10�4 10�4 4:60 3:08 9759 6026 18381 7359 0.1113
10�7 10�7 7:24 5:49 40810 23859 77402 33678 0.4743

GAMD 10�4 10�4 10�6 6:30 5:83 373 276 17204 276 373 0.0517
10�7 10�7 10�9 8:58 7:37 374 325 34320 326 374 0.1064

MEBDFI 10�4 10�4 10�6 5:06 4:80 1580 1486 5949 256 256 0.0303
10�7 10�7 10�9 7:25 6:99 3628 3513 13324 419 419 0.0703

PSIDE-1 10�4 10�4 5:02 4:76 516 362 9742 253 2008 0.0351
10�7 10�7 7:50 7:23 835 653 21914 419 2724 0.0732

RADAU 10�7 10�7 10�9 7:11 6:83 1775 1551 17582 1541 1775 0.0517

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

[RRS89] P. Rentrop, M. Roche, and G. Steinebach. The application of Rosenbrock-Wanner type
methods with stepsize control in di�erential-algebraic equations. Numer. Math., 55:545{
563, 1989.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

II-14-6 DAE - Transistor Ampli�er

Figure II.14.3: Behavior of the solution over the integration interval.

DAE - Transistor Ampli�er II-14-7

Figure II.14.4: Work-precision diagram (scd versus CPU-time).

II-14-8 DAE - Transistor Ampli�er

Figure II.14.5: Work-precision diagram (scd versus CPU-time).

DAE - Transistor Ampli�er II-14-9

Figure II.14.6: Work-precision diagram (mescd versus CPU-time).

II-14-10 DAE - Transistor Ampli�er

Figure II.14.7: Work-precision diagram (mescd versus CPU-time).

DAE - Charge pump II-15-1

15 Charge pump

15.1 General information

The problem is a sti� DAE of index 2, consisting of 3 di�erential and 6 algebraic equations. It has
been contributed by Michael G�unther, Georg Denk and Uwe Feldmann [GDF95].

The software part of the problem is in the �le pump.f available at [MI03].

15.2 Mathematical description

The problem is of the form

M
dy

dt
= f(t; y(t)); y(0) = y0; y0(0) = y00;

with
y 2 IR9; 0 � t � 1:2 � 10�6:

The 9� 9 matrix M is the zero matrix except for the the minor M1::3;1::5, that is given by

M1::3;1::5 =

0@ 1 0 0 0 0
0 1 1 0 0
0 0 0 1 1

1A :

The function f is de�ned by

f(t; y) =

0BBBBBBBBBBBB@

�y9
0
0

�y6 + Vin(t)
y1 �QG(v)
y2 � CS � y7
y3 �QS(v)
y4 � CD � y8
y5 �QD(v)

1CCCCCCCCCCCCA
;

with v := (v1; v2; v3) = (y6; y6 � y7; y6 � y8), CD = 0:4 � 10�12 and CS = 1:6 � 10�12. The functions
QG, QS and QD are given by:

1. If v1 � VFB := UT0 �

p
�� �, then

QG(v) = Cox(v1 � VFB);

QS(v) = QD(v) = 0;

with Cox = 4 � 10�12, UT0 = 0:2,
 = 0:035 and � = 1:01.

2. If v1 > VFB and v2 � UTE := UT0 +
(
p
�� UBS �

p
�), then

QG(v) = Cox

�p

(
=2)2 + v1 � VFB �
=2
�
;

QS(v) = QD(v) = 0:

3. If v1 > VFB and v2 > UTE , then

QG(v) = Cox

�
2

3
(UGDT + UGST � UGDTUGST

UGDT + UGST
) +

p
�� UBS

�
;

QS(v) = QD(v) = �1

2

�
QG � Cox

p
�� UBS

�
:

http://www.dm.uniba.it/~testset/src/problems/pump.f

II-15-2 DAE - Charge pump

Here, UBS , UGST and UGDT are given by

UBS = v2 � v1;

UGST = v2 � UTE ;

UGDT =

�
v3 � UTE for v3 > UTE ;
0 for v3 � UTE :

The function Vin(t) is de�ned using � = (109 � t) mod 120 by

Vin(t) =

8>><>>:
0 if � < 50;

20(� � 50) if 50 � � < 60;
20 if 60 � � < 110;

20(120� �) if � � 110:

This means that the function f has discontinuities in its derivative at � = 50; 60; 90; 110; 120.
Consistent initial values are

y0 = (QG(0; 0; 0); 0; QS(0; 0; 0); 0; QD(0; 0; 0); 0; 0; 0; 0)
T and y00 = (0; 0; 0; 0; 0; 0; 0; 0; 0)T :

The index of the �rst eight variables is 1, whereas the index of y9 is 2.

15.3 Origin of the problem

The Charge-pump circuit shown in Figure II.15.1 consists of two capacitors and an n-channel MOS-
transistor. The nodes gate, source, gate, and drain of the MOS-transistor are connected with the nodes
1, 2, 3, and Ground, respectively. In formulating the circuit equations, the transistor is replaced by
four non-linear current sources in each of the connecting branches. They model the transistor.

Vin(t)

I

Cs Cd

1

2 3

Ground

Figure II.15.1: Circuit diagram of Charge-pump circuit (taken from [GDF95])

After inserting the transistor model in the circuit, we get the �nal circuit, which can be obtained
from the circuit in Figure II.15.1 by applying the following changes:

� Remove the transistor and replace it by a solid line between the nodes 2 and 3. The point where
the lines 2{3 and 1{Ground cross each other becomes a node, which will be denoted by T .

� Add current sources between nodes 1 and T , between 2 and T and between 3 and T . There
should also be a current source between the ground and node T , but as the node Ground does
not enter the circuit equations, it will not be discussed. The currents produced by these sources
are written as the derivatives of charges: current from 1 to T : Q0

G, from T to 2: Q0
S and from

T to 3: Q0
D. Here, the functions QG, QS and QD depend on the voltage drops U1, U1 �U2 and

U1 � U3, where Ui denotes the potential in node i.

DAE - Charge pump II-15-3

The unknowns in the circuit are given by:

� The charges produced by the current sources: YT1; YT2; YT3. They are aliases for respectively
QG, QS and QD. Consequently, Y

0
Ti is the current between node T and node i.

� The charges YS and YD in the capacitors CS and CD.

� Potentials in nodes 1 to 3: U1; U2; U3.

� The current through the voltage source Vin(t): I.

In terms of these physical variables, the vector y introduced earlier reads

y = (YT1; YS ; YT2; YD; YT3; U1; U2; U3; I)
T :

Now, the following equations hold:

Y 0
T1 = �I;

Y 0
S + Y 0

T2 = 0;

Y 0
D + Y 0

T3 = 0;

U1 = Vin(t):

The charges depend on the potentials and are given by

YT1 = QG(U1; U1 � U2; U1 � U3);

YS = CS � U2;

YT2 = QS(U1; U1 � U2; U1 � U3);

YD = CD � U3;

YT3 = QD(U1; U1 � U2; U1 � U3):

The functions QG, QS and QD are given in the previous section.
Remark: the potential U1 is known. Here, it is treated as an unknown in order to keep the formulation
general and leaving open the possibility to extend the circuit. In addition, removing U1 by hand
contradicts a Computer Aided Design (CAD) approach in circuit simulation.

15.4 Numerical solution of the problem

The various components di�er enormously in magnitude. Therefore, the absolute and relative input
tolerances atol and rtol were chosen to be component-dependent. Furthermore, we neglect the index
2 variable y9 in the error control of DASSL. This leads to the following input tolerances:

atol(i) = Tol � 10�6 for i = 1; : : : ; 5;
atol(i) = Tol for i = 6; : : : ; 8;
rtol(i) = Tol for i = 1; : : : ; 8;

atol(9) = rtol(9) = 1000 for DASSL;
atol(9) = rtol(9) = Tol for other solvers:

The reference solution was computed using quadruple precision GAMD on an Alphaserver DS20E,
with a 667 MHz EV67 processor, atol = rtol = 10�18, h0 = 10�37.

Table II.15.1 and Figures II.15.3{II.15.4 present the run characteristics and the work-precision
diagram, respectively. For the computation of the number of signi�cant correct digits (scd), only the
�rst component is taken into account. The second up to eighth component are ignored because these
components are zero in the true solution; the ninth component is neglected because it was excluded

II-15-4 DAE - Charge pump

Table II.15.1: Run characteristics.

solver Tol mescd scd steps accept #f #Jac #LU CPU

BIMD 10�5 7:34 16:00 711 454 8827 454 711 0.0478
10�7 8:65 16:00 1125 688 15367 688 1125 0.0820

DDASSL 10�1 0:93 0:14 447 438 604 369 0.0088
10�3 5:42 16:00 983 833 1659 853 0.0215
10�5 6:71 3:43 1737 1487 2903 1309 0.0361
10�7 6:09 3:32 3059 2587 4945 2058 0.0595

GAMD 10�1 2:11 1:51 320 200 3735 200 320 0.0166
10�3 2:85 2:69 350 220 4786 220 350 0.0205
10�5 4:78 5:12 620 370 14890 320 570 0.0547
10�7 4:94 4:75 870 510 22340 410 770 0.0791

PSIDE-1 10�1 1:17 0:37 938 839 9843 140 3752 0.0742
10�5 2:64 4:47 1366 1068 13424 160 5424 0.1005
10�7 9:05 16:00 2425 1555 24331 300 9616 0.1835

from DASSL's error control. For the mescd we consider all the components. The �rst component of
the reference solution equals 0:1262800429876759 � 10�12 at the end of the integration interval. We
remark that the magnitude of this component is at most 10�10. For the work-precision diagram,
we used: Tol = 10�(1+m=2), m = 0; 1; : : : ; 14; h0 = 10�6 � Tol for BIMD, GAMD, MEBDFDAE,
MEBDFI, RADAU and RADAU5. From Table II.15.1 and Figure II.15.3 we see that the numerical
solution computed by DASSL results for some rather large values of Tol in an scd value of 15.4, which
equals the accuracy of the reference solution.

Figure II.15.2 shows the behavior of the solution over the integration interval. Only the last four
components have been plotted, since they are the physically important quantities. The other �ve
components refer to charge
ows inside the transistor, which are quantities the user is not interested
in. These components have a similar behavior as the components 6, 7 and 8, but their magnitude is
at most 10�10.

The failed runs are in Table II.15.2; listed are the name of the solver that failed, for which values
of m this happened, and the reason for failing.

References

[GDF95] M. G�unther, G. Denk, and U. Feldmann. How models for MOS transistors re
ect charge
distribution e�ects. Technical Report 1745, Technische Hochschule Darmstadt, Fachbereich
Mathematik, Darmstadt, 1995.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

DAE - Charge pump II-15-5

Table II.15.2: Failed runs.

solver m reason
BIMD 0
oating invalid
BIMD 4 too many consecutive Newton failures
BIMD 3; 5; 7
oating divide by zero
DASSL 2 error test failed repeatedly
DASSL 4; 7
oating over
ow
DASSL 14 corrector failed to converge repeatedly
MEBDFDAE 0; 1; : : : ; 14 stepsize too small
MEBDFI 0; 1; : : : ; 10
oating invalid
MEBDFI 11; 12; 13; 14 stepsize too small
PSIDE-1 4; 13; 14 stepsize too small
RADAU 0; 1; : : : ; 14 stepsize too small
RADAU5 0; 1; : : : ; 10
oating invalid
RADAU5 11; : : : ; 14 stepsize too small

II-15-6 DAE - Charge pump

Figure II.15.2: Behavior of the solution over the integration interval.

DAE - Charge pump II-15-7

Figure II.15.3: Work-precision diagram (scd versus CPU-time).

II-15-8 DAE - Charge pump

Figure II.15.4: Work-precision diagram (mescd versus CPU-time).

DAE - The Two bit adding unit II-16-1

16 Two bit adding unit

16.1 General Information

The problem is a sti� DAE of index 1, consisting of 175 di�erential equations and 175 algebraic
equations. It has been contributed by M. G�unther [G�un95, G�un98].

The software part of the problem is in the �le tba.f available at [MI03].

16.2 Mathematical description of the problem

The problem is of the form

dy

dt
= f(t; x); (II.16.1)

0 = y � g(x);

where

y; x 2 IR175; f : IR351 ! IR350; g : IR350 ! IR350; 0 � t � 320; y(0) = y0; x(0) = x0:

Since the functions f(t; x) and g(x) and the (consistent) initial values y0 and x0 are too voluminous
to be printed here, we refer to the subroutines feval and init for their de�nitions. The function f
has discontinuities in its derivative at t = 0; 5; 10; : : : ; 320. The index of the components of x and y
equals 1.

The function f contains several square roots. It is clear that the function can not be evaluated if
one of the arguments of one of these square roots becomes negative. To prevent this situation, we set
IERR=-1 in the Fortran subroutine that de�nes f if this happens. See page IV-ix of the description of
the software part of the test set for more details on IERR.

16.3 Origin of the problem

The two bit adding unit computes the sum of two base-2 numbers (each two digits long) and a carry
bit. These numbers are fed into the circuit in the form of input signals. As a result the circuit gives
their sum coded as three output signals.

The two bit adding unit circuit is a digital circuit. These circuits are used to compute boolean
expressions. This is accomplished by associating voltages with boolean variables. By convention the
boolean is true if the voltage exceeds 2V , and false if it is lower than 0:8V . In between the boolean
is unde�ned. Using CMOS technique, however, sharper bounds are possible for the representation of
booleans.

Digital circuits that compute elementary logical operations are called gates. An example of a gate
is the NAND gate of test problem 9. This circuit is used to compute the logical expression :(V1^V2),
where V1 and V2 are the booleans that are fed into the circuit as input signals.

The two bit adding unit is depicted in Figure II.16.1. In this �gure the symbols `&', `� 1' and a
little white circle respectively stand for the AND, OR and NOT gate. A number of input signals and
output signals enter and leave the circuit. Each signal is described by a time-dependent voltage and
the boolean it represents. For these two quantities we shall use one symbol: the symbol of this boolean
variable. Which one of the two quantities is meant by the symbol, is always clear from the context.
With this convention, the input signals are referred to by the boolean variable they represent.

The circuit is designed to perform the addition

A1 A0 +B1 B0 + Cin = C S1 S0:

http://www.dm.uniba.it/~testset/src/problems/tba.f

II-16-2 DAE - The Two bit adding unit

Figure II.16.1: Circuit diagram of the two bit adder (taken from [G�un95]).

The input signals representing the two numbers and the carry bit Cin are fed into the circuit at the
nodes indicated by A0, A1, B0, B1 and Cin. Here, a bar denotes the logical inversion. The output
signals are delivered by the nodes indicated by S0, S1 and C.

In Figure II.16.1, a number of boxes are drawn using dashed lines. Each of them represents one

DAE - The Two bit adding unit II-16-3

Table II.16.1: Characteristics of the gates that occur in the two bit adding unit.

Name logical expression # nodes # times
NOR :(V1 _ V2) 3 � 4 + 1 = 13 3
NAND :(V1 ^ V2) 3 � 4 + 2 = 14 1
ANDOI :(V1 _ (V2 ^ V3)) 4 � 4 + 2 = 18 5
ORANI :(V1 ^ (V2 _ V3)) 4 � 4 + 2 = 18 1

of the following gates: the NOR (�rst box to the left in the top-row), the ORANI gate (the box
besides S1), the NAND (the box besides the ORANI gate) and the ANDOI(the box at the bottom).
The circuit diagram of the NAND-gate is given in test problem 9. For the circuit diagrams of the
NOR, ANDOI and ORANI gate see Figures II.16.2, II.16.3 and II.16.4. What logical expressions they
compute, is listed in Table II.16.1. The fourth column in this table lists the number of times the gate
occurs in the big circuit. The third column tabulates the number of nodes in the gate. These nodes
consist of two types. The �rst type of nodes consists of the internal nodes of the transistors due to the
MOS transistor model of Shichmann and Hodges [SH68]. Each transistor has four internal nodes that
are also the links between transistor and the rest of the circuit. The second type of nodes comprises
the usual nodes that are used to link circuit components together. These nodes are indicated by a
number placed inside a square. To prevent any misunderstanding, we remark that the big dots in
Figures II.16.2{II.16.4 do not represent nodes.

The connection of a gate with the rest of the circuit consists of the input nodes and the output
node of the gate. The input signals enter the gate at the nodes with symbol V1, V2 and V3. The
output signal leaves the gate from one of the numbered nodes. To ensure stability of the circuit, such
an output node is always connected to a capacitance (we refer to the Fortran driver: CLOAD denoting
the value of a load capacitance for the logical gates, and COUT for the output nodes S0; S1 and C).
Finally, three enhancement transistors are coupled with the ANDOI gate at the bottom for a correct
treatment of Cin. This yields 12 internal nodes and two additional nodes, because the three transistors
are coupled in series. Counting all nodes we have 3 � 13 + 1 � 14 + 5 � 18 + 1 � 18 + 14 = 175 nodes.

Applying Kircho�'s law to all nodes yields a system of 175 equations. This system is an integral
form DAE of the special form

A � _q(V) = f(t; V):

The function q is a generally nonlinear function of node potentials V , which describes the charges
stored in all charge storing elements [GDF96]. Assembling the charge
ow at each node by an incidence
matrix A, the dynamic part A� _q(V) equals the contribution of static currents denoted by f(t; V). If all
load capacitances at the output nodes are nonzero, then the integral form DAE has di�erential index 0.
If only one of the load capacitances equals zero, the generalized capacitance matrix A � @q(V)=@V is
singular, yielding a system of di�erential index 1. This shows the regularization e�ects by applying
additional capacitances. Here, we use CLOAD=0 and COUT=2.0.

To make this problem suitable for the solvers used in this test set, the variable Q = A � q(V) of
assembled charges is introduced leading to

_Q = f(t; V);

0 = Q�Aq(V):

This transformation of the integral form DAE into a linearly implicit system raises the di�erential
index by one. However, in the case of singular load capacitances, no higher index e�ects are detected
in the sense of an appropriate perturbation index [G�un98].

Some of the 175 variables have a special meaning. These are the voltage variables of the nodes

II-16-4 DAE - The Two bit adding unit

that deliver the output signals. The output signals S0, S1 and C are given by the variables x49, x130
and x148, respectively. Only these variables are of interest to the engineer.

In the next section we shall see the two bit adder in operation. Every 10 units of time the addition

A1 A0 +B1 B0 + Cin = C S1 S0;

is carried out. The numbers that are added are represented by the input signals depicted in Fig-
ure II.16.5. The outcome of the addition is represented by output signals given in Figure II.16.6.
Often the output signals need time to adjust to changes in the input signal. Therefore, only during
certain periods the sum is correctly represented by the output signals. The two bit adding unit has
been designed in such a way that after each 10 units of time the output signal represents the sum
correctly.

To see the two bit adding unit performing an addition let us see what happens at t = 200. Then
the input signals read:

A0 = 0; A1 = 1; B0 = 0; B1 = 0; Cin = 1;

and the output signals are
S0 = 1; S1 = 0; C = 0:

Recall, that a bar denotes the logical inverse. Clearly, the addition 01+11+1=101 has been carried
out.

16.4 Numerical solution of the problem

M. G�unther provided the source code that de�nes the problem.
Table II.22.2 lists the voltages of the output signals in the reference solution. For the complete

reference solution at t = 320 we refer to subroutine solut. Since these components refer to the output

Table II.16.2: Value at the end of the integration interval of the components of the reference solution that correspond
to the output signals.

x49 0:2040419147264534
x130 0:4997238455712048 � 10
x148 0:2038985905095614

signals S0, S1 and C, they are the physically relevant quantities.
Table II.16.4 and Figures II.16.6{II.16.10 present the run characteristics, the behavior of the output

signals over the integration interval and the work-precision diagram, respectively. In computing the scd
values, only x49; x130 and x148 were considered, since they refer to the physically important quantities.

The reference solution was computed using RADAU5 without restarts in the discontinuities in
time of the derivative of the problem de�ning function f , with rtol = atol = 10�5 and h0 = 4 � 10�5.

For the work-precision diagram, we used: rtol = 10�(2+m=8), m = 0; 1; : : : ; 32; atol = rtol; h0 =
10 � rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5. The failed runs are in
Table II.16.3; listed are the name of the solver that failed, for which values of m this happened, and
the reason for failing.

Remark

M. G�unther also wrote a special purpose solver called CHORAL, which stands for CHarge-ORiented
ALgorithm [G�un95, G�un98] for integrating equations of the form

dy

dt
= f(t; x);

0 = y � q(x):

DAE - The Two bit adding unit II-16-5

Table II.16.3: Failed runs.

solver m reason
BIMD 27; : : : ; 32 more than nmax steps are needed
DASSL 30; 31; 32 corrector failed to converge repeatedly
GAMD 25, . . . ,29 stepsize too small
MEBDFDAE 0; 1 stepsize too small
MEBDFDAE 2; : : : ; 18 illegal function call
PSIDE-1 0; : : : ; 24 stepsize too small
RADAU 0; 1; : : : ; 17 solver cannot handle IERR=-1.
RADAU5 0; 1; : : : ; 17 solver cannot handle IERR=-1.

Most equations occurring in circuit analysis are of this form. In these equations the variables y and
x represent respectively (assembled) charges and voltages. CHORAL is based on Rosenbrock-Wanner
methods, while the special structure of the problem is exploited. The code eliminates the y variables,
reducing the linear algebra work to solving systems of order 175 instead of 350. Correspondingly, a
step size prediction and error control based directly on node potentials and currents is o�ered. For
more information see

http://www.math.uni-wuppertal.de/~guenther.

References

[GDF96] M. G�unther, G. Denk, and U. Feldmann. Modeling and simulating charge sensitive circuits.
Math. Modelling of Systems, 2:69{81, 1996.

[G�un95] M. G�unther. Ladungsorientierte Rosenbrock{Wanner{Methoden zur numerischen Simula-

tion digitaler Schaltungen. Number 168 in Fortschritt-Berichte VDI Reihe 20. VDI-Verlag,
D�usseldorf, 1995.

[G�un98] M. G�unther. Simulating digital circuits numerically { a charge-oriented ROW approach.
Numer. Math., 79(2):203{212, 1998.

Table II.16.4: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�2 10�2 10�1 2:11 3:23 836 679 12440 679 836 29.4664
10�4 10�4 10�3 4:44 6:58 1688 1621 24239 1621 1688 62.4786

DDASSL 10�2 10�2 1:55 2:40 1892 1779 3674 786 21.3276
10�4 10�4 3:60 4:54 6036 5736 9380 866 27.7379

GAMD 10�2 10�2 10�1 2:72 4:66 735 597 20213 597 735 28.1996
10�4 10�4 10�3 2:68 3:32 1332 1225 43250 1234 1332 61.4255

MEBDFI 10�2 10�2 10�1 1:96 3:14 2065 1818 194700 533 533 19.1911
10�4 10�4 10�3 3:01 3:36 5269 4851 363601 982 982 38.9239

II-16-6 DAE - The Two bit adding unit

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

[SH68] H. Shichman and D.A. Hodges. Insulated-gate �eld-e�ect transistor switching circuits. IEEE
J. Solid State Circuits, SC-3:285{289, 1968.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset

DAE - The Two bit adding unit II-16-7

Figure II.16.2: Circuit diagram of the NOR gate (taken from [G�un95]).

Figure II.16.3: Circuit diagram of the ANDOI gate (taken from [G�un95]).

II-16-8 DAE - The Two bit adding unit

Figure II.16.4: Circuit diagram of the ORANI gate (taken from [G�un95]).

DAE - The Two bit adding unit II-16-9

Figure II.16.5: The input signals A0, A1, B0, B1 and C.

II-16-10 DAE - The Two bit adding unit

Figure II.16.6: Behavior of the output signals S0, S1 and C over the integration interval.

DAE - The Two bit adding unit II-16-11

Figure II.16.7: Work-precision diagram (scd versus CPU-time).

II-16-12 DAE - The Two bit adding unit

Figure II.16.8: Work-precision diagram (scd versus CPU-time).

DAE - The Two bit adding unit II-16-13

Figure II.16.9: Work-precision diagram (mescd versus CPU-time).

II-16-14 DAE - The Two bit adding unit

Figure II.16.10: Work-precision diagram (mescd versus CPU-time).

DAE - The car axis problem II-17-1

17 The car axis problem

17.1 General information

The problem is a sti� DAE of index 3, consisting of 8 di�erential and 2 algebraic equations. It has
been taken from [Sch94]. Since not all initial conditions were given, we have chosen a consistent set
of initial conditions. The software part of the problem is in the �le caraxis.f available at [MI03].

17.2 Mathematical description of the problem

The problem is of the form

p0 = q; (II.17.1)

Kq0 = f(t; p; �); p; q 2 IR4; � 2 IR2; 0 � t � 3; (II.17.2)

0 = �(t; p); (II.17.3)

with initial conditions p(0) = p0, q(0) = q0, p
0(0) = q0, q

0(0) = q00, �(0) = �0 and �
0(0) = �00.

The matrix K reads "2M2 I4, where I4 is the 4 � 4 identity matrix. The function f : IR7 ! IR4 is
given by

f(t; p; �) =

0BBBBBBBB@

(L0 � Ll)
xl
Ll

+�1xb+2�2(xl � xr)

(L0 � Ll)
yl
Ll

+�1yb+2�2(yl � yr)�"2M
2

(L0 � Lr)
xr � xb
Lr

�2�2(xl � xr)

(L0 � Lr)
yr � yb
Lr

�2�2(yl � yr)�"2M
2

1CCCCCCCCA
:

Here, (xl; yl; xr; yr)
T := p, and Ll and Lr are given byq

x2l + y2l and
p
(xr � xb)2 + (yr � yb)2:

Furthermore, the functions xb(t) and yb(t) are de�ned by

xb(t) =
q
L2 � y2b (t); (II.17.4)

yb(t) = h sin(!t): (II.17.5)

The function � : IR5 ! IR2 reads

�(t; p) =

�
xlxb + ylyb
(xl � xr)

2 + (yl � yr)
2 � L2

�
:

The constants are listed below.

L = 1
L0 = 1=2

� = 10�2

M = 10
h = 10�1

� = �=5
! = 10

Consistent initial values are

p0 =

0BB@
0
1=2
1
1=2

1CCA ; q0 =

0BB@
�1=2
0
�1=2
0

1CCA ; q00 =
2

M"2
f(0; p0; �0); p00 = q0; �0 = �00 = (0; 0)T:

The index of the variables p, q and � is 1, 2 and 3, respectively.

http://www.dm.uniba.it/~testset/src/problems/caraxis.f

II-17-2 DAE - The car axis problem

17.3 Origin of the problem

The car axis problem is an example of a rather simple multibody system, in which the behavior of a
car axis on a bumpy road is modeled by a set of di�erential-algebraic equations.

A simpli�cation of the car is depicted in Figure II.17.1. We model the situation that the left wheel

D
DD

D
DD

d
d

`````````````````````````

�
��̀ ````````````````````````�

��

d
d

D
DD

PP"
""

"
""

"
""

"
""

PP
P

PP
P

PP
P

PP

D
DD

AA
�
��
�   

A
A




M
   D
DD Q
Q
Q

(0; 0)
�
��

(xb; yb)
�
�
��

(xl; yl)

�
�	

(xr; yr)

�
�	

M

Figure II.17.1: Modelnn of the car axis.

at the origin (0; 0) rolls on a 
at surface and the right wheel at coordinates (xb; yb) rolls over a hill of
height h every � secondsy. This means that yb varies over time according to (II.17.5). The length of
the axis, denoted by L, remains constant over time, which means that xb has to ful�ll (II.17.4). Two
springs carry over the movement of the axis between the wheels to the chassis of the car, which is
represented by the bar (xl; yl){(xr; yr) of mass M . The two springs are assumed to be massless and
have Hooke's constant 1=�2 and length L0 at rest.

There are two position constraints. Firstly, the distance between (xl; yl) and (xr; yr) must remain
constantly L and secondly, for simplicity of the model, we assume that the left spring remains orthog-
onal to the axis. If we identify p with the vector (xl; yl; xr; yr)

T, then we see that Equation (II.17.3)
re
ects these constraints.

Using Lagrangian mechanics, the equations of motions for the car axis are given by

M

2

d2p

dt2
= FH +GT�+ Fg: (II.17.6)

Here, G is the 2 � 4 Jacobian matrix of the function � with respect to p and � is the 2-dimensional
vector containing the so-called Lagrange multipliers. The factor M=2 is explained by the fact that
the mass M is divided equally over (xl; yl) and (xr; yr). The force FH represents the spring forces:

FH = �(cos(�l)Fl; sin(�l)Fl; cos(�r)Fr; sin(�r)Fr)T;
yin the source fortran �le the variable r stands for h



DAE - The car axis problem II-17-3

where Fl and Fr are the forces induced by the left and right spring, respectively, according to Hooke's
law:

Fl = (Ll � L0)=�
2;

Fr = (Lr � L0)=�
2:

Here, Ll and Lr are the actual lengths of the left and right spring, respectively:

Ll =
q
x2l + y2l ;

Lr =
p
(xr � xb)2 + (yr � yb)2:

Furthermore, �l and �r are the angles of the left and right spring with respect to the horizontal axis
of the coordinate system:

�l = arctan(yl=xl);

�r = arctan((yr � yb)=(xr � xb)):

Finally, Fg represents the gravitational force

Fg = �(0; 1; 0; 1)TM
2
g:

The original formulation [Sch94] sets g = 1.
We rewrite (II.17.6) as a system of �rst order di�erential equations by introducing the velocity

vector q, so that we obtain the �rst order di�erential equations (II.17.1) and

M

2

dq

dt
= FH +GT�+ Fg: (II.17.7)

Setting f = FH +GT�+ Fg, it is easily checked that multiplying (II.17.7) by "2 yields (II.17.2).
To arrive at a consistent set of initial values p0, q0 and �0, we have to solve the system of equations

consisting of the constraint
�(t0; p0) = 0; (II.17.8)

and the 1 up to k � 1 times di�erentiated constraint (II.17.8), where k is the highest variable index.
To facilitate notation, we introduce ~p := (t; pT)T and its derivative ~q := d~p

dt = (1; qT)T. The Jacobian

of � with respect to ~p will be denoted by ~G. Here, k = 3, yielding the additional conditions

~G(~p0)~q0 = 0 (II.17.9)

and
�~p~p(~p0)(~q0; ~q0) + ~G(~p0)~q

0
0 = 0;

where �~p~p denotes the second derivative of � with respect to ~p. Using (II.17.6) and the fact that the
�rst component of ~q00 vanishes, the latter condition equals

�~p~p(~p0)(~q0; ~q0) +
2

M
G(p0)

�
FH(p0) +GT(p0)�0 + Fg(p0)

�
= 0: (II.17.10)



II-17-4 DAE - The car axis problem

The equations (II.17.8){(II.17.10) are solved for

xr = L;

xl = 0;

yr = yl = L0;

x0r = x0l = �L0
L

2�

�
h;

y0r =
L2�

2�h"2M
(2�1 � �2);

y0l =
L2�

2�"2hM
(2�2 � �1)� L

"

r
�8�2 + 2�1

M
:

Choosing �1 = �2 = 0, we arrive at the initial conditions listed in x17.2,

Table II.17.1: Reference solution at the end of the integration interval.

y1 0:493455784275402809122 � 10�1
y2 0:496989460230171153861
y3 0:104174252488542151681 � 10
y4 0:373911027265361256927
y5 �0:770583684040972357970 � 10�1

y6 0:744686658723778553466 � 10�2
y7 0:175568157537232222276 � 10�1
y8 0:770341043779251976443
y9 �0:473688659084893324729 � 10�2
y10 �0:110468033125734368808 � 10�2

17.4 Numerical solution of the problem

Tables II.17.1{II.17.2 and Figures II.17.2{II.17.3 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of some solution components over the in-
tegration interval and the work-precision diagrams, respectively. The reference solution was com-
puted on using quadruple precision GAMD on an Alphaserver DS20E, with a 667 MHz EV67 pro-
cessor. atol = rtol = h0 = 10�24. For the work-precision diagrams, we used: rtol = 10�(4+m=4),
m = 0; 1; : : : ; 24; atol = rtol; h0 = rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and
RADAU5.

References

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of Math-
ematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/�testset.

[Sch94] S. Schneider. Int�egration de syst�emes d'�equations di��erentielles raides et di��erentielles-

alg�ebriques par des m�ethodes de collocations et m�ethodes g�en�erales lin�eaires. PhD thesis,
Universit�e de Gen�eve, 1994.

http://www.dm.uniba.it/~testset


DAE - The car axis problem II-17-5

Table II.17.2: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�4 2:19 0:34 71 71 1693 71 71 0.0088
10�7 10�7 10�7 5:47 3:34 138 138 4511 138 138 0.0224
10�10 10�10 10�10 8:01 5:35 235 235 9669 235 235 0.0488

GAMD 10�4 10�4 10�4 1:98 0:39 39 39 2169 39 39 0.0088
10�7 10�7 10�7 4:82 2:64 98 98 7167 98 98 0.0293
10�10 10�10 10�10 6:50 3:84 179 179 18771 179 179 0.0742

MEBDFI 10�4 10�4 10�4 0:88 �0:23 280 278 1246 27 27 0.0059
10�7 10�7 10�7 4:65 3:34 650 648 2797 47 47 0.0137
10�10 10�10 10�10 4:21 2:08 1393 1391 5624 85 85 0.0264

PSIDE-1 10�4 10�4 0:83 �0:28 55 54 1403 42 220 0.0098
10�7 10�7 4:41 2:27 179 172 4103 83 464 0.0273
10�10 10�10 7:25 4:86 625 612 13751 115 964 0.0869

RADAU 10�4 10�4 10�4 1:34 0:19 98 97 850 95 98 0.0039
10�7 10�7 10�7 3:73 2:51 289 288 2559 282 288 0.0127
10�10 10�10 10�10 5:99 4:22 179 178 4281 169 179 0.0166



II-17-6 DAE - The car axis problem

Figure II.17.2: Behavior of (xl; yl) and (xr; yr) over the integration interval.



DAE - The car axis problem II-17-7

Figure II.17.3: Work-precision diagram (scd versus CPU-time).



II-17-8 DAE - The car axis problem

Figure II.17.4: Work-precision diagram (scd versus CPU-time).



DAE - The car axis problem II-17-9

Figure II.17.5: Work-precision diagram (mescd versus CPU-time).



II-17-10 DAE - The car axis problem

Figure II.17.6: Work-precision diagram (mescd versus CPU-time).



DAE - Fekete problem II-18-1

18 Fekete problem

18.1 General information

The problem is an index 2 DAE from mechanics. The dimension is 8N , where N is a user supplied
integer. The numerical tests shown here correspond to N = 20. The problem is of interest for
the computation of the elliptic Fekete points [Par95]. The parallel-IVP-algorithm group of CWI
contributed this problem to the test set, in collaboration with W. J. H. Stortelder. The software part
of the problem is in the �le fekete.f available at [MI03].

18.2 Mathematical description of the problem

The problem is of the form

M
dy

dt
= f(y); y(0) = y0; y0(0) = y00; (II.18.1)

with
y; f 2 IR8N ; 0 � t � tend:

Here, tend = 1000, N = 20 and M is the (constant) mass matrix given by

M =

�
I6N 0
0 0

�
;

where I6N is the identity matrix of dimension 6N . For the de�nition of the function f , we refer to
x18.3.

The components y0;i of of the initial vector y0 are de�ned by0@ y0;3(j�1)+1
y0;3(j�1)+2
y0;3(j�1)+3

1A =

0@ cos(!j) cos(�j)
sin(!j) cos(�j)

sin(�j)

1A for j = 1; : : : ; N;

where
�j = 3

8� and !j = 2j
3 � +

1
13� for j = 1; : : : ; 3;

�j = 1
8� and !j = 2(j�3)

7 � + 1
29� for j = 4; : : : ; 10;

�j = � 2
15� and !j = 2(j�10)

6 � + 1
7� for j = 11; : : : ; 16;

�j = � 3
10� and !j = 2(j�17)

4 � + 1
17� for j = 17; : : : ; 20;

and
y0;i = 0 for i = 3N + 1; : : : ; 6N;

y0;6N+j = 1
2 hpj(0); bfji for j = 1; : : : ; N;

y0;i = 0 for i = 7N + 1; : : : ; 8N;

where

pj =

0@ y3(j�1)+1
y3(j�1)+2
y3(j�1)+3

1A ; bfj =
0@ f3N+3(j�1)+1((p(0); 0; : : : ; 0)

T)
f3N+3(j�1)+2((p(0); 0; : : : ; 0)

T)
f3N+3(j�1)+3((p(0); 0; : : : ; 0)

T)

1A ; (II.18.2)

and p = (y1; y2; : : : ; y3N )
T. The initial derivative vector reads y00 = f(y0). These de�nitions of y0 and

y00 yield consistent initial values. The �rst 6N components are of index 1, the last 2N of index 2.

http://www.dm.uniba.it/~testset/src/problems/fekete.f


II-18-2 DAE - Fekete problem

Figure II.18.1: Final con�guration for N = 20. The large ball is centered at the origin and only added to facilitate
the 3-D perception. (Taken from [PSS97] by courtesy of R. van Liere.)

18.3 Origin of the problem

This problem is of interest for the computation of the elliptic Fekete points. Let us de�ne the unit
sphere in IR3 by S2 and for any con�guration x := (x1; x2; : : : ; xN )

T of points xi 2 S2, the function
V (x) :=

Y
i<j

kxi � xjk2: (II.18.3)

We denote the value of x for which V reaches its global maximum by bx = (bx1; : : : ; bxN ). The pointsbx1; bx2; : : : ; bxN are called the elliptic Fekete points of order N . For example, for N = 4, the points of
the optimal solution form a tetrahedron. But, in case of 8 points, intuition fails; the elliptic Fekete
points do not form a cube in this case. A cube where, for example, the upper plane is rotated over 45�

with respect to the bottom plane, gives already a larger value of V . It turns out (see e.g. [Par95]) thatbx is di�cult to compute as solution of a global optimization problem. For reasons that will become
clear later, we di�erentiate log(V ) with respect to xk and apply the method of Lagrange multipliers,
to see that bx ful�lls

rk log(V (x)) jx = bx =
X
j 6=k

bxk � bxj
kbxk � bxjk22 = �kbxk; (II.18.4)

where the �k are Lagrange multipliers.
We now discuss the Fekete points from another point of view. Consider on S2 a number of N

particles, on which two forces are invoked: a repulsive force, by which the particles will start to move
away from each other, and an adhesion force, by which the particles will reach a stationary state after
a certain period of time.



DAE - Fekete problem II-18-3

We denote the position in Cartesian coordinates of particle i at time t by pi(t) and the con�guration
of N points at time t by p(t) = (p1(t); : : : ; pN (t))

T. The stationary con�guration is assumed to be
obtained at t = tstat and will be denoted by bp := (bp1; bp2; : : : ; bpN ), where bpi := pi(tstat). The repulsive
force on particle i caused by particle j is de�ned by

Fij =
pi � pj

kpi � pjk
2
:

Note that the choice 
 = 3 can be interpreted as an electrical force working on particles with unit
charge. The adhesion force working on particle i is denoted by Ai and given by

Ai = ��qi:
Here, q is the velocity vector and � is valued 0:5.

We can compute the con�guration of the particles as function of time, given that the particles
cannot leave the unit sphere, as solution of the DAE system

p0 = q; (II.18.5)

q0 = g(p; q) +GT(p)�; (II.18.6)

0 = �(p); (II.18.7)

where G = @�=@p and � 2 IRN . The function � : IR3N ! IRN represents the constraint, which states
that the particles remain on the unit sphere:

�i(p) = p2i;1 + p2i;2 + p2i;3 � 1:

The function g : IR6N ! IR3N is given by g = (gi), i = 1; : : : ; N , where

gi(p; q) =
X
j 6=i

Fij(p) +Ai(q):

The term GT(p)� in (II.18.6) represents the normal force which keeps the particle on S2.
Since we know that the speed of the �nal con�guration at t = tstat is 0, we can substitute q = 0

and p = bp in formula (II.18.6), thus arriving at

0 =
X
j 6=i

Fij(bp) +GT(bp)� ;
which is equal to X

i6=j

bpi � bpj
kbpi � bpjk
2 = �2�ibpi : (II.18.8)

Comparing (II.18.4) and (II.18.8) tells us that computing bp for 
 = 2 gives the local optima of the
function V in (II.18.3). In [PSS97], it is showed that computing bp by solving the system (II.18.5){
(II.18.7) and then substituting x = bp in (II.18.3), results in values of V that are very competitive with
those obtained by global optimization packages. For more details on elliptic Fekete points, we refer
to [Par95] and [SS93].

The DAE system mentioned before is of index 3. To arrive at a more stable formulation of the
problem, we stabilize the constraint (see [BCP89, p. 153]) by replacing (II.18.5) by

p0 = q +GT(p)�; (II.18.9)

where � 2 IRN , and appending the di�erentiated constraint

0 = G(p)q: (II.18.10)



II-18-4 DAE - Fekete problem

Table II.18.1: Reference solution at the end of the integration interval.

y(1) �0:4070263380333202
y(2) 0:3463758772791802
y(3) 0:8451942450030429
y(4) 0:0775293475252155
y(5) �0:2628662719972299
y(6) 0:9617122871829146

y(7) 0:7100577833343567
y(8) 0:1212948055586120
y(9) 0:6936177005172217
y(10) 0:2348267744557627
y(11) 0:7449277976923311
y(12) 0:6244509285956391

The system (II.18.9), (II.18.6), (II.18.7), (II.18.10) is now of index 2; the variables p and q are of index
1, the variables � and � of index 2. We cast the system in the form (II.18.1) by setting y = (p; q; �; �)T

and f(y) = f(p; q; �; �) = (q +GT�; g +GT�; �;Gq)T, where pi is in Cartesian coordinates.
The choice for the initial con�guration as de�ned in x18.2 is a rough attempt to spread out the

points over the sphere. To arrive at a consistent set of initial values we choose q(0) = 0, yielding
�(0) = 0 and �0i(0) = h2pi(0); qi(0)i = 0. Consequently,

�00i (0) = h2pi(0); q0i(0)i
= h2pi(0); gi(p(0); q(0)) + 2�i(0)pi(0)i:

Requiring �00i (0) = 0 gives

�i(0) = �hpi(0); gi(p(0); q(0))i
2hpi(0); pi(0)i = �1

2
hpi(0); gi(p(0); q(0))i:

The initial derivative vector y00 can be chosen equal to f(y0). For N � 20, tstat � 1000, therefore we
chose tend = 1000.

In Figure II.18.1 the �nal con�guration for 20 points is plotted.

18.4 Numerical solution of the problem

All the tests concern the case with N = 20. Tables II.18.1{II.18.2 and Figures II.18.2{II.18.6 present
the reference solution at the end of the integration interval (�rst 12 components), the run character-
istics, the behavior of the �rst 6 solution components over the interval [0; 20] and the work-precision
diagrams, respectively. In computing the scd values, only the �rst sixty components were consid-
ered, since they refer to the position of the particles. The reference solution was computed using
RADAU5, rtol = 10�12, atol = 10�12, and h0 = 10�12. For the work-precision diagrams, we used:
rtol = 10�(2+m=16), m = 0; 1; : : : ; 64; atol = rtol; h0 = rtol for BIMD, GAMD, MEBDFDAE,
MEBDFI, RADAU and RADAU5.

References

[BCP89] K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial{Value Problems
in Di�erential{Algebraic Equations. North{Holland, New York{Amsterdam{London, 1989.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

[Par95] P.M. Pardalos. An open global optimization problem on the unit sphere. Journal of Global
Optimization, 6:213, 1995.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset


DAE - Fekete problem II-18-5

Table II.18.2: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�2 10�2 10�2 4:12 2:63 30 29 415 29 30 0.2450
10�3 10�3 10�3 5:36 4:19 43 43 668 43 43 0.3445
10�4 10�4 10�4 6:69 5:33 65 65 1094 65 65 0.5124

GAMD 10�2 10�2 10�2 4:16 2:99 26 24 526 24 26 0.2147
10�3 10�3 10�3 4:79 3:78 26 26 947 26 26 0.3006
10�4 10�4 10�4 5:76 4:45 38 38 1319 38 38 0.4119

MEBDFI 10�2 10�2 10�2 3:56 2:10 60 57 192 15 15 0.1064
10�3 10�3 10�3 4:58 3:23 129 128 428 18 18 0.1513
10�4 10�4 10�4 5:81 4:81 218 216 707 23 23 0.2176

PSIDE-1 10�2 10�2 3:66 2:20 73 53 693 16 288 1.3137
10�3 10�3 4:40 3:19 88 59 779 11 344 1.4357
10�4 10�4 5:32 4:12 114 75 967 9 448 1.7363

RADAU 10�2 10�2 10�2 3:43 1:97 33 30 274 27 32 0.5065
10�3 10�3 10�3 4:11 2:65 43 41 315 38 43 0.5993
10�4 10�4 10�4 5:36 4:29 61 58 442 54 61 0.7662

[PSS97] J.D. Pint�er, W.J.H. Stortelder, and J.J.B. de Swart. Computation of elliptic Fekete point
sets. Report MAS-R9705, CWI, Amsterdam, 1997. To appear in CWI Quarterly.

[SS93] M. Shub and S. Smale. Complexity of Bezout's theorem III. Condition number and packing.
Journal of Complexity, 9:4{14, 1993.



II-18-6 DAE - Fekete problem

Figure II.18.2: Behavior of the solution over the integration interval.



DAE - Fekete problem II-18-7

Figure II.18.3: Work-precision diagram (scd versus CPU-time).



II-18-8 DAE - Fekete problem

Figure II.18.4: Work-precision diagram (scd versus CPU-time).



DAE - Fekete problem II-18-9

Figure II.18.5: Work-precision diagram (mescd versus CPU-time).



II-18-10 DAE - Fekete problem

Figure II.18.6: Work-precision diagram (mescd versus CPU-time).



DAE - Slider crank II-19-1

19 Slider Crank

19.1 General Information

This problem was contributed by Bernd Simeon, March 1998. The slider crank shows some typical
properties of simulation problems in 
exible multibody systems, i.e., constrained mechanical systems
which include both rigid and elastic bodies. It is also an example of a sti� mechanical system since it
features large sti�ness terms in the right hand side. Accordingly, there are some fast variables with
high frequency oscillations.

This problem is originally described by a second order system of di�erential-algebraic equations
(DAEs), but transformed to �rst order and semi-explicit system of dimension 24. The index of the
problem is originally 3, but an index 1 and index 2 formulation are supplied as well. By default, the
subroutines provide the index 2 formulation.

Comments to simeon@ma.tum.de.
The software part of the problem is in the �le crank.f available at [MI03].

19.2 Mathematical description of the problem

The original problem has the form

M(p; q)

�
�p
�q

�
= f(p; _p; q; _q)�G(p; q)T�; (II.19.1)

0 = g(p; q) + r(t);

where 0 � t � 0:1, p 2 IR3, q 2 IR4, � 2 IR3, M : IR7 ! IR7 � IR7, f : IR14 ! IR7, g : IR7 ! IR3,
r : IR ! IR3, and G = @g=@(p; q). The matrix M(p; q) is symmetric positive semi-de�nite and rank
M(p; q) is 3, which implies that the DAE (II.19.1) is of index 3. For the index 2 formulation, the
position constraints are replaced by the velocity constraints

0 =
d

dt

�
g(p; q) + r(t)

�
= G(p; q)

�
_p
_q

�
+ _r(t): (II.19.2)

Additionally, the system is transformed to �rst order and semi explicit form�
_p
_q

�
=

�
vp
vq

�
;�

_vp
_vq

�
=

�
ap
aq

�
; (II.19.3)

0 = M(p; q)

�
ap
aq

�
� f(p; vp; q; vq) +G(p; q)T� ;

0 = G(p; q)

�
vp
vq

�
+ _r(t) ;

which increases the dimension of the problem to 24. If we de�ne y := (p; q; vp; vq; ap; aq; �)
T, then the

consistent values are given by y(0) := y0 and y
0(0) := y00. The components of y0 are zero, except for

http://www.dm.uniba.it/~testset/src/problems/crank.f


II-19-2 DAE - Slider crank

y0;3 0:450016933 �100
y0;6 0:103339863 �10�4
y0;7 0:169327969 �10�4
y0;8 0:150000000 �103
y0;9 �0:7499576703969453 �102
y0;10 �0:2689386719979040 �10�5
y0;11 0:4448961125815990 �100
y0;12 0:4634339319238670 �10�2
y0;13 �0:1785910760000550 �10�5
y0;14 �0:2689386719979040 �10�5

y0;16 �1:344541576709835 �10�3
y0;17 �5:062194924490193 �103
y0;18 �6:829725665986310 �10�5
y0;19 1:813207639590617 �10�20
y0;20 �4:268463266810281 �100
y0;21 2:098339029337557 �10�1
y0;22 �6:552727150584648 �10�8
y0;23 3:824589509350831 �102
y0;24 �4:635908708561371 �10�9

The �rst 14 components of y00 read y
0
0;i = y0;i+7, i = 1; : : : ; 14; the last 10 are zero.

For the index 2 formulation, the index of the variables p, q, vp and vq equals 1 and that of ap,
aq and � equals 2. The equations are given in detail in the next subsections, in which already some
references to the origin of the problem, treated in x19.3, are given.

19.2.1 Equations of motion

The position or gross motion coordinates p are

p :=

0@ �1
�2
x3

1A crank angle
connecting rod angle
sliding block displacement

The deformation coordinates q (of the elastic connecting rod, see below) are

q :=

0BB@
q1
q2
q3
q4

1CCA
�rst lateral mode sin(�x=l2)
second lateral mode sin(2�x=l2)
longitudinal displacement midpoint
longitudinal displacement endpoint

The mass matrix M reads

M(p; q) =

 
Mr(p) +Me(p; q) C(p; q)T

C(p; q) M�

!

with rigid motion mass matrix

Mr(p) =

0@ J1 +m2l
2
1 1=2 l1l2m2 cos(�1 � �2) 0

1=2 l1l2m2 cos(�1 � �2) J2 0
0 0 m3

1A ;

coupling blocks

Me(p; q) =

0@ 0 �l1(cos(�1 � �2)c
T
1 + sin(�1 � �2)c

T
2 )q 0

�l1(cos(�1 � �2)c
T
1 + sin(�1 � �2)c

T
2 )q qTM�q + 2�cT12q 0

0 0 0

1A
and

C(p; q)T =

0@ �l1(� sin(�1 � �2)c
T
1 + cos(�1 � �2)c

T
2 )

�cT21 + �qTB
0T

1A ;



DAE - Slider crank II-19-3

and elastic body space discretization mass matrix

M� = � d h l2

0BB@
1=2 0 0 0
0 1=2 0 0
0 0 8 1
0 0 1 2

1CCA :

The forces are given by

f(p; _p; q; _q) =

 
fr(p; _p) + fe(p; _p; q; _q)

f�(p; _p; q; _q)� grad W�(q)�D� _q

!
;

where the rigid motion terms are collected in

fr(p; _p) =

0BB@
�1=2 l1(
(m1 + 2m2) cos�1 + l2m2

_�22 sin(�1 � �2))

�1=2 l2
m2 cos�2 + 1=2 l1l2m2
_�21 sin(�1 � �2)

0

1CCA :

For the force term fe(p; _p; q; _q) we have0BBBBBBB@

�l1 _�
2
2(� sin(�1 � �2)c

T
1 + cos(�1 � �2)c

T
2 )q � 2�l1 _�2(cos(�1 � �2)c

T
1 + sin(�1 � �2)c

T
2 ) _q

�l1 _�
2
1(sin(�1 � �2)c

T
1 � cos(�1 � �2)c

T
2 )q � 2� _�2c

T
12 _q � 2 _�2 _q

TM�q

�� _qTB _q � �
(cos�2c
T
1 q � sin�2c

T
2 q)

0

1CCCCCCCA
;

and for f�(p; _p; q; _q) the expression

_�22M�q + �
�
_�22c12 + l1 _�

2
1(cos(�1 � �2)c1 + sin(�1 � �2)c2) + 2 _�2B _q

�
� �


�
sin�2c1 + cos�2c2

�
:

The gradient of the elastic potential W�(q) in case of linear elasticity (which is the default) is
grad W�(q) = K�q with sti�ness matrix

K� = E dh =l2

0BB@
�4=24(h=l2)

2 0 0 0
0 �42=3(h=l)2 0 0
0 0 16=3 �8=3
0 0 �8=3 7=3

1CCA :

Alternatively, in case of the nonlinear beam model (IPAR(1) = 1, see below), it holds grad W�(q) =
K�q + k�(q),

k�(q) = 1=2�2E dh=l22

0BB@
q1q4 � �q2(�4q3 + 2q4)
4q2q4 � �q1(�4q3 + 2q4)

4�q1q2
1=2q21 + 2q22 � 2�q1q2

1CCA ; � = 80=(9�2):

The damping matrix D� is by default zero. The coupling matrices and vectors arising from the space
discretization read

B = d h l2

0BB@
0 0 �16=�3 8=�3 � 1=�
0 0 0 1=(2�)

16=�3 0 0 0
1=� � 8=�3 �1=(2�) 0 0

1CCA



II-19-4 DAE - Slider crank

Figure II.19.1: The multibody system with crank, connecting rod, sliding block.

and

c1 = d h l2( 0; 0; 2=3; 1=6 )
T;

c2 = d h l2( 2=�; 0; 0; 0 )
T;

c12 = d h l22( 0; 0; 1=3; 1=6 )
T;

c21 = d h l22( 1=�; �1=(2�); 0; 0 )T:

Finally, the position constraints 0 = g(p; q) + r(t) are given by

0 = l1 sin�1 + l2 sin�2 + q4 sin�2;

0 = x3 � l1 cos�1 � l2 cos�2 � q4 cos�2;

0 = �1 � 
t :

19.2.2 Parameters

For the simulation, the following data are used:
The bodies have lengths l1 = 0:15, l2 = 0:30[m].
The masses of the bodies are m1 = 0:36, m2 = 0:151104, m3 = 0:075552[kg].
The moments of inertia are J1 = 0:002727, J2 = 0:0045339259[kgm2].
The 
exible connecting rod has height and width h = d = 0:008[m].
The mass density � = 7870[kg=m3], and Young's modulus E = 2: � 1011[N=m2].
The gravity constant was set to zero since gravitation plays no role here, 
 = 0.
The angular velocity of the prescribed crank motion is 
 = 150[rad=s].

19.3 Origin of the problem

The planar slider crank mechanism, see Figure II.19.1, consists of a rigid crank (body 1), an elastic
connecting rod (body 2), a rigid sliding block (body 3) and two revolving and one translational joint.
Koppens [Kop89] and Jahnke [JPD93] investigated this example using an ODE model in minimum
coordinates. In [Sim96], an alternative DAE approach is introduced.



DAE - Slider crank II-19-5

The mathematical model outlined above is derived in two steps. First, the elastic connecting rod
is discretized in space. The geometry of the rod allows to apply an Euler-Bernoulli beam

u1(x; y) = w1(x)� yw0
2(x);

u2(x; y) = w2(x);

to describe the longitudinal and lateral displacements u1 and u2 of material point (x; y) in the body-
�xed coordinate system. For the longitudinal displacement w1 of the neutral �ber, a simple quadratic
model

w1(x)
:
= �2(�4q3 + 2q4) + �(4q3 � q4); � = x=l2;

is su�cient to show the basic e�ects. The lateral displacement w2 is approximated by the �rst two
sinus shape functions

w2(x)
:
= sin(��)q1 + sin(2��)q2 :

These functions satisfy the boundary conditions w1(0) = 0; w2(0) = 0; w2(l2) = 0. Accordingly, the
body-�xed coordinate system's origin is placed in (x; y) = (0; 0), and its x-axis passes through the
point (l2 + w1(x); 0).

As already mentioned in x19.2, we provide two versions of the problem. The �rst one (default)
assumes linear elasticity while the second takes the coupling of longitudinal and lateral displacements
in terms of k�(q) into account. Set IPAR(1) = 1 to switch to this nonlinear beam model. See below
for a comparison of the results.

In the second step, the equations of motion of the overall multibody system are assembled. Due
to the choice of �2 as gross motion coordinate, there is no constraint equation necessary to express
the revolving joint between crank and connecting rod. The revolving joint between sliding block and
connecting rod and the translational joint lead to two constraints that depend on the deformation
variable q4. The third constraint equation de�nes the crank motion using r(t) = (0; 0; �
t)T. Here,
other functions for the crank motion could also be prescribed.

The model described so far features no dissipation. Consequently, the solutions show a purely
oscillatory behavior. We supply also a nonzero damping matrix D� which can be activated by setting
IPAR(2) = 1. Then, 0:5 percent dissipation is included in the right hand side of the elastic connecting
rod.

In x19.4, we investigate the dynamic behavior of the slider crank model corresponding to the
nonlinear model without damping with the initial values listed in x19.2, which were calculated such
that the motion is almost smooth, using an asymptotic expansion technique [Sim97]. In Figure II.19.4
we see the behavior of the numerical solution for this setting of the model. A close look at these
plots reveals that both lateral displacements q1; q2 as well as longitudinal displacements q3; q4 still
show some small oscillations. The corresponding frequencies as solutions of the eigenvalue problem
!2M�q = K�q are

!1 = 1277; !2 = 5107; !3 = 6841; !4 = 24613 [rad=s] :

In particular, q3 and q4 are characterized by the relatively large frequency !4. Any explicit discretiza-
tion in time will need stepsizes smaller than the shortest period of oscillation, even for tracking a
smooth solution. On the other hand, the challenge for implicit methods is to be able to take larger
steps. In this simulation the gross motion coordinates p di�er only slightly from the motion of a
mechanism with rigid connecting rod.

The subroutines that describe the model o�er several possibilities to test other variants of the
model than those tested in x19.4. We now discuss some of them.

Oscillatory solution

We provide also a second set of initial values (subroutine init2) which lead to a strongly oscillatory
solution. Here, the initial deformation as well as the corresponding velocity were set to zero, q(0) =



II-19-6 DAE - Slider crank

Figure II.19.2: Solution of slider crank for `rigid' initial values, i.e., deformation q(0) = vq(0) = 0.

Figure II.19.3: Left: Comparison of linear and nonlinear beam model. Right: Oscillatory solution with physical
damping.

vq(0) = 0, which is equivalent to consistent initial values on a rigid motion trajectory. Figure II.19.2
plots the behavior of q1, q2 and q4 for this setting. Both lateral and longitudinal modes oscillate now
with di�erent frequencies.

Nonlinear beam model and damping

The left and right plot in Figure II.19.3 show the e�ects of setting IPAR(1) = 1 and IPAR(2) = 1,
respectively. On the left, the di�erence between linear and nonlinear beam model is illustrated, with
initial values close to the smooth motion. In particular, the components q3 and q4 change if the
nonlinear model is employed. At points of maximum bending, the longitudinal displacement has now
much smaller minima. If we increase the crank's angular velocity, the resulting forces acting on the
connecting rod are much larger and we can then even observe how the sharp needles turn into a
singularity, the buckling phenomenon.

On the right of Figure II.19.3, the damping was activated by IPAR(2) = 1, with initial values on
a rigid motion trajectory (init2). Obviously, the oscillation shown in Figure II.19.2 on the right is
now slowly damped out.



DAE - Slider crank II-19-7

Table II.19.1: Failed runs.

solver m reason
MEBDFDAE 19; : : : ; 24 stepsize too small
MEBDFI 21; 22; 23; 24 stepsize too small
PSIDE-1 17; 18; : : : ; 24 iteration matrix singular
RADAU 24 core dump / over
ow in decomposition
RADAU5 24 core dump / over
ow in decomposition

Table II.19.2: Reference solution at the end of the integration interval.

y1 1:500000000000104 � 101
y2 �3:311734988256260 � 10�1
y3 1:697373328427860 � 10�1
y4 1:893192899613509 � 10�4
y5 2:375751249879174 � 10�5
y6 �5:323896770569702 � 10�6
y7 �8:363313279112129 � 10�6
y8 1:500000000000000 � 102
y9 6:025346755138369 � 101
y10 �8:753116326670527 � 100
y11 �3:005541400289738 � 10�2
y12 �5:500431812571696 � 10�3

y13 4:974111734266989 � 10�4
y14 1:105560003626645 � 10�3
y15 0
y16 6:488737541276957 � 103
y17 2:167938629509884 � 103
y18 3:391137060286523 � 101
y19 1:715134772216488 � 10�1
y20 �1:422449408912512 � 100
y21 1:003946428124810 � 100
y22 �6:232935833287916 � 101
y23 �1:637920993367306 � 102
y24 2:529857947066878 � 101

19.4 Numerical solution of the problem

The results presented here refer to index 2 formulation of the linear model without damping, using
the initial values corresponding to a smooth solution.

Tables II.19.2{II.19.3 and Figures II.19.4{II.19.8 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of some of the solution components over the
integration interval and the work-precision diagrams, respectively. In computing the scd values, only
the �rst seven and the last three components were taken into account, since they refer to the physically
important quantities. The reference solution was computed using MEBDFI with atol = 10�14 and
rtol = 10�14 and h0 = 10�12. For the work-precision diagrams, we used: rtol = 10�(4+m=4), m =
0; : : : ; 24; atol = rtol; h0 = 10�2 � rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU5 and
RADAU. The failed runs are in Table II.19.1; listed are the name of the solver that failed, for which
values of m this happened, and the reason for failing.

.

Remarks

� The slider crank is an example for a sti� mechanical system given in DAE form. See Lubich
[Lub93] for an investigation of such systems and the implications for numerical methods in the
ODE case.

� The nonlinear beam model leads to a higher computational e�ort but does not provoke con-
vergence failures of Newton's method in RADAU5, as might be expected in case of nonlinear
sti�ness terms.



II-19-8 DAE - Slider crank

Table II.19.3: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�6 0:23 2:50 102 102 1762 102 102 0.0420
10�6 10�6 10�8 0:39 3:38 1155 1155 22548 1155 1155 0.5144
10�8 10�8 10�10 2:50 5:49 992 992 35662 992 992 0.7086

GAMD 10�4 10�4 10�6 0:23 2:28 60 60 1983 60 60 0.0342
10�6 10�6 10�8 �0:16 2:83 534 527 25206 527 534 0.4089
10�8 10�8 10�10 1:70 4:69 650 650 46109 650 650 0.7271

MEBDFI 10�4 10�4 10�6 0:22 1:49 250 242 1593 28 28 0.0176
10�6 10�6 10�8 0:03 3:03 3328 3324 15099 170 170 0.2011
10�8 10�8 10�10 2:72 5:71 6316 6315 28395 313 313 0.3845

PSIDE-1 10�4 10�4 �0:05 0:93 45 41 858 29 180 0.0234
10�6 10�6 0:16 2:43 259 235 5020 147 888 0.1298
10�8 10�8 1:66 4:66 1639 1445 31526 54 2324 0.6412

RADAU 10�4 10�4 10�6 0:20 1:90 104 92 717 89 104 0.0224
10�6 10�6 10�8 0:14 2:89 132 131 3367 123 131 0.0654
10�8 10�8 10�10 1:65 4:65 420 419 10589 397 414 0.2089

� As an alternative to sti� solvers, it is still possible to apply methods based on explicit dis-
cretizations, e.g., half-explicit or projection methods for constrained mechanical systems. The
code MDOP5 [Sim95], a projection method based on DOPRI5, uses 2260 integration steps to
solve this problem in the default setting, with atol = 10�6 and rtol = 10�5, and initial values
close to the smooth motion. Thus, the sti�ness is no that severe in case of this carefully chosen
one-dimensional elastic body model.

� There is also an extended version of the slider crank with a two-dimensional FE grid for the
connecting rod. There, explicit methods do not work any longer. An animation of the system
motion can be found at http://www.mathematik.tu-darmstadt.de/~ simeon/ .

References

[JPD93] M. Jahnke, K. Popp, and B. Dirr. Approximate analysis of 
exible parts in multibody
systems using the �nite element method. In Schiehlen W., editor, Advanced Multibody System

Dynamics, pages 237{256, Stuttgart, 1993. Kluwer Academic Publishers.

[Kop89] W. Koppens. The dynamics of systems of deformable bodies. PhD thesis, Technische Uni-
versiteit Eindhoven, 1989.

[Lub93] C. Lubich. Integration of sti� mechanical systems by Runge-Kutta methods. ZAMP, 44:1022{
1053, 1993.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

[Sim95] B. Simeon. MBSPACK - Numerical integration software for constrained mechanical motion.
Surv. on Math. in Ind., 5:169{202, 1995.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset


DAE - Slider crank II-19-9

Figure II.19.4: Behavior of the ith solution component; i 2 f2; 3; : : : ; 7; 22; 23; 24g.

[Sim96] B. Simeon. Modelling a 
exible slider crank mechanism by a mixed system of DAEs and
PDEs. Math. Modelling of Systems, 2:1{18, 1996.

[Sim97] B. Simeon. DAEs and PDEs in elastic multibody systems, 1997. To appear in Numerical

Algorithms.



II-19-10 DAE - Slider crank

Figure II.19.5: Work-precision diagram (scd versus CPU-time).



DAE - Slider crank II-19-11

Figure II.19.6: Work-precision diagram (scd versus CPU-time).



II-19-12 DAE - Slider crank

Figure II.19.7: Work-precision diagram (mescd versus CPU-time).



DAE - Slider crank II-19-13

Figure II.19.8: Work-precision diagram (mescd versus CPU-time).



II-19-14 DAE - Slider crank



DAE - Water tube system II-20-1

20 Water tube system

20.1 General information

This IVP is an index 2 system of 49 non-linear Di�erential-Algebraic Equations and describes the water

ow through a tube system, taking into account turbulence and the roughness of the tube walls. The
parallel-IVP-algorithm group of CWI contributed this problem to the test set in cooperation with
B. Koren (CWI) and Paragon Decision Technology B.V.

The software part of the problem is in the �le water.f available at [MI03].

20.2 Mathematical description of the problem

The problem is of the form

M
dy

dt
= f(t; y); y(0) = y0; y0(0) = y00; (II.20.1)

where 0 � t � 17 � 3600 and y 2 IR49. Furthermore,

M =

24 M� O O
O O O
O O Mp

35 ; (II.20.2)

where M� 2 IR18�18 and Mp 2 IR13�13 are given by

M�
i;j =

�
vi for i = j;
0 otherwise:

Mp
i;j =

8<:
C5 for i = j = 1;
C8 for i = j = 2;
0 otherwise;

The �rst 38 components of y are of index 1, the last 11 are of index 2. For the de�nition of f and the
values of C5, C8 and v we refer to x20.3.

The initial vectors y0 and y
0
0 are given by

y0 =

8<:
0 for i = 1; 2; : : : ; 18
0:047519404529185289807 for i = 19; 20; : : : ; 36
109800 for i = 37; 38; : : : ; 49

and y00 = (0; : : : ; 0)T: (II.20.3)

The function f contains several square roots. It is clear that the function can not be evaluated if
one of the arguments of one of these square roots becomes negative. To prevent this situation, we set
IERR=-1 in the Fortran subroutine that de�nes f if this happens. See page IV-ix of the the description
of the software part of the test set for more details on IERR.

20.3 Origin of the problem

This test example describes how water 
ows through a water tube system. The system is represented
by a set of nodes, which are connected by tubes. The structure of the water tube system is depicted
in Figure II.20.1. There are two types of nodes: normal nodes and bu�er nodes, to which a bu�er
is attached. We denote the set of all nodes by N , and the set of bu�er nodes by B. For the system
under consideration, B = f5; 8g. The rectangles in Figure II.20.1 represent the bu�ers. The pipes are
in the horizontal plane; the bu�ers are connected to the nodes perpendicular to this plane. The pipes
from the bu�er nodes to the rectangles are virtual; in reality the bu�ers are directly attached to the
bu�er nodes. In the model every node can have in
ow and out
ow, which are denoted by eini (t) and
eouti (t). In our example, in
ow occurs only at node 1 and node 13, whereas only node 10 has out
ow.

http://www.dm.uniba.it/~testset/src/problems/water.f


II-20-2 DAE - Water tube system

Figure II.20.1: Structure of water tube system.

The unit of time in the model is second. De�ning the time in hours by t̂ = t=3600, these 
ows are
de�ned by

ein1 (t) = (1� cos(e�t̂ � 1))=200;

ein13(t) = (1� cos(e�t̂ � 1))=80;

eout10 (t) = t̂2(3t̂2 � 92t̂+ 720)=106:

Figure II.20.2 shows plots of these 
ows as function of t̂. Note that the out
ow has a peak at 8 AM
and is increasing again after 3 PM.

Although it seems that node 6 and node 9 could be omitted, we include them in the model, to
leave open the possibility that these nodes have in
ow or out
ow. The arrows in Figure II.20.1 denote
the direction in which we compute the 
ows. For example, if there is a 
ow from node 4 to node 3,
then this 
ow will be negative.

To model the 
ow of the water, we introduce some symbols, which are listed in Table II.20.1. The
roughness ki;j = 2 � 10�4 is measured as the average height of the obstacles on the tube wall. The
structure Si;j is de�ned as

Si;j =

�
1 if there is a tube from i to j;
0 otherwise:



DAE - Water tube system II-20-3

Figure II.20.2: In
ows and out
ow in m3=s as function of time in hours.

From Figure II.20.1 we see that

S =

2666666666666666666664

0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0

3777777777777777777775

:

Some of the quantities in Table II.20.1 can be computed directly from others:

� = � � �;
�i;j(t) = ui;j(t) �Ai;j ;

Ai;j = � � d2i;j=4;
mi;j = Ai;j � li;j � �;

Ri;j(t) = ui;j(t) � di;j=�:

The de�nition of Ri;j(t) was taken from [Sch78, p. 816].



II-20-4 DAE - Water tube system

Table II.20.1: List of symbols for modeling 
ow in tubes.

Symbol Unit Meaning

�i;j(t) m3=s 
ow through tube from i to j at time t
ui;j(t) m=s mean velocity of 
ow through tube from i to j at time t
Fi;j(t) N total force on water in tube from i to j at time t
F a
i;j(t) N adhesion force on water in tube from i to j at time t
�i;j(t) - coe�cient of resistance of tube from i to j at time t
Ri;j(t) - Reynolds number of 
ow through tube from i to j at time t
pi(t) N=m2 pressure in i at time t
Si;j - incidence matrix for structure of the tube system
mi;j kg mass of water in tube from i to j
di;j m diameter of tube from i to j
li;j m length of tube from i to j
Ai;j m2 area of tube from i to j
ki;j m roughness of wall of tube from i to j
eini (t) m3=s in
ow at i at time t
eouti (t) m3=s out
ow at i at time t
Bi (i 2 B) m2 area of bu�er i
Rcrit - critical Reynolds number
g m=s2 gravity constant
� kg=m3 density of water
� kg=(m � s) viscosity of water
� m2=s kinematic viscosity of water
v kg=m4 auxiliary vector, see (II.20.15)

We now explain how to model the 
ow through a tube, using Newton's second Law, which states
that

mi;j
dui;j(t)

dt
= Fi;j(t): (II.20.4)

Assuming that gravity has no in
uence on the water 
ow in all tubes (remember that the pipes are

Figure II.20.3: Forces on water in tube.

in the horizontal plane), we see from Figure II.20.3 that the total force on the water in a tube equals

Fi;j(t) = Ai;j(pi(t)� pj(t))� F a
i;j(t): (II.20.5)



DAE - Water tube system II-20-5

The magnitude of the adhesion force depends on the type of 
ow. For laminar 
ows (jRi;j(t)j � Rcrit),
we use the formula [Sch78, p. 12]

F a
i;j(t)=Ai;j = 32� � li;j � ui;j(t)=d2i;j : (II.20.6)

For turbulent 
ows (jRi;j(t)j > Rcrit), we have [Sch78, p. 597]

F a
i;j(t)=Ai;j = �i;j(t) � � � li;j � ui;j(t)2=di;j ; (II.20.7)

where the resistance �i;j(t) is computed from Colebrook and White's formula [Sch78, p. 621]:

0 =
1p
�i;j(t)

� 1:74 + 2 log

 
2ki;j
di;j

+
18:7

jRi;j(t)j
p
�i;j(t)

!
: (II.20.8)

Although for laminar 
ows the adhesion force does not depend on the resistance coe�cient (cf.
(II.20.6)), we have to choose a value for �i;j in case of laminar 
ows. We compute this value by
replacing Ri;j in (II.20.8) by Rcrit, i.e., we choose the value such that if a 
ow changes from laminar
into turbulent, the resistance coe�cient changes gradually.

For the normal nodes, Kircho�'s law holds, which states that

8n 2 N � B : 0 =
X

ijSi;n=1

�i;n(t) + einn (t)�
X

jjSn;j=1

�n;j(t)� eoutn (t) (II.20.9)

For the bu�er nodes, we add a term  n(t) that represents the 
ow to the bu�er:

8n 2 B :  n(t) =
X

ijSi;n=1

�i;n(t) + einn (t)�
X

jjSn;j=1

�n;j(t)� eoutn (t) (II.20.10)

We now explain how to compute  n(t). A bu�er can be interpreted as the water column in
Figure II.20.4, with ground area Bn and height h. Due to the 
ow  n(t) the height of the bu�er
changes at a rate  n(t)=Bn. The di�erence between the pressure at the top and bottom of the column
satis�es

pn � p0 = g � � � h:
Consequently, the pressure di�erence changes at a rate given by

d(pn � p0)

dt
= g � � � dh

dt
= g � � �  n(t)

Bn
: (II.20.11)

Notice that the pressure p0 is constant and therefore drops out in this formula. Substituting (II.20.11)
in (II.20.10) gives

8n 2 B : Cn
dpn(t)

dt
=

X
ijSi;n=1

�i;n(t) + einn (t)�
X

jjSn;j=1

�n;j(t)� eoutn (t); (II.20.12)

where the quantity Cn := Bn=(� � g) can be interpreted as the capacity of the bu�er at node n.
We arrive at the formulation in x20.2 by setting

y = ( �1;2(t); �2;3(t); �2;6(t); �3;4(t); �3;5(t); �4;5(t); �5;10(t); �6;5(t); �7;4(t);
�7;8(t); �8;5(t); �8;10(t); �9;8(t); �11;9(t); �11;12(t); �12;7(t); �12;8(t); �13;11(t);
�1;2(t); �2;3(t); �2;6(t); �3;4(t); �3;5(t); �4;5(t); �5;10(t); �6;5(t); �7;4(t);
�7;8(t); �8;5(t); �8;10(t); �9;8(t); �11;9(t); �11;12(t); �12;7(t); �12;8(t); �13;11(t);
p5(t); p8(t); p1(t); p2(t); : : : ; p4(t); p6(t); p7(t); p9(t); p10(t); : : : ; p13(t) )T:

(II.20.13)



II-20-6 DAE - Water tube system

Figure II.20.4: Representation of water bu�er.

All pressures are of index 2, except for those at the bu�er nodes. The reordering of the pressures in
(II.20.13) is such that the elements in y appear in order of increasing index, as required by RADAU,
RADAU5 and MEBDFDAE.

The �rst 18 equations in (II.20.1) are obtained by �rst substituting (II.20.5) in (II.20.4). Next, we
divide both sides by Ai;j , thus yielding

� � li;j
Ai;j

d�i;j(t)

dt
= pi(t)� pj(t)� F a

i;j(t)=Ai;j : (II.20.14)

Finally, (II.20.6) and (II.20.7) are substituted in (II.20.14). Consequently, if we de�ne Vi;j = ��li;j=Ai;j ,
then the vector v in (II.20.2) is given by

v = ( V1;2; V2;3; V2;6; V3;4; V3;5; V4;5; V5;10; V6;5; V7;4;
V7;8; V8;5; V8;10; V9;8; V11;9; V11;12; V12;7; V12;8; V13;11 )T:

(II.20.15)

The next 18 equations in (II.20.1) equal (II.20.8), whereas the last 13 equations are given by (II.20.9)
and (II.20.12).

In this model, all tubes and bu�ers are equal with characteristics as speci�ed in Table II.20.2.
Moreover, we assume that the temperature is constant. The values for the physical constants are
listed in Table II.20.3. The values for � and � correspond to a temperature of 10�C. The value for
Rcrit was taken from [Sch78, p. 39].

We now discuss how we derived the initial conditions in (II.20.3). First we note that (II.20.9) is an
index 2 constraint. Therefore, the initial values also have to satisfy the once di�erentiated constraint
(the so-called hidden constraint)

8n 2 N � B : 0 =
X

ijSi;n=1

�0i;n(t) + einn
0
(t)�

X
jjSn;j=1

�0n;j(t)� eoutn
0
(t): (II.20.16)



DAE - Water tube system II-20-7

Table II.20.2: Characteristics of tubes.

Quantity Value
li;j 1000
ki;j 0:0002
di;j 1
Bi 200

Table II.20.3: Values of physical constants.

Constant Value
� 1:31�10�6
g 9:8
� 1:0 �103
Rcrit 2:3 �103

We are free to choose initial 
ows �i;j(0) as long as they satisfy (II.20.9); we chose these all equal
to zero. This means that the resistance coe�cients equal the value for the case of laminar 
ows,
i.e., 0:047519 : : : The pressures at the bu�er nodes, which can be selected freely, are chosen to be
105 + g � �, which corresponds to initial heights of one meter in the water columns, assuming that p0
in Figure II.20.4 equals one bar. From (II.20.12) it follows that p0n(0) = 0, n 2 B (note that the in-
and out
ows are initially zero). The initial pressures pn(0), n 2 N �B, and the initial derivative 
ows
�0i;j(0) follow from (II.20.14) and (II.20.16). Since the derivatives of the in- and out
ows are initially
zero, the initial values in (II.20.3) satisfy these equations. The other initial values, �0i;j(0) and p

0
n(0),

n 2 N �B, appear neither in the system, nor in the hidden constraints, and can be chosen freely. We
set these equal to 0.

Several observations can be made from the behavior of the 
ows, resistance coe�cients and pres-
sures, which are plotted in Figure II.20.6{II.20.8:

� The rise and fall of the out
ow in node 10 cause the 
ows to node 10 to change from laminar
to turbulent and back, as can be seen from the resistance coe�cients �5;10 and �8;10, which
correspond to y25 and y30.

� At 8 AM, the pressures in the bu�er nodes drop below their original level, which means that
some of the water that was present in the bu�ers initially, is used to meet the peak demand.

� The time period in which the 
ows to node 10 have become laminar again (this period is indicated
by the vertical dashed lines in the plots of y25 and y30, causes an irregular behavior (indicated
again by dashed lines) of the solution components y3, y6, y9, y10 and y11 which correspond to
the 
ow from node 3 to node 4 and the 
ows in the cycle 4{7{8{5, respectively.

� Some of the 
ows contain high-frequent oscillations of small amplitude. To see this more clearly,
we plotted �3;4 for 6878 < t � 17 � 3600 in Figure II.20.5.

20.4 Numerical solution of the problem

Tables II.20.4{II.20.5 and Figures II.20.6{II.20.8 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagrams, respectively.



II-20-8 DAE - Water tube system

Figure II.20.5: Behavior of �3;4 for 6878 < t � 17 � 3600.

Since the 13 last solution components (the pressures) are so much larger in magnitude than the
other components, we used the following vector-valued input tolerances:

atol(i) = atol for i = 1; : : : ; 36;
atol(i) = 106 � atol for i = 37; : : : ; 49;
rtol(i) = rtol for i = 1; : : : ; 49:

The reference solution was computed by PSIDE with rtol = atol = 10�14. For the work-
precision diagrams, we used: rtol = 10�(4+m=4), m = 0; 1; : : : ; 24; atol = rtol; h0 = rtol for BIMD,
GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5.

The failed runs are in Table II.20.6; listed are the name of the solver that failed, for which values
of m this happened, and the reason for failing.

.

References

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of Math-
ematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/�testset.

[Sch78] H. Schlichting. Boundary-Layer Theory. Series in mechanical engineering. Mc Graw-Hill,
seventh edition, 1978.

http://www.dm.uniba.it/~testset


DAE - Water tube system II-20-9

Table II.20.4: Reference solution at the end of the integration interval.

y1 0:2298488296477430 � 10�002
y2 0:1188984650746585 � 10�002
y3 0:1109503645730845 � 10�002
y4 0:1589620100314825 � 10�003
y5 0:1030022640715102 � 10�002
y6 0:8710606306836165 � 10�003
y7 0:3243571480903489 � 10�002
y8 0:1109503645730845 � 10�002
y9 0:7120986206521341 � 10�003
y10 0:6414613963833099 � 10�003
y11 0:9416978549524347 � 10�003
y12 0:3403428519096511 � 10�002
y13 0:2397639310739395 � 10�002
y14 0:2397639310739395 � 10�002
y15 0:3348581430454180 � 10�002
y16 0:1353560017035444 � 10�002
y17 0:1995021413418736 � 10�002
y18 0:5746220741193575 � 10�002
y19 0:4751940452918529 � 10�001
y20 0:4751940452918529 � 10�001
y21 0:4751940452918529 � 10�001
y22 0:4751940452918529 � 10�001
y23 0:4751940452918529 � 10�001
y24 0:4751940452918529 � 10�001
y25 0:4311196778792902 � 10�001

y26 0:4751940452918529 � 10�001
y27 0:4751940452918529 � 10�001
y28 0:4751940452918529 � 10�001
y29 0:4751940452918529 � 10�001
y30 0:4249217433601160 � 10�001
y31 0:4732336439609648 � 10�001
y32 0:4732336439609648 � 10�001
y33 0:4270002118868241 � 10�001
y34 0:4751940452918529 � 10�001
y35 0:4751940452918529 � 10�001
y36 0:3651427026675656 � 10�001
y37 0:1111268591478108 � 10+006
y38 0:1111270045592387 � 10+006
y39 0:1111271078730254 � 10+006
y40 0:1111269851929858 � 10+006
y41 0:1111269255355337 � 10+006
y42 0:1111269322658045 � 10+006
y43 0:1111269221703983 � 10+006
y44 0:1111270121140691 � 10+006
y45 0:1111274419515807 � 10+006
y46 0:1111255158881087 � 10+006
y47 0:1111278793439227 � 10+006
y48 0:1111270995171642 � 10+006
y49 0:1111298338971779 � 10+006

Table II.20.5: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

BIMD 10�4 10�4 10�4 3:55 1:23 17 16 250 16 17 0.0420
10�7 10�7 10�7 6:05 3:45 333 314 5830 314 333 0.8989
10�10 10�10 10�10 9:22 7:32 673 586 17454 586 673 2.1101

GAMD 10�4 10�4 10�4 3:51 1:18 18 16 340 16 18 0.0439
10�7 10�7 10�7 5:94 3:40 233 202 8038 204 233 0.7642
10�10 10�10 10�10 9:32 7:18 554 458 22918 448 536 1.9744

MEBDFI 10�4 10�4 10�4 3:85 1:83 81 77 1197 18 18 0.0488
10�7 10�7 10�7 6:32 3:30 1267 1171 13926 192 192 0.5846
10�10 10�10 10�10 9:09 7:18 3189 3037 28403 351 351 1.2561

PSIDE-1 10�4 10�4 4:37 2:45 64 50 799 16 244 0.1015
10�7 10�7 5:80 3:09 134 104 2320 40 468 0.2723
10�10 10�10 7:86 5:45 827 719 14105 39 1292 1.2102



II-20-10 DAE - Water tube system

Figure II.20.6: Behavior of 
ows over the integration interval.



DAE - Water tube system II-20-11

Figure II.20.7: Behavior of resistance coe�cients over the integration interval.



II-20-12 DAE - Water tube system

Figure II.20.8: Behavior of pressures over the integration interval.

Table II.20.6: Failed runs.

solver m reason
RADAU 0; : : : 6; 8; 9; 11; 12; 13; 14; 16; : : : ; 20; 24 solver cannot handle IERR=-1.
RADAU5 6 stepsize too small



DAE - Water tube system II-20-13

Figure II.20.9: Work-precision diagram (scd versus CPU-time).



II-20-14 DAE - Water tube system

Figure II.20.10: Work-precision diagram (scd versus CPU-time).



DAE - Water tube system II-20-15

Figure II.20.11: Work-precision diagram (mescd versus CPU-time).



II-20-16 DAE - Water tube system

Figure II.20.12: Work-precision diagram (mescd versus CPU-time).



IDE - NAND gate II-21-1

21 NAND gate

21.1 General information

The problem is a system of 14 sti� IDEs of index 1. It has been contributed by Michael G�unther and
Peter Rentrop [GR96].

The software part of the problem is in the �le nand.f available at [MI03].

21.2 Mathematical description of the problem

The problem is of the form:

C(y(t))
dy

dt
= f(t; y(t)); y(0) = y0; y0(0) = y00 (II.21.1)

with
y 2 IR14; 0 � t � 80:

The equations are given by:

CGS � ( _y5 � _y1) = iDDS(y2 � y1; y5 � y1; y3 � y5; y5 � y2; y4 � VDD) +
y1 � y5
RGS

(II.21.2)

CGD � ( _y5 � _y2) = �iDDS(y2 � y1; y5 � y1; y3 � y5; y5 � y2; y4 � VDD) +
y2 � VDD
RGD

; (II.21.3)

CBS(y3 � y5) � ( _y5 � _y3) =
y3 � VBB
RBS

� iDBS(y3 � y5); (II.21.4)

CBD(y4 � VDD) � (� _y4) =
y4 � VBB
RBD

� iDBD(y4 � VDD); (II.21.5)

CGS � _y1 + CGD � _y2 + CBS(y3 � y5) � _y3 � (CGS + CGD + CBS(y3 � y5) + C5) � _y5
�CBD(y9 � y5) � ( _y5 � _y9) = y5�y1

RGS
+ iDBS(y3 � y5) +

y5�y7
RGD

+ iEBD(y9 � y5);
(II.21.6)

CGS � _y6 = �iEDS(y7 � y6; V1(t)� y6; y8 � y10; V1(t)�y7; y9�y5) + CGS � _V1(t)� y6�y10
RGS

; (II.21.7)

CGD � _y7 = iEDS(y7 � y6; V1(t)� y6; y8 � y10; V1(t)� y7; y9 � y5) + CGD � _V1(t)� y7 � y5
RGD

; (II.21.8)

CBS(y8 � y10) � ( _y8 � _y10) = �y8 � VBB
RBS

+ iEBS(y8 � y10); (II.21.9)

CBD(y9 � y5) � ( _y9 � _y5) = �y9 � VBB
RBD

+ iEBD(y9 � y5); (II.21.10)

CBS(y8 � y10) � ( _y8 � _y10)� CBD(y14 � y10) � ( _y10 � _y14) + C10 � _y10
= y10�y6

RGS
+ iEBS(y8 � y10) +

y10�y12
RGD

+ iEBD(y14 � y10);
(II.21.11)

CGS � _y11 = �iEDS(y12 � y11; V2(t)� y11; y13; V2(t)� y12; y14 � y10) + CGS � _V2(t)� y11
RGS

; (II.21.12)

http://www.dm.uniba.it/~testset/src/problems/nand.f


II-21-2 IDE - NAND gate

CGD � _y12 = iEDS(y12�y11; V2(t)�y11; y13; V2(t)�y12; y14�y10) + CGD � _V2(t)� y12�y10
RGD

; (II.21.13)

CBS(y13) � _y13 = �y13 � VBB
RBS

+ iEBS(y13); (II.21.14)

CBD(y14 � y10) � ( _y14 � _y10) = �y14 � VBB
RBS

+ iEBD(y14 � y10): (II.21.15)

The functions CBD and CBS read

CBD(U) = CBS(U) =

8<: C0 �
�
1� U

�B

�� 1

2

for U � 0;

C0 �
�
1 + U

2��B

�
for U > 0

with C0 = 0:24 � 10�4 and �B = 0:87.
The functions iDBS and iEBS have the same form denoted by iBS . The only di�erence between

them is that the constants used in iBS depend on the superscript D and E. The same holds for the

functions i
D=E
BD and i

D=E
DS . The functions iBS ; iBD and iDS are de�ned by

iBS(UBS) =

(
�iS �

�
exp(UBSUT

)� 1
�

for UBS � 0;

0 for UBS > 0;

iBD(UBD) =

(
�iS �

�
exp(UBDUT

)� 1
�

for UBD � 0;

0 for UBD > 0;

iDS(UDS ; UGS ; UBS ; UGD; UBD) =

8<:
GDS+(UDS ; UGS ; UBS) for UDS > 0;
0 for UDS = 0;
GDS�(UDS ; UGD; UBD) for UDS < 0;

where

GDS+(UDS ; UGS ; UBS) =8<:
0 for UGS � UTE � 0;

�� � (1 + � � UDS) � (UGS � UTE)
2

for 0 < UGS � UTE � UDS ;
�� � UDS � (1 + � � UDS) � (2 � (UGS � UTE)� UDS) for 0 < UDS < UGS � UTE ;

with
UTE = UT0 + 
 �

�p
�� UBS �

p
�
�
; (II.21.16)

and

GDS�(UDS ; UGD; UBD) =8<:
0 for UGD � UTE � 0;

� � (1� � � UDS) � (UGD � UTE)
2

for 0 < UGD � UTE � �UDS ;
�� � UDS � (1� � � UDS) � (2 � (UGD � UTE) + UDS) for 0 < �UDS < UGD � UTE ;

with
UTE = UT0 + 
 �

�p
�� UBD �

p
�
�
: (II.21.17)

The constants used in the de�nition of iBS ; iBD and iDS carry a superscript D or E. Using
for example the constants with superscript E in the functions iBS yields the function iEBS . These
constants are shown in Table II.21.1. The other constants are given by



IDE - NAND gate II-21-3

Table II.21.1: Dependence of constants on D and E for iBS , iBD and iDS .

E D

iS 10�14 10�14

UT 25:85 25:85
UT0 0:2 �2:43

E D

� 1:748 � 10�3 5:35 � 10�4

 0:035 0:2
� 0:02 0:02
� 1:01 1:28

VBB = �2:5;
VDD = 5;
C5 = C10 = 0:5 � 10�4;

RGS = RGD = 4;
RBS = RBD = 10;
CGS = CGD = 0:6 � 10�4:

The functions V1(t) and V2(t) are

V1(t) =

8>><>>:
20� tm if 15 < tm � 20;

5 if 10 < tm � 15;
tm� 5 if 5 < tm � 10;

0 if tm � 5;

with tm = t mod 20 and

V2(t) =

8>><>>:
40� tm if 35 < tm � 40;

5 if 20 < tm � 35;
tm� 15 if 15 < tm � 20;

0 if tm � 15;

with tm = t mod 40. From these de�nitions for V1(t) and V2(t) we see that the function f in (II.21.1)
has discontinuities in its derivative at tm = 5; 10; 15; 20. Therefore, we restart the solvers at t =
5; 10; : : : ; 75.

Consistent initial values are given by y00 = 0 and

y1 = y2 = y5 = y7 = 5:0;
y3 = y4 = y8 = y9 = y13 = y14 = VBB = �2:5;
y6 = y10 = y12 = 3:62385;
y11 = 0:

All components of y are of index 1.
It is clear from Formulas (II.21.16) and (II.21.17) that the function f can not be evaluated if one

of the values � � UBS , � � UBD or � becomes negative. To prevent this situation, we set IERR=-1
in the Fortran subroutine that de�nes f if this happens. See page IV-ix of the the description of the
software part of the test set for more details on IERR.

21.3 Origin of the problem

The NAND gate in Figure II.21.1 consists of two n-channel enhancement MOSFETs (ME), one n-
channel depletion MOSFET (MD) and two load capacitances C5 and C10. MOSFETs are special
transistors, which have four terminals: the drain, the bulk, the source and the gate, see also Fig-
ure II.21.3. The drain voltage of MD is constant at VDD = 5[V]. The bulk voltages are constantly
VBB = �2:5[V]. The gate voltages of both enhancement transistors are controlled by two voltage



II-21-4 IDE - NAND gate

Ground

Figure II.21.1: Circuit diagram of the NAND gate (taken from [GR96])

V2

low high

low high high
V1

high high low

Figure II.21.2: Response of the NAND gate

sources V1 and V2. Depending on the input voltages, the NAND gate generates a response at node 5
as shown in Figure II.21.2. If we represent the logical values 1 and 0 by high respectively low voltage
levels, we see that the NAND gate executes the N ot AND operation. This behavior can be explained
from Figure II.21.1 as follows. Roughly speaking, a transistor acts as a switch between drain and
source; it closes if the voltage between gate and source drops below a certain threshold value. The
circuit is constructed such that the voltage at node 10 drops to zero unless V1 is high and V2 is low,
in which case it is approximately 5[V]. This means that as soon either V1 or V2 is low, then the
corresponding enhancement transistors lock; the voltage at node 5 is high at VDD = 5[V] due to MD.



IDE - NAND gate II-21-5

If both V1 and V2 exceed a given threshold voltage, then a drain current through both enhancement
transistors occurs. The MOSFETs open and the voltage at node 5 breaks down. The response is low.
In the circuit analysis the three MOSFETs are replaced by the circuit shown in Figure II.21.3. Here,

1

2

3

4

Figure II.21.3: Companion model of a MOSFET (taken from [GR96])

the well-known companion model of Shichmann and Hodges [SH68] is used. The characteristics of
the circuit elements can di�er depending on the MD or ME case. This circuit has four internal nodes
indicated by 1, 2, 3 and 4. The static behavior of the transistor is described by the drain current
iDS . To include secondary e�ects, load capacitances like RGS , RGD, RBS , and RBD are introduced.
The so-called pn-junction between source and bulk is modeled by the diode iBS and the non-linear
capacitance CBS . Analogously, iBD and CBD model the pn-junction between bulk and drain. Linear
gate capacitances CGS and CGD are used to describe the intrinsic charge 
ow e�ects roughly.

To formulate the circuit equations, we note that the circuit consists of 14 nodes. These 14 nodes
are the nodes 5 and 10 and the 12 internal nodes of the three transistors. For every node a variable is
introduced that represents the voltage in that node. Table II.21.2 shows the variable{node correspon-
dence. In terms of these voltages the circuit equations are formulated by using the Kircho� Current
Law (KCL) along with the transistor model shown in Figure II.21.3. In Figure II.21.4, we check the
behavior of the NAND gate by plotting V1 and V2 together with the numerical value for the voltage at
node 5, which is obtained as y10 in x21.4. The picture con�rms that the NAND gate produces a high
signal in the intervals [0; 5], [10; 15], [20; 25], [40; 45], [50; 55] and [60; 65], whereas the output signal



II-21-6 IDE - NAND gate

Table II.21.2: Correspondence between variables and nodes

variables nodes
1{4 internal nodes MD-transistor
5 node 5
6{9 internal nodes ME1-transistor
10 node 10

11{14 internal nodes ME2-transistor

Input signal V1

Input signal V2

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

)

Output signal at node 5

Figure II.21.4: Plots of V1, V2 and the output of the NAND gate.

on [30; 35] and [70; 75] is low.
We remark that in this description the unit of time is the nanosecond, while in the report [GR96]

the unit of time is the second.

21.4 Numerical solution of the problem

Tables II.21.3{II.21.4 and Figures II.21.5{II.21.7 present the reference solution at the end of the
integration interval, the run characteristics, the behavior of the solution over the integration interval
and the work-precision diagram, respectively. In computing the scd values, only y5, the response of
the gate at node 5, was considered. The reference solution was computed on the Cray C90, using
PSIDE with Cray double precision and atol = rtol = 10�16. For the work-precision diagram, we used:
rtol = 10�(4+m=8), m = 0; 1; : : : ; 64; atol = rtol, h0 = rtol for MEBDFI. .

.



IDE - NAND gate II-21-7

Table II.21.3: Reference solution at the end of the integration interval.

y1 0:4971088699385777 � 10
y2 0:4999752103929311 � 10
y3 �0:2499998781491227 � 10
y4 �0:2499999999999975 � 10
y5 0:4970837023296724 � 10
y6 �0:2091214032073855
y7 0:4970593243278363 � 10

y8 �0:2500077409198803 � 10
y9 �0:2499998781491227 � 10
y10 �0:2090289583878100
y11 �0:2399999999966269 � 10�3
y12 �0:2091214032073855
y13 �0:2499999999999991 � 10
y14 �0:2500077409198803 � 10

Table II.21.4: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

DDASSL 10�4 10�4 3:69 5:25 1037 951 1639 246 0.0459
10�7 10�7 6:22 8:81 3825 3604 5207 638 0.1376

MEBDFI 10�4 10�4 10�4 3:76 4:57 1120 1006 7693 249 249 0.0683
10�7 10�7 10�7 6:24 7:50 3786 3429 24487 755 755 0.2255

PSIDE-1 10�4 10�4 2:39 3:33 464 411 6574 109 1796 0.0927
10�7 10�7 5:28 8:48 773 643 13134 222 2760 0.1796

References

[GR96] M. G�unther and P. Rentrop. The NAND-gate { a benchmark for the numerical simulation of
digital circuits. In W. Mathis and P. Noll, editors, 2.ITG-Diskussionssitzung \Neue Anwen-

dungen Theoretischer Konzepte in der Elektrotechnik" - mit Gedenksitzung zum 50. Todestag

von Wilhelm Cauer, pages 27{33, Berlin, 1996. VDE-Verlag.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of Math-
ematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/�testset.

[SH68] H. Shichman and D.A. Hodges. Insulated-gate �eld-e�ect transistor switching circuits. IEEE
J. Solid State Circuits, SC-3:285{289, 1968.

http://www.dm.uniba.it/~testset


II-21-8 IDE - NAND gate

Figure II.21.5: Behavior of the solution over the integration interval.



IDE - NAND gate II-21-9

Figure II.21.6: Work-precision diagram (scd versus CPU-time).



II-21-10 IDE - NAND gate

Figure II.21.7: Work-precision diagram (mescd versus CPU-time).



IDE - Wheelset II-22-1

22 Wheelset

22.1 General Information

The wheelset is an IDE of dimension 17 which shows some typical properties of simulation problems in
contact mechanics, i.e., friction, contact conditions, sti�ness, etc.. This problem is originally described
by an index 3 IDE with additional index 1 equations, but can be reduced to index 2. Test results are
based on the index-2 formulation. This problem was contributed by Bernd Simeon, Claus F�uhrer, Peter
Rentrop, Nov. 1995. Comments to simeon@ma.tum.de or Claus.Fuhrer@na.lu.se. See also [SFR91].

The software part of the problem is in the �le wheel.f available at [MI03].

22.2 Mathematical description of the problem

The index 3 formulation of the wheelset problem reads

_p = v; (II.22.1)

M(p)

�
_v
_�

�
=

�
f(u)� (@g1(p; q)=@p)

T
C�

d(u)

�
; (II.22.2)

0 = g1(p; q); (II.22.3)

0 = g2(p; q); (II.22.4)

where u := (p; v; �; q; �)T 2 IR17, p; v 2 IR5, � 2 IR, q 2 IR4, � 2 IR2 and C is a scalar constant.
Furthermore, M : IR5 ! IR6 � IR6, f : IR17 ! IR5, d : IR17 ! IR, g1 : IR

9 ! IR2 and g2 : IR
9 ! IR4.

The integration interval is from 0 to 10 [s].
For the index 2 formulation of the problem (II.22.3) is replaced by

0 = (@g1(p; q)=@p) v: (II.22.5)

The non-zero components of the consistent initial values u(0) := u0 and u
0(0) := u00 are given by

u0;1 0:1494100000000000 �10�2
u0;2 0:4008900000000000 �10�6
u0;3 0:1124100000000000 �10�5
u0;4 �0:2857300000000000 �10�3
u0;5 0:2645900000000000 �10�3

u0;12 7:4122380357667139 �10�6
u0;13 0:1521364296121248
u0;14 7:5634406395172940 �10�6
u0;15 0:1490635714733819
u0;16 �0:8359300000000000 �10�2
u0;17 �0:7414400000000000 �10�2

u00;6 �1:9752588940112850
u00;7 �1:0898297102811276 �10�3
u00;8 7:8855083626142589 �10�2

u00;9 �5:5333628217315490
u00;10 �0:3487021489546511
u00;11 �2:1329687243809270

The other components of u0 and u
0
0 are zero. For the index 3 formulation, the index of variables p, v,

�, q and � equals 1, 2, 2, 1 and 3. For the index 2 problem, these numbers read 1, 1, 1, 1 and 2.
The equations are given in detail in the next subsections, in which some references to the origin

of the problem, treated in x22.3, are already given. Table II.22.1 lists all problem parameters.

22.2.1 Di�erential equations

The position coordinates p are de�ned as

p :=

0BBBB@
x
y
z
�
'

1CCCCA
lateral displacement
vertical displacement
longitudinal displacement
yaw angle
roll angle

http://www.dm.uniba.it/~testset/src/problems/wheel.f


II-22-2 IDE - Wheelset

and the contact variables as qT :=
�
 L �L  R �R

�
with

�LjR := coordinate of the contact point left/right;

 LjR := shift angle left/right:

The �rst three equations in (II.22.2) yield the momentum equations:

mR �x = mR

�
2 v0 � cos� _z + v20 � cos� (1 + � (x cos�� y sin�))

�
+TL1

+ TR1
+Q1 �mR ~g sin�� b1;1 �1 � b1;2 �2 � 2 cx x ;

mR �y = �mR

�
2 v0 � sin� _z + v20 � sin� (1 + � (x cos�� y sin�))

�
+TL2

+ TR2
+Q2 �mR ~g cos�� b2;1 �1 � b2;2 �2 ;

mR �z = mR

�
�2 v0 � ( _x cos�� _y sin�) + v20 �

2 z
�

+TL3
+ TR3

+Q3 + FA � b3;1 �1 � b3;2 �2 ;

where bi;j denotes the (i; j) element of the constraint Jacobian @g1(p; q)=@p. The next three equations
yield the spin equations:

I2 �� cos' = � _� _' sin'+ v0 �
�
_'(sin� cos � cos'+ cos� sin')� _� sin� sin � sin'

�
�I1 (!0 + �) ( _'� v0� sin � sin�)

�(I1 � I2)
�
_� sin'� v0 � (cos � cos' sin�+ sin' cos�)

�
�
_'� v0 � sin� sin �

�
+
h
�(�L sin � +R(�L) sin L cos � cos')TL1

�R(�L) sin L sin'TL2

+(��L cos � +R(�L) sin L sin � cos')TL3

i
+
h

corresponding terms of the right side
i

� cos � sin'M1 + cos'M2 + sin � sin'M3 � b4;1 �1 � b4;2 �2 ;

I2 �' = I2 _� v0 � sin� cos �

+I1 (!0 + �)
�
_� cos'+ v0 � (cos � sin' sin�� cos' cos�)

�
+(I1 � I2)

�
_� sin'� v0 �(cos � cos' sin�+ sin' cos�)

�
�
_� cos'+ v0 �(cos � sin' sin�� cos' cos�)

�
+
h
�(�L cos � sin'�R(�L) cos L cos � cos')TL1

+(�L cos'+R(�L) cos L sin')TL2

+(�L sin � sin'�R(�L) cos L sin � cos')TL3

i
+
h

corresponding terms of the right side
i

+sin �M1 + cos �M3 � b5;1 �1 � b5;2 �2 ;



IDE - Wheelset II-22-3

I1 ( _� + �� sin') = _� _' cos'� v0 � ( _'(cos� cos'� sin� cos � sin')� _� sin� sin � cos')

+
h
�R(�L) (cos L sin � + sin L cos � sin')TL1

+R(�L) sin L cos'TL2

�R(�L) (cos L cos � � sin L sin � sin')TL3

i
+
h

corresponding terms of the right side
i

+cos � cos'M1 + sin'M2 � sin � cos'M3 + LA :

The forces Q and moments M of the wagon body satisfy the following equations:

Q1 = mA ~g
cos�

�
v2
0
�

~g � tan�
�

(lateral force),

Q2 = �mA ~g cos�
�
v2
0
�

~g tan�+ 1
�

(vertical force),

Q3 = �2 cz z (longitudinal force),

M1 = 0
M2 = Q3 xl (yaw moment),

M3 = �hAQ1 (roll moment),

0 = cos �M1 � sin �M3 (no pitch moment).

The creep forces TL1;2;3
and TR1;2;3

of the left and right contact point are obtained via the transfor-
mation 0@ TLjR1

TLjR2

TLjR3

1A =

0@ sin � cos � cos�LjR � cos � sin�LjR

0 � sin�LjR cos�LjR

cos � � sin � cos�LjR � sin � sin�LjR

1A 0@ T1LjR
T2LjR
0

1A ;

where T1LjR and T2LjR denote the creep forces with respect to the local reference frame of the contact
point and � stands for the left and right side, respectively. The creep forces are approximated by

T1LjR := ��NLjR tanh

�
GC11c

2

�NLjR
�1

�
;

T2LjR := ��NLjR tanh

�
GC22c

2

�NLjR
�2 +

GC23c
3

�NLjR
'3

�
;

and corrected by

if T 2
1 + T 2

2 > (�N)2 ; then

~T1 :=
T1p

T 2
1 + T 2

2

�N and ~T2 :=
T2p

T 2
1 + T 2

2

�N:

The constant parameters
�;G;C11; C22; C23

(friction coe�cient, glide module, Kalker coe�cients) are listed in Table II.22.1. For the computation

of c, the size of contact ellipse, which uses the parameters �, bG and �, we refer to [Jas87]. For
alternative creep force models see also [Jas87].

The normal forces N are given by�
NL

NR

�
= 


�
cos�R � sin�R

� cos�L � sin�L

��
b1;1 b1;2
b2;1 b2;2

� �
�1
�2

�
;



II-22-4 IDE - Wheelset

where


 :=
1

sin�L cos�R + sin�R cos�L
:

Here, �LjR denotes the contact angles and is de�ned as

tan�L =
(R0(�L) cos'� sin' cos L) cos � + sin L sin �

�R0(�L) sin'� cos L cos'
;

tan�R =
(R0(�R) cos'� sin' cos R) cos � + sin R sin �

+R0(�R) sin'+ cos R cos'
:

For the creepages we have the relations

�1 =
1

vroll
(sin �vr1 + cos �vr3)

�2 =
1

vroll
(cos � cos�LjRvr1� sin�LjRvr2 � sin � cos�LjRvr3)

'3 =
1

vroll

�
� sin�LjR(! + � � v0 � sin�) + cos�LjR( _� � v0 � cos�)

�
where vr1;2;3 (relative velocity at the contact point) and vroll (rolling velocity) are given by (corre-
spondingly for the right side)

vr1 = _x� _�(R(�L)(sin � sin' cos L + cos � sin L) + �L sin � cos')

� _' cos �(�L sin'�R(�L) cos' cos L)

+(!0 + �)R(�L)(� sin � cos L � sin' cos � sin L)

+v0� cos�(R(�L)(sin � sin' cos L + cos � sin L) + �L sin � cos'� z);

vr2 = _y + _'(�L cos'+R(�L) sin' cos L) + (!0 + �)R(�L) cos' sin L

+v0� sin�(z � �L sin � cos'�R(�L)(sin � sin' cos L + cos � sin L));

vr3 = _z + v0 + v0�(x cos�� y sin�)

� _�(�L cos � cos'+R(�L)(cos � sin' cos L � sin � sin L))

+ _' sin �(�L sin'�R(�L) cos' cos L)

+(! + �)R(�L)(sin � sin' sin L � cos � cos L)

�v0� sin�(�L sin'�R(�L) cos' cos L)

+v0 cos�(�L cos � cos'+R(�L)(cos � sin' cos L � sin � sin L));

and

vroll =
1

2








0@ �2 _x+ 2v0�z cos�

�2 _y � 2v0�z sin�
�2 _z � 2v0 � 2v0�(x cos�� y sin�)

1A+

0@ vr1
vr2
vr3

1A






2

:

22.2.2 Constraints

The constraints (II.22.3) read�
G(�̂L)� y � �L sin'+R(�L) cos' cos L
G(�̂R)� y � �R sin'+R(�R) cos' cos R

�
= 0



IDE - Wheelset II-22-5

&%
'$rhhhhhh hhhh

b1b2�

6

�

2

c1c2

�
�
�1

?
6�0

� -a0

r

� -�a

�R(�)G(�)

hh�0

�0 : angle of wheel cone=2

�0 : nominal rolling radius

�1 : radius track

a0 : nominal gauge=2

b1; b2 : wheel boundaries

c1; c2 : track boundaries

Figure II.22.1: Pro�le functions (left side).

with pro�le functions R (wheel) and G (rail), see Figure II.22.1,

R(�) = �0 + tan �0 (a0 � j�j) for a0 ��a < j�j < b2 ;

G(�̂) =

r
�21 �

�
j�̂j � a0 � �1 sin �0

�2
� �0 � cos �0 �1 for c1 < j�̂j < c2 :

Here, � stands for the left or right coordinate �L=R, respectively, and �̂ is de�ned by

�̂LjR := x+ �LjR cos � cos'+R(�LjR)
�
cos � sin' cos LjR � sin � sin LjR

�
:

The constraints (II.22.4) read

G0(�̂L) (R
0(�L) sin'+ cos' cos L) +R0(�L) cos � cos'

� cos � sin' cos L + sin � sin L = 0;

R0(�L) sin � cos'� sin � sin' cos L � cos � sin L = 0;

G0(�̂R) (R
0(�R) sin'+ cos' cos R) +R0(�R) cos � cos'

� cos � sin' cos R + sin � sin R = 0;

R0(�R) sin � cos'� sin � sin' cos R � cos � sin R = 0;

where G0(�̂LjR) :=
d

d�̂LjR
G(�̂LjR) ; R

0(�LjR) :=
d

d�LjR
R(�LjR).

22.3 Origin of the problem

The motion of a simple wheelset on a rail track exhibits a lot of the di�culties which occur in the
simulation of contact problems in mechanics. The state space form approach for this class of problems



II-22-6 IDE - Wheelset

Table II.22.1: Parameter values according to [Jas90], where a hardware bogie model, scaled 1:4, is investigated.

Parameter Meaning Unit Value
mR mass wheelset kg 16.08
~g gravity constant m/s2 9.81
v0 nominal velocity m/s 30.0
FA propulsion force N 0
LA propulsion moment kg m2 0
� describes track geometry 0
� describes track geometry rad 0
!0 nominal angular velocity 1/s v0=�0
I1 lateral moment of inertia kg m2 0.0605
I2 vertical moment of inertia kg m2 0.366
mA mass of wagon body kg 0.0
hA height of wagon body m 0.2
cx spring constant N/m 6400.0
cz spring constant N/m 6400.0
xl width of wheelset/2 m 0.19
�0 cone angle/2 rad 0.0262
�0 nominal radius m 0.1
a0 gauge/2 m 0.1506
�1 radius track m 0.06
� friction coe�cient 0.12
G glide module N/m2 7.92 � 1010
C11 Kalker coe�cient 4.72772197
C22 Kalker coe�cient 4.27526987
C23 Kalker coe�cient 1.97203505bG parameter for computation of contact ellipse 0.7115218
� parameter for computation of contact ellipse 1.3537956
� parameter for computation of contact ellipse 0.28
C scaling factor for Lagrange multipliers 104

requires simpli�cations and table look ups in order to eliminate the nonlinear constraints. The above
example provides thus an alternative by using the IDE approach.

Figure II.22.2 shows the mechanical model. The coordinates p denote the displacements and
rotations of the wheelset with respect to the reference frame which is centered in the middle of the
track. The wheelset is subjected to

� the gravity and centrifugal forces;

� creep forces in the contact points of wheel and rail;

� forces of the wagon body, which is represented by a frame connected to the wheelset via springs
and dampers and proceeding with constant speed v0;

� constraint forces which enforce the contact of wheel and rail on both sides.

We are particularly interested in a complete and correct formulation of the nonlinear constraint equa-
tions. An elimination of the constraints without severe simpli�cations or the introduction of tables for
the dependent variables is impossible. In this example thus a reduction to state space form involves
various obstacles, whereas the IDE formulation is straightforward.



IDE - Wheelset II-22-7

(a)

(b)

Figure II.22.2: The wheelset and the track. (a) View from above, (b) lateral cross section.

Equations (II.22.1){(II.22.2) stand for the kinematic and dynamic equations with positive de�nite
mass matrix M(p). By means of the pro�le functions R and G which describe the cross sections of
wheel and rail depending on the contact points we �rst express the constraint equations as 0 = g1, see
Figure II.22.3. These constraints are of index 3 and enforce that the contact points of wheel and rail
coincide on both sides. Additionally, we have to guarantee that wheel and rail do not intersect, which
is accomplished by the conditions 0 = g2. Note that @g2=@q is regular, which means that we can
apply formally the implicit function theorem to eliminate the additional contact variables q and that
these constraints are of index 1. The equations of motion of the wheelset are then derived by applying
the formalism of Newton and Euler. Here we used the property that this class of contact problems
(@g1=@)q _q � 0. This also implies that if we, in order to get the index 2 formulation, di�erentiate the
constraint (II.22.3) with respect to t, then we get

0 =
dg1
dt

(p; q) =
@g1
@p

_p+
@g1
@q

_q =
@g1
@p

_p� @g1
@q

�
@g2
@q

��1
@g2
@p

_p;

which simpli�es to (II.22.5).

Remarks

� N(p; q; �) 2 IR2 denotes the normal forces which act in the contact points. They are necessary
to evaluate the creep forces.

� The variable � 2 IR denotes the deviation of the angular velocity and is given by an additional
di�erential equation.

� The parameters � and � describe the track geometry. The setting � = � = 0 refers to a straight
track.



II-22-8 IDE - Wheelset

&%
'$r

hhhh
hhh

(((((((
�

62

1�

6

3

2

r r

@@
r

� -�L

 L contact point
@@    

   
 

longitudinal cross section lateral cross section

Figure II.22.3: Shift angle and coordinate of contact point on the left side.

Table II.22.2: Reference solution at the end of the integration interval.

u1 0:86355386965811 � 10�2
u2 0:13038281022727 � 10�4
u3 �0:93635784016818 � 10�4
u4 �0:13642299804033 � 10�1
u5 0:15292895005422 � 10�2
u6 �0:76985374142666 � 10�1
u7 �0:25151106429207 � 10�3
u8 0:20541188079539 � 10�2
u9 �0:23904837703692

u10 �0:13633468454173 � 10�1
u11 �0:24421377661131
u12 �0:33666751972196 � 10�3
u13 �0:15949425684022
u14 0:37839614386969 � 10�3
u15 0:14173214964613
u16 �0:10124044903201 � 10�1
u17 �0:56285630573753 � 10�2

� The constant C in (II.22.2) means that we internally scaled the Lagrange multipliers.

The initial values correspond to a setting in which the dynamic behavior of the wheelset model
is investigated when the wheelset starts with an initial de
ection in lateral direction (x-direction) of
0:14941 [cm]. In [Jas90], a limit cycle was observed for this problem and the model data given above.
This type of limit cycle, the so-called hunting motion, is a well known phenomenon in railway vehicle
dynamics. In Figure II.22.4 we see this limit cycle as computed by DASSL applied to the index-2
formulation of the problem. The results are in good agreement with those given in [Jas90], which were
obtained by a state space form approach and with measurements on a hardware model.

22.4 Numerical solution of the problem

Tables II.22.2{II.22.3 present the reference solution at the end of the integration interval, and the run
characteristics, respectively. Figure II.22.5 shows the the behavior of the components of p and the
angular velocity � over the integration interval. Figures II.22.6- II.22.7 contain the work-precision
diagrams. For this diagrams, we used: rtol = 10�(4+m=8), m = 0; 1; : : : ; 48; atol = rtol, h0 = rtol for
MEBDFI. .



IDE - Wheelset II-22-9

Figure II.22.4: Limit cycle or `hunting motion' of wheelset.

Remarks

� The Jacobian was computed internally by the solvers.

� For the runs with DASSL, we excluded the Lagrange multipliers from the error control by setting
atol(16)=atol(17)=rtol(16)=atol(17)=1010.

� The reference solution was computed using DASSL with atol = rtol = 10�9 for p, v and q, and
atol = rtol = 1010 for �.



II-22-10 IDE - Wheelset

Table II.22.3: Run characteristics.

solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU

DDASSL 10�4 10�4 1:35 0:15 5949 5117 10304 1407 0.3250
10�5 10�5 2:78 1:40 9888 8667 16150 1815 0.4782
10�6 10�6 3:67 2:32 16010 14298 25256 2577 0.7213

MEBDFI 10�4 10�4 10�4 1:32 0:12 5758 5188 42694 1185 1185 0.4031
10�5 10�5 10�5 3:93 2:59 9317 8485 64945 1765 1765 0.6266
10�6 10�6 10�6 4:89 3:22 13240 12255 86260 2248 2248 0.8560

PSIDE-1 10�4 10�4 1:53 0:42 1276 945 22090 547 4920 0.5134
10�5 10�5 2:81 1:67 2335 1507 39204 608 8752 0.8384
10�6 10�6 4:52 3:34 3070 2068 54074 571 10736 1.0775

Figure II.22.5: Behavior of some solution components over the integration interval.

References

[Jas87] A. Jaschinski. Anwendung der Kalkerschen Rollreibungstheorie zur dynamischen Simulation
von Schienenfahrzeugen. Technical Report DFVLR 87-07, DFVLR Deutsche Forschungs-



IDE - Wheelset II-22-11

und Versuchsanstalt f�ur Luft- und Raumfahrt, D-8031 Oberpfaffenhofen, 1987.

[Jas90] A. Jaschinski. On the Application of Similarity Laws to a Scaled Railway Bogie Model. PhD
thesis, Technische Universiteit Delft, 1990.

[MI03] F. Mazzia and F. Iavernaro. Test Set for Initial Value Problem Solvers. Department of
Mathematics, University of Bari, August 2003. Available at http://www.dm.uniba.it/
�testset.

[SFR91] B. Simeon, C. F�uhrer, and P. Rentrop. Di�erential-algebraic equations in vehicle system
dynamics. Surv. Math. Ind., 1:1{37, 1991.

http://www.dm.uniba.it/~testset
http://www.dm.uniba.it/~testset


II-22-12 IDE - Wheelset

Figure II.22.6: Work-precision diagram (scd versus CPU-time).



IDE - Wheelset II-22-13

Figure II.22.7: Work-precision diagram (mescd versus CPU-time).


	Introduction
	The idea behind this test set
	Structure of this test set
	How to submit new test problems
	How to obtain this test set
	Acknowledgements
	People involved

	Format of the problem descriptions
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Format of the solver descriptions
	General information
	Numerical method
	Implementation details
	How to solve test problems with the solver

	The software part of the test set
	Classification of test problems
	How to perform tests
	How to solve test problems with available solvers
	How to solve test problems with your own solver
	How to solve your own problem with available solvers
	How to solve a test set problem using the web facility
	How to solve your own problem using the web facility
	How to solve test set problems using a MATLAB solver
	How to solve you own problem in the test set format using a MATLAB solver

	Format of the problem codes
	Subroutine PROB
	Subroutine INIT
	Subroutine SETTOLERANCES
	Subroutine SETOUTPUT
	Subroutine FEVAL
	Subroutine JEVAL
	Subroutine MEVAL
	Subroutine SOLUT

	Format of the solver codes

	I Solvers
	Solver BiMD
	General information
	Numerical method
	Implementation details
	How to solve test problems with BiMD

	Solver DASSL
	General information
	Numerical method
	Implementation details
	How to solve test problems with DASSL

	Solver GAMD
	General information
	Numerical method
	Implementation details
	How to solve test problems with GAMD

	Solver MEBDFDAE
	General information
	Numerical method
	Implementation details
	How to solve test problems with MEBDFDAE

	Solver MEBDFI
	General information
	Numerical method
	Implementation details
	How to solve test problems with MEBDFI

	Solver PSIDE
	General information
	Numerical method
	Implementation details
	How to solve test problems with PSIDE

	Solver RADAU
	General information
	Numerical method
	Implementation details
	How to solve test problems with RADAU

	Solver RADAU5
	General information
	Numerical method
	Implementation details
	How to solve test problems with RADAU5

	Solver VODE
	General information
	Numerical method
	Implementation details
	How to solve test problems with VODE


	II Problems
	Problem HIRES
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Pollution problem
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Ring modulator
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Medical Akzo Nobel problem
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	EMEP problem
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Pleiades problem
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Problem BEAM
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Problem VDPOL
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem
	vdpol with =103 and t[0,2]
	vdpol with =10-6 and t[0,2]


	Problem OREGO
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Problem ROBER
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Problem E5
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Chemical Akzo Nobel problem
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Andrews' squeezing mechanism
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Transistor amplifier
	General information
	Mathematical description of the problem 
	Origin of the problem
	Numerical solution of the problem

	Charge pump
	General information
	Mathematical description
	Origin of the problem
	Numerical solution of the problem

	Two bit adding unit
	General Information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	The car axis problem
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Fekete problem
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Slider Crank
	General Information
	Mathematical description of the problem
	Equations of motion
	Parameters

	Origin of the problem
	Numerical solution of the problem

	Water tube system
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	NAND gate
	General information
	Mathematical description of the problem
	Origin of the problem
	Numerical solution of the problem

	Wheelset
	General Information
	Mathematical description of the problem
	Differential equations
	Constraints

	Origin of the problem
	Numerical solution of the problem



