
An ASP Semantics for Default Reasoning with Constraints

381

Abstract

We introduce the logic of Here-and-There with
Constraints in order to capture constraint theories
in the non-monotonic setting known from Answer
Set Programming (ASP). This allows for assign-
ing default values to constraint variables or to leave
them undefined. Also, it provides us with a se-
mantic framework integrating ASP and Constraint
Processing in a uniform way. We put some em-
phasis on logic programs dealing with linear con-
straints on integer variables, where we further intro-
duce a directional assignment operator. We elabo-
rate upon the formal relation and implementation of
these programs in terms of Constraint ASP, sketch-
ing an existing system.

1 Introduction
Although Answer Set Programming (ASP; [Lifschitz, 2008])
has become a prime candidate for knowledge representa-
tion and reasoning, it falls short of succinctly represent-
ing variables over large numeric domains. So far, this was
addressed by hybridizing ASP with Constraint Processing
(CP; [Dechter, 2003]), leading to the subarea of Constraint
ASP (CASP; [Lierler, 2014]). In fact, the design of most
CASP approaches is inspired by the algorithmic framework
of Satisfiability modulo Theories (SMT; [Nieuwenhuis et al.,
2006]) and thus leads to hybrid semantics combining non-
monotonic aspects of ASP with monotonic ones of CP. This
yields an inevitable blind spot, namely, the incapacity of pro-
viding defaults for constraint variables (or even leaving them
undefined). Such features must be addressed on the ASP side,
which brings us back to the aforementioned problem.

We address this dilemma by introducing a new approach
that integrates ASP and CP in the uniform semantic frame-
work of the logic of Here-and-There (HT ; [Heyting, 1930]),
extending the Equilibrium Logic [Pearce, 1997] characteri-
zation of ASP to theories with constraint atoms. This puts
both ASP and CP on the same semantic footing, being non-
monotonic in nature. The new logic of Here-and-There with
constraints, HTC for short, is built from variables over asso-
ciated domains, whose valid valuations are determined by the
interpretation of constraint atoms. HTC is not only a proper

generalization of HT , and hence also ASP, but it also toler-
ates undefined constraint variables and lets them take default
values. Moreover, the logic programming fragment of HTC
also subsumes the CASP approach of [Gebser et al., 2009].
Interestingly, the monotonic nature of constraint variables in
CASP can be obtained by adding simple axioms, similar to
tertium non datur in HT (or choice rules in ASP). Finally,
we elaborate upon the fragment of logic programs with lin-
ear constraints on integer variables, LC , and introduce direc-
tional assignments in rule heads in order to guarantee found-
edness in the presence of undefinedness. Furthermore, we
develop a translation of LC -programs into CASP that forms
the backbone of our implementation by means of off-the-shelf
CASP solvers.

2 Here-and-There with Constraints
In this section, we introduce the logic of Here-and-There with
Constraints, HTC for short.

We begin by recalling the definition of a constraint sat-
isfaction problem as a triple 〈X ,D, C〉 where X is a set of
variables, D a domain of values, and C a set of constraints.
Each constraint is a pair 〈x,R〉 where x is an n-tuple of vari-
ables and R an n-ary relation on D. A valuation of the vari-
ables is a function from the set of variables to the domain
of values v : X → D. A valuation v satisfies a constraint
〈(x1, . . . , xn), R〉 if (v(x1), . . . , v(xn)) ∈ R. A solution of a
〈X ,D, C〉 is a valuation v that satisfies all constraints in C.

The syntax of HTC starts from a similar signature
〈X ,D,A〉 where, as before, X are variables and D domain
values, but A are now constraint atoms, or just atoms for
short. The syntax of constraint atoms is left unspecified but
generally they refer to some elements in X ∪D. Examples of
constraint atoms are x + y ≤ 3, x = y, all diff ({x, y, z}),
or x ∈ {t,f} where x, y, z are variables and 3, t,f are val-
ues. We sometimes refer to a subset of variables P ⊆ X as
propositions and let the subset {t,f} ⊆ D of values stand
for Boolean truth values. Also, for each proposition p ∈ P ,
we include a constraint atom (p = t) ∈ A that we call reg-
ular atom and usually abbreviate by p. We also allow for
atoms of form (p = f) ∈ A, standing for the strong nega-
tion of p, and alternatively write them as ∼p. A formula is
any propositional combination of atoms and logical connec-
tives ⊥,∧,∨,→. We define negation as ¬ϕ def

= ϕ → ⊥ and
double implication as ϕ↔ ψ def

= (ϕ→ ψ) ∧ (ψ → ϕ).

The semantics of HTC is defined as follows. A partial
valuation v is a partial function v : X 9 D assigning do-
main values to some variables in X . We write v(x) = u to
represent that v(x) is undefined. A partial valuation can be
alternatively represented as a set v ⊆ X × D that does not
contain two different pairs (x, c) and (x, d) with c 6= d for
the same variable x. We define VX,D as the set of all possi-
ble partial valuations for X and D and remove the subindices
when clear from the context. We use letters v, v′ to denote
elements of V . The closure of a set S of partial valuations is
defined as S↑ def

= {v | v ⊇ v′, v′ ∈ S}. A set S of partial
valuations is said to be closed if S↑ = S. An example of
a non-closed set of valuations is {v ∈ V | v(x) = v(y)},
since v = ∅ satisfies v(x) = v(y) = u but its superset
v′ = {(x, 1), (y, 2)} does not satisfy v′(x) = v′(y). On the
other hand, {v ∈ V | u 6= v(x) = v(y) 6= u} is closed.

Satisfaction of formulas is defined wrt a fixed function,
called atom denotation, J · K : A → 2V that maps each atom
to a closed set of partial valuations. As examples of atom
denotations, we have the following:

J |x− y| = d K def
= {v ∈ V | v(x), v(y) ∈ Z,

|v(x)− v(y)| = d}
Jx = y K def

= {v ∈ V | u 6= v(x) = v(y) 6= u}
Jx 6= y K def

= {v ∈ V | u 6= v(x) 6= v(y) 6= u}
J all diff (X) K def

= {v ∈ V | for all x, y ∈ X
u 6= v(x) 6= v(y) 6= u}

Jx ∈ D K def
= {v ∈ V | v(x) ∈ D}

Jx · y .
= 0 K def

= {v ∈ V | v(x) = 0 or v(y) = 0}

Note that all above examples satisfy JA K↑ = JA K. Given
a denotation J · K and a partial valuation v, we define the set
of atoms that hold in v as At(v) def

= {A ∈ A | v ∈ JA K}.
Proposition 1 Let v ⊆ v′ be a pair of partial valuations and
J · K a denotation for atoms in A. Then At(v) ⊆ At(v′).

The denotation for regular atoms is fixed as expected:

J p K = J p = t K def
= {v | v(p) = t}

J∼p K = J p = f K def
= {v | v(p) = f}

Let X = {x1, . . . , xn} be a subset of variables X ⊆ X .
A constraint C = 〈(x1, . . . , xn), R〉 can be understood as the
following set of partial valuations:

{v | {(x1, d1), . . . , (xn, dn)} ⊆ v and (d1, . . . , dn) ∈ R} .

These are all valuations fixing variables in X to some tuple
in R while varying the remaining variables X \X in all pos-
sible ways (including being undefined). Notice that v(xi) is
always defined for all variables in X and any valuation v in
the constraint. A set of partial valuations is said to be strict
if it corresponds to some constraint C. Otherwise, it is said
to be non-strict. For instance, the denotation Jx = y K pro-
vided before is strict because we can represent it as a con-
straint 〈(x, y), R〉 where R = {(d, d) | d ∈ D}. However,
Jx · y .

= 0 K is non-strict because we may have v(x) = 0 but
v(y) undefined or the other way around. This cannot be cap-
tured by a constraint: we cannot cover this set of valuations as

any 〈(x, y), R〉, 〈(x), R〉 or 〈(y), R〉 because we must include
both v1 = {(x, 0)}, where y is undefined, and v2 = {(y, 0)},
where x is undefined. In this paper, we focus on strict deno-
tations for atoms.

An interpretation in HTC is a pair 〈H,T 〉 of partial valua-
tions such that H ⊆ T .
Definition 1 (Satisfaction of formulas) Given a fixed deno-
tation J · K, we say that an interpretation 〈H,T 〉 satisfies a
formula ϕ, written 〈H,T 〉 |= ϕ, when the following recur-
sive conditions hold:

(i) 〈H,T 〉 |= A iff H ∈ JA K
(ii) ⊥,∨,∧ as usual

(iii) 〈H,T 〉 |= ϕ → ψ iff 〈v, T 〉 6|= ϕ or 〈v, T 〉 |= ψ, for
both v = H and v = T .

As usual, an interpretation 〈H,T 〉 is a model of a theory Γ,
written 〈H,T 〉 |= Γ, if it satisfies all formulas in Γ, that is,
〈H,T 〉 |= ϕ for all ϕ ∈ Γ. A theory (or a single formula) Γ
entails a formula ϕ, written Γ |= ϕ, when all models of Γ are
models of ϕ. We write ϕ ≡ ψ to represent that ϕ and ψ are
equivalent, that is, have the same HTC models.

Observation 1 The logic of Here-and-There can be obtained
as a case of HTC with a signature 〈X ,D,A〉 where X rep-
resent propositions, D = {t} and A = X , understanding
each p ∈ A as abbreviation of the constraint atom (p = t)
as explained above. Moreover, this can be generalized to any
arbitrary singleton D = {d} and corresponding constraint
atoms (p = d) and the relationship still holds.

The following is an interesting connection between HTC
and HT :
Proposition 2 Let Γ be some HTC theory for signature
〈X ,D,A〉 and let 〈H,T 〉 be some model of Γ. Then,
〈At(H), At(T)〉 is an HT model of Γ under signature
〈A, {t}, {p = t | p ∈ A}〉.1

As a result, we directly derive these properties from HT :
Proposition 3 For any formula ϕ:
• 〈H,T 〉 |= ϕ implies 〈T, T 〉 |= ϕ

• 〈H,T 〉 |= ¬ϕ iff 〈T, T 〉 6|= ϕ

• Any tautology in HT is also a tautology in HTC .
In the light of Proposition 2, one might wonder whether,

to capture HTC semantics, it would suffice to exclusively
consider HT theories built with constraint atoms used as
propositional variables. This is not the case, since we can-
not obtain a similar correspondence in the opposite direction.
Namely, not any pair of sets of atoms H ′ ⊆ T ′ ⊆ A nec-
essarily corresponds to an HTC interpretation 〈H,T 〉 such
that H ′ = At(H) and T ′ = At(T). As an example, take
H ′ = {x = y} ⊂ {x = y, x = 0} = T ′. Clearly, to obtain
At(T) = T ′ we need T = {(x, 0), (y, 0)}. Now, the only
subset of T that satisfies x = y is H = T itself. But then
At(H) = At(T) = T ′ 6= H ′.

We sometimes write T |= ϕ to stand for 〈T, T 〉 |= ϕ.
Extending the equilibrium model definition [Pearce, 1997] to
HTC theories is straightforward.

1Or simply 〈A, {t},A〉 by abbreviating all (p = t) by p.

Definition 2 An interpretation 〈T, T 〉 is an equilibrium
model of a theory Γ if 〈T, T 〉 |= Γ and there is no H ⊂ T
such that 〈H,T 〉 |= Γ.
In this case, we also say that T is a stable model of Γ. Again,
if we restrict the signature to 〈A, {t},A〉, we obtain standard
equilibrium/stable models.

For logic programming syntax, we use comma ‘,’ and
semicolon ‘;’ as alternative representations of ∧ and ∨, re-
spectively. Similarly, we write ϕ← ψ to stand for ψ → ϕ, as
expected. An HTC-literal is an atomA or its default negation
¬A. An HTC program is a set of rules of the form:

L1; . . . ;Ln ← Ln+1, . . . , Lm

where each Li is an HTC-literal.

Example 1 For solving the 8-queens puzzle, we define the
variables X = {q1, . . . , q8} where qi represents the column
of the queen located at row i. We are given some queens al-
ready placed and, by default, the first queen should be located
at column 1. A possible way to encode this problem is as fol-
lows. We use the domain values D = {1, . . . , 8} and use the
atoms all diff (X) and |x− y| = d as given above. Then, we
specify the problem as the HTC-program Π1:

⊥ ← ¬all diff (X) (1)
⊥ ← |qi − qj | = di,j (2)

q1 = 1← ¬(q1 6= 1) (3)
qk ∈ D (4)

where i, j, k ∈ D, i 6= j, k > 1 and di,j is the constant |i−j|.
Without further information, the program Π1 yields four so-
lutions corresponding to the possible 8-queens arrangements
with q1 = 1. However, if we add the fact q1 = 4, we obtain
the 18 possible solutions where queen 1 is located at row 4.

As we can see, constraints can be used to encode default
reasoning, such as the default value 1 for variable q1 in the
example. This feature of HTC cannot be represented with
the usual semantics for CASP [Gebser et al., 2009] which
separates regular ASP atoms (that allow for defaults) from
constraint atoms, that only permit monotonic reasoning. As a
result, any CASP program that does not contain regular atoms
is monotonic. Note the difference wrt HTC where, due to
Observation 1, it is always possible to encode any standard
logic program only using constraint variables and picking an
arbitrary singleton domain. For instance, the ASP program
{p ← ¬q} can be directly encoded as {p = 1 ← ¬(q = 1)}
using integer variables instead of Boolean atoms.

Capturing CASP constraints in HTC can be easily
achieved. Take the following pair of axioms:

¬¬(x = x) (5)
x = x ∨ ¬(x = x) (6)

A variable x is said to be defined (resp. rigid) in a theory Γ if
the axiom (5) (resp. (6)) is entailed by Γ.
Proposition 4 For any model 〈H,T 〉 of Γ:
• If x is defined in Γ, then T (x) 6= u

• If x is rigid in Γ, then H(x) = T (x)

Intuitively, (5) acts as a constraint forbidding stable models
with x undefined. However, x can be undefined in H , that is,
during models minimization. Thus, a defined variable may
be assigned a default value, as we did with q1 in Example 1.
On the other hand, (6) forces a monotonic behavior for x,
so that we can freely choose its value beforehand, including
the case in which we decide to leave it undefined. When a
variable is both defined and rigid it satisfies (5) and (6), whose
conjunction amounts to the axiom x = x. This axiom acts as
a choice rule allowing to pick any arbitrary value in D for x.

Theorem 1 The definition of CASP provided in [Gebser et
al., 2009] exactly corresponds to HTC programs where all
variables are defined and rigid.

In fact, we can apply this same technique (adding axiom
x = x) to selectively fix a CASP behavior only for some vari-
able x. This is analogous to the addition of the ASP choice2

p ∨ ¬p to make proposition p behave classically.

3 Logic programs with Linear Constraints
In this section, we focus on a family of constraint atoms for
dealing with linear constraints on integer variables, studying
some useful syntactic constructions for logic programs with
this kind of atoms. A linear constraint is a constraint atom
of the form α ≤ β where α and β are in their turn linear
expressions defined as follows. A linear expression α is a
sum t1 + · · · + tn where each addend ti can be a product
di · xi or simply a constant di, being di ∈ Z and xi ∈ X .
By Vars(α) we denote the set of variables occurring in α
and we sometimes write Vars(α, β) def

= Vars(α) ∪ Vars(β)
when dealing with two linear expressions. A linear constraint
α ≤ β is said to be in normal form if β = d ∈ Z. We
adopt some usual abbreviations. We simply write xi instead
of 1 · xi and we directly replace the ‘+’ symbol by ‘−’ for
negative constants. Moreover, when clear from the context,
we sometimes omit the ‘·’ symbol. As an example,−x+3 y−
2 z stands for (−1) · x+ 3 · y+ (−2) · z. Other abbreviations
must be handled with care. In particular, we neither remove
products of form 0 · x nor replace them by 0.

To define the denotation of a linear constraint, we extend
any partial valuation v on integer variables to any arbitrary
arithmetic term t in the following way:

v(d) def
= d if d ∈ Z

v(x) def
=

{
d if (x, d) ∈ v, d ∈ Z
u otherwise

v(t1⊕t2) def
=

{
u if v(t1) = u or v(t2) = u

v(t1)⊕v(t2) otherwise

for any variable x ∈ X and any operator ⊕ ∈ {·,+}. As
before, we write v(t) = u when v(t) is undefined. In other
words, an arithmetic expression is evaluated as usual, except
that it is undefined if it contains some undefined subterm (or
eventually, some undefined variable).

Proposition 5 For any arithmetic expression t and HTC in-
terpretation 〈H,T 〉, H(t) 6= u implies H(t) = T (t).

2This HT -formula is frequently denoted as {p} in ASP.

The denotation of a linear constraint α ≤ β is defined as:

Jα ≤ β K def
= {v | v(α), v(β) ∈ Z, v(α) ≤ v(β)}

This collects interpretations assigning some integer both to α
and β, and additionally v(α) ≤ v(β). Therefore, α ≤ β does
not hold in interpretations where some variable in Vars(α, β)
is undefined (or assigned a non-integer value). We can
also observe that Jα ≤ β K is strict, since it can be repre-
sented as the constraint 〈(x1, . . . , xn), R〉 with Vars(α, β) =
{x1, . . . , xn} andR containing all the n-tuples of integer val-
ues that assigned to the variables fulfill v(α) ≤ v(β).

We use some abbreviations: we write α = β to stand for
the conjunction3 α ≤ β ∧ β ≤ α. Given an inequality A :
(α ≤ β), we writeA to stand for (β < α) def

= β ≤ α∧¬(α ≤
β). We also define the formula α 6= β as α < β ∨ β < α.
Notice that α 6= β is stronger than ¬(α = β) since the former
requires α and β to have different values (and so, to be both
defined), while the latter checks that α = β does not hold, and
this includes the case in which any of the two is undefined.

One interesting result is that we can fully capture propo-
sitional HT and equilibrium logic in HTC with integer vari-
ables and linear constraints. To do so, it suffices to replace
each occurrence of a Boolean variable p in a propositional
HT theory by the constraint xp = 1 for a corresponding inte-
ger variable xp. Then, we get an obvious one-to-one mapping
where each assignment (p, t) in anHT model corresponds to
(xp, 1) in HTC and vice versa.

For any linear expression α, we define df α def
= α ≤ α to

stand for “α is defined,” that is, α has a value. It is easy to
see that df α is equivalent to the conjunction

∧
x∈Vars(α) df x.

Therefore, if α does not contain integer variables df α = >
(the empty conjunction).

Constraints in rule heads must be handled with care be-
cause they treat all variables, in principle, in a non-directional
way. For instance, imagine we want to assign to x some value
in the range from 0 to y, assuming that we have assigned
some value to y through other rules. Adding the formula
0 ≤ x ∧ x ≤ y would not yield the desired effect because,
as we force both constraints to be true, it would also allow
for justifying any arbitrary value for y. To allow for direc-
tional assignments, we introduce the following construction.
An assignment A for variable x is an expression of the form
x := α .. β (with α, β linear expressions) standing for the
formula:

¬¬dfA ∧ (dfA→ α ≤ x ∧ x ≤ β) (7)

where dfA def
= df α ∧ df β. We say that A is applica-

ble in 〈H,T 〉 when 〈H,T 〉 |= dfA. We define Φ(A)
to be the non-directional version of assignment A, that is,
Φ(x := α .. β) def

= α ≤ x ∧ x ≤ β. As we can see, A
makes some additional checks regarding the definedness of
α and β before imposing any condition on x. In particular,
(dfA → α ≤ x ∧ x ≤ β) guarantees that α and β can be
used to fix the value of x, but not of variables in α and β

3When we write x = y for two variables, we deal with some
syntactic ambiguity wrt ‘=’ used as identity constraint atom. In fact,
for integer variables, the semantics of both formulas coincide.

themselves. On the other hand, ¬¬dfA can be seen as a con-
straint checking that α and β must be eventually defined in
the stable model, but through other rule(s) in the program.

When the upper and lower bounds coincide, we just write
(x := α) def

= (x := α .. α), that is, ¬¬df α∧(df α→ x = α).
Note that, as a result, Φ(x := α) = (x = α).

The following proposition relatesA and its non-directional
version, Φ(A), in some particular cases.

Proposition 6 Given an assignment A = (x := α .. β) then:

(i) A ∧ dfA ≡ Φ(A)

(ii) ¬A ≡ ¬Φ(A)

In particular, if A = (x := α .. β) contains no variables other
than the assigned x, then dfA = > and so A ≡ Φ(A).

We now define an interesting syntactic subclass of HTC
logic programs. A linear constraint rule, or LC -rule for
short, is a rule of the form:

A1; . . . ;An ← B1, . . . , Bm,¬Bm+1, . . . ,¬Bk (8)

with n ≥ 0 and k ≥ m ≥ 0, where each Ai is an as-
signment and each Bj is a linear constraint. For any rule
r like (8), we let Head(r) stand for the set of assignments
{A1, . . . , An} and Body(r) be the set of linear constraints
{B1, . . . , Bm,¬Bm+1, . . . ,¬Bk}. An HTC program con-
sisting of LC -rules only is called LC -program.

Notice that an LC -rule does not directly correspond to an
HTC program rule since the assignments in the head contain
nested implications like (7). However, the following theorem
allows us to rewrite any LC -rule as a set of HTC rules, and
helps us to illustrate the intuitive behavior of assignments:

Theorem 2 A rule r as in (8) is equivalent to the conjunction
of implications:∨
A∈∆

Φ(A)←
∧

A∈Body(r)

A ∧
∧
A∈∆

dfA ∧
∧

A∈Head(r)\∆

¬Φ(A)

for all ∆ ⊆ Head(r).4

Due to Proposition 6, each implication in Theorem 2 can be
written as a set of HTC rules, because Φ(A) is a conjunction
in the head α ≤ x ∧ x ≤ β and, by De Morgan, ¬Φ(A′)
becomes a disjunction in the body ¬(α ≤ x)∨¬(x ≤ β), and
both cases can be unfolded in HT into different rules. Let us
informally illustrate this result with the following example.

Example 2 The LC -rule

y := x− 1←¬(1 ≤ z) (9)

corresponds to the set of HTC rules:

y = x− 1← ¬(1 ≤ z), df x (10)
⊥ ← ¬(1 ≤ z),¬(y = x− 1) (11)

Suppose our LC -program consists of rule (9) only. The intu-
ition is that ¬(1 ≤ z) should hold, as z is undefined and we
cannot prove 1 ≤ z, but then y := x − 1 cannot be fulfilled,
since there are no assignments for x, so it is left undefined and
x−1 cannot be evaluated. As a result, we get no stable model.

4A more succinct translation is used in Section 4.

Note how, if we replaced y := x− 1 by just y = x− 1 in the
head, we would get a stable model T = {(y, d), (x, d − 1)}
per each d ∈ Z so the rule would also be fixing values for
x. Looking at the translation in (10)-(11), the behavior of the
assignment becomes clearer. As z does not occur in any head,
it is left undefined. Variable x occurs in the head of (10), but
it depends on df x in the body, and so, this rule cannot be
used to provide a founded value for x. Thus, x is undefined
and y = x − 1 is also false, so the constraint (11) becomes
applicable, and we get no stable model.

To illustrate non-monotonicity, suppose we add the rule
x := 1 whose translation from Theorem 2 amounts to
the fact x = 1. Then, we obtain a unique stable model
{(x, 1), (y, 0)}. Moreover, assume now that together with
x := 1, we also add the assignment z := 0 .. 3. This last
version of the program yields four stable models: one with
z = 0 and y = 0 and the other three with y undefined and z
varying from 1 to 3.

The next example illustrates the behavior of an LC -rule
with a disjunction in the head.
Example 3 The LC -rule:

z := x; t := y (12)

corresponds to the conjunction of the HTC-rules:

z = x; t = y ← df x, df y (13)
z = x← df x,¬(t = y) (14)
t = y ← df y,¬(z = x) (15)
⊥ ← ¬(z = x),¬(t = y) (16)

If we only have (12) in our program, then x and y are un-
defined and the rule cannot be satisfied – constraint (16) is
applicable. If we add, for instance, the assignment x := 1,
then y is still undefined, but (14) becomes applicable and
we get the stable model {(x, 1), (z, 1)}. Then, if we fur-
ther add y := 2, we obtain the two expected stable models
{(x, 1), (y, 2), (z, 1)} and {(x, 1), (y, 2), (t, 2)}. To illustrate
how disjunction interacts with positive cycles, let us look at
the following variation.
Example 4 Take the program containing (12) and the rules:

x := 1 (17)
y := 1← z = 1 (18)
z := 1← y = 1 (19)

If we apply the first disjunct in (12), we get z = 1
and then y = 1 by (18) leading to the stable model
{(x, 1), (y, 1), (z, 1)}. This is indeed the only stable model
of the program. If we tried to apply the second disjunct in
(12) instead, we would need to establish a founded value for
y first. However, y depends on z which, in its turn, depends
on x through the first disjunct of (12). But then the solution
{(x, 1), (y, 1), (z, 1), (t, 1)} would not be minimal.5

We show next that LC -programs can be translated into
ASP with linear constraints, viz. CASP [Gebser et al., 2009],
by introducing some auxiliary propositional variables. CASP

5As in standard ASP, stable models of a positive HTC program
are always minimal wrt set inclusion.

semantics was based on the assumption that all constraint
variables were defined and rigid, that is, the choice axiom
x = x is satisfied for any variable x. Let DF stand for the
set of choice axioms x = x for all variables in X .
Proposition 7 For any linear expression α: DF |=df α ≡ >

Let Π be an LC -program for signature Σ = 〈X ,Z,A〉
where A is a set of linear constraints. We define a set of
auxiliary propositions P = {xδ | x ∈ X} that, intu-
itively, represents the fact that variable x has a defined value
in the original program Π. The translation of Π gives a
new HTC program τ(Π) for the extended signature τ(Σ) =
〈X ∪ P,Z ∪ {t},A ∪ P〉. For any linear expression α, we
write αδ to stand for the conjunction of all propositions yδ
for all y ∈ Vars(α) and (α ≤ β)δ to stand for the con-
junction αδ ∧ βδ . Using this notation, the translation of a
linear constraint A is the formula τ(A) def

= A ∧ Aδ . Intu-
itively, due to the choice axiom DF (applied only on X),
A can hold due to an arbitrary assignment of variable val-
ues, but Aδ guarantees that all variables have been assigned
a founded value wrt program Π. Notice that the translation
of df α corresponds to τ(df α) = τ(α ≤ α) = α ≤ α ∧ αδ
and, under the assumption DF , the latter is equivalent to αδ
(Proposition 7). For any arbitrary formula φ, τ(φ) stands for
the replacement of every constraint atom A in φ by τ(A).
The translation of an LC -program Π corresponds to the set
of formulas τ(Π) def

= {τ(r) | r ∈ Π}.
As we see below, the models of the translation τ(Π) are

isomorphic to the original models of Π. Thus, we can apply
τ on rules of the form (8) or on their decomposition through
Theorem 2. As an example, if we apply the translation on
the decomposition of (12) as (13)-(16), we obtain, after some
minor simplifications, the rules:

z = x ∧ zδ; t = y ∧ tδ ← xδ, yδ (20)

z = x ∧ zδ← xδ,¬(t = y ∧ tδ ∧ yδ) (21)

t = y ∧ tδ← yδ,¬(z = x∧ zδ∧ xδ) (22)

⊥ ← ¬(z = x ∧ zδ ∧ xδ),
¬(t = y ∧ tδ ∧ yδ) (23)

Given a valuation v for the extended signature τ(Σ), we
define its corresponding “defined” subset in signature Σ as
v|δ def

= {(x, d) ∈ v | (xδ, t) ∈ v}.
Proposition 8 For a pair of partial valuations H ⊆ T for
signature τ(Σ), then H|δ ⊆ T |δ .
Lemma 1 Let 〈H,T 〉 be an HTC interpretation for signa-
ture τ(Σ). Then, for any constraint atom A ∈ A, 〈H,T 〉 |=
τ(A) iff 〈H|δ, T |δ〉 |= A.
By a simple application of structural induction, we get:
Corollary 1 Let 〈H,T 〉 be an HTC interpretation for sig-
nature τ(Σ). Then, for any formula ϕ, 〈H,T 〉 |= τ(ϕ) iff
〈H|δ, T |δ〉 |= ϕ.
Theorem 3 (Soundness) Let T be a stable model of τ(Π) ∪
DF . Then, T |δ is a stable model of LC -program Π.
Theorem 4 (Completeness) Let T be a stable model of LC -
program Π. Then, any T ′ such that T ′ |= DF and T ′|δ = T
is a stable model of τ(Π) ∪DF .

In other words, each stable model T of Π is in one-to-one
correspondence to a class of stable models T ′ of τ(Π) ∪DF
that coincide with T in the valuation of its defined vari-
ables, making xδ true for all of them, and letting the rest
of variables vary freely. For instance, as we saw above,
the program Π consisting of (12) plus the facts x := 1 and
y := 2 has two stable models T1 = {(x, 1), (y, 2), (z, 1)} and
T2 = {(x, 1), (y, 2), (t, 2)}. Then, τ(Π) includes the formu-
las (20)-(23) plus the translation of the facts, viz. x = 1 ∧ xδ
and y = 2∧yδ . Additionally, DF includes the axioms x = x,
y = y and z = z. The resulting translation τ(Π)∧DF yields
two sets of stable models: one of the form

{(x, 1), (y, 2), (z, 1), (xδ, t), (yδ, t), (zδ, t), (t, d)}

for any d ∈ D and a second one such as

{(x, 1), (y, 2), (t, 2), (xδ, t), (yδ, t), (tδ, t), (z, d)}

again, for any d ∈ D.

4 An LC -solver implementation
We implemented our approach (see [LC2CASP, 2016]) as an
extension of the CASP solver CLINGCON [Ostrowski and
Schaub, 2012]. Our system computes the stable models of
an LC -program by implementing a polynomial-size variant
of the translation described in the previous section. This is
accomplished by using auxiliary atoms to avoid the exponen-
tial blow-up in Theorem 2 (similar to [Tseitin, 1968]).

In the input language, rule heads are formed by
means of the functor &assign. More precisely, a dis-
junctive head A1; . . . ;An as in (8) is represented as
‘&assign { A1;. . .;An }’. Similarly, linear expressions
are formed using the &sum functor. A linear con-
straint of form ‘α1 + · · · + αn ≺ β’ is written as
‘&sum { α1;. . .;αn } ≺ β’, where ≺ is among <=, =, >=,
<, >, or !=. Moreover, the language contains an all-different
constraint, &distinct, as well as a &show and &minimize
directive with the same meaning as in ASP yet applied to lin-
ear expressions. As with ASP, undefined variables are not
shown (eg. t and z above, respectively); also, they do not
contribute to minimization.

For illustration, consider the HTC-program in (1) to (4)
expressed as an LC -program:

1 n(1..8).
2 :- not &distinct { q(X) : n(X) }.
3 :- &sum { q(X); -q(Y) } = X-Y, n(X), n(Y), X != Y.
4 :- &sum { q(X); -q(Y) } = Y-X, n(X), n(Y), X != Y.
5 &assign { q(1) := 1 } :- not &sum { q(1) } != 1.
6 &assign { q(X) := 1..n } :- n(X), X > 1.

Note that atoms, like n(X) and X > 1, are Boolean propo-
sitions, mixed with constraint atoms. The above LC -
program has 4 stable models, all assigning 1 to q(1) ac-
cording to the default expressed in Line 5. However, once
‘&assign { q(1) := 4 }.’ is added, the default is over-
written, and we obtain 18 models, yet all assigning 4 to q(1).

5 Discussion
We introduced the logic HTC in order to capture constraint
theories in the non-monotonic setting known from ASP. As

a result, HTC allows for assigning default values to con-
straint variables or to leave them undefined. To the best of our
knowledge, HTC constitutes the first logical account of non-
monotonic constraint theories. Since HT and thus also ASP
constitute special cases of HTC , we obtain a uniform frame-
work integrating ASP and CP on the same semantic footing.
In view of this, we particularly elaborated on the HTC frag-
ment of LC -programs dealing with linear constraints on in-
teger variables. A central concept is that of assignments (in
rule heads) because they are the only way to attribute values
to constraint variables – unassigned variables stay undefined.

Our approach is different from traditional CASP [Baselice
et al., 2005; Balduccini, 2009; Gebser et al., 2009], where
logic programs are hybridized with constraint atoms hav-
ing standard monotonic CP semantics. In such approaches,
constraint atoms in rule heads are merely shortcuts for the
complementary body literal. Rather, the monotonic CP se-
mantics assigns each variable all feasible values. In fact,
we have identified the HTC fragment corresponding to the
approach of [Gebser et al., 2009] and pinpointed the ax-
ioms characterizing the aforementioned feature. Although we
have not proven it, the result should also extend in a slightly
different form to the approaches in [Baselice et al., 2005;
Balduccini, 2009] due to their close correspondence to [Geb-
ser et al., 2009] established in [Lierler, 2014]. A notewor-
thy exception among CASP approaches is Bound Founded
ASP [Aziz et al., 2013] that imports the notion of non-circular
value derivations into CP. Informally, constraints can have a
distinguished variable (akin to a head) over a totally ordered
domain. The singular value of a lower-bound6 variable is the
smallest derivable value or the smallest domain element. This
yields also a non-monotonic approach that comprises ASP as
a special case. However, it remains future work to identify the
fragment of HTC that captures this approach and its notion of
value minimization.

Our semantics captures a fragment of ASP with partial
functions [Cabalar, 2011; Balduccini, 2012] where constraint
variables correspond to 0-ary functions. This fragment is
expressive enough to cover the general case, since arbitrar-
ily nested partial functions can be reduced to the 0-ary case
by a process called flattening [Cabalar, 2011] or unfold-
ing [Bartholomew and Lee, 2013]. Moreover, our approach
extends functional ASP by generalizing equality among terms
to arbitrary relations. In this paper, we have focused on linear
constraints, but other extensions will be studied in the future.

For implementing the fragment of LC -programs, we have
devised a translation into CASP programs in accord with
[Gebser et al., 2009] and shown its soundness and complete-
ness. The key role in this translation is played by propositions
warranting the non-circularity of constraint assignments. Al-
though our system uses CLINGCON as back-end, our trans-
lational approach applies also to other CASP solvers sharing
the same semantics. Our system along with several exam-
ples as well as proofs of theorems is available at [LC2CASP,
2016].

6And analogously for upper-bound variables.

References
[Aziz et al., 2013] R. Aziz, G. Chu, and P. Stuckey. Stable

model semantics for founded bounds. Theory and Practice
of Logic Programming, 13(4-5):517–532, 2013.

[Balduccini, 2009] M. Balduccini. Representing constraint
satisfaction problems in answer set programming. In
W. Faber and J. Lee, editors, Proceedings of the Second
Workshop on Answer Set Programming and Other Com-
puting Paradigms (ASPOCP’09), pages 16–30, 2009.

[Balduccini, 2012] Marcello Balduccini. A “conservative”
approach to extending answer set programming with non-
herbrand functions. In Esra Erdem, Joohyung Lee, Yuliya
Lierler, and David Pearce, editors, Correct Reasoning,
pages 24–39. Springer-Verlag, 2012.

[Bartholomew and Lee, 2013] M. Bartholomew and J. Lee.
On the stable model semantics for intensional functions.
Theory and Practice of Logic Programming, 13(4-5):863–
876, 2013.

[Baselice et al., 2005] S. Baselice, P. Bonatti, and M. Gel-
fond. Towards an integration of answer set and constraint
solving. In M. Gabbrielli and G. Gupta, editors, Proceed-
ings of the Twenty-first International Conference on Logic
Programming (ICLP’05), volume 3668 of Lecture Notes in
Computer Science, pages 52–66. Springer-Verlag, 2005.

[Cabalar et al., 2005] Pedro Cabalar, David Pearce, and
Agustı́n Valverde. Reducing propositional theories in
equilibrium logic to logic programs. In Proc. of the
12th Portuguese Conference on Artificial Intelligence
(EPIA’05), volume 3808 of Lecture Notes in Computer
Science, pages 4–17. Springer-Verlag, 2005.

[Cabalar, 2011] P. Cabalar. Functional answer set program-
ming. Theory and Practice of Logic Programming, 11(2-
3):203–233, 2011.

[Dechter, 2003] R. Dechter. Constraint Processing. Morgan
Kaufmann Publishers, 2003.

[Gebser et al., 2009] M. Gebser, M. Ostrowski, and
T. Schaub. Constraint answer set solving. In P. Hill and
D. Warren, editors, Proceedings of the Twenty-fifth Inter-
national Conference on Logic Programming (ICLP’09),
volume 5649 of Lecture Notes in Computer Science, pages
235–249. Springer-Verlag, 2009.

[Heyting, 1930] A. Heyting. Die formalen Regeln der intu-
itionistischen Logik. In Sitzungsberichte der Preussischen
Akademie der Wissenschaften, page 42–56. 1930. Reprint
in Logik-Texte: Kommentierte Auswahl zur Geschichte
der Modernen Logik, Akademie-Verlag, 1986.

[Lierler, 2014] Y. Lierler. Relating constraint answer set pro-
gramming languages and algorithms. Artificial Intelli-
gence, 207:1–22, 2014.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang,
and Hudson Turner. Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence, 25(3–
4):369–389, 1999.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce,
and Agustı́n Valverde. Strongly equivalent logic programs.
ACM Transactions on Computational Logic, 2(4):526–
541, October 2001.

[Lifschitz, 2008] V. Lifschitz. What is answer set program-
ming? In D. Fox and C. Gomes, editors, Proceedings of
the Twenty-third National Conference on Artificial Intelli-
gence (AAAI’08), pages 1594–1597. AAAI Press, 2008.

[Nieuwenhuis et al., 2006] R. Nieuwenhuis, A. Oliveras,
and C. Tinelli. Solving SAT and SAT modulo theories:
From an abstract Davis-Putnam-Logemann-Loveland pro-
cedure to DPLL(T). Journal of the ACM, 53(6):937–977,
2006.

[Ostrowski and Schaub, 2012] M. Ostrowski and T. Schaub.
ASP modulo CSP: The clingcon system. Theory and Prac-
tice of Logic Programming, 12(4-5):485–503, 2012.

[Pearce, 1997] D. Pearce. A new logical characterisation
of stable models and answer sets. In J. Dix, L. Pereira,
and T. Przymusinski, editors, Proceedings of the Sixth
International Workshop on Non-Monotonic Extensions of
Logic Programming (NMELP’96), volume 1216 of Lec-
ture Notes in Computer Science, pages 57–70. Springer-
Verlag, 1997.

[LC2CASP, 2016] github.com/lc2casp/lc2casp,
2016.

[Tseitin, 1968] G. Tseitin. On the complexity of derivation in
the propositional calculus. Zapiski nauchnykh seminarov
LOMI, 8:234–259, 1968.

Appendix. Proofs
Proof of Theorem 1. To avoid entering into formal details
from CASP [Gebser et al., 2009], we just provide an infor-
mal proof sketch. The definition of CASP answer sets starts
from some total interpretation v that fixes a (defined) value
for all variables beforehand. Then, given the constraint logic
program Π, we can define the reduct Πv that removes rules
in which constraint literals in the body do not hold with re-
spect to v, and remove the rest of constraint literals (true w.r.t.
v). CASP answer sets correspond to standard answer sets of
Πv (which is an ASP program without constraints), that is,
standard equilibrium models of Πv .

As we saw, in the case of HTC , the addition of axiom DF
makes that all constraint variables satisfyH(x) = T (x) 6= u.
Thus, any constraint atom will have the same truth value both
in H and T worlds. In other words, if we fix the values of
each constraint atom A in T , we can replace its occurrence
in Π by > or ⊥ depending on whether A holds or not in T ,
and the resulting program will still be satisfied by 〈H,T 〉.
As a result, it is not difficult to see that any HT model of
Πv is in one-to-one correspondence with an HTC model (un-
der axiom DF) of Π where H(x) = T (x) = v(x) for any
constraint variable x. Since the equilibrium minimization in
HTC for Π is not affected by rigid variables, in this case, it
essentially amounts to the equilibrium minimization in HT
for Πv . �

Proof of Proposition 1. For any atom A ∈ At(v) we have
v ∈ JA K. As JA K is closed and v′ ⊇ v, we conclude v′ ∈
JA K, and thus, A ∈ At(v′). �

Proof of Proposition 2. First, note that 〈At(H), At(T)〉 is
a well-formed HT interpretation since At(H) ⊆ At(T) by
H ⊆ T and Proposition 1. Then, the result follows from the
fact that (i) in Definition 1 can be rephrased as A ∈ At(H)
whereas the satisfaction conditions for the rest of operators
remain unchanged. �

Proof of Proposition 5. This is straightforward, sinceH only
differs from T in that the former may leave some variables un-
defined. But H(t) 6= u implies that all variables in Vars(t)
are defined in H , and so, they have the same value in T , im-
plying T (t) = H(t). �

Proof of Proposition 6. For proving (i), notice that the ex-
pression A ∧ dfA corresponds to:

¬¬dfA ∧ (dfA→ α ≤ x ∧ x ≤ β) ∧ dfA

but since ϕ |= ¬¬ϕ and ϕ ∧ (ϕ → ψ) ≡ ϕ ∧ ψ in HT , the
formula above is equivalent to:

α ≤ x ∧ x ≤ β ∧ dfA

Finally, as α ≤ x∧x ≤ β |= dfAwe can remove the conjunct
dfA above.

For (ii) we have:
¬A ≡ ¬(¬¬dfA ∧ (dfA→ α ≤ x ∧ x ≤ β)

≡ ¬¬¬dfA ∨ ¬¬dfA ∧ ¬(α ≤ x ∧ x ≤ β)
≡ ¬dfA ∨ ¬(α ≤ x ∧ x ≤ β)

But, as (α ≤ x ∧ x ≤ β) |= dfA, we conclude ¬dfA |=
¬(α ≤ x ∧ x ≤ β) and so the formula above is equivalent to
¬(α ≤ x ∧ x ≤ β). �

Lemma 2 The following are valid HT-equivalences:

γ ∨ (ϕ→ ψ) ≡ (ϕ→ ψ ∨ γ)

∧ (¬ψ → ¬ϕ ∨ γ) (24)
(ϕ→ (ψ → γ)) ≡ (ϕ ∧ ψ → γ) (25)

(ϕ→ ψ ∧ γ) ≡ (ϕ→ ψ) ∧ (ϕ→ γ) (26)
γ ∨ ¬¬ϕ ≡ ¬ϕ→ γ (27)

γ ∨ ¬¬ϕ ∧ (ϕ→ ψ) ≡ (ϕ→ ψ ∨ γ)

∧ (¬ψ → γ) ∧ (¬ϕ→ γ) (28)
(29)

Proof. (24) and (25) are subcases of transformation (R5)
in [Cabalar et al., 2005] whereas (26) and (27) respectively
correspond to (i) and (iv) from Proposition 6 (iv) in [Lifs-
chitz et al., 1999] for nested expressions, which are valid in
HT [Lifschitz et al., 2001]. For (28) we apply De Morgan to
the left hand side obtaining:

(γ ∨ ¬¬ϕ) ∧ (γ ∨ (ϕ→ ψ))

≡ (γ ∨ ¬¬ϕ) ∧ (ϕ→ γ ∨ ψ) ∧ (¬ψ → γ ∨ ¬ϕ)

where we applied (24) in the second conjunct. By (27), we
can replace the first conjunct by ¬ϕ → γ but then, in the
presence of this last conjunct, the consequent of the last im-
plication γ ∨ ¬ϕ can be replaced by γ obtaining:

(¬ϕ→ γ) ∧ (ϕ→ γ ∨ ψ) ∧ (¬ψ → γ) �

Lemma 3 LetA be a constraint atom of the form x := α .. β.
Then γ ∨A is equivalent to:

(dfA→ Φ(A) ∨ γ) ∧ (¬Φ(A)→ γ)

Proof. By (7), A corresponds to the formula ¬¬dfA ∧
(dfA → Φ(A)). This formula follows the pattern of the left
hand side of (28), making the replacements ϕ by dfA and ψ
by Φ(A). As a result, we obtain that A is equivalent to:

(dfA→ Φ(A) ∨ γ) ∧ (¬dfA→ γ) ∧ (¬Φ(A)→ γ)

But now, we observe that Φ(A) |= dfA since satisfying α ≤
x ∧ x ≤ β always implies satisfying df α and df β. Since HT
satisfies contraposition, ¬dfA |= ¬Φ(A) and so (¬dfA →
γ) is subsumed by (¬Φ → γ), so that we can remove the
former. �

Proof of Theorem 2. For any i = 0, . . . , n let Hd i to stand
for the set {A1, . . . , Ai}. Note that when i = 0, Hd i = ∅.
We prove that by induction i that (8) is equivalent to the set
of rules Si defined as:

γi ∨
∨
A∈∆

Φ(A)←∧
A∈Body(r)

A ∧
∧
A∈∆

dfA ∧
∧

A′∈Hdi\∆

¬Φ(A′) (30)

for all ∆ ⊆ Hd i, where γi stands for Ai+1 ∨ · · · ∨ An. For
i = 0 we have that γi = Head(r) and Hd i = ∅ so its unique
subset is ∆ = ∅ and the expression above trivially amounts to
(8) (empty disjunctions and conjunctions respectively amount

to ⊥ and >, as usual). For the inductive step, assume it holds
for 0 ≤ i < n and we want to prove it for i + 1. Take any
rule like (30) in Si for some fixed ∆ ⊆ Hd i. Since i < n,
γi = Ai+1 ∨ γi+1. If we apply Lemma 3 on the head of (30)
taking γ = γi+1 ∨

∨
A∈∆ Φ(A) and A = Ai+1 we obtain the

conjunction of the two implications:

Φ(Ai) ∨ γi+1 ∨
∨
A∈∆

Φ(A) ← dfAi

γi+1 ∨
∨
A∈∆

Φ(A) ← ¬Ai

in the head of the rule. Now, using (26) to split the conjunc-
tion in the head into two different implications, and (25) to
remove nested implications, we get the pair of rules:

γi+1 ∨
∨

A∈∆∪{Ai}

Φ(A)←

∧
A∈Body(r)

A ∧
∧

A∈∆∪{Ai}

dfA ∧
∧

A′∈Hdi\∆

¬Φ(A′) (31)

γi+1 ∨
∨
A∈∆

Φ(A)←∧
A∈Body(r)

A ∧
∧
A∈∆

dfA ∧
∧

A′∈{Ai}∪Hdi\∆

¬Φ(A′) (32)

It is not difficult to see that these two rules belong to Si+1

and respectively correspond to the subsets ∆ ∪ {Ai} and ∆
of Hd i+1 – notice that Hd i+1 \ (∆ ∪ {Ai}) = Hd i \ ∆.
Moreover, for any rule in Si+1 fixing some ∆′ ⊆ Hd i+1, we
may find the corresponding rule in Si with ∆ = ∆′ \{Ai} so
that splitting the latter generates the former. Therefore, using
this splitting for each rule in Si we get exactly all rules in
Si+1, and the inductive step is proved.

Finally, it simply remains to observe that the set of rules in
the enunciate of the Theorem corresponds to the case i = n,
where γi = > (the empty disjunction) and Hd i = Head(r).
�

Proof of Proposition 8. If (x, d) ∈ H|δ , by definition of
H|δ , we have both (x, d) ∈ H and (xδ, t) ∈ H . As H ⊆ T ,
we also have these two pairs in T , but then, by definition of
T |δ , we conclude (x, d) ∈ T |δ .
Proof of Lemma 1. First, note that 〈H|δ, T |δ〉 is a well-
formed HTC interpretation due to Proposition 8. Second, ob-
serve that 〈H,T 〉 |= τ(A) is equivalent to 〈H,T 〉 |= A∧Aδ .
For the left to right direction, 〈H,T 〉 |= τ(A) = A ∧ Aδ
〈H,T 〉 |= Aδ implies (xδ, t) ∈ H for all x ∈ Vars(A).
But then, for that set of variables, H|δ(x) = H(x) and so
〈H,T 〉 |= A implies 〈H|δ, T |δ〉 |= A. For the right to left
direction, if 〈H|δ, T |δ〉 |= A then all variables in A are de-
fined inH|δ , that is, for all x ∈ Vars(A) there is some d such
that (x, d) ∈ H|δ . But, by construction of H|δ , (x, d) ∈ H|δ
implies (xδ, t) ∈ H and (x, d) ∈ H . So 〈H|δ, T |δ〉 |= A
implies 〈H,T 〉 |= A ∧Aδ = τ(A).

Proof of Theorem 3. Suppose T is a stable model of τ(Π)∪
DF . By Lemma 1, T |= τ(Π) implies T |δ |= Π. Suppose we

had some H ′ ⊂ T |δ such that 〈H ′, T |δ〉 |= Π. Then we can
build the partial valuationH = H ′∪{(xδ, t) | H ′(x) 6= u}∪
{(x, d) ∈ T | H ′(x) 6= u}. Notice that H(x) = T (x) for
all x ∈ X , since H ′ ⊂ T |δ ⊆ T repeats the values of some
variables from T , while H collects the rest of values from T
for those undefined variables inH ′ too. As a result, 〈H,T 〉 |=
DF . On the other hand, H ⊂ T because there are some xδ
atoms in T that do not belong to H (those corresponding to
variables x with a value in H ′ but not in T |δ). Moreover,
it is easy to see that H ′ = H|δ . But then, by Lemma 1,
〈H ′, T |δ〉 = 〈H|δ, T |δ〉 |= Π implies 〈H,T 〉 |= τ(Π), which
contradicts that T is a stable model of τ(Π) ∪DF . �

Proof of Theorem 4. Suppose T is stable model of Π but
there is some T ′ such that T ′|δ = T and T ′ |= DF that is not
stable model of τ(Π)∪DF . Since T is a stable model of Π we
have T = T ′|δ |= Π and, by Lemma 1, T ′ |= τ(Π). Assume
there is some H ′ ⊂ T ′ such that 〈H ′, T ′〉 |= τ(Π) ∪ DF .
Due to axiom DF , H ′(x) = T ′(x) for all x ∈ X , and so,
H ′ ⊂ T ′ implies that there exists some xδ such that (xδ, t) ∈
T ′ \H ′. As a result, H ′|δ ⊂ T ′|δ = T . On the other hand, by
Lemma 1 again, 〈H ′, T ′〉 |= τ(Π) implies 〈H ′|δ, T ′|δ〉 |= Π,
i.e., 〈H ′|δ, T 〉 |= Π. But this contradicts the fact that T was
a stable model of Π. �

