Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

656 lines (581 sloc) 20.509 kb
// Copyright (c) 1999-2011 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "rmem.h"
#include "aav.h"
#include "expression.h"
#include "statement.h"
#include "mtype.h"
#include "declaration.h"
#include "scope.h"
#include "id.h"
#include "module.h"
#include "init.h"
#if IN_DMD
extern int binary(const char *p , const char **tab, int high);
/**************************************
* Hash table of array op functions already generated or known about.
*/
AA *arrayfuncs;
#endif
/**********************************************
* Check that there are no uses of arrays without [].
*/
bool isArrayOpValid(Expression *e)
{
if (e->op == TOKslice)
return true;
Type *tb = e->type->toBasetype();
if ( (tb->ty == Tarray) || (tb->ty == Tsarray) )
{
switch (e->op)
{
case TOKadd:
case TOKmin:
case TOKmul:
case TOKdiv:
case TOKmod:
case TOKxor:
case TOKand:
case TOKor:
case TOKassign:
case TOKaddass:
case TOKminass:
case TOKmulass:
case TOKdivass:
case TOKmodass:
case TOKxorass:
case TOKandass:
case TOKorass:
#if DMDV2
case TOKpow:
case TOKpowass:
#endif
return isArrayOpValid(((BinExp *)e)->e1) && isArrayOpValid(((BinExp *)e)->e2);
case TOKcall:
return false; // TODO: Decide if [] is required after arrayop calls.
case TOKneg:
case TOKtilde:
return isArrayOpValid(((UnaExp *)e)->e1);
default:
return false;
}
}
return true;
}
/***********************************
* Construct the array operation expression.
*/
Expression *BinExp::arrayOp(Scope *sc)
{
//printf("BinExp::arrayOp() %s\n", toChars());
if (type->toBasetype()->nextOf()->toBasetype()->ty == Tvoid)
{
error("Cannot perform array operations on void[] arrays");
return new ErrorExp();
}
if (!isArrayOpValid(e2))
{
e2->error("invalid array operation %s (did you forget a [] ?)", toChars());
return new ErrorExp();
}
Expressions *arguments = new Expressions();
/* The expression to generate an array operation for is mangled
* into a name to use as the array operation function name.
* Mangle in the operands and operators in RPN order, and type.
*/
OutBuffer buf;
buf.writestring("_array");
buildArrayIdent(&buf, arguments);
buf.writeByte('_');
/* Append deco of array element type
*/
#if DMDV2
buf.writestring(type->toBasetype()->nextOf()->toBasetype()->mutableOf()->deco);
#else
buf.writestring(type->toBasetype()->nextOf()->toBasetype()->deco);
#endif
size_t namelen = buf.offset;
buf.writeByte(0);
char *name = buf.toChars();
Identifier *ident = Lexer::idPool(name);
/* Look up name in hash table
*/
#if IN_DMD
FuncDeclaration **pfd = (FuncDeclaration **)_aaGet(&arrayfuncs, ident);
FuncDeclaration *fd = (FuncDeclaration *)*pfd;
#elif IN_LLVM
StringValue *sv = sc->module->arrayfuncs.update(name, namelen);
FuncDeclaration *fd = (FuncDeclaration *)sv->ptrvalue;
#endif
if (!fd)
{
#if IN_DMD
static const char *libArrayopFuncs[] =
{
"_arrayExpSliceAddass_a",
"_arrayExpSliceAddass_d", // T[]+=T
"_arrayExpSliceAddass_f", // T[]+=T
"_arrayExpSliceAddass_g",
"_arrayExpSliceAddass_h",
"_arrayExpSliceAddass_i",
"_arrayExpSliceAddass_k",
"_arrayExpSliceAddass_s",
"_arrayExpSliceAddass_t",
"_arrayExpSliceAddass_u",
"_arrayExpSliceAddass_w",
"_arrayExpSliceDivass_d", // T[]/=T
"_arrayExpSliceDivass_f", // T[]/=T
"_arrayExpSliceMinSliceAssign_a",
"_arrayExpSliceMinSliceAssign_d", // T[]=T-T[]
"_arrayExpSliceMinSliceAssign_f", // T[]=T-T[]
"_arrayExpSliceMinSliceAssign_g",
"_arrayExpSliceMinSliceAssign_h",
"_arrayExpSliceMinSliceAssign_i",
"_arrayExpSliceMinSliceAssign_k",
"_arrayExpSliceMinSliceAssign_s",
"_arrayExpSliceMinSliceAssign_t",
"_arrayExpSliceMinSliceAssign_u",
"_arrayExpSliceMinSliceAssign_w",
"_arrayExpSliceMinass_a",
"_arrayExpSliceMinass_d", // T[]-=T
"_arrayExpSliceMinass_f", // T[]-=T
"_arrayExpSliceMinass_g",
"_arrayExpSliceMinass_h",
"_arrayExpSliceMinass_i",
"_arrayExpSliceMinass_k",
"_arrayExpSliceMinass_s",
"_arrayExpSliceMinass_t",
"_arrayExpSliceMinass_u",
"_arrayExpSliceMinass_w",
"_arrayExpSliceMulass_d", // T[]*=T
"_arrayExpSliceMulass_f", // T[]*=T
"_arrayExpSliceMulass_i",
"_arrayExpSliceMulass_k",
"_arrayExpSliceMulass_s",
"_arrayExpSliceMulass_t",
"_arrayExpSliceMulass_u",
"_arrayExpSliceMulass_w",
"_arraySliceExpAddSliceAssign_a",
"_arraySliceExpAddSliceAssign_d", // T[]=T[]+T
"_arraySliceExpAddSliceAssign_f", // T[]=T[]+T
"_arraySliceExpAddSliceAssign_g",
"_arraySliceExpAddSliceAssign_h",
"_arraySliceExpAddSliceAssign_i",
"_arraySliceExpAddSliceAssign_k",
"_arraySliceExpAddSliceAssign_s",
"_arraySliceExpAddSliceAssign_t",
"_arraySliceExpAddSliceAssign_u",
"_arraySliceExpAddSliceAssign_w",
"_arraySliceExpDivSliceAssign_d", // T[]=T[]/T
"_arraySliceExpDivSliceAssign_f", // T[]=T[]/T
"_arraySliceExpMinSliceAssign_a",
"_arraySliceExpMinSliceAssign_d", // T[]=T[]-T
"_arraySliceExpMinSliceAssign_f", // T[]=T[]-T
"_arraySliceExpMinSliceAssign_g",
"_arraySliceExpMinSliceAssign_h",
"_arraySliceExpMinSliceAssign_i",
"_arraySliceExpMinSliceAssign_k",
"_arraySliceExpMinSliceAssign_s",
"_arraySliceExpMinSliceAssign_t",
"_arraySliceExpMinSliceAssign_u",
"_arraySliceExpMinSliceAssign_w",
"_arraySliceExpMulSliceAddass_d", // T[] += T[]*T
"_arraySliceExpMulSliceAddass_f",
"_arraySliceExpMulSliceAddass_r",
"_arraySliceExpMulSliceAssign_d", // T[]=T[]*T
"_arraySliceExpMulSliceAssign_f", // T[]=T[]*T
"_arraySliceExpMulSliceAssign_i",
"_arraySliceExpMulSliceAssign_k",
"_arraySliceExpMulSliceAssign_s",
"_arraySliceExpMulSliceAssign_t",
"_arraySliceExpMulSliceAssign_u",
"_arraySliceExpMulSliceAssign_w",
"_arraySliceExpMulSliceMinass_d", // T[] -= T[]*T
"_arraySliceExpMulSliceMinass_f",
"_arraySliceExpMulSliceMinass_r",
"_arraySliceSliceAddSliceAssign_a",
"_arraySliceSliceAddSliceAssign_d", // T[]=T[]+T[]
"_arraySliceSliceAddSliceAssign_f", // T[]=T[]+T[]
"_arraySliceSliceAddSliceAssign_g",
"_arraySliceSliceAddSliceAssign_h",
"_arraySliceSliceAddSliceAssign_i",
"_arraySliceSliceAddSliceAssign_k",
"_arraySliceSliceAddSliceAssign_r", // T[]=T[]+T[]
"_arraySliceSliceAddSliceAssign_s",
"_arraySliceSliceAddSliceAssign_t",
"_arraySliceSliceAddSliceAssign_u",
"_arraySliceSliceAddSliceAssign_w",
"_arraySliceSliceAddass_a",
"_arraySliceSliceAddass_d", // T[]+=T[]
"_arraySliceSliceAddass_f", // T[]+=T[]
"_arraySliceSliceAddass_g",
"_arraySliceSliceAddass_h",
"_arraySliceSliceAddass_i",
"_arraySliceSliceAddass_k",
"_arraySliceSliceAddass_s",
"_arraySliceSliceAddass_t",
"_arraySliceSliceAddass_u",
"_arraySliceSliceAddass_w",
"_arraySliceSliceMinSliceAssign_a",
"_arraySliceSliceMinSliceAssign_d", // T[]=T[]-T[]
"_arraySliceSliceMinSliceAssign_f", // T[]=T[]-T[]
"_arraySliceSliceMinSliceAssign_g",
"_arraySliceSliceMinSliceAssign_h",
"_arraySliceSliceMinSliceAssign_i",
"_arraySliceSliceMinSliceAssign_k",
"_arraySliceSliceMinSliceAssign_r", // T[]=T[]-T[]
"_arraySliceSliceMinSliceAssign_s",
"_arraySliceSliceMinSliceAssign_t",
"_arraySliceSliceMinSliceAssign_u",
"_arraySliceSliceMinSliceAssign_w",
"_arraySliceSliceMinass_a",
"_arraySliceSliceMinass_d", // T[]-=T[]
"_arraySliceSliceMinass_f", // T[]-=T[]
"_arraySliceSliceMinass_g",
"_arraySliceSliceMinass_h",
"_arraySliceSliceMinass_i",
"_arraySliceSliceMinass_k",
"_arraySliceSliceMinass_s",
"_arraySliceSliceMinass_t",
"_arraySliceSliceMinass_u",
"_arraySliceSliceMinass_w",
"_arraySliceSliceMulSliceAssign_d", // T[]=T[]*T[]
"_arraySliceSliceMulSliceAssign_f", // T[]=T[]*T[]
"_arraySliceSliceMulSliceAssign_i",
"_arraySliceSliceMulSliceAssign_k",
"_arraySliceSliceMulSliceAssign_s",
"_arraySliceSliceMulSliceAssign_t",
"_arraySliceSliceMulSliceAssign_u",
"_arraySliceSliceMulSliceAssign_w",
"_arraySliceSliceMulass_d", // T[]*=T[]
"_arraySliceSliceMulass_f", // T[]*=T[]
"_arraySliceSliceMulass_i",
"_arraySliceSliceMulass_k",
"_arraySliceSliceMulass_s",
"_arraySliceSliceMulass_t",
"_arraySliceSliceMulass_u",
"_arraySliceSliceMulass_w",
};
int i = binary(name, libArrayopFuncs, sizeof(libArrayopFuncs) / sizeof(char *));
if (i == -1)
{
#ifdef DEBUG // Make sure our array is alphabetized
for (i = 0; i < sizeof(libArrayopFuncs) / sizeof(char *); i++)
{
if (strcmp(name, libArrayopFuncs[i]) == 0)
assert(0);
}
#endif
#endif
/* Not in library, so generate it.
* Construct the function body:
* foreach (i; 0 .. p.length) for (size_t i = 0; i < p.length; i++)
* loopbody;
* return p;
*/
Parameters *fparams = new Parameters();
Expression *loopbody = buildArrayLoop(fparams);
Parameter *p = (*fparams)[0 /*fparams->dim - 1*/];
#if DMDV1
// for (size_t i = 0; i < p.length; i++)
Initializer *init = new ExpInitializer(0, new IntegerExp(0, 0, Type::tsize_t));
Dsymbol *d = new VarDeclaration(0, Type::tsize_t, Id::p, init);
Statement *s1 = new ForStatement(0,
new ExpStatement(0, d),
new CmpExp(TOKlt, 0, new IdentifierExp(0, Id::p), new ArrayLengthExp(0, new IdentifierExp(0, p->ident))),
new PostExp(TOKplusplus, 0, new IdentifierExp(0, Id::p)),
new ExpStatement(0, loopbody));
#else
// foreach (i; 0 .. p.length)
Statement *s1 = new ForeachRangeStatement(0, TOKforeach,
new Parameter(0, NULL, Id::p, NULL),
new IntegerExp(0, 0, Type::tint32),
new ArrayLengthExp(0, new IdentifierExp(0, p->ident)),
new ExpStatement(0, loopbody));
#endif
Statement *s2 = new ReturnStatement(0, new IdentifierExp(0, p->ident));
//printf("s2: %s\n", s2->toChars());
Statement *fbody = new CompoundStatement(0, s1, s2);
/* Construct the function
*/
TypeFunction *ftype = new TypeFunction(fparams, type, 0, LINKc);
//printf("ftype: %s\n", ftype->toChars());
fd = new FuncDeclaration(loc, 0, ident, STCundefined, ftype);
fd->fbody = fbody;
fd->protection = PROTpublic;
fd->linkage = LINKc;
fd->isArrayOp = 1;
sc->module->importedFrom->members->push(fd);
sc = sc->push();
sc->parent = sc->module->importedFrom;
sc->stc = 0;
sc->linkage = LINKc;
fd->semantic(sc);
fd->semantic2(sc);
fd->semantic3(sc);
sc->pop();
#if IN_DMD
}
else
{ /* In library, refer to it.
*/
fd = FuncDeclaration::genCfunc(type, ident);
}
*pfd = fd; // cache symbol in hash table
#elif IN_LLVM
sv->ptrvalue = fd; // cache symbol in hash table
#endif
}
/* Call the function fd(arguments)
*/
Expression *ec = new VarExp(0, fd);
Expression *e = new CallExp(loc, ec, arguments);
e->type = type;
return e;
}
/******************************************
* Construct the identifier for the array operation function,
* and build the argument list to pass to it.
*/
void Expression::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
buf->writestring("Exp");
arguments->shift(this);
}
void CastExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
Type *tb = type->toBasetype();
if (tb->ty == Tarray || tb->ty == Tsarray)
{
e1->buildArrayIdent(buf, arguments);
}
else
Expression::buildArrayIdent(buf, arguments);
}
void SliceExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
buf->writestring("Slice");
arguments->shift(this);
}
void AssignExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
/* Evaluate assign expressions right to left
*/
e2->buildArrayIdent(buf, arguments);
e1->buildArrayIdent(buf, arguments);
buf->writestring("Assign");
}
#define X(Str) \
void Str##AssignExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments) \
{ \
/* Evaluate assign expressions right to left \
*/ \
e2->buildArrayIdent(buf, arguments); \
e1->buildArrayIdent(buf, arguments); \
buf->writestring(#Str); \
buf->writestring("ass"); \
}
X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)
#if DMDV2
X(Pow)
#endif
#undef X
void NegExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
e1->buildArrayIdent(buf, arguments);
buf->writestring("Neg");
}
void ComExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
e1->buildArrayIdent(buf, arguments);
buf->writestring("Com");
}
#define X(Str) \
void Str##Exp::buildArrayIdent(OutBuffer *buf, Expressions *arguments) \
{ \
/* Evaluate assign expressions left to right \
*/ \
e1->buildArrayIdent(buf, arguments); \
e2->buildArrayIdent(buf, arguments); \
buf->writestring(#Str); \
}
X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)
#if DMDV2
X(Pow)
#endif
#undef X
/******************************************
* Construct the inner loop for the array operation function,
* and build the parameter list.
*/
Expression *Expression::buildArrayLoop(Parameters *fparams)
{
Identifier *id = Identifier::generateId("c", fparams->dim);
Parameter *param = new Parameter(0, type, id, NULL);
fparams->shift(param);
Expression *e = new IdentifierExp(0, id);
return e;
}
Expression *CastExp::buildArrayLoop(Parameters *fparams)
{
Type *tb = type->toBasetype();
if (tb->ty == Tarray || tb->ty == Tsarray)
{
return e1->buildArrayLoop(fparams);
}
else
return Expression::buildArrayLoop(fparams);
}
Expression *SliceExp::buildArrayLoop(Parameters *fparams)
{
Identifier *id = Identifier::generateId("p", fparams->dim);
Parameter *param = new Parameter(STCconst, type, id, NULL);
fparams->shift(param);
Expression *e = new IdentifierExp(0, id);
Expressions *arguments = new Expressions();
Expression *index = new IdentifierExp(0, Id::p);
arguments->push(index);
e = new ArrayExp(0, e, arguments);
return e;
}
Expression *AssignExp::buildArrayLoop(Parameters *fparams)
{
/* Evaluate assign expressions right to left
*/
Expression *ex2 = e2->buildArrayLoop(fparams);
#if DMDV2
/* Need the cast because:
* b = c + p[i];
* where b is a byte fails because (c + p[i]) is an int
* which cannot be implicitly cast to byte.
*/
ex2 = new CastExp(0, ex2, e1->type->nextOf());
#endif
Expression *ex1 = e1->buildArrayLoop(fparams);
Parameter *param = (*fparams)[0];
param->storageClass = 0;
Expression *e = new AssignExp(0, ex1, ex2);
return e;
}
#define X(Str) \
Expression *Str##AssignExp::buildArrayLoop(Parameters *fparams) \
{ \
/* Evaluate assign expressions right to left \
*/ \
Expression *ex2 = e2->buildArrayLoop(fparams); \
Expression *ex1 = e1->buildArrayLoop(fparams); \
Parameter *param = (*fparams)[0]; \
param->storageClass = 0; \
Expression *e = new Str##AssignExp(loc, ex1, ex2); \
return e; \
}
X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)
#if DMDV2
X(Pow)
#endif
#undef X
Expression *NegExp::buildArrayLoop(Parameters *fparams)
{
Expression *ex1 = e1->buildArrayLoop(fparams);
Expression *e = new NegExp(0, ex1);
return e;
}
Expression *ComExp::buildArrayLoop(Parameters *fparams)
{
Expression *ex1 = e1->buildArrayLoop(fparams);
Expression *e = new ComExp(0, ex1);
return e;
}
#define X(Str) \
Expression *Str##Exp::buildArrayLoop(Parameters *fparams) \
{ \
/* Evaluate assign expressions left to right \
*/ \
Expression *ex1 = e1->buildArrayLoop(fparams); \
Expression *ex2 = e2->buildArrayLoop(fparams); \
Expression *e = new Str##Exp(0, ex1, ex2); \
return e; \
}
X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)
#if DMDV2
X(Pow)
#endif
#undef X
/***********************************************
* Test if operand is a valid array op operand.
*/
int Expression::isArrayOperand()
{
//printf("Expression::isArrayOperand() %s\n", toChars());
if (op == TOKslice)
return 1;
if (type->toBasetype()->ty == Tarray)
{
switch (op)
{
case TOKadd:
case TOKmin:
case TOKmul:
case TOKdiv:
case TOKmod:
case TOKxor:
case TOKand:
case TOKor:
case TOKassign:
case TOKaddass:
case TOKminass:
case TOKmulass:
case TOKdivass:
case TOKmodass:
case TOKxorass:
case TOKandass:
case TOKorass:
#if DMDV2
case TOKpow:
case TOKpowass:
#endif
case TOKneg:
case TOKtilde:
return 1;
default:
break;
}
}
return 0;
}
Jump to Line
Something went wrong with that request. Please try again.