diff --git a/src/category_theory/adjunction.lean b/src/category_theory/adjunction.lean index 028217dae91b4..742a0e2a8a030 100644 --- a/src/category_theory/adjunction.lean +++ b/src/category_theory/adjunction.lean @@ -216,8 +216,8 @@ def left_adjoint_of_equiv : C ⥤ D := { obj := F_obj, map := λ X X' f, (e X (F_obj X')).symm (f ≫ e X' (F_obj X') (𝟙 _)), map_comp' := λ X X' X'' f f', begin - rw [equiv.symm_apply_eq, he, equiv.apply_inverse_apply], - conv { to_rhs, rw [assoc, ←he, id_comp, equiv.apply_inverse_apply] }, + rw [equiv.symm_apply_eq, he, equiv.apply_symm_apply], + conv { to_rhs, rw [assoc, ←he, id_comp, equiv.apply_symm_apply] }, simp end } @@ -247,8 +247,8 @@ def right_adjoint_of_equiv : D ⥤ C := { obj := G_obj, map := λ Y Y' g, (e (G_obj Y) Y') ((e (G_obj Y) Y).symm (𝟙 _) ≫ g), map_comp' := λ Y Y' Y'' g g', begin - rw [← equiv.eq_symm_apply, ← he' e he, equiv.inverse_apply_apply], - conv { to_rhs, rw [← assoc, he' e he, comp_id, equiv.inverse_apply_apply] }, + rw [← equiv.eq_symm_apply, ← he' e he, equiv.symm_apply_apply], + conv { to_rhs, rw [← assoc, he' e he, comp_id, equiv.symm_apply_apply] }, simp end } @@ -259,7 +259,7 @@ mk_of_hom_equiv F (right_adjoint_of_equiv e he) hom_equiv_naturality_right' := begin intros X Y Y' g h, - erw [←he, equiv.apply_eq_iff_eq, ←assoc, he' e he, comp_id, equiv.inverse_apply_apply] + erw [←he, equiv.apply_eq_iff_eq, ←assoc, he' e he, comp_id, equiv.symm_apply_apply] end } end construct_right diff --git a/src/data/equiv/basic.lean b/src/data/equiv/basic.lean index c6619b8dc28d8..bcb1f0fd075fd 100644 --- a/src/data/equiv/basic.lean +++ b/src/data/equiv/basic.lean @@ -78,13 +78,13 @@ rfl @[simp] theorem trans_apply (f : α ≃ β) (g : β ≃ γ) (a : α) : (f.trans g) a = g (f a) := rfl -@[simp] theorem apply_inverse_apply : ∀ (e : α ≃ β) (x : β), e (e.symm x) = x +@[simp] theorem apply_symm_apply : ∀ (e : α ≃ β) (x : β), e (e.symm x) = x | ⟨f₁, g₁, l₁, r₁⟩ x := by simp [equiv.symm]; rw r₁ -@[simp] theorem inverse_apply_apply : ∀ (e : α ≃ β) (x : α), e.symm (e x) = x +@[simp] theorem symm_apply_apply : ∀ (e : α ≃ β) (x : α), e.symm (e x) = x | ⟨f₁, g₁, l₁, r₁⟩ x := by simp [equiv.symm]; rw l₁ -@[simp] lemma inverse_trans_apply (f : α ≃ β) (g : β ≃ γ) (a : γ) : +@[simp] lemma symm_trans_apply (f : α ≃ β) (g : β ≃ γ) (a : γ) : (f.trans g).symm a = f.symm (g.symm a) := rfl @[simp] theorem apply_eq_iff_eq : ∀ (f : α ≃ β) (x y : α), f x = f y ↔ x = y @@ -145,7 +145,7 @@ instance perm_group {α : Type u} : group (perm α) := begin refine { mul := λ f g, equiv.trans g f, one := equiv.refl α, inv:= equiv.symm, ..}; intros; apply equiv.ext; try { apply trans_apply }, - apply inverse_apply_apply + apply symm_apply_apply end @[simp] theorem mul_apply {α : Type u} (f g : perm α) (x) : (f * g) x = f (g x) := @@ -154,10 +154,10 @@ equiv.trans_apply _ _ _ @[simp] theorem one_apply {α : Type u} (x) : (1 : perm α) x = x := rfl @[simp] lemma inv_apply_self {α : Type u} (f : perm α) (x) : - f⁻¹ (f x) = x := equiv.inverse_apply_apply _ _ + f⁻¹ (f x) = x := equiv.symm_apply_apply _ _ @[simp] lemma apply_inv_self {α : Type u} (f : perm α) (x) : - f (f⁻¹ x) = x := equiv.apply_inverse_apply _ _ + f (f⁻¹ x) = x := equiv.apply_symm_apply _ _ lemma one_def {α : Type u} : (1 : perm α) = equiv.refl α := rfl @@ -233,8 +233,8 @@ end @[congr] def prod_congr {α₁ β₁ α₂ β₂ : Sort*} (e₁ : α₁ ≃ α₂) (e₂ :β₁ ≃ β₂) : (α₁ × β₁) ≃ (α₂ × β₂) := ⟨λp, (e₁ p.1, e₂ p.2), λp, (e₁.symm p.1, e₂.symm p.2), - λ ⟨a, b⟩, show (e₁.symm (e₁ a), e₂.symm (e₂ b)) = (a, b), by rw [inverse_apply_apply, inverse_apply_apply], - λ ⟨a, b⟩, show (e₁ (e₁.symm a), e₂ (e₂.symm b)) = (a, b), by rw [apply_inverse_apply, apply_inverse_apply]⟩ + λ ⟨a, b⟩, show (e₁.symm (e₁ a), e₂.symm (e₂ b)) = (a, b), by rw [symm_apply_apply, symm_apply_apply], + λ ⟨a, b⟩, show (e₁ (e₁.symm a), e₂ (e₂.symm b)) = (a, b), by rw [apply_symm_apply, apply_symm_apply]⟩ @[simp] theorem prod_congr_apply {α₁ β₁ α₂ β₂ : Sort*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) (a : α₁) (b : β₁) : prod_congr e₁ e₂ (a, b) = (e₁ a, e₂ b) := @@ -373,8 +373,8 @@ def psigma_equiv_sigma {α} (β : α → Sort*) : psigma β ≃ sigma β := def sigma_congr_right {α} {β₁ β₂ : α → Sort*} (F : ∀ a, β₁ a ≃ β₂ a) : sigma β₁ ≃ sigma β₂ := ⟨λ ⟨a, b⟩, ⟨a, F a b⟩, λ ⟨a, b⟩, ⟨a, (F a).symm b⟩, - λ ⟨a, b⟩, congr_arg (sigma.mk a) $ inverse_apply_apply (F a) b, - λ ⟨a, b⟩, congr_arg (sigma.mk a) $ apply_inverse_apply (F a) b⟩ + λ ⟨a, b⟩, congr_arg (sigma.mk a) $ symm_apply_apply (F a) b, + λ ⟨a, b⟩, congr_arg (sigma.mk a) $ apply_symm_apply (F a) b⟩ def sigma_congr_left {α₁ α₂} {β : α₂ → Sort*} : ∀ f : α₁ ≃ α₂, (Σ a:α₁, β (f a)) ≃ (Σ a:α₂, β a) | ⟨f, g, l, r⟩ := diff --git a/src/data/equiv/denumerable.lean b/src/data/equiv/denumerable.lean index 43baa9b6b217c..d1eb8c2981f73 100644 --- a/src/data/equiv/denumerable.lean +++ b/src/data/equiv/denumerable.lean @@ -51,8 +51,8 @@ def eqv (α) [denumerable α] : α ≃ ℕ := def mk' {α} (e : α ≃ ℕ) : denumerable α := { encode := e, decode := some ∘ e.symm, - encodek := λ a, congr_arg some (e.inverse_apply_apply _), - decode_inv := λ n, ⟨_, rfl, e.apply_inverse_apply _⟩ } + encodek := λ a, congr_arg some (e.symm_apply_apply _), + decode_inv := λ n, ⟨_, rfl, e.apply_symm_apply _⟩ } def of_equiv (α) {β} [denumerable α] (e : β ≃ α) : denumerable β := { decode_inv := λ n, by simp, diff --git a/src/data/finsupp.lean b/src/data/finsupp.lean index 13aa66b0f3c2b..2b4510d485cee 100644 --- a/src/data/finsupp.lean +++ b/src/data/finsupp.lean @@ -1163,12 +1163,12 @@ protected def dom_congr [decidable_eq α₁] [decidable_eq α₂] [decidable_eq ⟨map_domain e, map_domain e.symm, begin assume v, - simp only [map_domain_comp.symm, (∘), equiv.inverse_apply_apply], + simp only [map_domain_comp.symm, (∘), equiv.symm_apply_apply], exact map_domain_id end, begin assume v, - simp only [map_domain_comp.symm, (∘), equiv.apply_inverse_apply], + simp only [map_domain_comp.symm, (∘), equiv.apply_symm_apply], exact map_domain_id end⟩ diff --git a/src/data/multivariate_polynomial.lean b/src/data/multivariate_polynomial.lean index 17ddb63618baf..864f5aff87047 100644 --- a/src/data/multivariate_polynomial.lean +++ b/src/data/multivariate_polynomial.lean @@ -622,8 +622,8 @@ def punit_ring_equiv : mv_polynomial punit α ≃r polynomial α := def ring_equiv_of_equiv (e : β ≃ γ) : mv_polynomial β α ≃r mv_polynomial γ α := { to_fun := rename e, inv_fun := rename e.symm, - left_inv := λ p, by simp only [rename_rename, (∘), e.inverse_apply_apply]; exact rename_id p, - right_inv := λ p, by simp only [rename_rename, (∘), e.apply_inverse_apply]; exact rename_id p, + left_inv := λ p, by simp only [rename_rename, (∘), e.symm_apply_apply]; exact rename_id p, + right_inv := λ p, by simp only [rename_rename, (∘), e.apply_symm_apply]; exact rename_id p, hom := rename.is_ring_hom e } def ring_equiv_congr [comm_ring γ] (e : α ≃r γ) : mv_polynomial β α ≃r mv_polynomial β γ := @@ -631,11 +631,11 @@ def ring_equiv_congr [comm_ring γ] (e : α ≃r γ) : mv_polynomial β α ≃r inv_fun := map e.symm.to_fun, left_inv := assume p, have (e.symm.to_equiv.to_fun ∘ e.to_equiv.to_fun) = id, - { ext a, exact e.to_equiv.inverse_apply_apply a }, + { ext a, exact e.to_equiv.symm_apply_apply a }, by simp only [map_map, this, map_id], right_inv := assume p, have (e.to_equiv.to_fun ∘ e.symm.to_equiv.to_fun) = id, - { ext a, exact e.to_equiv.apply_inverse_apply a }, + { ext a, exact e.to_equiv.apply_symm_apply a }, by simp only [map_map, this, map_id], hom := map.is_ring_hom e.to_fun } diff --git a/src/order/order_iso.lean b/src/order/order_iso.lean index 02544e436e616..c18d1ca3b61b2 100644 --- a/src/order/order_iso.lean +++ b/src/order/order_iso.lean @@ -224,10 +224,10 @@ rfl @[simp] theorem trans_apply : ∀ (f : r ≃o s) (g : s ≃o t) (a : α), (f.trans g) a = g (f a) | ⟨f₁, o₁⟩ ⟨f₂, o₂⟩ a := equiv.trans_apply _ _ _ -@[simp] theorem apply_inverse_apply : ∀ (e : r ≃o s) (x : β), e (e.symm x) = x +@[simp] theorem apply_symm_apply : ∀ (e : r ≃o s) (x : β), e (e.symm x) = x | ⟨f₁, o₁⟩ x := by simp -@[simp] theorem inverse_apply_apply : ∀ (e : r ≃o s) (x : α), e.symm (e x) = x +@[simp] theorem symm_apply_apply : ∀ (e : r ≃o s) (x : α), e.symm (e x) = x | ⟨f₁, o₁⟩ x := by simp /-- Any equivalence lifts to an order isomorphism between `s` and its preimage. -/ diff --git a/src/ring_theory/localization.lean b/src/ring_theory/localization.lean index b3ef40a689e02..5d3282c99a94e 100644 --- a/src/ring_theory/localization.lean +++ b/src/ring_theory/localization.lean @@ -347,7 +347,7 @@ def equiv_of_equiv (h₁ : α ≃r β) (h₂ : h₁.to_equiv '' S = T) : rw ← h₂ at ht, rcases ht with ⟨s,hs⟩, rw ← hs.2, - erw h₁.to_equiv.inverse_apply_apply, + erw h₁.to_equiv.symm_apply_apply, exact hs.1, end, left_inv := @@ -357,7 +357,7 @@ def equiv_of_equiv (h₁ : α ≃r β) (h₂ : h₁.to_equiv '' S = T) : refine @localization.funext _ _ _ _ _ _ (map _ _ ∘ map _ _) id (is_ring_hom.comp _ _) _ _, intro a, simp only [function.comp, id.def, localization.map_coe], - erw h₁.to_equiv.inverse_apply_apply a, + erw h₁.to_equiv.symm_apply_apply a, end, right_inv := begin diff --git a/src/set_theory/ordinal.lean b/src/set_theory/ordinal.lean index a4b6f5a7e2292..6298aa2071b4a 100644 --- a/src/set_theory/ordinal.lean +++ b/src/set_theory/ordinal.lean @@ -42,7 +42,7 @@ theorem init_iff (f : r ≼i s) {a : α} {b : β} : s b (f a) ↔ ∃ a', f a' = /-- An order isomorphism is an initial segment -/ def of_iso (f : r ≃o s) : r ≼i s := -⟨f, λ a b h, ⟨f.symm b, order_iso.apply_inverse_apply f _⟩⟩ +⟨f, λ a b h, ⟨f.symm b, order_iso.apply_symm_apply f _⟩⟩ @[refl] protected def refl (r : α → α → Prop) : r ≼i r := ⟨order_embedding.refl _, λ a b h, ⟨_, rfl⟩⟩ @@ -181,7 +181,7 @@ lt_le_apply _ _ _ def equiv_lt [is_trans β s] [is_trans γ t] (f : r ≃o s) (g : s ≺i t) : r ≺i t := ⟨@order_embedding.trans _ _ _ r s t f g, g.top, λ c, by simp only [g.down', coe_fn_coe_base, order_embedding.trans_apply]; exact - ⟨λ ⟨b, h⟩, ⟨f.symm b, by simp only [h, order_iso.apply_inverse_apply, order_iso.coe_coe_fn]⟩, λ ⟨a, h⟩, ⟨f a, h⟩⟩⟩ + ⟨λ ⟨b, h⟩, ⟨f.symm b, by simp only [h, order_iso.apply_symm_apply, order_iso.coe_coe_fn]⟩, λ ⟨a, h⟩, ⟨f a, h⟩⟩⟩ @[simp] theorem equiv_lt_apply [is_trans β s] [is_trans γ t] (f : r ≃o s) (g : s ≺i t) (a : α) : (equiv_lt f g) a = g (f a) := order_embedding.trans_apply _ _ _ @@ -2767,10 +2767,10 @@ aleph'.order_iso.ord'.symm le_iff_le_iff_lt_iff_lt.2 aleph'_lt @[simp] theorem aleph'_aleph_idx (c : cardinal.{u}) : aleph' c.aleph_idx = c := -cardinal.aleph_idx.order_iso.to_equiv.inverse_apply_apply c +cardinal.aleph_idx.order_iso.to_equiv.symm_apply_apply c @[simp] theorem aleph_idx_aleph' (o : ordinal.{u}) : (aleph' o).aleph_idx = o := -cardinal.aleph_idx.order_iso.to_equiv.apply_inverse_apply o +cardinal.aleph_idx.order_iso.to_equiv.apply_symm_apply o @[simp] theorem aleph'_zero : aleph' 0 = 0 := by rw [← le_zero, ← aleph'_aleph_idx 0, aleph'_le];