From 68adaba31d941ab0801317d993f81921667db0b3 Mon Sep 17 00:00:00 2001 From: Aaron Anderson Date: Thu, 19 Nov 2020 01:49:36 +0000 Subject: [PATCH] chore(field_theory/separable): spell-check "seperable" to "separable" (#5040) Replacing instances of "seperable" with "separable" --- src/field_theory/separable.lean | 17 ++++++++++------- 1 file changed, 10 insertions(+), 7 deletions(-) diff --git a/src/field_theory/separable.lean b/src/field_theory/separable.lean index 8e30edea7ffd7..a225991e038d3 100644 --- a/src/field_theory/separable.lean +++ b/src/field_theory/separable.lean @@ -216,7 +216,8 @@ by { rw [separable_def, derivative_mul], exact ((hf.mul_right h).add_mul_left_ri ((h.symm.mul_right hg).mul_add_right_right _) } lemma separable_prod' {ι : Sort*} {f : ι → polynomial R} {s : finset ι} : - (∀x∈s, ∀y∈s, x ≠ y → is_coprime (f x) (f y)) → (∀x∈s, (f x).separable) → (∏ x in s, f x).separable := + (∀x∈s, ∀y∈s, x ≠ y → is_coprime (f x) (f y)) → (∀x∈s, (f x).separable) → + (∏ x in s, f x).separable := finset.induction_on s (λ _ _, separable_one) $ λ a s has ih h1 h2, begin simp_rw [finset.forall_mem_insert, forall_and_distrib] at h1 h2, rw prod_insert has, exact h2.1.mul (ih h1.2.2 h2.2) (is_coprime.prod_right $ λ i his, h1.1.2 i his $ @@ -401,7 +402,8 @@ begin { rw is_unit_iff at h, rcases h with ⟨r, hr, rfl⟩, simp_rw expand_C at hf, exact absurd (is_unit_C.2 hr) hf.1 }, { rw [add_zero, pow_zero, expand_one], split; refl } }, - exact λ g₁ g₂ hg₁ hgf₁ hg₂ hgf₂, let ⟨hn, hg⟩ := this g₂ g₁ hg₂ hgf₂ hg₁ hgf₁ in ⟨hn.symm, hg.symm⟩ + exact λ g₁ g₂ hg₁ hgf₁ hg₂ hgf₂, let ⟨hn, hg⟩ := + this g₂ g₁ hg₂ hgf₂ hg₁ hgf₁ in ⟨hn.symm, hg.symm⟩ end end char_p @@ -437,7 +439,7 @@ begin simpa only [multiset.map_cons, multiset.prod_cons] using mul_dvd_mul_left _ (dvd_mul_right _ _) end -lemma multiplicity_le_one_of_seperable {p q : polynomial F} (hq : ¬ is_unit q) +lemma multiplicity_le_one_of_separable {p q : polynomial F} (hq : ¬ is_unit q) (hsep : separable p) : multiplicity q p ≤ 1 := begin contrapose! hq, @@ -447,11 +449,11 @@ begin exact_mod_cast (enat.add_one_le_of_lt hq) end -lemma root_multiplicity_le_one_of_seperable {p : polynomial F} (hp : p ≠ 0) +lemma root_multiplicity_le_one_of_separable {p : polynomial F} (hp : p ≠ 0) (hsep : separable p) (x : F) : root_multiplicity x p ≤ 1 := begin rw [root_multiplicity_eq_multiplicity, dif_neg hp, ← enat.coe_le_coe, enat.coe_get], - exact multiplicity_le_one_of_seperable (not_unit_X_sub_C _) hsep + exact multiplicity_le_one_of_separable (not_unit_X_sub_C _) hsep end lemma count_roots_le_one {p : polynomial F} (hsep : separable p) (x : F) : @@ -460,7 +462,7 @@ begin by_cases hp : p = 0, { simp [hp] }, rw count_roots hp, - exact root_multiplicity_le_one_of_seperable hp hsep x + exact root_multiplicity_le_one_of_separable hp hsep x end lemma nodup_roots {p : polynomial F} (hsep : separable p) : @@ -520,7 +522,8 @@ begin obtain ⟨hx, hs⟩ := h (algebra_map K E x), have hx' : is_integral F x := is_integral_tower_bot_of_is_integral_field hx, obtain ⟨q, hq⟩ := minimal_polynomial.dvd hx' - (is_scalar_tower.aeval_eq_zero_of_aeval_algebra_map_eq_zero_field (minimal_polynomial.aeval hx)), + (is_scalar_tower.aeval_eq_zero_of_aeval_algebra_map_eq_zero_field + (minimal_polynomial.aeval hx)), use hx', apply polynomial.separable.of_mul_left, rw ← hq,