diff --git a/src/measure_theory/measure/content.lean b/src/measure_theory/measure/content.lean index db25dc4c278bd..1bd299745cfd6 100644 --- a/src/measure_theory/measure/content.lean +++ b/src/measure_theory/measure/content.lean @@ -157,9 +157,9 @@ begin { intros n s hn ih, rw [finset.sup_insert, finset.sum_insert hn], exact le_trans (μ.sup_le _ _) (add_le_add_left ih _) }}, refine supr₂_le (λ K hK, _), - obtain ⟨t, ht⟩ := K.compact.elim_finite_subcover _ (λ i, (U i).prop) _, swap, + obtain ⟨t, ht⟩ := K.is_compact.elim_finite_subcover _ (λ i, (U i).prop) _, swap, { convert hK, rw [opens.supr_def, subtype.coe_mk] }, - rcases K.compact.finite_compact_cover t (coe ∘ U) (λ i _, (U _).prop) (by simp only [ht]) + rcases K.is_compact.finite_compact_cover t (coe ∘ U) (λ i _, (U _).prop) (by simp only [ht]) with ⟨K', h1K', h2K', h3K'⟩, let L : ℕ → compacts G := λ n, ⟨K' n, h1K' n⟩, convert le_trans (h3 t L) _, diff --git a/src/measure_theory/measure/haar.lean b/src/measure_theory/measure/haar.lean index f2d5b992b74f4..50b143bef2667 100644 --- a/src/measure_theory/measure/haar.lean +++ b/src/measure_theory/measure/haar.lean @@ -150,8 +150,8 @@ lemma le_index_mul (K₀ : positive_compacts G) (K : compacts G) {V : set G} (hV : (interior V).nonempty) : index (K : set G) V ≤ index (K : set G) K₀ * index (K₀ : set G) V := begin - obtain ⟨s, h1s, h2s⟩ := index_elim K.compact K₀.interior_nonempty, - obtain ⟨t, h1t, h2t⟩ := index_elim K₀.compact hV, + obtain ⟨s, h1s, h2s⟩ := index_elim K.is_compact K₀.interior_nonempty, + obtain ⟨t, h1t, h2t⟩ := index_elim K₀.is_compact hV, rw [← h2s, ← h2t, mul_comm], refine le_trans _ finset.card_mul_le, apply nat.Inf_le, refine ⟨_, _, rfl⟩, rw [mem_set_of_eq], refine subset.trans h1s _, @@ -169,7 +169,7 @@ begin { rintro ⟨t, h1t, h2t⟩, rw [finset.card_eq_zero] at h2t, subst h2t, obtain ⟨g, hg⟩ := K.interior_nonempty, show g ∈ (∅ : set G), convert h1t (interior_subset hg), symmetry, apply bUnion_empty }, - { exact index_defined K.compact hV } + { exact index_defined K.is_compact hV } end @[to_additive add_index_mono] @@ -300,7 +300,7 @@ by { simp only [prehaar], rw [div_add_div_same], congr', exact_mod_cast index_un lemma is_left_invariant_prehaar {K₀ : positive_compacts G} {U : set G} (hU : (interior U).nonempty) (g : G) (K : compacts G) : prehaar (K₀ : set G) U (K.map _ $ continuous_mul_left g) = prehaar (K₀ : set G) U K := -by simp only [prehaar, compacts.coe_map, is_left_invariant_index K.compact _ hU] +by simp only [prehaar, compacts.coe_map, is_left_invariant_index K.is_compact _ hU] /-! ### Lemmas about `haar_product` @@ -540,9 +540,9 @@ end lemma haar_measure_self {K₀ : positive_compacts G} : haar_measure K₀ K₀ = 1 := begin haveI : locally_compact_space G := K₀.locally_compact_space_of_group, - rw [haar_measure_apply K₀.compact.measurable_set, ennreal.div_self], + rw [haar_measure_apply K₀.is_compact.measurable_set, ennreal.div_self], { rw [← pos_iff_ne_zero], exact haar_content_outer_measure_self_pos }, - { exact (content.outer_measure_lt_top_of_is_compact _ K₀.compact).ne } + { exact (content.outer_measure_lt_top_of_is_compact _ K₀.is_compact).ne } end /-- The Haar measure is regular. -/ @@ -569,7 +569,7 @@ gives finite mass to compact sets and positive mass to nonempty open sets."] instance is_haar_measure_haar_measure (K₀ : positive_compacts G) : is_haar_measure (haar_measure K₀) := begin - apply is_haar_measure_of_is_compact_nonempty_interior (haar_measure K₀) K₀ K₀.compact + apply is_haar_measure_of_is_compact_nonempty_interior (haar_measure K₀) K₀ K₀.is_compact K₀.interior_nonempty, { simp only [haar_measure_self], exact one_ne_zero }, { simp only [haar_measure_self], exact ennreal.coe_ne_top }, @@ -593,9 +593,9 @@ left invariant measure is a scalar multiple of the additive Haar measure. This i than assuming that `μ` is an additive Haar measure (in particular we don't require `μ ≠ 0`)."] theorem haar_measure_unique (μ : measure G) [sigma_finite μ] [is_mul_left_invariant μ] (K₀ : positive_compacts G) : μ = μ K₀ • haar_measure K₀ := -(measure_eq_div_smul μ (haar_measure K₀) K₀.compact.measurable_set +(measure_eq_div_smul μ (haar_measure K₀) K₀.is_compact.measurable_set (measure_pos_of_nonempty_interior _ K₀.interior_nonempty).ne' - K₀.compact.measure_lt_top.ne).trans (by rw [haar_measure_self, div_one]) + K₀.is_compact.measure_lt_top.ne).trans (by rw [haar_measure_self, div_one]) example [locally_compact_space G] (μ : measure G) [is_haar_measure μ] (K₀ : positive_compacts G) : μ = μ K₀.1 • haar_measure K₀ := @@ -617,11 +617,11 @@ theorem is_haar_measure_eq_smul_is_haar_measure begin have K : positive_compacts G := classical.arbitrary _, have νpos : 0 < ν K := measure_pos_of_nonempty_interior _ K.interior_nonempty, - have νne : ν K ≠ ∞ := K.compact.measure_lt_top.ne, + have νne : ν K ≠ ∞ := K.is_compact.measure_lt_top.ne, refine ⟨μ K / ν K, _, _, _⟩, { simp only [νne, (μ.measure_pos_of_nonempty_interior K.interior_nonempty).ne', ne.def, ennreal.div_zero_iff, not_false_iff, or_self] }, - { simp only [div_eq_mul_inv, νpos.ne', (K.compact.measure_lt_top).ne, or_self, + { simp only [div_eq_mul_inv, νpos.ne', (K.is_compact.measure_lt_top).ne, or_self, ennreal.inv_eq_top, with_top.mul_eq_top_iff, ne.def, not_false_iff, and_false, false_and] }, { calc μ = μ K • haar_measure K : haar_measure_unique μ K @@ -721,7 +721,7 @@ begin simp, }, have : c^2 = 1^2 := (ennreal.mul_eq_mul_right (measure_pos_of_nonempty_interior _ K.interior_nonempty).ne' - K.compact.measure_lt_top.ne).1 this, + K.is_compact.measure_lt_top.ne).1 this, have : c = 1 := (ennreal.pow_strict_mono two_ne_zero).injective this, rw [hc, this, one_smul] end diff --git a/src/measure_theory/measure/haar_lebesgue.lean b/src/measure_theory/measure/haar_lebesgue.lean index c84c51cb624f7..1453aef367053 100644 --- a/src/measure_theory/measure/haar_lebesgue.lean +++ b/src/measure_theory/measure/haar_lebesgue.lean @@ -42,7 +42,7 @@ open_locale ennreal pointwise topological_space nnreal /-- The interval `[0,1]` as a compact set with non-empty interior. -/ def topological_space.positive_compacts.Icc01 : positive_compacts ℝ := { carrier := Icc 0 1, - compact' := is_compact_Icc, + is_compact' := is_compact_Icc, interior_nonempty' := by simp_rw [interior_Icc, nonempty_Ioo, zero_lt_one] } universe u @@ -51,7 +51,7 @@ universe u def topological_space.positive_compacts.pi_Icc01 (ι : Type*) [fintype ι] : positive_compacts (ι → ℝ) := { carrier := pi univ (λ i, Icc 0 1), - compact' := is_compact_univ_pi (λ i, is_compact_Icc), + is_compact' := is_compact_univ_pi (λ i, is_compact_Icc), interior_nonempty' := by simp only [interior_pi_set, set.to_finite, interior_Icc, univ_pi_nonempty_iff, nonempty_Ioo, implies_true_iff, zero_lt_one] } diff --git a/src/measure_theory/measure/haar_quotient.lean b/src/measure_theory/measure/haar_quotient.lean index 688188c0760e0..aa703d77da1d7 100644 --- a/src/measure_theory/measure/haar_quotient.lean +++ b/src/measure_theory/measure/haar_quotient.lean @@ -156,7 +156,7 @@ begin h𝓕.is_mul_left_invariant_map, rw [measure.haar_measure_unique (measure.map (quotient_group.mk' Γ) (μ.restrict 𝓕)) K, measure.map_apply meas_π, measure.restrict_apply₀' 𝓕meas, inter_comm], - exact K.compact.measurable_set, + exact K.is_compact.measurable_set, end /-- Given a normal subgroup `Γ` of a topological group `G` with Haar measure `μ`, which is also diff --git a/src/topology/algebra/group.lean b/src/topology/algebra/group.lean index 449af7ee8a905..2b6e8e2453d50 100644 --- a/src/topology/algebra/group.lean +++ b/src/topology/algebra/group.lean @@ -1174,7 +1174,7 @@ begin refine locally_compact_of_compact_nhds (λ x, _), obtain ⟨y, hy⟩ := K.interior_nonempty, let F := homeomorph.mul_left (x * y⁻¹), - refine ⟨F '' K, _, K.compact.image F.continuous⟩, + refine ⟨F '' K, _, K.is_compact.image F.continuous⟩, suffices : F.symm ⁻¹' K ∈ 𝓝 x, by { convert this, apply equiv.image_eq_preimage }, apply continuous_at.preimage_mem_nhds F.symm.continuous.continuous_at, have : F.symm x = y, by simp [F, homeomorph.mul_left_symm], diff --git a/src/topology/metric_space/baire.lean b/src/topology/metric_space/baire.lean index 543c96184f490..cc0417baedb4e 100644 --- a/src/topology/metric_space/baire.lean +++ b/src/topology/metric_space/baire.lean @@ -171,7 +171,7 @@ begin have hK_nonempty : (⋂ n, K n : set α).nonempty, from is_compact.nonempty_Inter_of_sequence_nonempty_compact_closed _ (λ n, (hK_decreasing n).trans (inter_subset_right _ _)) - (λ n, (K n).nonempty) (K 0).compact (λ n, (K n).compact.is_closed), + (λ n, (K n).nonempty) (K 0).is_compact (λ n, (K n).is_compact.is_closed), exact hK_nonempty.mono hK_subset end diff --git a/src/topology/metric_space/closeds.lean b/src/topology/metric_space/closeds.lean index 2655f95e0c8a8..8b4154d495cc3 100644 --- a/src/topology/metric_space/closeds.lean +++ b/src/topology/metric_space/closeds.lean @@ -237,7 +237,7 @@ instance nonempty_compacts.emetric_space : emetric_space (nonempty_compacts α) edist_triangle := λs t u, Hausdorff_edist_triangle, eq_of_edist_eq_zero := λ s t h, nonempty_compacts.ext $ begin have : closure (s : set α) = closure t := Hausdorff_edist_zero_iff_closure_eq_closure.1 h, - rwa [s.compact.is_closed.closure_eq, t.compact.is_closed.closure_eq] at this, + rwa [s.is_compact.is_closed.closure_eq, t.is_compact.is_closed.closure_eq] at this, end } /-- `nonempty_compacts.to_closeds` is a uniform embedding (as it is an isometry) -/ @@ -254,7 +254,7 @@ begin { ext s, refine ⟨_, λ h, ⟨⟨⟨s, h.2⟩, h.1⟩, closeds.ext rfl⟩⟩, rintro ⟨s, hs, rfl⟩, - exact ⟨s.nonempty, s.compact⟩ }, + exact ⟨s.nonempty, s.is_compact⟩ }, rw this, refine is_closed_of_closure_subset (λs hs, ⟨_, _⟩), { -- take a set set t which is nonempty and at a finite distance of s @@ -330,7 +330,7 @@ begin have Fspec : ∀x, F x ∈ s ∧ edist x (F x) < δ/2 := λx, some_spec (Exy x), -- cover `t` with finitely many balls. Their centers form a set `a` - have : totally_bounded (t : set α) := t.compact.totally_bounded, + have : totally_bounded (t : set α) := t.is_compact.totally_bounded, rcases totally_bounded_iff.1 this (δ/2) δpos' with ⟨a, af, ta⟩, -- a : set α, af : a.finite, ta : t ⊆ ⋃ (y : α) (H : y ∈ a), eball y (δ / 2) -- replace each center by a nearby approximation in `s`, giving a new set `b` @@ -392,7 +392,7 @@ variables {α : Type u} [metric_space α] edistance between two such sets is finite. -/ instance nonempty_compacts.metric_space : metric_space (nonempty_compacts α) := emetric_space.to_metric_space $ λ x y, Hausdorff_edist_ne_top_of_nonempty_of_bounded - x.nonempty y.nonempty x.compact.bounded y.compact.bounded + x.nonempty y.nonempty x.is_compact.bounded y.is_compact.bounded /-- The distance on `nonempty_compacts α` is the Hausdorff distance, by construction -/ lemma nonempty_compacts.dist_eq {x y : nonempty_compacts α} : diff --git a/src/topology/metric_space/gromov_hausdorff.lean b/src/topology/metric_space/gromov_hausdorff.lean index 80d6d2b3311bc..01f8b3a330e73 100644 --- a/src/topology/metric_space/gromov_hausdorff.lean +++ b/src/topology/metric_space/gromov_hausdorff.lean @@ -249,7 +249,7 @@ begin have : Φ xX ∈ ↑p := Φrange.subst (mem_range_self _), exact exists_dist_lt_of_Hausdorff_dist_lt this bound (Hausdorff_edist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty - p.compact.bounded q.compact.bounded) }, + p.is_compact.bounded q.is_compact.bounded) }, rcases this with ⟨y, hy, dy⟩, rcases mem_range.1 hy with ⟨z, hzy⟩, rw ← hzy at dy, @@ -288,7 +288,7 @@ begin { apply mem_union_right, apply mem_range_self } }, refine dist_le_diam_of_mem _ (A _) (A _), rw [Φrange, Ψrange], - exact (p ⊔ q).compact.bounded, + exact (p ⊔ q).is_compact.bounded, end ... ≤ 2 * diam (univ : set X) + 1 + 2 * diam (univ : set Y) : I } }, let Fb := candidates_b_of_candidates F Fgood, @@ -300,7 +300,7 @@ begin have : f (inl x) ∈ ↑p := Φrange.subst (mem_range_self _), rcases exists_dist_lt_of_Hausdorff_dist_lt this hr (Hausdorff_edist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty - p.compact.bounded q.compact.bounded) + p.is_compact.bounded q.is_compact.bounded) with ⟨z, zq, hz⟩, have : z ∈ range Ψ, by rwa [← Ψrange] at zq, rcases mem_range.1 this with ⟨y, hy⟩, @@ -314,7 +314,7 @@ begin have : f (inr y) ∈ ↑q := Ψrange.subst (mem_range_self _), rcases exists_dist_lt_of_Hausdorff_dist_lt' this hr (Hausdorff_edist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty - p.compact.bounded q.compact.bounded) + p.is_compact.bounded q.is_compact.bounded) with ⟨z, zq, hz⟩, have : z ∈ range Φ, by rwa [← Φrange] at zq, rcases mem_range.1 this with ⟨x, hx⟩, diff --git a/src/topology/metric_space/kuratowski.lean b/src/topology/metric_space/kuratowski.lean index b7107bedd1658..99fd9607cca37 100644 --- a/src/topology/metric_space/kuratowski.lean +++ b/src/topology/metric_space/kuratowski.lean @@ -113,5 +113,5 @@ def nonempty_compacts.Kuratowski_embedding (α : Type u) [metric_space α] [comp [nonempty α] : nonempty_compacts ℓ_infty_ℝ := { carrier := range (Kuratowski_embedding α), - compact' := is_compact_range (Kuratowski_embedding.isometry α).continuous, + is_compact' := is_compact_range (Kuratowski_embedding.isometry α).continuous, nonempty' := range_nonempty _ } diff --git a/src/topology/sets/compacts.lean b/src/topology/sets/compacts.lean index f4f37e3489b03..0524ac1ac956c 100644 --- a/src/topology/sets/compacts.lean +++ b/src/topology/sets/compacts.lean @@ -32,7 +32,7 @@ namespace topological_space /-- The type of compact sets of a topological space. -/ structure compacts (α : Type*) [topological_space α] := (carrier : set α) -(compact' : is_compact carrier) +(is_compact' : is_compact carrier) namespace compacts variables {α} @@ -41,9 +41,9 @@ instance : set_like (compacts α) α := { coe := compacts.carrier, coe_injective' := λ s t h, by { cases s, cases t, congr' } } -lemma compact (s : compacts α) : is_compact (s : set α) := s.compact' +protected lemma is_compact (s : compacts α) : is_compact (s : set α) := s.is_compact' -instance (K : compacts α) : compact_space K := is_compact_iff_compact_space.1 K.compact +instance (K : compacts α) : compact_space K := is_compact_iff_compact_space.1 K.is_compact instance : can_lift (set α) (compacts α) coe is_compact := { prf := λ K hK, ⟨⟨K, hK⟩, rfl⟩ } @@ -54,8 +54,8 @@ instance : can_lift (set α) (compacts α) coe is_compact := @[simp] lemma carrier_eq_coe (s : compacts α) : s.carrier = s := rfl -instance : has_sup (compacts α) := ⟨λ s t, ⟨s ∪ t, s.compact.union t.compact⟩⟩ -instance [t2_space α] : has_inf (compacts α) := ⟨λ s t, ⟨s ∩ t, s.compact.inter t.compact⟩⟩ +instance : has_sup (compacts α) := ⟨λ s t, ⟨s ∪ t, s.is_compact.union t.is_compact⟩⟩ +instance [t2_space α] : has_inf (compacts α) := ⟨λ s t, ⟨s ∩ t, s.is_compact.inter t.is_compact⟩⟩ instance [compact_space α] : has_top (compacts α) := ⟨⟨univ, compact_univ⟩⟩ instance : has_bot (compacts α) := ⟨⟨∅, is_compact_empty⟩⟩ @@ -108,7 +108,7 @@ congr_fun (image_eq_preimage_of_inverse f.left_inv f.right_inv) K.1 /-- The product of two `compacts`, as a `compacts` in the product space. -/ protected def prod (K : compacts α) (L : compacts β) : compacts (α × β) := { carrier := K ×ˢ L, - compact' := is_compact.prod K.2 L.2 } + is_compact' := is_compact.prod K.2 L.2 } @[simp] lemma coe_prod (K : compacts α) (L : compacts β) : (K.prod L : set (α × β)) = K ×ˢ L := rfl @@ -126,11 +126,11 @@ instance : set_like (nonempty_compacts α) α := { coe := λ s, s.carrier, coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } } -lemma compact (s : nonempty_compacts α) : is_compact (s : set α) := s.compact' +protected lemma is_compact (s : nonempty_compacts α) : is_compact (s : set α) := s.is_compact' protected lemma nonempty (s : nonempty_compacts α) : (s : set α).nonempty := s.nonempty' /-- Reinterpret a nonempty compact as a closed set. -/ -def to_closeds [t2_space α] (s : nonempty_compacts α) : closeds α := ⟨s, s.compact.is_closed⟩ +def to_closeds [t2_space α] (s : nonempty_compacts α) : closeds α := ⟨s, s.is_compact.is_closed⟩ @[ext] protected lemma ext {s t : nonempty_compacts α} (h : (s : set α) = t) : s = t := set_like.ext' h @@ -156,10 +156,10 @@ order_top.lift (coe : _ → set α) (λ _ _, id) rfl /-- In an inhabited space, the type of nonempty compact subsets is also inhabited, with default element the singleton set containing the default element. -/ instance [inhabited α] : inhabited (nonempty_compacts α) := -⟨{ carrier := {default}, compact' := is_compact_singleton, nonempty' := singleton_nonempty _ }⟩ +⟨{ carrier := {default}, is_compact' := is_compact_singleton, nonempty' := singleton_nonempty _ }⟩ instance to_compact_space {s : nonempty_compacts α} : compact_space s := -is_compact_iff_compact_space.1 s.compact +is_compact_iff_compact_space.1 s.is_compact instance to_nonempty {s : nonempty_compacts α} : nonempty s := s.nonempty.to_subtype @@ -187,7 +187,7 @@ instance : set_like (positive_compacts α) α := { coe := λ s, s.carrier, coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } } -lemma compact (s : positive_compacts α) : is_compact (s : set α) := s.compact' +protected lemma is_compact (s : positive_compacts α) : is_compact (s : set α) := s.is_compact' lemma interior_nonempty (s : positive_compacts α) : (interior (s : set α)).nonempty := s.interior_nonempty' @@ -252,7 +252,7 @@ end positive_compacts /-- The type of compact open sets of a topological space. This is useful in non Hausdorff contexts, in particular spectral spaces. -/ structure compact_opens (α : Type*) [topological_space α] extends compacts α := -(open' : is_open carrier) +(is_open' : is_open carrier) namespace compact_opens @@ -260,22 +260,22 @@ instance : set_like (compact_opens α) α := { coe := λ s, s.carrier, coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } } -lemma compact (s : compact_opens α) : is_compact (s : set α) := s.compact' -lemma «open» (s : compact_opens α) : is_open (s : set α) := s.open' +protected lemma is_compact (s : compact_opens α) : is_compact (s : set α) := s.is_compact' +protected lemma is_open (s : compact_opens α) : is_open (s : set α) := s.is_open' /-- Reinterpret a compact open as an open. -/ -@[simps] def to_opens (s : compact_opens α) : opens α := ⟨s, s.open⟩ +@[simps] def to_opens (s : compact_opens α) : opens α := ⟨s, s.is_open⟩ /-- Reinterpret a compact open as a clopen. -/ @[simps] def to_clopens [t2_space α] (s : compact_opens α) : clopens α := -⟨s, s.open, s.compact.is_closed⟩ +⟨s, s.is_open, s.is_compact.is_closed⟩ @[ext] protected lemma ext {s t : compact_opens α} (h : (s : set α) = t) : s = t := set_like.ext' h @[simp] lemma coe_mk (s : compacts α) (h) : (mk s h : set α) = s := rfl instance : has_sup (compact_opens α) := -⟨λ s t, ⟨s.to_compacts ⊔ t.to_compacts, s.open.union t.open⟩⟩ +⟨λ s t, ⟨s.to_compacts ⊔ t.to_compacts, s.is_open.union t.is_open⟩⟩ instance [quasi_separated_space α] : has_inf (compact_opens α) := ⟨λ U V, ⟨⟨(U : set α) ∩ (V : set α), @@ -286,9 +286,9 @@ set_like.coe_injective.semilattice_inf _ (λ _ _, rfl) instance [compact_space α] : has_top (compact_opens α) := ⟨⟨⊤, is_open_univ⟩⟩ instance : has_bot (compact_opens α) := ⟨⟨⊥, is_open_empty⟩⟩ instance [t2_space α] : has_sdiff (compact_opens α) := -⟨λ s t, ⟨⟨s \ t, s.compact.diff t.open⟩, s.open.sdiff t.compact.is_closed⟩⟩ +⟨λ s t, ⟨⟨s \ t, s.is_compact.diff t.is_open⟩, s.is_open.sdiff t.is_compact.is_closed⟩⟩ instance [t2_space α] [compact_space α] : has_compl (compact_opens α) := -⟨λ s, ⟨⟨sᶜ, s.open.is_closed_compl.is_compact⟩, s.compact.is_closed.is_open_compl⟩⟩ +⟨λ s, ⟨⟨sᶜ, s.is_open.is_closed_compl.is_compact⟩, s.is_compact.is_closed.is_open_compl⟩⟩ instance : semilattice_sup (compact_opens α) := set_like.coe_injective.semilattice_sup _ (λ _ _, rfl) @@ -317,7 +317,7 @@ instance : inhabited (compact_opens α) := ⟨⊥⟩ /-- The image of a compact open under a continuous open map. -/ @[simps] def map (f : α → β) (hf : continuous f) (hf' : is_open_map f) (s : compact_opens α) : compact_opens β := -⟨s.to_compacts.map f hf, hf' _ s.open⟩ +⟨s.to_compacts.map f hf, hf' _ s.is_open⟩ @[simp] lemma coe_map {f : α → β} (hf : continuous f) (hf' : is_open_map f) (s : compact_opens α) : (s.map f hf hf' : set β) = f '' s := rfl @@ -325,7 +325,7 @@ instance : inhabited (compact_opens α) := ⟨⊥⟩ /-- The product of two `compact_opens`, as a `compact_opens` in the product space. -/ protected def prod (K : compact_opens α) (L : compact_opens β) : compact_opens (α × β) := -{ open' := K.open.prod L.open, +{ is_open' := K.is_open.prod L.is_open, .. K.to_compacts.prod L.to_compacts } @[simp] lemma coe_prod (K : compact_opens α) (L : compact_opens β) :