Navigation Menu

Skip to content

Commit

Permalink
feat(analysis/normed_space/inner_product): Define the inner product b…
Browse files Browse the repository at this point in the history
…ased on `is_R_or_C` (#4057)
  • Loading branch information
dupuisf committed Oct 1, 2020
1 parent 1b97326 commit 9ceb114
Show file tree
Hide file tree
Showing 12 changed files with 1,866 additions and 1,349 deletions.
3 changes: 3 additions & 0 deletions src/analysis/normed_space/basic.lean
Expand Up @@ -812,6 +812,9 @@ begin
rwa [ne.def, norm_eq_zero] }
end

@[simp] lemma abs_norm_eq_norm (z : β) : abs ∥z∥ = ∥z∥ :=
(abs_eq (norm_nonneg z)).mpr (or.inl rfl)

lemma dist_smul [normed_space α β] (s : α) (x y : β) : dist (s • x) (s • y) = ∥s∥ * dist x y :=
by simp only [dist_eq_norm, (norm_smul _ _).symm, smul_sub]

Expand Down
4 changes: 2 additions & 2 deletions src/analysis/normed_space/hahn_banach.lean
Expand Up @@ -93,11 +93,11 @@ variables {F : Type*} [normed_group F] [normed_space ℂ F]
-- Inlining the following two definitions causes a type mismatch between
-- subspace ℝ (semimodule.restrict_scalars ℝ ℂ F) and subspace ℂ F.
/-- Restrict a `ℂ`-subspace to an `ℝ`-subspace. -/
noncomputable def restrict_scalars (p : subspace ℂ F) : subspace ℝ F := p.restrict_scalars ℝ ℂ F
noncomputable def restrict_scalars (p : subspace ℂ F) : subspace ℝ F := p.restrict_scalars ℝ

private lemma apply_real (p : subspace ℂ F) (f' : p →L[ℝ] ℝ) :
∃ g : F →L[ℝ] ℝ, (∀ x : restrict_scalars p, g x = f' x) ∧ ∥g∥ = ∥f'∥ :=
exists_extension_norm_eq (p.restrict_scalars ℝ ℂ F) f'
exists_extension_norm_eq (p.restrict_scalars ℝ) f'

open complex

Expand Down
1,628 changes: 1,628 additions & 0 deletions src/analysis/normed_space/inner_product.lean

Large diffs are not rendered by default.

0 comments on commit 9ceb114

Please sign in to comment.