diff --git a/src/set_theory/ordinal/basic.lean b/src/set_theory/ordinal/basic.lean index 8796ccd5482dc..e339684e5b056 100644 --- a/src/set_theory/ordinal/basic.lean +++ b/src/set_theory/ordinal/basic.lean @@ -467,9 +467,9 @@ end Well_order isomorphism. -/ instance ordinal.is_equivalent : setoid Well_order := { r := λ ⟨α, r, wo⟩ ⟨β, s, wo'⟩, nonempty (r ≃r s), - iseqv := ⟨λ⟨α, r, _⟩, ⟨rel_iso.refl _⟩, - λ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨e⟩, ⟨e.symm⟩, - λ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨γ, t, _⟩ ⟨e₁⟩ ⟨e₂⟩, ⟨e₁.trans e₂⟩⟩ } + iseqv := ⟨λ ⟨α, r, _⟩, ⟨rel_iso.refl _⟩, + λ ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨e⟩, ⟨e.symm⟩, + λ ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨γ, t, _⟩ ⟨e₁⟩ ⟨e₂⟩, ⟨e₁.trans e₂⟩⟩ } /-- `ordinal.{u}` is the type of well orders in `Type u`, up to order isomorphism. -/ def ordinal : Type (u + 1) := quotient ordinal.is_equivalent @@ -503,7 +503,7 @@ theorem type_eq {α β} {r : α → α → Prop} {s : β → β → Prop} [is_well_order α r] [is_well_order β s] : type r = type s ↔ nonempty (r ≃r s) := quotient.eq -@[simp] lemma type_lt (o : ordinal) : type ((<) : o.out.α → o.out.α → Prop) = o := +@[simp] theorem type_lt (o : ordinal) : type ((<) : o.out.α → o.out.α → Prop) = o := begin change type o.out.r = _, refine eq.trans _ (quotient.out_eq o),