From b3260f37e534430ea20630d2a7130e33a010a152 Mon Sep 17 00:00:00 2001 From: sgouezel Date: Thu, 6 Jan 2022 07:05:28 +0000 Subject: [PATCH] feat(measure_theory/constructions/borel_space): new lemma tendsto_measure_cthickening (#11009) Prove that, when `r` tends to `0`, the measure of the `r`-thickening of a set `s` tends to the measure of `s`. --- .../constructions/borel_space.lean | 40 +++++++++++++++++ src/measure_theory/measure/measure_space.lean | 44 +++++++++++++++++++ 2 files changed, 84 insertions(+) diff --git a/src/measure_theory/constructions/borel_space.lean b/src/measure_theory/constructions/borel_space.lean index 20180e6b34e82..9a0acc5f4cf62 100644 --- a/src/measure_theory/constructions/borel_space.lean +++ b/src/measure_theory/constructions/borel_space.lean @@ -1309,6 +1309,7 @@ lemma measurable.inf_nndist {f : β → α} (hf : measurable f) {s : set α} : measurable (λ x, inf_nndist (f x) s) := measurable_inf_nndist.comp hf +section variables [second_countable_topology α] @[measurability] @@ -1329,6 +1330,45 @@ lemma measurable.nndist {f g : β → α} (hf : measurable f) (hg : measurable g measurable (λ b, nndist (f b) (g b)) := (@continuous_nndist α _).measurable2 hf hg +end + +/-- If a set has a closed thickening with finite measure, then the measure of its `r`-closed +thickenings converges to the measure of its closure as `r` tends to `0`. -/ +lemma tendsto_measure_cthickening {μ : measure α} {s : set α} + (hs : ∃ R > 0, μ (cthickening R s) ≠ ∞) : + tendsto (λ r, μ (cthickening r s)) (𝓝 0) (𝓝 (μ (closure s))) := +begin + have A : tendsto (λ r, μ (cthickening r s)) (𝓝[Ioi 0] 0) (𝓝 (μ (closure s))), + { rw closure_eq_Inter_cthickening, + exact tendsto_measure_bInter_gt (λ r hr, is_closed_cthickening.measurable_set) + (λ i j ipos ij, cthickening_mono ij _) hs }, + have B : tendsto (λ r, μ (cthickening r s)) (𝓝[Iic 0] 0) (𝓝 (μ (closure s))), + { apply tendsto.congr' _ tendsto_const_nhds, + filter_upwards [self_mem_nhds_within], + assume r hr, + rw cthickening_of_nonpos hr }, + convert B.sup A, + exact (nhds_left_sup_nhds_right' 0).symm, +end + +/-- If a closed set has a closed thickening with finite measure, then the measure of its `r`-closed +thickenings converges to its measure as `r` tends to `0`. -/ +lemma tendsto_measure_cthickening_of_is_closed {μ : measure α} {s : set α} + (hs : ∃ R > 0, μ (cthickening R s) ≠ ∞) (h's : is_closed s) : + tendsto (λ r, μ (cthickening r s)) (𝓝 0) (𝓝 (μ s)) := +begin + convert tendsto_measure_cthickening hs, + exact h's.closure_eq.symm +end + +/-- Given a compact set in a proper space, the measure of its `r`-closed thickenings converges to +its measure as `r` tends to `0`. -/ +lemma tendsto_measure_cthickening_of_is_compact [proper_space α] {μ : measure α} + [is_finite_measure_on_compacts μ] {s : set α} (hs : is_compact s) : + tendsto (λ r, μ (cthickening r s)) (𝓝 0) (𝓝 (μ s)) := +tendsto_measure_cthickening_of_is_closed + ⟨1, zero_lt_one, (bounded.measure_lt_top hs.bounded.cthickening).ne⟩ hs.is_closed + end metric_space section emetric_space diff --git a/src/measure_theory/measure/measure_space.lean b/src/measure_theory/measure/measure_space.lean index 6f0a11448c5ab..9093a5b02a559 100644 --- a/src/measure_theory/measure/measure_space.lean +++ b/src/measure_theory/measure/measure_space.lean @@ -351,6 +351,50 @@ begin exact tendsto_at_top_infi (assume n m hnm, measure_mono $ hm hnm), end +/-- The measure of the intersection of a decreasing sequence of measurable +sets indexed by a linear order with first countable topology is the limit of the measures. -/ +lemma tendsto_measure_bInter_gt {ι : Type*} [linear_order ι] [topological_space ι] + [order_topology ι] [densely_ordered ι] [topological_space.first_countable_topology ι] + {s : ι → set α} {a : ι} + (hs : ∀ r > a, measurable_set (s r)) (hm : ∀ i j, a < i → i ≤ j → s i ⊆ s j) + (hf : ∃ r > a, μ (s r) ≠ ∞) : + tendsto (μ ∘ s) (𝓝[Ioi a] a) (𝓝 (μ (⋂ r > a, s r))) := +begin + refine tendsto_order.2 ⟨λ l hl, _, λ L hL, _⟩, + { filter_upwards [self_mem_nhds_within], + assume r hr, + exact hl.trans_le (measure_mono (bInter_subset_of_mem hr)) }, + obtain ⟨u, u_anti, u_pos, u_lim⟩ : ∃ (u : ℕ → ι), strict_anti u ∧ (∀ (n : ℕ), a < u n) + ∧ tendsto u at_top (𝓝 a), + { rcases hf with ⟨r, ar, hr⟩, + rcases exists_seq_strict_anti_tendsto' ar with ⟨w, w_anti, w_mem, w_lim⟩, + exact ⟨w, w_anti, λ n, (w_mem n).1, w_lim⟩ }, + have A : tendsto (μ ∘ (s ∘ u)) at_top (𝓝(μ (⋂ n, s (u n)))), + { refine tendsto_measure_Inter (λ n, hs _ (u_pos n)) _ _, + { assume m n hmn, + exact hm _ _ (u_pos n) (u_anti.antitone hmn) }, + { rcases hf with ⟨r, rpos, hr⟩, + obtain ⟨n, hn⟩ : ∃ (n : ℕ), u n < r := ((tendsto_order.1 u_lim).2 r rpos).exists, + refine ⟨n, ne_of_lt (lt_of_le_of_lt _ hr.lt_top)⟩, + exact measure_mono (hm _ _ (u_pos n) hn.le) } }, + have B : (⋂ n, s (u n)) = (⋂ r > a, s r), + { apply subset.antisymm, + { simp only [subset_Inter_iff, gt_iff_lt], + assume r rpos, + obtain ⟨n, hn⟩ : ∃ n, u n < r := ((tendsto_order.1 u_lim).2 _ rpos).exists, + exact subset.trans (Inter_subset _ n) (hm (u n) r (u_pos n) hn.le) }, + { simp only [subset_Inter_iff, gt_iff_lt], + assume n, + apply bInter_subset_of_mem, + exact u_pos n } }, + rw B at A, + obtain ⟨n, hn⟩ : ∃ n, μ (s (u n)) < L := ((tendsto_order.1 A).2 _ hL).exists, + have : Ioc a (u n) ∈ 𝓝[>] a := Ioc_mem_nhds_within_Ioi ⟨le_rfl, u_pos n⟩, + filter_upwards [this], + assume r hr, + exact lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn, +end + /-- One direction of the **Borel-Cantelli lemma**: if (sᵢ) is a sequence of sets such that `∑ μ sᵢ` is finite, then the limit superior of the `sᵢ` is a null set. -/ lemma measure_limsup_eq_zero {s : ℕ → set α} (hs : ∑' i, μ (s i) ≠ ∞) : μ (limsup at_top s) = 0 :=