diff --git a/src/algebra/pointwise.lean b/src/algebra/pointwise.lean index 630e58d03424b..0aa96cb0b31a6 100644 --- a/src/algebra/pointwise.lean +++ b/src/algebra/pointwise.lean @@ -722,7 +722,7 @@ end namespace finset -variables {α : Type*} [decidable_eq α] +variables {α : Type*} [decidable_eq α] {s t : finset α} /-- The pointwise product of two finite sets `s` and `t`: `st = s ⬝ t = s * t = { x * y | x ∈ s, y ∈ t }`. -/ @@ -734,27 +734,49 @@ protected def has_mul [has_mul α] : has_mul (finset α) := localized "attribute [instance] finset.has_mul finset.has_add" in pointwise @[to_additive] -lemma mul_def [has_mul α] {s t : finset α} : +lemma mul_def [has_mul α] : s * t = (s.product t).image (λ p : α × α, p.1 * p.2) := rfl @[to_additive] -lemma mem_mul [has_mul α] {s t : finset α} {x : α} : +lemma mem_mul [has_mul α] {x : α} : x ∈ s * t ↔ ∃ y z, y ∈ s ∧ z ∈ t ∧ y * z = x := by { simp only [finset.mul_def, and.assoc, mem_image, exists_prop, prod.exists, mem_product] } @[simp, norm_cast, to_additive] -lemma coe_mul [has_mul α] {s t : finset α} : (↑(s * t) : set α) = ↑s * ↑t := +lemma coe_mul [has_mul α] : (↑(s * t) : set α) = ↑s * ↑t := by { ext, simp only [mem_mul, set.mem_mul, mem_coe] } @[to_additive] -lemma mul_mem_mul [has_mul α] {s t : finset α} {x y : α} (hx : x ∈ s) (hy : y ∈ t) : +lemma mul_mem_mul [has_mul α] {x y : α} (hx : x ∈ s) (hy : y ∈ t) : x * y ∈ s * t := by { simp only [finset.mem_mul], exact ⟨x, y, hx, hy, rfl⟩ } @[to_additive] -lemma mul_card_le [has_mul α] {s t : finset α} : (s * t).card ≤ s.card * t.card := +lemma mul_card_le [has_mul α] : (s * t).card ≤ s.card * t.card := by { convert finset.card_image_le, rw [finset.card_product, mul_comm] } +@[simp, to_additive] lemma empty_mul [has_mul α] (s : finset α) : ∅ * s = ∅ := +eq_empty_of_forall_not_mem (by simp [mem_mul]) + +@[simp, to_additive] lemma mul_empty [has_mul α] (s : finset α) : s * ∅ = ∅ := +eq_empty_of_forall_not_mem (by simp [mem_mul]) + +@[simp, to_additive] lemma mul_nonempty_iff [has_mul α] (s t : finset α): + (s * t).nonempty ↔ s.nonempty ∧ t.nonempty := +by simp [finset.mul_def] + +@[to_additive, mono] lemma mul_subset_mul [has_mul α] {s₁ s₂ t₁ t₂ : finset α} + (hs : s₁ ⊆ s₂) (ht : t₁ ⊆ t₂) : s₁ * t₁ ⊆ s₂ * t₂ := +image_subset_image (product_subset_product hs ht) + +lemma mul_singleton_zero [mul_zero_class α] (s : finset α) : + s * {0} ⊆ {0} := +by simp [subset_iff, mem_mul] + +lemma singleton_zero_mul [mul_zero_class α] (s : finset α): + {(0 : α)} * s ⊆ {0} := +by simp [subset_iff, mem_mul] + open_locale classical /-- A finite set `U` contained in the product of two sets `S * S'` is also contained in the product