From d7fcd8ca11b9a8706f87dc53f1f0ed7a8caec5cc Mon Sep 17 00:00:00 2001 From: "Yury G. Kudryashov" Date: Sun, 26 Jul 2020 07:03:20 +0000 Subject: [PATCH] chore(analysis/normed_space): remove 2 `norm_zero` lemmas (#3558) We have a general `norm_zero` lemma and these lemmas are not used before we introduce `normed_group` instances. --- src/analysis/calculus/mean_value.lean | 4 ++-- src/analysis/normed_space/multilinear.lean | 5 +---- src/analysis/normed_space/operator_norm.lean | 3 --- src/measure_theory/bochner_integration.lean | 4 ++-- 4 files changed, 5 insertions(+), 11 deletions(-) diff --git a/src/analysis/calculus/mean_value.lean b/src/analysis/calculus/mean_value.lean index b47d53a0bc578..27a4be10b7f8c 100644 --- a/src/analysis/calculus/mean_value.lean +++ b/src/analysis/calculus/mean_value.lean @@ -367,7 +367,7 @@ begin simpa using (has_deriv_at_const x C).mul ((has_deriv_at_id x).sub (has_deriv_at_const x a)) }, convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound, { simp only [g, B] }, - { simp only [g, B], rw [sub_self, _root_.norm_zero, sub_self, mul_zero] } + { simp only [g, B], rw [sub_self, norm_zero, sub_self, mul_zero] } end /-- A function on `[a, b]` with the norm of the derivative within `[a, b]` @@ -509,7 +509,7 @@ theorem convex.is_const_of_fderiv_within_eq_zero {s : set E} (hs : convex s) {x y : E} (hx : x ∈ s) (hy : y ∈ s) : f x = f y := have bound : ∀ x ∈ s, ∥fderiv_within ℝ f s x∥ ≤ 0, - from λ x hx, by simp only [hf' x hx, _root_.norm_zero], + from λ x hx, by simp only [hf' x hx, norm_zero], by simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using hs.norm_image_sub_le_of_norm_fderiv_within_le hf bound hx hy diff --git a/src/analysis/normed_space/multilinear.lean b/src/analysis/normed_space/multilinear.lean index 215cdacd8b096..2ad0ea0defe87 100644 --- a/src/analysis/normed_space/multilinear.lean +++ b/src/analysis/normed_space/multilinear.lean @@ -111,7 +111,7 @@ begin by a power of a scalar `c` with norm `∥c∥ > 1`.-/ by_cases h : ∃i, m i = 0, { rcases h with ⟨i, hi⟩, - rw [f.map_coord_zero i hi, _root_.norm_zero], + rw [f.map_coord_zero i hi, norm_zero], exact mul_nonneg (le_of_lt C_pos) (prod_nonneg (λi hi, norm_nonneg _)) }, { push_neg at h, have : ∀i, ∃d:𝕜, d ≠ 0 ∧ ∥d • m i∥ ≤ δ ∧ (δ/∥c∥ ≤ ∥d • m i∥) ∧ (∥d∥⁻¹ ≤ δ⁻¹ * ∥c∥ * ∥m i∥) := @@ -374,9 +374,6 @@ begin simp } end -@[simp] lemma norm_zero : ∥(0 : continuous_multilinear_map 𝕜 E₁ E₂)∥ = 0 := -by rw op_norm_zero_iff - lemma op_norm_smul_le : ∥c • f∥ ≤ ∥c∥ * ∥f∥ := (Inf_le _ bounds_bdd_below ⟨mul_nonneg (norm_nonneg _) (op_norm_nonneg _), λ _, diff --git a/src/analysis/normed_space/operator_norm.lean b/src/analysis/normed_space/operator_norm.lean index 91744d66af6fc..f9a628fdfa5e6 100644 --- a/src/analysis/normed_space/operator_norm.lean +++ b/src/analysis/normed_space/operator_norm.lean @@ -296,9 +296,6 @@ iff.intro ⟨ge_of_eq rfl, λ _, le_of_eq (by { rw [zero_mul, hf], exact norm_zero })⟩) (op_norm_nonneg _)) -@[simp] lemma norm_zero : ∥(0 : E →L[𝕜] F)∥ = 0 := -by rw op_norm_zero_iff - /-- The norm of the identity is at most `1`. It is in fact `1`, except when the space is trivial where it is `0`. It means that one can not do better than an inequality in general. -/ lemma norm_id_le : ∥id 𝕜 E∥ ≤ 1 := diff --git a/src/measure_theory/bochner_integration.lean b/src/measure_theory/bochner_integration.lean index d0a6130821031..c0fa91d5aad68 100644 --- a/src/measure_theory/bochner_integration.lean +++ b/src/measure_theory/bochner_integration.lean @@ -1022,7 +1022,7 @@ begin by_cases hf : measurable f ∧ integrable f μ, { rw [integral_eq f hf.1 hf.2, ← l1.norm_of_fun_eq_lintegral_norm f hf.1 hf.2], exact l1.norm_integral_le _ }, - { rw [integral_undef hf, _root_.norm_zero], + { rw [integral_undef hf, norm_zero], exact to_real_nonneg } end @@ -1197,7 +1197,7 @@ classical.by_cases ... = ∫ a, ∥f a∥ ∂μ : (integral_eq_lintegral_of_nonneg_ae le_ae $ measurable.norm h).symm ) ( λh : ¬measurable f, begin - rw [integral_non_measurable h, _root_.norm_zero], + rw [integral_non_measurable h, norm_zero], exact integral_nonneg_of_ae le_ae end )