diff --git a/src/ring_theory/ideal/operations.lean b/src/ring_theory/ideal/operations.lean index f3ddc0a80c658..b05ce608fd563 100644 --- a/src/ring_theory/ideal/operations.lean +++ b/src/ring_theory/ideal/operations.lean @@ -22,9 +22,11 @@ variables [comm_ring R] [add_comm_group M] [module R M] instance has_scalar' : has_scalar (ideal R) (submodule R M) := ⟨λ I N, ⨆ r : I, N.map (r.1 • linear_map.id)⟩ +/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/ def annihilator (N : submodule R M) : ideal R := (linear_map.lsmul R N).ker +/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/ def colon (N P : submodule R M) : ideal R := annihilator (P.map N.mkq) @@ -216,6 +218,8 @@ begin rw [ring_hom.map_mul, hφ1, mul_one] end +/-- The homomorphism from `R/(⋂ i, f i)` to `∏ i, (R / f i)` featured in the Chinese + Remainder Theorem. It is bijective if the ideals `f i` are comaximal. -/ def quotient_inf_to_pi_quotient (f : ι → ideal R) : (⨅ i, f i).quotient →+* Π i, (f i).quotient := begin @@ -458,6 +462,8 @@ variables {R : Type u} {S : Type v} [comm_ring R] [comm_ring S] variables (f : R →+* S) variables {I J : ideal R} {K L : ideal S} +/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than + the image itself. -/ def map (I : ideal R) : ideal S := span (f '' I) diff --git a/src/ring_theory/multiplicity.lean b/src/ring_theory/multiplicity.lean index 472f1fac4d0af..96b8033f8fe15 100644 --- a/src/ring_theory/multiplicity.lean +++ b/src/ring_theory/multiplicity.lean @@ -29,6 +29,7 @@ namespace multiplicity section comm_monoid variables [comm_monoid α] +/-- `multiplicity.finite a b` indicates that the multiplicity of `a` in `b` is finite. -/ @[reducible] def finite (a b : α) : Prop := ∃ n : ℕ, ¬a ^ (n + 1) ∣ b lemma finite_iff_dom [decidable_rel ((∣) : α → α → Prop)] {a b : α} : diff --git a/src/ring_theory/ring_invo.lean b/src/ring_theory/ring_invo.lean index 26155710be68b..2354d57d2202f 100644 --- a/src/ring_theory/ring_invo.lean +++ b/src/ring_theory/ring_invo.lean @@ -68,6 +68,7 @@ open ring_invo section comm_ring variables [comm_ring R] +/-- The identity function of a `comm_ring` is a ring involution. -/ protected def ring_invo.id : ring_invo R := { involution' := λ r, rfl, ..(ring_equiv.to_opposite R) }