Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 04094c4

Browse files
committed
feat(analysis/box_integral): Divergence thm for a Henstock-style integral (#9496)
* Define integrals of Riemann, McShane, and Henstock (plus a few variations). * Prove basic properties. * Prove a version of the divergence theorem for one of these integrals. * Prove that a Bochner integrable function is McShane integrable.
1 parent 5eee6a2 commit 04094c4

File tree

17 files changed

+4359
-0
lines changed

17 files changed

+4359
-0
lines changed

docs/references.bib

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -552,6 +552,17 @@ @Book{ GierzEtAl1980
552552
mrreviewer = {James W. Lea, Jr.}
553553
}
554554

555+
@Book{ Gordon55,
556+
author = {Russel A. Gordon},
557+
title = {The integrals of Lebesgue, Denjoy, Perron, and
558+
Henstock},
559+
isbn = {0-8218-3805-9},
560+
year = {1955},
561+
series = {Graduate Studies in Mathematics},
562+
volume = 4,
563+
publisher = {American Mathematical Society, Providence, R.I}
564+
}
565+
555566
@Book{ gouvea1997,
556567
author = {Gouv\^{e}a, Fernando Q.},
557568
title = {{$p$}-adic numbers},

src/algebra/order/field.lean

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -582,6 +582,10 @@ begin
582582
← lt_sub_iff_add_lt, sub_self_div_two, sub_self_div_two, div_lt_div_right (@zero_lt_two α _ _)]
583583
end
584584

585+
lemma left_lt_add_div_two : a < (a + b) / 2 ↔ a < b := by simp [lt_div_iff, mul_two]
586+
587+
lemma add_div_two_lt_right : (a + b) / 2 < b ↔ a < b := by simp [div_lt_iff, mul_two]
588+
585589
/-- An inequality involving `2`. -/
586590
lemma sub_one_div_inv_le_two (a2 : 2 ≤ a) :
587591
(1 - 1 / a)⁻¹ ≤ 2 :=
@@ -643,6 +647,14 @@ end
643647
lemma exists_add_lt_and_pos_of_lt (h : b < a) : ∃ c : α, b + c < a ∧ 0 < c :=
644648
⟨(a - b) / 2, add_sub_div_two_lt h, div_pos (sub_pos_of_lt h) zero_lt_two⟩
645649

650+
lemma exists_pos_mul_lt {a : α} (h : 0 < a) (b : α) : ∃ c : α, 0 < c ∧ b * c < a :=
651+
begin
652+
have : 0 < a / max (b + 1) 1, from div_pos h (lt_max_iff.2 (or.inr zero_lt_one)),
653+
refine ⟨a / max (b + 1) 1, this, _⟩,
654+
rw [← lt_div_iff this, div_div_cancel' h.ne'],
655+
exact lt_max_iff.2 (or.inl $ lt_add_one _)
656+
end
657+
646658
lemma le_of_forall_sub_le (h : ∀ ε > 0, b - ε ≤ a) : b ≤ a :=
647659
begin
648660
contrapose! h,

src/analysis/box_integral/basic.lean

Lines changed: 801 additions & 0 deletions
Large diffs are not rendered by default.

0 commit comments

Comments
 (0)