diff --git a/category_theory/opposites.lean b/category_theory/opposites.lean index eaf07a80d790e..d5d7c5788c709 100644 --- a/category_theory/opposites.lean +++ b/category_theory/opposites.lean @@ -77,6 +77,15 @@ definition op_inv : (Cᵒᵖ ⥤ Dᵒᵖ) ⥤ (C ⥤ D)ᵒᵖ := -- TODO show these form an equivalence +instance {F : C ⥤ D} [full F] : full F.op := +{ preimage := λ X Y f, F.preimage f } + +instance {F : C ⥤ D} [faithful F] : faithful F.op := +{ injectivity' := λ X Y f g h, by simpa using injectivity F h } + +@[simp] lemma preimage_id (F : C ⥤ D) [fully_faithful F] (X : C) : F.preimage (𝟙 (F.obj X)) = 𝟙 X := +injectivity F (by simp) + end section