diff --git a/Mathlib.lean b/Mathlib.lean index c5049a2eea2fde..303d0325d10f77 100644 --- a/Mathlib.lean +++ b/Mathlib.lean @@ -2531,6 +2531,7 @@ import Mathlib.RingTheory.Polynomial.Bernstein import Mathlib.RingTheory.Polynomial.Chebyshev import Mathlib.RingTheory.Polynomial.Content import Mathlib.RingTheory.Polynomial.Cyclotomic.Basic +import Mathlib.RingTheory.Polynomial.Cyclotomic.Eval import Mathlib.RingTheory.Polynomial.Cyclotomic.Roots import Mathlib.RingTheory.Polynomial.Dickson import Mathlib.RingTheory.Polynomial.Eisenstein.Basic diff --git a/Mathlib/RingTheory/Polynomial/Cyclotomic/Eval.lean b/Mathlib/RingTheory/Polynomial/Cyclotomic/Eval.lean new file mode 100644 index 00000000000000..e904b1e49d0834 --- /dev/null +++ b/Mathlib/RingTheory/Polynomial/Cyclotomic/Eval.lean @@ -0,0 +1,330 @@ +/- +Copyright (c) 2021 Eric Rodriguez. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Eric Rodriguez + +! This file was ported from Lean 3 source module ring_theory.polynomial.cyclotomic.eval +! leanprover-community/mathlib commit 5bfbcca0a7ffdd21cf1682e59106d6c942434a32 +! Please do not edit these lines, except to modify the commit id +! if you have ported upstream changes. +-/ +import Mathlib.RingTheory.Polynomial.Cyclotomic.Roots +import Mathlib.Tactic.ByContra +import Mathlib.Topology.Algebra.Polynomial +import Mathlib.NumberTheory.Padics.PadicVal +import Mathlib.Analysis.Complex.Arg + +/-! +# Evaluating cyclotomic polynomials +This file states some results about evaluating cyclotomic polynomials in various different ways. +## Main definitions +* `Polynomial.eval(₂)_one_cyclotomic_prime(_pow)`: `eval 1 (cyclotomic p^k R) = p`. +* `Polynomial.eval_one_cyclotomic_not_prime_pow`: Otherwise, `eval 1 (cyclotomic n R) = 1`. +* `Polynomial.cyclotomic_pos` : `∀ x, 0 < eval x (cyclotomic n R)` if `2 < n`. +-/ + + +namespace Polynomial + +open Finset Nat + +open scoped BigOperators + +@[simp] +theorem eval_one_cyclotomic_prime {R : Type _} [CommRing R] {p : ℕ} [hn : Fact p.Prime] : + eval 1 (cyclotomic p R) = p := by + simp only [cyclotomic_prime, eval_X, one_pow, Finset.sum_const, eval_pow, eval_finset_sum, + Finset.card_range, smul_one_eq_coe] +#align polynomial.eval_one_cyclotomic_prime Polynomial.eval_one_cyclotomic_prime + +-- @[simp] -- Porting note: simp already proves this +theorem eval₂_one_cyclotomic_prime {R S : Type _} [CommRing R] [Semiring S] (f : R →+* S) {p : ℕ} + [Fact p.Prime] : eval₂ f 1 (cyclotomic p R) = p := by simp +#align polynomial.eval₂_one_cyclotomic_prime Polynomial.eval₂_one_cyclotomic_prime + +@[simp] +theorem eval_one_cyclotomic_prime_pow {R : Type _} [CommRing R] {p : ℕ} (k : ℕ) + [hn : Fact p.Prime] : eval 1 (cyclotomic (p ^ (k + 1)) R) = p := by + simp only [cyclotomic_prime_pow_eq_geom_sum hn.out, eval_X, one_pow, Finset.sum_const, eval_pow, + eval_finset_sum, Finset.card_range, smul_one_eq_coe] +#align polynomial.eval_one_cyclotomic_prime_pow Polynomial.eval_one_cyclotomic_prime_pow + +-- @[simp] -- Porting note: simp already proves this +theorem eval₂_one_cyclotomic_prime_pow {R S : Type _} [CommRing R] [Semiring S] (f : R →+* S) + {p : ℕ} (k : ℕ) [Fact p.Prime] : eval₂ f 1 (cyclotomic (p ^ (k + 1)) R) = p := by simp +#align polynomial.eval₂_one_cyclotomic_prime_pow Polynomial.eval₂_one_cyclotomic_prime_pow + +private theorem cyclotomic_neg_one_pos {n : ℕ} (hn : 2 < n) {R} [LinearOrderedCommRing R] : + 0 < eval (-1 : R) (cyclotomic n R) := by + haveI := NeZero.of_gt hn + rw [← map_cyclotomic_int, ← Int.cast_one, ← Int.cast_neg, eval_int_cast_map, Int.coe_castRingHom, + Int.cast_pos] + suffices 0 < eval (↑(-1 : ℤ)) (cyclotomic n ℝ) by + rw [← map_cyclotomic_int n ℝ, eval_int_cast_map, Int.coe_castRingHom] at this + simpa only [Int.cast_pos] using this + simp only [Int.cast_one, Int.cast_neg] + have h0 := cyclotomic_coeff_zero ℝ hn.le + rw [coeff_zero_eq_eval_zero] at h0 + by_contra' hx + have := intermediate_value_univ (-1) 0 (cyclotomic n ℝ).continuous + obtain ⟨y, hy : IsRoot _ y⟩ := this (show (0 : ℝ) ∈ Set.Icc _ _ by simpa [h0] using hx) + rw [@isRoot_cyclotomic_iff] at hy + rw [hy.eq_orderOf] at hn + exact hn.not_le LinearOrderedRing.orderOf_le_two + +theorem cyclotomic_pos {n : ℕ} (hn : 2 < n) {R} [LinearOrderedCommRing R] (x : R) : + 0 < eval x (cyclotomic n R) := by + induction' n using Nat.strong_induction_on with n ih + have hn' : 0 < n := pos_of_gt hn + have hn'' : 1 < n := one_lt_two.trans hn + dsimp at ih + have := prod_cyclotomic_eq_geom_sum hn' R + apply_fun eval x at this + rw [← cons_self_properDivisors hn'.ne', Finset.erase_cons_of_ne _ hn''.ne', Finset.prod_cons, + eval_mul, eval_geom_sum] at this + rcases lt_trichotomy 0 (∑ i in Finset.range n, x ^ i) with (h | h | h) + · apply pos_of_mul_pos_left + · rwa [this] + rw [eval_prod] + refine' Finset.prod_nonneg fun i hi => _ + simp only [Finset.mem_erase, mem_properDivisors] at hi + rw [geom_sum_pos_iff hn'.ne'] at h + cases' h with hk hx + · refine' (ih _ hi.2.2 (Nat.two_lt_of_ne _ hi.1 _)).le <;> rintro rfl + · exact hn'.ne' (zero_dvd_iff.mp hi.2.1) + · exact even_iff_not_odd.mp (even_iff_two_dvd.mpr hi.2.1) hk + · rcases eq_or_ne i 2 with (rfl | hk) + · simpa only [eval_X, eval_one, cyclotomic_two, eval_add] using hx.le + refine' (ih _ hi.2.2 (Nat.two_lt_of_ne _ hi.1 hk)).le + rintro rfl + exact hn'.ne' <| zero_dvd_iff.mp hi.2.1 + · rw [eq_comm, geom_sum_eq_zero_iff_neg_one hn'.ne'] at h + exact h.1.symm ▸ cyclotomic_neg_one_pos hn + · apply pos_of_mul_neg_left + · rwa [this] + rw [geom_sum_neg_iff hn'.ne'] at h + have h2 : 2 ∈ n.properDivisors.erase 1 := by + rw [Finset.mem_erase, mem_properDivisors] + exact ⟨by decide, even_iff_two_dvd.mp h.1, hn⟩ + rw [eval_prod, ← Finset.prod_erase_mul _ _ h2] + apply mul_nonpos_of_nonneg_of_nonpos + · refine' Finset.prod_nonneg fun i hi => le_of_lt _ + simp only [Finset.mem_erase, mem_properDivisors] at hi + refine' ih _ hi.2.2.2 (Nat.two_lt_of_ne _ hi.2.1 hi.1) + rintro rfl + rw [zero_dvd_iff] at hi + exact hn'.ne' hi.2.2.1 + · simpa only [eval_X, eval_one, cyclotomic_two, eval_add] using h.right.le +#align polynomial.cyclotomic_pos Polynomial.cyclotomic_pos + +theorem cyclotomic_pos_and_nonneg (n : ℕ) {R} [LinearOrderedCommRing R] (x : R) : + (1 < x → 0 < eval x (cyclotomic n R)) ∧ (1 ≤ x → 0 ≤ eval x (cyclotomic n R)) := by + rcases n with (_ | _ | _ | n) <;> + simp [cyclotomic_zero, cyclotomic_one, cyclotomic_two, succ_eq_add_one, eval_X, eval_one, + eval_add, eval_sub, sub_nonneg, sub_pos, zero_lt_one, zero_le_one, imp_true_iff, imp_self, + and_self_iff] + · constructor <;> intro <;> norm_num <;> linarith + · have : 2 < n + 3 := by linarith + constructor <;> intro <;> [skip; apply le_of_lt] <;> apply cyclotomic_pos this +#align polynomial.cyclotomic_pos_and_nonneg Polynomial.cyclotomic_pos_and_nonneg + +/-- Cyclotomic polynomials are always positive on inputs larger than one. +Similar to `cyclotomic_pos` but with the condition on the input rather than index of the +cyclotomic polynomial. -/ +theorem cyclotomic_pos' (n : ℕ) {R} [LinearOrderedCommRing R] {x : R} (hx : 1 < x) : + 0 < eval x (cyclotomic n R) := + (cyclotomic_pos_and_nonneg n x).1 hx +#align polynomial.cyclotomic_pos' Polynomial.cyclotomic_pos' + +/-- Cyclotomic polynomials are always nonnegative on inputs one or more. -/ +theorem cyclotomic_nonneg (n : ℕ) {R} [LinearOrderedCommRing R] {x : R} (hx : 1 ≤ x) : + 0 ≤ eval x (cyclotomic n R) := + (cyclotomic_pos_and_nonneg n x).2 hx +#align polynomial.cyclotomic_nonneg Polynomial.cyclotomic_nonneg + +theorem eval_one_cyclotomic_not_prime_pow {R : Type _} [Ring R] {n : ℕ} + (h : ∀ {p : ℕ}, p.Prime → ∀ k : ℕ, p ^ k ≠ n) : eval 1 (cyclotomic n R) = 1 := by + rcases n.eq_zero_or_pos with (rfl | hn') + · simp + have hn : 1 < n := one_lt_iff_ne_zero_and_ne_one.mpr ⟨hn'.ne', (h Nat.prime_two 0).symm⟩ + rsuffices h | h : eval 1 (cyclotomic n ℤ) = 1 ∨ eval 1 (cyclotomic n ℤ) = -1 + · have := eval_int_cast_map (Int.castRingHom R) (cyclotomic n ℤ) 1 + simpa only [map_cyclotomic, Int.cast_one, h, eq_intCast] using this + · exfalso + linarith [cyclotomic_nonneg n (le_refl (1 : ℤ))] + rw [← Int.natAbs_eq_natAbs_iff, Int.natAbs_one, Nat.eq_one_iff_not_exists_prime_dvd] + intro p hp hpe + haveI := Fact.mk hp + have := prod_cyclotomic_eq_geom_sum hn' ℤ + apply_fun eval 1 at this + rw [eval_geom_sum, one_geom_sum, eval_prod, eq_comm, ← + Finset.prod_sdiff <| @range_pow_padicValNat_subset_divisors' p _ _, Finset.prod_image] at this + simp_rw [eval_one_cyclotomic_prime_pow, Finset.prod_const, Finset.card_range, mul_comm] at this + rw [← Finset.prod_sdiff <| show {n} ⊆ _ from _] at this + swap + · simp only [singleton_subset_iff, mem_sdiff, mem_erase, Ne.def, mem_divisors, dvd_refl, + true_and_iff, mem_image, mem_range, exists_prop, not_exists, not_and] + exact ⟨⟨hn.ne', hn'.ne'⟩, fun t _ => h hp _⟩ + rw [← Int.natAbs_ofNat p, Int.natAbs_dvd_natAbs] at hpe + obtain ⟨t, ht⟩ := hpe + rw [Finset.prod_singleton, ht, mul_left_comm, mul_comm, ← mul_assoc, mul_assoc] at this + have : (p : ℤ) ^ padicValNat p n * p ∣ n := ⟨_, this⟩ + simp only [← _root_.pow_succ', ← Int.natAbs_dvd_natAbs, Int.natAbs_ofNat, Int.natAbs_pow] at this + exact pow_succ_padicValNat_not_dvd hn'.ne' this + · rintro x - y - hxy + apply Nat.succ_injective + exact Nat.pow_right_injective hp.two_le hxy +#align polynomial.eval_one_cyclotomic_not_prime_pow Polynomial.eval_one_cyclotomic_not_prime_pow + +theorem sub_one_pow_totient_lt_cyclotomic_eval {n : ℕ} {q : ℝ} (hn' : 2 ≤ n) (hq' : 1 < q) : + (q - 1) ^ totient n < (cyclotomic n ℝ).eval q := by + have hn : 0 < n := pos_of_gt hn' + have hq := zero_lt_one.trans hq' + have hfor : ∀ ζ' ∈ primitiveRoots n ℂ, q - 1 ≤ ‖↑q - ζ'‖ := by + intro ζ' hζ' + rw [mem_primitiveRoots hn] at hζ' + convert norm_sub_norm_le (↑q) ζ' + · rw [Complex.norm_real, Real.norm_of_nonneg hq.le] + · rw [hζ'.norm'_eq_one hn.ne'] + let ζ := Complex.exp (2 * ↑Real.pi * Complex.I / ↑n) + have hζ : IsPrimitiveRoot ζ n := Complex.isPrimitiveRoot_exp n hn.ne' + have hex : ∃ ζ' ∈ primitiveRoots n ℂ, q - 1 < ‖↑q - ζ'‖ := by + refine' ⟨ζ, (mem_primitiveRoots hn).mpr hζ, _⟩ + suffices ¬SameRay ℝ (q : ℂ) ζ by + convert lt_norm_sub_of_not_sameRay this <;> + simp only [hζ.norm'_eq_one hn.ne', Real.norm_of_nonneg hq.le, Complex.norm_real] + rw [Complex.sameRay_iff] + push_neg + refine' ⟨by exact_mod_cast hq.ne', hζ.ne_zero hn.ne', _⟩ + rw [Complex.arg_ofReal_of_nonneg hq.le, Ne.def, eq_comm, hζ.arg_eq_zero_iff hn.ne'] + clear_value ζ + rintro rfl + linarith [hζ.unique IsPrimitiveRoot.one] + have : ¬eval (↑q) (cyclotomic n ℂ) = 0 := by + erw [cyclotomic.eval_apply q n (algebraMap ℝ ℂ)] + simpa only [Complex.coe_algebraMap, Complex.ofReal_eq_zero] using (cyclotomic_pos' n hq').ne' + suffices Units.mk0 (Real.toNNReal (q - 1)) (by simp [hq']) ^ totient n < + Units.mk0 ‖(cyclotomic n ℂ).eval ↑q‖₊ (by simp [this]) by + simp only [← Units.val_lt_val, Units.val_pow_eq_pow_val, Units.val_mk0, ← NNReal.coe_lt_coe, + hq'.le, Real.toNNReal_lt_toNNReal_iff_of_nonneg, coe_nnnorm, Complex.norm_eq_abs, + NNReal.coe_pow, Real.coe_toNNReal', max_eq_left, sub_nonneg] at this + convert this + erw [cyclotomic.eval_apply q n (algebraMap ℝ ℂ), eq_comm] + simp only [cyclotomic_nonneg n hq'.le, Complex.coe_algebraMap, Complex.abs_ofReal, abs_eq_self] + simp only [cyclotomic_eq_prod_X_sub_primitiveRoots hζ, eval_prod, eval_C, eval_X, eval_sub, + nnnorm_prod, Units.mk0_prod] + convert Finset.prod_lt_prod' (M := NNRealˣ) _ _ + swap; · exact fun _ => Units.mk0 (Real.toNNReal (q - 1)) (by simp [hq']) + · simp only [Complex.card_primitiveRoots, prod_const, card_attach] + · simp only [Subtype.coe_mk, Finset.mem_attach, forall_true_left, Subtype.forall, ← + Units.val_le_val, ← NNReal.coe_le_coe, Complex.abs.nonneg, hq'.le, Units.val_mk0, + Real.coe_toNNReal', coe_nnnorm, Complex.norm_eq_abs, max_le_iff, tsub_le_iff_right] + intro x hx + simpa only [and_true_iff, tsub_le_iff_right] using hfor x hx + · simp only [Subtype.coe_mk, Finset.mem_attach, exists_true_left, Subtype.exists, ← + NNReal.coe_lt_coe, ← Units.val_lt_val, Units.val_mk0 _, coe_nnnorm] + simpa [hq'.le, Real.coe_toNNReal', max_eq_left, sub_nonneg] using hex +#align polynomial.sub_one_pow_totient_lt_cyclotomic_eval Polynomial.sub_one_pow_totient_lt_cyclotomic_eval + +theorem sub_one_pow_totient_le_cyclotomic_eval {q : ℝ} (hq' : 1 < q) : + ∀ n, (q - 1) ^ totient n ≤ (cyclotomic n ℝ).eval q + | 0 => by simp only [totient_zero, _root_.pow_zero, cyclotomic_zero, eval_one, le_refl] + | 1 => by simp only [totient_one, pow_one, cyclotomic_one, eval_sub, eval_X, eval_one, le_refl] + | n + 2 => (sub_one_pow_totient_lt_cyclotomic_eval le_add_self hq').le +#align polynomial.sub_one_pow_totient_le_cyclotomic_eval Polynomial.sub_one_pow_totient_le_cyclotomic_eval + +theorem cyclotomic_eval_lt_add_one_pow_totient {n : ℕ} {q : ℝ} (hn' : 3 ≤ n) (hq' : 1 < q) : + (cyclotomic n ℝ).eval q < (q + 1) ^ totient n := by + have hn : 0 < n := pos_of_gt hn' + have hq := zero_lt_one.trans hq' + have hfor : ∀ ζ' ∈ primitiveRoots n ℂ, ‖↑q - ζ'‖ ≤ q + 1 := by + intro ζ' hζ' + rw [mem_primitiveRoots hn] at hζ' + convert norm_sub_le (↑q) ζ' + · rw [Complex.norm_real, Real.norm_of_nonneg (zero_le_one.trans_lt hq').le] + · rw [hζ'.norm'_eq_one hn.ne'] + let ζ := Complex.exp (2 * ↑Real.pi * Complex.I / ↑n) + have hζ : IsPrimitiveRoot ζ n := Complex.isPrimitiveRoot_exp n hn.ne' + have hex : ∃ ζ' ∈ primitiveRoots n ℂ, ‖↑q - ζ'‖ < q + 1 := by + refine' ⟨ζ, (mem_primitiveRoots hn).mpr hζ, _⟩ + suffices ¬SameRay ℝ (q : ℂ) (-ζ) by + convert norm_add_lt_of_not_sameRay this using 2 + · rw [Complex.norm_eq_abs, Complex.abs_ofReal] + symm + exact abs_eq_self.mpr hq.le + · simp [abs_of_pos hq, hζ.norm'_eq_one hn.ne', -Complex.norm_eq_abs] + rw [Complex.sameRay_iff] + push_neg + refine' ⟨by exact_mod_cast hq.ne', neg_ne_zero.mpr <| hζ.ne_zero hn.ne', _⟩ + rw [Complex.arg_ofReal_of_nonneg hq.le, Ne.def, eq_comm] + intro h + rw [Complex.arg_eq_zero_iff, Complex.neg_re, neg_nonneg, Complex.neg_im, neg_eq_zero] at h + have hζ₀ : ζ ≠ 0 := by + clear_value ζ + rintro rfl + exact hn.ne' (hζ.unique IsPrimitiveRoot.zero) + have : ζ.re < 0 ∧ ζ.im = 0 := ⟨h.1.lt_of_ne ?_, h.2⟩ + rw [← Complex.arg_eq_pi_iff, hζ.arg_eq_pi_iff hn.ne'] at this + rw [this] at hζ + linarith [hζ.unique <| IsPrimitiveRoot.neg_one 0 two_ne_zero.symm] + · contrapose! hζ₀ + ext <;> simp [hζ₀, h.2] + have : ¬eval (↑q) (cyclotomic n ℂ) = 0 := by + erw [cyclotomic.eval_apply q n (algebraMap ℝ ℂ)] + simp only [Complex.coe_algebraMap, Complex.ofReal_eq_zero] + exact (cyclotomic_pos' n hq').ne.symm + suffices Units.mk0 ‖(cyclotomic n ℂ).eval ↑q‖₊ (by simp [this]) < + Units.mk0 (Real.toNNReal (q + 1)) (by simp; linarith) ^ totient n by + simp only [← Units.val_lt_val, Units.val_pow_eq_pow_val, Units.val_mk0, ← NNReal.coe_lt_coe, + hq'.le, Real.toNNReal_lt_toNNReal_iff_of_nonneg, coe_nnnorm, Complex.norm_eq_abs, + NNReal.coe_pow, Real.coe_toNNReal', max_eq_left, sub_nonneg] at this + convert this using 2 + · erw [cyclotomic.eval_apply q n (algebraMap ℝ ℂ), eq_comm] + simp [cyclotomic_nonneg n hq'.le] + rw [eq_comm, max_eq_left_iff] + linarith + simp only [cyclotomic_eq_prod_X_sub_primitiveRoots hζ, eval_prod, eval_C, eval_X, eval_sub, + nnnorm_prod, Units.mk0_prod] + convert Finset.prod_lt_prod' (M := NNRealˣ) _ _ + swap; · exact fun _ => Units.mk0 (Real.toNNReal (q + 1)) (by simp; linarith only [hq']) + · simp [Complex.card_primitiveRoots] + · simp only [Subtype.coe_mk, Finset.mem_attach, forall_true_left, Subtype.forall, ← + Units.val_le_val, ← NNReal.coe_le_coe, Complex.abs.nonneg, hq'.le, Units.val_mk0, + Real.coe_toNNReal, coe_nnnorm, Complex.norm_eq_abs, max_le_iff] + intro x hx + have : Complex.abs _ ≤ _ := hfor x hx + simp [this] + · simp only [Subtype.coe_mk, Finset.mem_attach, exists_true_left, Subtype.exists, ← + NNReal.coe_lt_coe, ← Units.val_lt_val, Units.val_mk0 _, coe_nnnorm] + obtain ⟨ζ, hζ, hhζ : Complex.abs _ < _⟩ := hex + exact ⟨ζ, hζ, by simp [hhζ]⟩ +#align polynomial.cyclotomic_eval_lt_add_one_pow_totient Polynomial.cyclotomic_eval_lt_add_one_pow_totient + +theorem cyclotomic_eval_le_add_one_pow_totient {q : ℝ} (hq' : 1 < q) : + ∀ n, (cyclotomic n ℝ).eval q ≤ (q + 1) ^ totient n + | 0 => by simp + | 1 => by simp [add_assoc, add_nonneg, zero_le_one] + | 2 => by simp + | n + 3 => (cyclotomic_eval_lt_add_one_pow_totient le_add_self hq').le +#align polynomial.cyclotomic_eval_le_add_one_pow_totient Polynomial.cyclotomic_eval_le_add_one_pow_totient + +theorem sub_one_pow_totient_lt_natAbs_cyclotomic_eval {n : ℕ} {q : ℕ} (hn' : 1 < n) (hq : q ≠ 1) : + (q - 1) ^ totient n < ((cyclotomic n ℤ).eval ↑q).natAbs := by + rcases hq.lt_or_lt.imp_left Nat.lt_one_iff.mp with (rfl | hq') + · rw [zero_tsub, zero_pow (Nat.totient_pos (pos_of_gt hn')), pos_iff_ne_zero, Int.natAbs_ne_zero, + Nat.cast_zero, ← coeff_zero_eq_eval_zero, cyclotomic_coeff_zero _ hn'] + exact one_ne_zero + rw [← @Nat.cast_lt ℝ, Nat.cast_pow, Nat.cast_sub hq'.le, Nat.cast_one, Int.cast_natAbs] + refine' (sub_one_pow_totient_lt_cyclotomic_eval hn' (Nat.one_lt_cast.2 hq')).trans_le _ + convert (cyclotomic.eval_apply (q : ℤ) n (algebraMap ℤ ℝ)).trans_le (le_abs_self _) + simp +#align polynomial.sub_one_pow_totient_lt_nat_abs_cyclotomic_eval Polynomial.sub_one_pow_totient_lt_natAbs_cyclotomic_eval + +theorem sub_one_lt_natAbs_cyclotomic_eval {n : ℕ} {q : ℕ} (hn' : 1 < n) (hq : q ≠ 1) : + q - 1 < ((cyclotomic n ℤ).eval ↑q).natAbs := + calc + q - 1 ≤ (q - 1) ^ totient n := Nat.le_self_pow (Nat.totient_pos <| pos_of_gt hn').ne' _ + _ < ((cyclotomic n ℤ).eval ↑q).natAbs := sub_one_pow_totient_lt_natAbs_cyclotomic_eval hn' hq +#align polynomial.sub_one_lt_nat_abs_cyclotomic_eval Polynomial.sub_one_lt_natAbs_cyclotomic_eval + +end Polynomial