Skip to content

Commit 250bf30

Browse files
committed
chore: remove more unused variables (#18425)
#17715
1 parent 3f7722b commit 250bf30

File tree

22 files changed

+30
-43
lines changed

22 files changed

+30
-43
lines changed

Mathlib/Combinatorics/Digraph/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,7 @@ Any bipartite digraph may be regarded as a subgraph of one of these.
9696
def completeBipartiteGraph (V W : Type*) : Digraph (Sum V W) where
9797
Adj v w := v.isLeft ∧ w.isRight ∨ v.isRight ∧ w.isLeft
9898

99-
variable {ι : Sort*} {V W X : Type*} (G : Digraph V) (G' : Digraph W) {a b c u v w : V}
99+
variable {ι : Sort*} {V : Type*} (G : Digraph V) {a b : V}
100100

101101
theorem adj_injective : Injective (Adj : Digraph V → V → V → Prop) := fun _ _ ↦ Digraph.ext
102102

Mathlib/Combinatorics/SetFamily/AhlswedeZhang.lean

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -100,8 +100,7 @@ variable {α β : Type*}
100100
/-! ### Truncated supremum, truncated infimum -/
101101

102102
section SemilatticeSup
103-
variable [SemilatticeSup α] [SemilatticeSup β]
104-
[BoundedOrder β] {s t : Finset α} {a b : α}
103+
variable [SemilatticeSup α] [SemilatticeSup β] [BoundedOrder β] {s t : Finset α} {a : α}
105104

106105
private lemma sup_aux [@DecidableRel α (· ≤ ·)] : a ∈ lowerClosure s → {b ∈ s | a ≤ b}.Nonempty :=
107106
fun ⟨b, hb, hab⟩ ↦ ⟨b, mem_filter.2 ⟨hb, hab⟩⟩
@@ -283,7 +282,7 @@ lemma truncatedInf_sups_of_not_mem (ha : a ∉ upperClosure s ⊔ upperClosure t
283282
end DistribLattice
284283

285284
section BooleanAlgebra
286-
variable [BooleanAlgebra α] [@DecidableRel α (· ≤ ·)] {s : Finset α} {a : α}
285+
variable [BooleanAlgebra α] [@DecidableRel α (· ≤ ·)]
287286

288287
@[simp] lemma compl_truncatedSup (s : Finset α) (a : α) :
289288
(truncatedSup s a)ᶜ = truncatedInf sᶜˢ aᶜ := map_truncatedSup (OrderIso.compl α) _ _
@@ -329,7 +328,7 @@ open Finset hiding card
329328
open Fintype Nat
330329

331330
namespace AhlswedeZhang
332-
variable {α : Type*} [Fintype α] [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α}
331+
variable {α : Type*} [Fintype α] [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α}
333332

334333
/-- Weighted sum of the size of the truncated infima of a set family. Relevant to the
335334
Ahlswede-Zhang identity. -/

Mathlib/Combinatorics/SetFamily/Compression/UV.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ namespace UV
7070
section GeneralizedBooleanAlgebra
7171

7272
variable [GeneralizedBooleanAlgebra α] [DecidableRel (@Disjoint α _ _)]
73-
[DecidableRel ((· ≤ ·) : α → α → Prop)] {s : Finset α} {u v a b : α}
73+
[DecidableRel ((· ≤ ·) : α → α → Prop)] {s : Finset α} {u v a : α}
7474

7575
/-- UV-compressing `a` means removing `v` from it and adding `u` if `a` and `u` are disjoint and
7676
`v ≤ a` (it replaces the `v` part of `a` by the `u` part). Else, UV-compressing `a` doesn't do
@@ -265,7 +265,7 @@ end GeneralizedBooleanAlgebra
265265

266266
open FinsetFamily
267267

268-
variable [DecidableEq α] {𝒜 : Finset (Finset α)} {u v a : Finset α} {r : ℕ}
268+
variable [DecidableEq α] {𝒜 : Finset (Finset α)} {u v : Finset α} {r : ℕ}
269269

270270
/-- Compressing a finset doesn't change its size. -/
271271
theorem card_compress (huv : #u = #v) (a : Finset α) : #(compress u v a) = #a := by

Mathlib/Combinatorics/SetFamily/FourFunctions.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -58,8 +58,8 @@ open scoped FinsetFamily
5858
variable {α β : Type*}
5959

6060
section Finset
61-
variable [DecidableEq α] [LinearOrderedCommSemiring β] {𝒜 : Finset (Finset α)}
62-
{a : α} {f f₁ f₂ f₃ f₄ g μ : Finset α → β} {s t u : Finset α}
61+
variable [DecidableEq α] [LinearOrderedCommSemiring β] {𝒜 : Finset (Finset α)}
62+
{a : α} {f f₁ f₂ f₃ f₄ : Finset α → β} {s t u : Finset α}
6363

6464
/-- The `n = 1` case of the Ahlswede-Daykin inequality. Note that we can't just expand everything
6565
out and bound termwise since `c₀ * d₁` appears twice on the RHS of the assumptions while `c₁ * d₀`

Mathlib/Data/Finset/Sups.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -356,7 +356,7 @@ end DistribLattice
356356

357357
section Finset
358358
variable [DecidableEq α]
359-
variable {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α}
359+
variable {𝒜 ℬ : Finset (Finset α)} {s t : Finset α}
360360

361361
@[simp] lemma powerset_union (s t : Finset α) : (s ∪ t).powerset = s.powerset ⊻ t.powerset := by
362362
ext u
@@ -508,7 +508,7 @@ theorem disjSups_disjSups_disjSups_comm : s ○ t ○ (u ○ v) = s ○ u ○ (t
508508
end DistribLattice
509509
section Diffs
510510
variable [DecidableEq α]
511-
variable [GeneralizedBooleanAlgebra α] (s s₁ s₂ t t₁ t₂ u v : Finset α)
511+
variable [GeneralizedBooleanAlgebra α] (s s₁ s₂ t t₁ t₂ u : Finset α)
512512

513513
/-- `s \\ t` is the finset of elements of the form `a \ b` where `a ∈ s`, `b ∈ t`. -/
514514
def diffs : Finset α → Finset α → Finset α := image₂ (· \ ·)
@@ -592,7 +592,7 @@ lemma diffs_right_comm : s \\ t \\ u = s \\ u \\ t := image₂_right_comm sdiff_
592592
end Diffs
593593

594594
section Compls
595-
variable [BooleanAlgebra α] (s s₁ s₂ t t₁ t₂ u v : Finset α)
595+
variable [BooleanAlgebra α] (s s₁ s₂ t : Finset α)
596596

597597
/-- `sᶜˢ` is the finset of elements of the form `aᶜ` where `a ∈ s`. -/
598598
def compls : Finset α → Finset α := map ⟨compl, compl_injective⟩
@@ -602,7 +602,7 @@ scoped[FinsetFamily] postfix:max "ᶜˢ" => Finset.compls
602602

603603
open FinsetFamily
604604

605-
variable {s t} {a b c : α}
605+
variable {s t} {a : α}
606606

607607
@[simp] lemma mem_compls : a ∈ sᶜˢ ↔ aᶜ ∈ s := by
608608
rw [Iff.comm, ← mem_map' ⟨compl, compl_injective⟩, Embedding.coeFn_mk, compl_compl, compls]
@@ -615,7 +615,7 @@ variable (s t)
615615

616616
@[simp] lemma card_compls : #sᶜˢ = #s := card_map _
617617

618-
variable {s s₁ s₂ t t₁ t₂ u}
618+
variable {s s₁ s₂ t}
619619

620620
lemma compl_mem_compls : a ∈ s → aᶜ ∈ sᶜˢ := mem_map_of_mem _
621621
@[simp] lemma compls_subset_compls : s₁ᶜˢ ⊆ s₂ᶜˢ ↔ s₁ ⊆ s₂ := map_subset_map

Mathlib/GroupTheory/GroupAction/Blocks.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -348,7 +348,7 @@ theorem IsBlockSystem.of_normal {N : Subgroup G} [N.Normal] :
348348
exact .orbit_of_normal a
349349

350350
section Group
351-
variable {S H : Type*} [Group H] [SetLike S H] [SubgroupClass S H] {s : S} {a b : G}
351+
variable {S H : Type*} [Group H] [SetLike S H] [SubgroupClass S H] {s : S} {a : G}
352352

353353
/-!
354354
Annoyingly, it seems like the following two lemmas cannot be unified.

Mathlib/GroupTheory/GroupAction/Support.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ theorem Supports.mono (h : s ⊆ t) (hs : Supports G s b) : Supports G t b := fu
4444
end SMul
4545

4646
variable [Group H] [SMul G α] [SMul G β] [MulAction H α] [SMul H β] [SMulCommClass G H β]
47-
[SMulCommClass G H α] {s t : Set α} {b : β}
47+
[SMulCommClass G H α] {s : Set α} {b : β}
4848

4949
-- TODO: This should work without `SMulCommClass`
5050
@[to_additive]

Mathlib/GroupTheory/Order/Min.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ lemma minOrder_le_orderOf (ha : a ≠ 1) (ha' : IsOfFinOrder a) : minOrder α
4949

5050
end Monoid
5151

52-
variable [Group α] {s : Subgroup α} {n : ℕ}
52+
variable [Group α] {s : Subgroup α}
5353

5454
@[to_additive]
5555
lemma le_minOrder_iff_forall_subgroup {n : ℕ∞} :

Mathlib/GroupTheory/Perm/Cycle/Concrete.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,7 @@ end List
118118

119119
namespace Cycle
120120

121-
variable [DecidableEq α] (s s' : Cycle α)
121+
variable [DecidableEq α] (s : Cycle α)
122122

123123
/-- A cycle `s : Cycle α`, given `Nodup s` can be interpreted as an `Equiv.Perm α`
124124
where each element in the list is permuted to the next one, defined as `formPerm`.

Mathlib/LinearAlgebra/BilinearForm/TensorProduct.lean

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -21,10 +21,9 @@ import Mathlib.LinearAlgebra.BilinearForm.Hom
2121

2222
suppress_compilation
2323

24-
universe u v w uR uA uM₁ uM₂ uN₁ uN₂
24+
universe u v w uR uA uM₁ uM₂ uN₁ uN₂
2525

26-
variable {ι : Type uι} {R : Type uR} {A : Type uA} {M₁ : Type uM₁} {M₂ : Type uM₂} {N₁ : Type uN₁}
27-
{N₂ : Type uN₂}
26+
variable {R : Type uR} {A : Type uA} {M₁ : Type uM₁} {M₂ : Type uM₂} {N₁ : Type uN₁} {N₂ : Type uN₂}
2827

2928
open TensorProduct
3029

0 commit comments

Comments
 (0)