From 288b6c5536e3a1c520aff20a999fe55a627c9637 Mon Sep 17 00:00:00 2001 From: Jz Pan Date: Thu, 28 Dec 2023 21:07:40 +0000 Subject: [PATCH] doc(FieldTheory/SeparableDegree): fix the formula in docstring (#9318) --- Mathlib/FieldTheory/SeparableDegree.lean | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/Mathlib/FieldTheory/SeparableDegree.lean b/Mathlib/FieldTheory/SeparableDegree.lean index 43ac871242137..a401c7593796e 100644 --- a/Mathlib/FieldTheory/SeparableDegree.lean +++ b/Mathlib/FieldTheory/SeparableDegree.lean @@ -25,9 +25,10 @@ This file contains basics about the separable degree of a field extension. **Remark:** if `E / F` is not algebraic, then this definition makes no mathematical sense, and if it is infinite, then its cardinality doesn't behave as expected (namely, not equal to the - field extension degree of `separableClosure F E / F`). For example, - $\operatorname{Emb}_{\mathbb{Q}}(\mathbb{Q}(\mu_{p^\infty}))\cong\mathbb{Z}_p^\times$ which is - uncountable, while $[\mathbb{Q}(\mu_{p^\infty}):\mathbb{Q}]$ is countable. + field extension degree of `separableClosure F E / F`). For example, if $ F = \mathbb{Q} $ and + $ E = \mathbb{Q}( \mu_{p^\infty} ) $, then $ \operatorname{Emb}_F (E) $ is in bijection with + $\operatorname{Gal}(E/F)$, which is isomorphic to + $ \mathbb{Z}_p^\times $, which is uncountable, while $ [E:F] $ is countable. **TODO:** prove or disprove that if `E / F` is algebraic and `Emb F E` is infinite, then `Field.Emb F E` has cardinality `2 ^ Module.rank F (separableClosure F E)`.