Skip to content

Commit 48b7eb4

Browse files
committed
feat(Topology/Separation): condition for regularity given a subbasis (#31387)
1 parent 48bd45e commit 48b7eb4

File tree

1 file changed

+19
-0
lines changed

1 file changed

+19
-0
lines changed

Mathlib/Topology/Separation/Regular.lean

Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -128,6 +128,25 @@ theorem RegularSpace.of_exists_mem_nhds_isClosed_subset
128128
instance (priority := 100) [WeaklyLocallyCompactSpace X] [R1Space X] : RegularSpace X :=
129129
.of_hasBasis isCompact_isClosed_basis_nhds fun _ _ ⟨_, _, h⟩ ↦ h
130130

131+
/-- Given a subbasis `s`, it is enough to check the condition of regularity for complements of sets
132+
in `s`. -/
133+
theorem regularSpace_generateFrom {s : Set (Set X)} (h : ‹_› = generateFrom s) :
134+
RegularSpace X ↔ ∀ t ∈ s, ∀ a ∈ t, Disjoint (𝓝ˢ tᶜ) (𝓝 a) := by
135+
refine ⟨fun _ t ht a ha => RegularSpace.regular
136+
(h ▸ isOpen_generateFrom_of_mem ht).isClosed_compl
137+
(Set.notMem_compl_iff.mpr ha), fun h' => ⟨fun {t a} ht ha => ?_⟩⟩
138+
obtain ⟨t, rfl⟩ := compl_involutive.surjective t
139+
rw [isClosed_compl_iff, h] at ht
140+
rw [Set.notMem_compl_iff] at ha
141+
induction ht with
142+
| basic t ht => exact h' t ht a ha
143+
| univ => simp
144+
| inter t₁ t₂ _ _ ih₁ ih₂ => grind [compl_inter, nhdsSet_union, disjoint_sup_left]
145+
| sUnion S _ ih =>
146+
obtain ⟨t, ht, ha⟩ := ha
147+
grw [compl_sUnion, sInter_image, iInter₂_subset t ht]
148+
exact ih t ht ha
149+
131150
section
132151
variable [RegularSpace X] {x : X} {s : Set X}
133152

0 commit comments

Comments
 (0)