@@ -545,15 +545,38 @@ end IsUniformGroup
545545
546546end Int
547547
548- section pnat
548+ section PNat
549549
550550@[to_additive]
551- theorem pnat_multipliable_iff_multipliable_succ {α : Type *} [TopologicalSpace α] [CommMonoid α]
552- {f : ℕ → α} : Multipliable (fun x : ℕ+ => f x) ↔ Multipliable fun x : ℕ => f (x + 1 ) :=
551+ theorem multipliable_pnat_iff_multipliable_succ {f : ℕ → M} :
552+ Multipliable (fun x : ℕ+ ↦ f x) ↔ Multipliable fun x ↦ f (x + 1 ) :=
553553 Equiv.pnatEquivNat.symm.multipliable_iff.symm
554554
555+ @[deprecated (since := "2025-09-31")]
556+ alias pnat_multipliable_iff_multipliable_succ := multipliable_pnat_iff_multipliable_succ
557+
555558@[to_additive]
556- theorem tprod_pnat_eq_tprod_succ {α : Type *} [TopologicalSpace α] [CommMonoid α] (f : ℕ → α ) :
557- ∏' n : ℕ+, f n = ∏' n, f (n + 1 ) := (Equiv.pnatEquivNat.symm.tprod_eq _).symm
559+ theorem tprod_pnat_eq_tprod_succ {f : ℕ → M} : ∏' n : ℕ+, f n = ∏' n, f (n + 1 ) :=
560+ (Equiv.pnatEquivNat.symm.tprod_eq _).symm
558561
559- end pnat
562+ @[to_additive]
563+ lemma tprod_zero_pnat_eq_tprod_nat [TopologicalSpace G] [IsTopologicalGroup G] [T2Space G]
564+ {f : ℕ → G} (hf : Multipliable f) :
565+ f 0 * ∏' n : ℕ+, f ↑n = ∏' n, f n := by
566+ simpa [hf.tprod_eq_zero_mul] using tprod_pnat_eq_tprod_succ
567+
568+ @[to_additive tsum_int_eq_zero_add_two_mul_tsum_pnat]
569+ theorem tprod_int_eq_zero_mul_tprod_pnat_sq [UniformSpace G] [IsUniformGroup G] [CompleteSpace G]
570+ [T2Space G] {f : ℤ → G} (hf : ∀ n : ℤ, f (-n) = f n) (hf2 : Multipliable f) :
571+ ∏' n, f n = f 0 * (∏' n : ℕ+, f n) ^ 2 := by
572+ have hf3 : Multipliable fun n : ℕ ↦ f n :=
573+ (multipliable_int_iff_multipliable_nat_and_neg.mp hf2).1
574+ have hf4 : Multipliable fun n : ℕ+ ↦ f n := by
575+ rwa [multipliable_pnat_iff_multipliable_succ (f := (f ·)),
576+ multipliable_nat_add_iff 1 (f := (f ·))]
577+ have := tprod_nat_mul_neg hf2
578+ rw [← tprod_zero_pnat_eq_tprod_nat (by simpa [hf] using hf3.mul hf3), mul_comm _ (f 0 )] at this
579+ simp only [hf, Nat.cast_zero, mul_assoc, mul_right_inj] at this
580+ rw [← this, mul_right_inj, hf4.tprod_mul hf4, sq]
581+
582+ end PNat
0 commit comments