diff --git a/Mathlib/MeasureTheory/Integral/IntervalIntegral.lean b/Mathlib/MeasureTheory/Integral/IntervalIntegral.lean index 46f668d2ef169b..cf85ea8695c858 100644 --- a/Mathlib/MeasureTheory/Integral/IntervalIntegral.lean +++ b/Mathlib/MeasureTheory/Integral/IntervalIntegral.lean @@ -69,6 +69,9 @@ def IntervalIntegrable (f : ℝ → E) (μ : Measure ℝ) (a b : ℝ) : Prop := IntegrableOn f (Ioc a b) μ ∧ IntegrableOn f (Ioc b a) μ #align interval_integrable IntervalIntegrable +/-! +## Basic iff's for `IntervalIntegrable` +-/ section variable {f : ℝ → E} {a b : ℝ} {μ : Measure ℝ} @@ -135,6 +138,13 @@ theorem intervalIntegrable_const [IsLocallyFiniteMeasure μ] {c : E} : end +/-! +## Basic properties of interval integrability +- interval integrability is symmetric, reflexive, transitive +- monotonicity and strong measurability of the interval integral +- if `f` is interval integrable, so are its absolute value and norm +- arithmetic properties +-/ namespace IntervalIntegrable section @@ -353,6 +363,9 @@ theorem comp_sub_left (hf : IntervalIntegrable f volume a b) (c : ℝ) : end IntervalIntegrable +/-! +## Continuous functions are interval integrable +-/ section variable {μ : Measure ℝ} [IsLocallyFiniteMeasure μ] @@ -376,6 +389,9 @@ theorem Continuous.intervalIntegrable {u : ℝ → E} (hu : Continuous u) (a b : end +/-! +## Monotone and antitone functions are integral integrable +-/ section variable {μ : Measure ℝ} [IsLocallyFiniteMeasure μ] [ConditionallyCompleteLinearOrder E] @@ -686,6 +702,10 @@ theorem _root_.ContinuousLinearMap.intervalIntegral_comp_comm (L : E →L[𝕜] end ContinuousLinearMap +/-! +## Basic arithmetic +Includes addition, scalar multiplication and affine transformations. +-/ section Comp variable {a b c d : ℝ} (f : ℝ → E) @@ -874,8 +894,8 @@ end Comp In this section we prove that `∫ x in a..b, f x ∂μ + ∫ x in b..c, f x ∂μ = ∫ x in a..c, f x ∂μ` as well as a few other identities trivially equivalent to this one. We also prove that `∫ x in a..b, f x ∂μ = ∫ x, f x ∂μ` provided that `support f ⊆ Ioc a b`. --/ +-/ section OrderClosedTopology @@ -1025,6 +1045,16 @@ nonrec theorem integral_indicator {a₁ a₂ a₃ : ℝ} (h : a₂ ∈ Icc a₁ all_goals apply measurableSet_Iic #align interval_integral.integral_indicator intervalIntegral.integral_indicator +end OrderClosedTopology + +/-! +## The Lebesgue dominated convergence theorem for interval integrals +As an application, we show continuity of parametric integrals. +-/ +section DominatedConvergence + +variable {a b c d : ℝ} {f g : ℝ → E} {μ : Measure ℝ} + /-- Lebesgue dominated convergence theorem for filters with a countable basis -/ nonrec theorem tendsto_integral_filter_of_dominated_convergence {ι} {l : Filter ι} [l.IsCountablyGenerated] {F : ι → ℝ → E} (bound : ℝ → ℝ) @@ -1132,12 +1162,10 @@ theorem continuous_of_dominated_interval {F : X → ℝ → E} {bound : ℝ → h_cont.mono fun _ himp hx => (himp hx).continuousAt #align interval_integral.continuous_of_dominated_interval intervalIntegral.continuous_of_dominated_interval -end OrderClosedTopology +end DominatedConvergence section ContinuousPrimitive -open TopologicalSpace - variable {a b b₀ b₁ b₂ : ℝ} {μ : Measure ℝ} {f g : ℝ → E} theorem continuousWithinAt_primitive (hb₀ : μ {b₀} = 0) @@ -1208,7 +1236,84 @@ theorem continuousWithinAt_primitive (hb₀ : μ {b₀} = 0) rwa [closure_Icc] #align interval_integral.continuous_within_at_primitive intervalIntegral.continuousWithinAt_primitive -theorem continuousOn_primitive [NoAtoms μ] (h_int : IntegrableOn f (Icc a b) μ) : +variable {X : Type*} [TopologicalSpace X] [FirstCountableTopology X] + {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] + +theorem continuousAt_parametric_primitive_of_dominated {F : X → ℝ → E} (bound : ℝ → ℝ) (a b : ℝ) + {a₀ b₀ : ℝ} {x₀ : X} (hF_meas : ∀ x, AEStronglyMeasurable (F x) (μ.restrict <| Ι a b)) + (h_bound : ∀ᶠ x in 𝓝 x₀, ∀ᵐ t ∂μ.restrict <| Ι a b, ‖F x t‖ ≤ bound t) + (bound_integrable : IntervalIntegrable bound μ a b) + (h_cont : ∀ᵐ t ∂μ.restrict <| Ι a b, ContinuousAt (fun x ↦ F x t) x₀) (ha₀ : a₀ ∈ Ioo a b) + (hb₀ : b₀ ∈ Ioo a b) (hμb₀ : μ {b₀} = 0) : + ContinuousAt (fun p : X × ℝ ↦ ∫ t : ℝ in a₀..p.2, F p.1 t ∂μ) (x₀, b₀) := by + have hsub : ∀ {a₀ b₀}, a₀ ∈ Ioo a b → b₀ ∈ Ioo a b → Ι a₀ b₀ ⊆ Ι a b := fun ha₀ hb₀ ↦ + (ordConnected_Ioo.uIoc_subset ha₀ hb₀).trans (Ioo_subset_Ioc_self.trans Ioc_subset_uIoc) + have Ioo_nhds : Ioo a b ∈ 𝓝 b₀ := Ioo_mem_nhds hb₀.1 hb₀.2 + have Icc_nhds : Icc a b ∈ 𝓝 b₀ := Icc_mem_nhds hb₀.1 hb₀.2 + have hx₀ : ∀ᵐ t : ℝ ∂μ.restrict (Ι a b), ‖F x₀ t‖ ≤ bound t := h_bound.self_of_nhds + have : ∀ᶠ p : X × ℝ in 𝓝 (x₀, b₀), + ∫ s in a₀..p.2, F p.1 s ∂μ = + ∫ s in a₀..b₀, F p.1 s ∂μ + ∫ s in b₀..p.2, F x₀ s ∂μ + + ∫ s in b₀..p.2, F p.1 s - F x₀ s ∂μ := by + rw [nhds_prod_eq] + refine (h_bound.prod_mk Ioo_nhds).mono ?_ + rintro ⟨x, t⟩ ⟨hx : ∀ᵐ t : ℝ ∂μ.restrict (Ι a b), ‖F x t‖ ≤ bound t, ht : t ∈ Ioo a b⟩ + dsimp (config := { eta := false }) + have hiF : ∀ {x a₀ b₀}, + (∀ᵐ t : ℝ ∂μ.restrict (Ι a b), ‖F x t‖ ≤ bound t) → a₀ ∈ Ioo a b → b₀ ∈ Ioo a b → + IntervalIntegrable (F x) μ a₀ b₀ := fun {x a₀ b₀} hx ha₀ hb₀ ↦ + (bound_integrable.mono_set_ae <| eventually_of_forall <| hsub ha₀ hb₀).mono_fun' + ((hF_meas x).mono_set <| hsub ha₀ hb₀) + (ae_restrict_of_ae_restrict_of_subset (hsub ha₀ hb₀) hx) + rw [intervalIntegral.integral_sub, add_assoc, add_sub_cancel'_right, + intervalIntegral.integral_add_adjacent_intervals] + · exact hiF hx ha₀ hb₀ + · exact hiF hx hb₀ ht + · exact hiF hx hb₀ ht + · exact hiF hx₀ hb₀ ht + rw [continuousAt_congr this]; clear this + refine (ContinuousAt.add ?_ ?_).add ?_ + · exact (intervalIntegral.continuousAt_of_dominated_interval + (eventually_of_forall fun x ↦ (hF_meas x).mono_set <| hsub ha₀ hb₀) + (h_bound.mono fun x hx ↦ + ae_imp_of_ae_restrict <| ae_restrict_of_ae_restrict_of_subset (hsub ha₀ hb₀) hx) + (bound_integrable.mono_set_ae <| eventually_of_forall <| hsub ha₀ hb₀) <| + ae_imp_of_ae_restrict <| ae_restrict_of_ae_restrict_of_subset (hsub ha₀ hb₀) h_cont).fst' + · refine (?_ : ContinuousAt (fun t ↦ ∫ s in b₀..t, F x₀ s ∂μ) b₀).snd' + apply ContinuousWithinAt.continuousAt _ (Icc_mem_nhds hb₀.1 hb₀.2) + apply intervalIntegral.continuousWithinAt_primitive hμb₀ + rw [min_eq_right hb₀.1.le, max_eq_right hb₀.2.le] + exact bound_integrable.mono_fun' (hF_meas x₀) hx₀ + · suffices Tendsto (fun x : X × ℝ ↦ ∫ s in b₀..x.2, F x.1 s - F x₀ s ∂μ) (𝓝 (x₀, b₀)) (𝓝 0) by + simpa [ContinuousAt] + have : ∀ᶠ p : X × ℝ in 𝓝 (x₀, b₀), + ‖∫ s in b₀..p.2, F p.1 s - F x₀ s ∂μ‖ ≤ |∫ s in b₀..p.2, 2 * bound s ∂μ| := by + rw [nhds_prod_eq] + refine (h_bound.prod_mk Ioo_nhds).mono ?_ + rintro ⟨x, t⟩ ⟨hx : ∀ᵐ t ∂μ.restrict (Ι a b), ‖F x t‖ ≤ bound t, ht : t ∈ Ioo a b⟩ + have H : ∀ᵐ t : ℝ ∂μ.restrict (Ι b₀ t), ‖F x t - F x₀ t‖ ≤ 2 * bound t := by + apply (ae_restrict_of_ae_restrict_of_subset (hsub hb₀ ht) (hx.and hx₀)).mono + rintro s ⟨hs₁, hs₂⟩ + calc + ‖F x s - F x₀ s‖ ≤ ‖F x s‖ + ‖F x₀ s‖ := norm_sub_le _ _ + _ ≤ 2 * bound s := by linarith only [hs₁, hs₂] + exact intervalIntegral.norm_integral_le_of_norm_le H + ((bound_integrable.mono_set' <| hsub hb₀ ht).const_mul 2) + apply squeeze_zero_norm' this + have : Tendsto (fun t ↦ ∫ s in b₀..t, 2 * bound s ∂μ) (𝓝 b₀) (𝓝 0) := by + suffices ContinuousAt (fun t ↦ ∫ s in b₀..t, 2 * bound s ∂μ) b₀ by + simpa [ContinuousAt] using this + apply ContinuousWithinAt.continuousAt _ Icc_nhds + apply intervalIntegral.continuousWithinAt_primitive hμb₀ + apply IntervalIntegrable.const_mul + apply bound_integrable.mono_set' + rw [min_eq_right hb₀.1.le, max_eq_right hb₀.2.le] + rw [nhds_prod_eq] + exact (continuous_abs.tendsto' _ _ abs_zero).comp (this.comp tendsto_snd) + +variable [NoAtoms μ] + +theorem continuousOn_primitive (h_int : IntegrableOn f (Icc a b) μ) : ContinuousOn (fun x => ∫ t in Ioc a x, f t ∂μ) (Icc a b) := by by_cases h : a ≤ b · have : ∀ x ∈ Icc a b, ∫ t in Ioc a x, f t ∂μ = ∫ t in a..x, f t ∂μ := by @@ -1224,7 +1329,7 @@ theorem continuousOn_primitive [NoAtoms μ] (h_int : IntegrableOn f (Icc a b) μ exact continuousOn_empty _ #align interval_integral.continuous_on_primitive intervalIntegral.continuousOn_primitive -theorem continuousOn_primitive_Icc [NoAtoms μ] (h_int : IntegrableOn f (Icc a b) μ) : +theorem continuousOn_primitive_Icc (h_int : IntegrableOn f (Icc a b) μ) : ContinuousOn (fun x => ∫ t in Icc a x, f t ∂μ) (Icc a b) := by have aux : (fun x => ∫ t in Icc a x, f t ∂μ) = fun x => ∫ t in Ioc a x, f t ∂μ := by ext x @@ -1234,27 +1339,25 @@ theorem continuousOn_primitive_Icc [NoAtoms μ] (h_int : IntegrableOn f (Icc a b #align interval_integral.continuous_on_primitive_Icc intervalIntegral.continuousOn_primitive_Icc /-- Note: this assumes that `f` is `IntervalIntegrable`, in contrast to some other lemmas here. -/ -theorem continuousOn_primitive_interval' [NoAtoms μ] (h_int : IntervalIntegrable f μ b₁ b₂) +theorem continuousOn_primitive_interval' (h_int : IntervalIntegrable f μ b₁ b₂) (ha : a ∈ [[b₁, b₂]]) : ContinuousOn (fun b => ∫ x in a..b, f x ∂μ) [[b₁, b₂]] := fun _ _ ↦ by refine continuousWithinAt_primitive (measure_singleton _) ?_ rw [min_eq_right ha.1, max_eq_right ha.2] simpa [intervalIntegrable_iff, uIoc] using h_int #align interval_integral.continuous_on_primitive_interval' intervalIntegral.continuousOn_primitive_interval' -theorem continuousOn_primitive_interval [NoAtoms μ] (h_int : IntegrableOn f (uIcc a b) μ) : +theorem continuousOn_primitive_interval (h_int : IntegrableOn f (uIcc a b) μ) : ContinuousOn (fun x => ∫ t in a..x, f t ∂μ) (uIcc a b) := continuousOn_primitive_interval' h_int.intervalIntegrable left_mem_uIcc #align interval_integral.continuous_on_primitive_interval intervalIntegral.continuousOn_primitive_interval -theorem continuousOn_primitive_interval_left [NoAtoms μ] (h_int : IntegrableOn f (uIcc a b) μ) : +theorem continuousOn_primitive_interval_left (h_int : IntegrableOn f (uIcc a b) μ) : ContinuousOn (fun x => ∫ t in x..b, f t ∂μ) (uIcc a b) := by rw [uIcc_comm a b] at h_int ⊢ simp only [integral_symm b] exact (continuousOn_primitive_interval h_int).neg #align interval_integral.continuous_on_primitive_interval_left intervalIntegral.continuousOn_primitive_interval_left -variable [NoAtoms μ] - theorem continuous_primitive (h_int : ∀ a b, IntervalIntegrable f μ a b) (a : ℝ) : Continuous fun b => ∫ x in a..b, f x ∂μ := by rw [continuous_iff_continuousAt] diff --git a/scripts/style-exceptions.txt b/scripts/style-exceptions.txt index 64d359fa2101db..d9790496f70abe 100644 --- a/scripts/style-exceptions.txt +++ b/scripts/style-exceptions.txt @@ -91,6 +91,7 @@ Mathlib/MeasureTheory/Function/LpSpace.lean : line 1 : ERR_NUM_LIN : 2100 file c Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean : line 1 : ERR_NUM_LIN : 2300 file contains 2148 lines, try to split it up Mathlib/MeasureTheory/Integral/Bochner.lean : line 1 : ERR_NUM_LIN : 2200 file contains 2010 lines, try to split it up Mathlib/MeasureTheory/Integral/FundThmCalculus.lean : line 1 : ERR_NUM_LIN : 1700 file contains 1550 lines, try to split it up +Mathlib/MeasureTheory/Integral/IntervalIntegral.lean : line 1 : ERR_NUM_LIN : 1700 file contains 1547 lines, try to split it up Mathlib/MeasureTheory/Integral/Lebesgue.lean : line 1 : ERR_NUM_LIN : 2000 file contains 1851 lines, try to split it up Mathlib/MeasureTheory/Integral/SetToL1.lean : line 1 : ERR_NUM_LIN : 2000 file contains 1817 lines, try to split it up Mathlib/MeasureTheory/MeasurableSpace/Basic.lean : line 1 : ERR_NUM_LIN : 2400 file contains 2250 lines, try to split it up