Skip to content

Commit aa1b475

Browse files
Jlh18EtienneC30staroperatorgrunwegParcly-Taxel
committed
feat(CategoryTheory/Adjunction/PartialAdjunction): add symm naturality lemmas for HomEquiv and lift functor (#30143)
Add two lemmas for `partialRightAdjointHomEquiv` to help work with `partialRightAdjointHomEquiv.symm`. Co-authored-by: Etienne Marion <66847262+EtienneC30@users.noreply.github.com> Co-authored-by: staroperator <143908816+staroperator@users.noreply.github.com> Co-authored-by: Michael Rothgang <10105016+grunweg@users.noreply.github.com> Co-authored-by: Jeremy Tan Jie Rui <54175463+Parcly-Taxel@users.noreply.github.com> Co-authored-by: JasperMS <197499579+JasperMS@users.noreply.github.com> Co-authored-by: Jovan Gerbscheid <56355248+JovanGerb@users.noreply.github.com> Co-authored-by: Stefan Kebekus <5110976+kebekus@users.noreply.github.com> Co-authored-by: Monica Omar <23701951+themathqueen@users.noreply.github.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Rado Kirov <rkirov@gmail.com> Co-authored-by: euprunin <178733547+euprunin@users.noreply.github.com> Co-authored-by: Attila Gáspár <58485900+gasparattila@users.noreply.github.com> Co-authored-by: Yaël Dillies <yael.dillies@gmail.com> Co-authored-by: Thomas Browning <13339017+tb65536@users.noreply.github.com> Co-authored-by: SnirBroshi <26556598+SnirBroshi@users.noreply.github.com> Co-authored-by: Dagur Asgeirsson <25623829+dagurtomas@users.noreply.github.com> Co-authored-by: Floris van Doorn <vdoorn@math.uni-bonn.de> Co-authored-by: Chris Henson <46805207+chenson2018@users.noreply.github.com> Co-authored-by: PMKielstra <4313413+PMKielstra@users.noreply.github.com> Co-authored-by: Kim Morrison <477956+kim-em@users.noreply.github.com> Co-authored-by: Bryan Gin-ge Chen <bryangingechen@gmail.com> Co-authored-by: Zhao Yuyang 赵雨扬 <zhao.yu-yang@foxmail.com> Co-authored-by: Harald Husum <harald.husum@gmail.com> Co-authored-by: Yury Kudryashov <162619279+yury-harmonic@users.noreply.github.com> Co-authored-by: Christian Krause <86738237+Bergschaf@users.noreply.github.com>
1 parent 0852c3e commit aa1b475

File tree

1 file changed

+28
-0
lines changed

1 file changed

+28
-0
lines changed

Mathlib/CategoryTheory/Adjunction/PartialAdjoint.lean

Lines changed: 28 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -103,6 +103,20 @@ lemma partialLeftAdjointHomEquiv_map_comp {X X' : F.PartialLeftAdjointSource} {Y
103103
rw [partialLeftAdjointHomEquiv_comp, partialLeftAdjointHomEquiv_map, assoc,
104104
← partialLeftAdjointHomEquiv_comp, id_comp]
105105

106+
@[reassoc]
107+
lemma partialLeftAdjointHomEquiv_symm_comp {X : F.PartialLeftAdjointSource} {Y Y' : D}
108+
(f : X.obj ⟶ F.obj Y) (g : Y ⟶ Y') :
109+
F.partialLeftAdjointHomEquiv.symm f ≫ g = F.partialLeftAdjointHomEquiv.symm (f ≫ F.map g) :=
110+
CorepresentableBy.homEquiv_symm_comp ..
111+
112+
@[reassoc]
113+
lemma partialLeftAdjointHomEquiv_comp_symm {X X' : F.PartialLeftAdjointSource} {Y : D}
114+
(f : X'.obj ⟶ F.obj Y) (g : X ⟶ X') :
115+
F.partialLeftAdjointMap g ≫ F.partialLeftAdjointHomEquiv.symm f =
116+
F.partialLeftAdjointHomEquiv.symm (g ≫ f) := by
117+
rw [Equiv.eq_symm_apply, partialLeftAdjointHomEquiv_comp, partialLeftAdjointHomEquiv_map,
118+
assoc, ← partialLeftAdjointHomEquiv_comp, id_comp, Equiv.apply_symm_apply]
119+
106120
/-- Given `F : D ⥤ C`, this is the partial adjoint functor `F.PartialLeftAdjointSource ⥤ D`. -/
107121
@[simps]
108122
noncomputable def partialLeftAdjoint : F.PartialLeftAdjointSource ⥤ D where
@@ -244,6 +258,20 @@ lemma partialRightAdjointHomEquiv_map_comp {X : C} {Y Y' : F.PartialRightAdjoint
244258
rw [partialRightAdjointHomEquiv_comp, partialRightAdjointHomEquiv_map,
245259
← assoc, ← partialRightAdjointHomEquiv_comp, comp_id]
246260

261+
@[reassoc]
262+
lemma partialRightAdjointHomEquiv_comp_symm {X X' : C} {Y : F.PartialRightAdjointSource}
263+
(f : F.obj X' ⟶ Y.obj) (g : X ⟶ X') :
264+
g ≫ F.partialRightAdjointHomEquiv.symm f =
265+
F.partialRightAdjointHomEquiv.symm (F.map g ≫ f) :=
266+
RepresentableBy.comp_homEquiv_symm ..
267+
268+
@[reassoc]
269+
lemma partialRightAdjointHomEquiv_symm_comp {X : C} {Y Y' : F.PartialRightAdjointSource}
270+
(f : F.obj X ⟶ Y.obj) (g : Y ⟶ Y') :
271+
F.partialRightAdjointHomEquiv.symm f ≫ F.partialRightAdjointMap g =
272+
F.partialRightAdjointHomEquiv.symm (f ≫ g) := by
273+
simp [Equiv.eq_symm_apply, partialRightAdjointHomEquiv_map_comp]
274+
247275
/-- Given `F : C ⥤ D`, this is the partial adjoint functor `F.PartialLeftAdjointSource ⥤ C`. -/
248276
@[simps]
249277
noncomputable def partialRightAdjoint : F.PartialRightAdjointSource ⥤ C where

0 commit comments

Comments
 (0)