@@ -258,7 +258,7 @@ theorem iInf_principal_finite {ι : Type w} {s : Set ι} (hs : s.Finite) (f : ι
258258
259259end Lattice
260260
261- /-! ### Eventually -/
261+ /-! ### Eventually and Frequently -/
262262
263263@[simp]
264264theorem eventually_all {ι : Sort *} [Finite ι] {l} {p : ι → α → Prop } :
@@ -278,6 +278,26 @@ protected alias _root_.Set.Finite.eventually_all := eventually_all_finite
278278
279279protected alias _root_.Finset.eventually_all := eventually_all_finset
280280
281+ @[simp]
282+ theorem frequently_exists {ι : Sort *} [Finite ι] {l} {p : ι → α → Prop } :
283+ (∃ᶠ x in l, ∃ i, p i x) ↔ ∃ i, ∃ᶠ x in l, p i x := by
284+ rw [← not_iff_not]
285+ simp
286+
287+ @[simp]
288+ theorem frequently_exists_finite {ι} {I : Set ι} (hI : I.Finite) {l} {p : ι → α → Prop } :
289+ (∃ᶠ x in l, ∃ i ∈ I, p i x) ↔ ∃ i ∈ I, ∃ᶠ x in l, p i x := by
290+ rw [← not_iff_not]
291+ simp [hI]
292+
293+ protected alias _root_.Set.Finite.frequently_exists := frequently_exists_finite
294+
295+ @[simp] theorem frequently_exists_finset {ι} (I : Finset ι) {l} {p : ι → α → Prop } :
296+ (∃ᶠ x in l, ∃ i ∈ I, p i x) ↔ ∃ i ∈ I, ∃ᶠ x in l, p i x :=
297+ I.finite_toSet.frequently_exists
298+
299+ protected alias _root_.Finset.frequently_exists := frequently_exists_finset
300+
281301lemma eventually_subset_of_finite {ι : Type *} {f : Filter ι} {s : ι → Set α} {t : Set α}
282302 (ht : t.Finite) (hs : ∀ a ∈ t, ∀ᶠ i in f, a ∈ s i) : ∀ᶠ i in f, t ⊆ s i := by
283303 simpa [Set.subset_def, eventually_all_finite ht] using hs
0 commit comments