Skip to content

Commit f3e08c7

Browse files
committed
feat(Logic/Relation): a relation is reflexive iff it subsumes the equality relation (#30557)
feat(Logic/Relation): a relation is reflexive iff it subsumes the equality relation, and irreflexive iff the inequality relation subsumes it
1 parent 9d514c7 commit f3e08c7

File tree

1 file changed

+6
-0
lines changed

1 file changed

+6
-0
lines changed

Mathlib/Logic/Relation.lean

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -69,6 +69,12 @@ then it holds whether or not `x ≠ y`. Unlike `Reflexive.ne_imp_iff`, this uses
6969
theorem reflexive_ne_imp_iff [IsRefl α r] {x y : α} : x ≠ y → r x y ↔ r x y :=
7070
IsRefl.reflexive.ne_imp_iff
7171

72+
theorem reflexive_iff_subrelation_eq : Reflexive r ↔ Subrelation Eq r := by
73+
grind [Reflexive, Subrelation]
74+
75+
theorem irreflexive_iff_subrelation_ne : Irreflexive r ↔ Subrelation r Ne := by
76+
grind [Irreflexive, Subrelation]
77+
7278
protected theorem Symmetric.iff (H : Symmetric r) (x y : α) : r x y ↔ r y x :=
7379
fun h ↦ H h, fun h ↦ H h⟩
7480

0 commit comments

Comments
 (0)