diff --git a/Mathlib/Algebra/Category/Grp/Basic.lean b/Mathlib/Algebra/Category/Grp/Basic.lean index e4e2ecdff10a8a..ba2dee1090ba41 100644 --- a/Mathlib/Algebra/Category/Grp/Basic.lean +++ b/Mathlib/Algebra/Category/Grp/Basic.lean @@ -603,27 +603,3 @@ abbrev AddCommGrpMax.{u1, u2} := AddCommGrp.{max u1 u2} /-! Deprecated lemmas for `MonoidHom.comp` and categorical identities. -/ - -@[to_additive (attr := deprecated - "Proven by `simp only [Grp.hom_id, comp_id]`" - (since := "2025-01-28"))] -theorem MonoidHom.comp_id_grp {G : Grp.{u}} {H : Type u} [Monoid H] (f : G →* H) : - f.comp (Grp.Hom.hom (𝟙 G)) = f := by simp -@[to_additive (attr := deprecated - "Proven by `simp only [Grp.hom_id, id_comp]`" - (since := "2025-01-28"))] -theorem MonoidHom.id_grp_comp {G : Type u} [Monoid G] {H : Grp.{u}} (f : G →* H) : - MonoidHom.comp (Grp.Hom.hom (𝟙 H)) f = f := by simp - -@[to_additive (attr := deprecated - "Proven by `simp only [CommGrp.hom_id, comp_id]`" - (since := "2025-01-28"))] -theorem MonoidHom.comp_id_commGrp {G : CommGrp.{u}} {H : Type u} [Monoid H] (f : G →* H) : - f.comp (CommGrp.Hom.hom (𝟙 G)) = f := by - simp -@[to_additive (attr := deprecated - "Proven by `simp only [CommGrp.hom_id, id_comp]`" - (since := "2025-01-28"))] -theorem MonoidHom.id_commGrp_comp {G : Type u} [Monoid G] {H : CommGrp.{u}} (f : G →* H) : - MonoidHom.comp (CommGrp.Hom.hom (𝟙 H)) f = f := by - simp diff --git a/Mathlib/Algebra/Category/ModuleCat/Presheaf/Pullback.lean b/Mathlib/Algebra/Category/ModuleCat/Presheaf/Pullback.lean index 79a2b6b1ddaea3..3bcaf5882fb896 100644 --- a/Mathlib/Algebra/Category/ModuleCat/Presheaf/Pullback.lean +++ b/Mathlib/Algebra/Category/ModuleCat/Presheaf/Pullback.lean @@ -48,9 +48,6 @@ on a certain object `M : PresheafOfModules S`. -/ abbrev pullbackObjIsDefined : ObjectProperty (PresheafOfModules.{v} S) := (pushforward φ).leftAdjointObjIsDefined -@[deprecated (since := "2025-03-06")] -alias PullbackObjIsDefined := pullbackObjIsDefined - end section diff --git a/Mathlib/Algebra/Category/MonCat/Basic.lean b/Mathlib/Algebra/Category/MonCat/Basic.lean index 5571bace71297f..b3dc54717257d2 100644 --- a/Mathlib/Algebra/Category/MonCat/Basic.lean +++ b/Mathlib/Algebra/Category/MonCat/Basic.lean @@ -504,30 +504,6 @@ example : (forget₂ CommMonCat MonCat).ReflectsIsomorphisms := inferInstance `@[simp]` lemmas for `MonoidHom.comp` and categorical identities. -/ -@[to_additive (attr := deprecated - "Proven by `simp only [MonCat.hom_id, comp_id]`" - (since := "2025-01-28"))] -theorem MonoidHom.comp_id_monCat {G : MonCat.{u}} {H : Type u} [Monoid H] (f : G →* H) : - f.comp (MonCat.Hom.hom (𝟙 G)) = f := by simp -@[to_additive (attr := deprecated - "Proven by `simp only [MonCat.hom_id, id_comp]`" - (since := "2025-01-28"))] -theorem MonoidHom.id_monCat_comp {G : Type u} [Monoid G] {H : MonCat.{u}} (f : G →* H) : - MonoidHom.comp (MonCat.Hom.hom (𝟙 H)) f = f := by simp - -@[to_additive (attr := deprecated - "Proven by `simp only [CommMonCat.hom_id, comp_id]`" - (since := "2025-01-28"))] -theorem MonoidHom.comp_id_commMonCat {G : CommMonCat.{u}} {H : Type u} [CommMonoid H] (f : G →* H) : - f.comp (CommMonCat.Hom.hom (𝟙 G)) = f := by - simp -@[to_additive (attr := deprecated - "Proven by `simp only [CommMonCat.hom_id, id_comp]`" - (since := "2025-01-28"))] -theorem MonoidHom.id_commMonCat_comp {G : Type u} [CommMonoid G] {H : CommMonCat.{u}} (f : G →* H) : - MonoidHom.comp (CommMonCat.Hom.hom (𝟙 H)) f = f := by - simp - /-- The equivalence between `AddMonCat` and `MonCat`. -/ @[simps] def AddMonCat.equivalence : AddMonCat ≌ MonCat where diff --git a/Mathlib/Algebra/Group/Action/Basic.lean b/Mathlib/Algebra/Group/Action/Basic.lean index 0d3c93d7929d21..08243c47648c47 100644 --- a/Mathlib/Algebra/Group/Action/Basic.lean +++ b/Mathlib/Algebra/Group/Action/Basic.lean @@ -115,12 +115,6 @@ theorem smul_bijective {m : α} (hm : IsUnit m) : lift m to αˣ using hm exact MulAction.bijective m -@[deprecated (since := "2025-03-03")] -alias _root_.AddAction.vadd_bijective_of_is_addUnit := IsAddUnit.vadd_bijective - -@[to_additive existing, deprecated (since := "2025-03-03")] -alias _root_.MulAction.smul_bijective_of_is_unit := IsUnit.smul_bijective - @[to_additive] lemma smul_left_cancel {a : α} (ha : IsUnit a) {x y : β} : a • x = a • y ↔ x = y := let ⟨u, hu⟩ := ha diff --git a/Mathlib/Algebra/Group/Action/Pointwise/Set/Basic.lean b/Mathlib/Algebra/Group/Action/Pointwise/Set/Basic.lean index 4cd51d23ce8845..72066f8cd7a714 100644 --- a/Mathlib/Algebra/Group/Action/Pointwise/Set/Basic.lean +++ b/Mathlib/Algebra/Group/Action/Pointwise/Set/Basic.lean @@ -41,9 +41,6 @@ lemma smul_set_prod {M α : Type*} [SMul M α] [SMul M β] (c : M) (s : Set α) c • (s ×ˢ t) = (c • s) ×ˢ (c • t) := prodMap_image_prod (c • ·) (c • ·) s t -@[deprecated (since := "2025-03-11")] -alias vadd_set_sum := vadd_set_prod - @[to_additive] lemma smul_set_pi {G ι : Type*} {α : ι → Type*} [Group G] [∀ i, MulAction G (α i)] (c : G) (I : Set ι) (s : ∀ i, Set (α i)) : c • I.pi s = I.pi (c • s) := diff --git a/Mathlib/Algebra/Group/Basic.lean b/Mathlib/Algebra/Group/Basic.lean index be88ab009ee307..94d3928c5f3de3 100644 --- a/Mathlib/Algebra/Group/Basic.lean +++ b/Mathlib/Algebra/Group/Basic.lean @@ -224,9 +224,6 @@ theorem mul_eq_left : a * b = a ↔ b = 1 := calc a * b = a ↔ a * b = a * 1 := by rw [mul_one] _ ↔ b = 1 := mul_left_cancel_iff -@[deprecated (since := "2025-03-05")] alias mul_right_eq_self := mul_eq_left -@[deprecated (since := "2025-03-05")] alias add_right_eq_self := add_eq_left - set_option linter.existingAttributeWarning false in attribute [to_additive existing] mul_right_eq_self @@ -234,27 +231,18 @@ attribute [to_additive existing] mul_right_eq_self theorem left_eq_mul : a = a * b ↔ b = 1 := eq_comm.trans mul_eq_left -@[deprecated (since := "2025-03-05")] alias self_eq_mul_right := left_eq_mul -@[deprecated (since := "2025-03-05")] alias self_eq_add_right := left_eq_add - set_option linter.existingAttributeWarning false in attribute [to_additive existing] self_eq_mul_right @[to_additive] theorem mul_ne_left : a * b ≠ a ↔ b ≠ 1 := mul_eq_left.not -@[deprecated (since := "2025-03-05")] alias mul_right_ne_self := mul_ne_left -@[deprecated (since := "2025-03-05")] alias add_right_ne_self := add_ne_left - set_option linter.existingAttributeWarning false in attribute [to_additive existing] mul_right_ne_self @[to_additive] theorem left_ne_mul : a ≠ a * b ↔ b ≠ 1 := left_eq_mul.not -@[deprecated (since := "2025-03-05")] alias self_ne_mul_right := left_ne_mul -@[deprecated (since := "2025-03-05")] alias self_ne_add_right := left_ne_add - set_option linter.existingAttributeWarning false in attribute [to_additive existing] self_ne_mul_right @@ -269,9 +257,6 @@ theorem mul_eq_right : a * b = b ↔ a = 1 := calc a * b = b ↔ a * b = 1 * b := by rw [one_mul] _ ↔ a = 1 := mul_right_cancel_iff -@[deprecated (since := "2025-03-05")] alias mul_left_eq_self := mul_eq_right -@[deprecated (since := "2025-03-05")] alias add_left_eq_self := add_eq_right - set_option linter.existingAttributeWarning false in attribute [to_additive existing] mul_left_eq_self @@ -279,27 +264,18 @@ attribute [to_additive existing] mul_left_eq_self theorem right_eq_mul : b = a * b ↔ a = 1 := eq_comm.trans mul_eq_right -@[deprecated (since := "2025-03-05")] alias self_eq_mul_left := right_eq_mul -@[deprecated (since := "2025-03-05")] alias self_eq_add_left := right_eq_add - set_option linter.existingAttributeWarning false in attribute [to_additive existing] self_eq_mul_left @[to_additive] theorem mul_ne_right : a * b ≠ b ↔ a ≠ 1 := mul_eq_right.not -@[deprecated (since := "2025-03-05")] alias mul_left_ne_self := mul_ne_right -@[deprecated (since := "2025-03-05")] alias add_left_ne_self := add_ne_right - set_option linter.existingAttributeWarning false in attribute [to_additive existing] mul_left_ne_self @[to_additive] theorem right_ne_mul : b ≠ a * b ↔ a ≠ 1 := right_eq_mul.not -@[deprecated (since := "2025-03-05")] alias self_ne_mul_left := right_ne_mul -@[deprecated (since := "2025-03-05")] alias self_ne_add_left := right_ne_add - set_option linter.existingAttributeWarning false in attribute [to_additive existing] self_ne_mul_left diff --git a/Mathlib/Algebra/Group/Graph.lean b/Mathlib/Algebra/Group/Graph.lean index ee02a967ca3b68..e438a5d6788e4a 100644 --- a/Mathlib/Algebra/Group/Graph.lean +++ b/Mathlib/Algebra/Group/Graph.lean @@ -56,9 +56,6 @@ lemma mem_mgraph {f : G →* H} {x : G × H} : x ∈ f.mgraph ↔ f x.1 = x.2 := @[to_additive mgraph_eq_mrange_prod] lemma mgraph_eq_mrange_prod (f : G →* H) : f.mgraph = mrange ((id _).prod f) := by aesop -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoidHom.mgraph_eq_mrange_sum := AddMonoidHom.mgraph_eq_mrange_prod - /-- **Vertical line test** for monoid homomorphisms. Let `f : G → H × I` be a homomorphism to a product of monoids. Assume that `f` is surjective on the @@ -171,9 +168,6 @@ lemma mem_graph {f : G →* H} {x : G × H} : x ∈ f.graph ↔ f x.1 = x.2 := . @[to_additive graph_eq_range_prod] lemma graph_eq_range_prod (f : G →* H) : f.graph = range ((id _).prod f) := by aesop -@[deprecated (since := "2025-03-11")] -alias AddMonoidHom.graph_eq_range_sum := graph_eq_range_prod - /-- **Vertical line test** for group homomorphisms. Let `f : G → H × I` be a homomorphism to a product of groups. Assume that `f` is surjective on the diff --git a/Mathlib/Algebra/Group/Pointwise/Set/Basic.lean b/Mathlib/Algebra/Group/Pointwise/Set/Basic.lean index 95546f25db42e3..8f884dbff064d8 100644 --- a/Mathlib/Algebra/Group/Pointwise/Set/Basic.lean +++ b/Mathlib/Algebra/Group/Pointwise/Set/Basic.lean @@ -130,9 +130,6 @@ theorem coe_singletonOneHom : (singletonOneHom : α → Set α) = singleton := @[to_additive (attr := simp) zero_prod_zero] lemma one_prod_one [One β] : (1 ×ˢ 1 : Set (α × β)) = 1 := by ext; simp [Prod.ext_iff] -@[deprecated (since := "2025-03-11")] -alias zero_sum_zero := zero_prod_zero - end One /-! ### Set negation/inversion -/ @@ -187,9 +184,6 @@ theorem compl_inv : sᶜ⁻¹ = s⁻¹ᶜ := @[to_additive (attr := simp) neg_prod] lemma inv_prod [Inv β] (s : Set α) (t : Set β) : (s ×ˢ t)⁻¹ = s⁻¹ ×ˢ t⁻¹ := rfl -@[deprecated (since := "2025-03-11")] -alias neg_sum := neg_prod - end Inv section InvolutiveInv @@ -392,9 +386,6 @@ theorem image_op_mul : op '' (s * t) = op '' t * op '' s := lemma prod_mul_prod_comm [Mul β] (s₁ s₂ : Set α) (t₁ t₂ : Set β) : (s₁ ×ˢ t₁) * (s₂ ×ˢ t₂) = (s₁ * s₂) ×ˢ (t₁ * t₂) := by ext; simp [mem_mul]; aesop -@[deprecated (since := "2025-03-11")] -alias sum_add_sum_comm := prod_add_prod_comm - end Mul /-! ### Set subtraction/division -/ diff --git a/Mathlib/Algebra/Group/Subgroup/Basic.lean b/Mathlib/Algebra/Group/Subgroup/Basic.lean index 9002dad9e11ae0..f5dd245c0e314c 100644 --- a/Mathlib/Algebra/Group/Subgroup/Basic.lean +++ b/Mathlib/Algebra/Group/Subgroup/Basic.lean @@ -126,9 +126,6 @@ theorem top_prod_top : (⊤ : Subgroup G).prod (⊤ : Subgroup N) = ⊤ := theorem bot_prod_bot : (⊥ : Subgroup G).prod (⊥ : Subgroup N) = ⊥ := SetLike.coe_injective <| by simp [coe_prod] -@[deprecated (since := "2025-03-11")] -alias _root_.AddSubgroup.bot_sum_bot := AddSubgroup.bot_prod_bot - @[to_additive le_prod_iff] theorem le_prod_iff {H : Subgroup G} {K : Subgroup N} {J : Subgroup (G × N)} : J ≤ H.prod K ↔ map (MonoidHom.fst G N) J ≤ H ∧ map (MonoidHom.snd G N) J ≤ K := by @@ -569,17 +566,11 @@ theorem prodMap_comap_prod {G' : Type*} {N' : Type*} [Group G'] [Group N'] (f : (S.prod S').comap (prodMap f g) = (S.comap f).prod (S'.comap g) := SetLike.coe_injective <| Set.preimage_prod_map_prod f g _ _ -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoidHom.sumMap_comap_sum := AddMonoidHom.prodMap_comap_prod - @[to_additive ker_prodMap] theorem ker_prodMap {G' : Type*} {N' : Type*} [Group G'] [Group N'] (f : G →* N) (g : G' →* N') : (prodMap f g).ker = f.ker.prod g.ker := by rw [← comap_bot, ← comap_bot, ← comap_bot, ← prodMap_comap_prod, bot_prod_bot] -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoidHom.ker_sumMap := AddMonoidHom.ker_prodMap - @[to_additive (attr := simp)] lemma ker_fst : ker (fst G G') = .prod ⊥ ⊤ := SetLike.ext fun _ => (iff_of_eq (and_true _)).symm @@ -618,13 +609,6 @@ theorem comap_normalizer_eq_of_surjective (H : Subgroup G) {f : N →* G} (hf : Function.Surjective f) : H.normalizer.comap f = (H.comap f).normalizer := comap_normalizer_eq_of_le_range fun x _ ↦ hf x -@[deprecated (since := "2025-03-13")] -alias comap_normalizer_eq_of_injective_of_le_range := comap_normalizer_eq_of_le_range - -@[deprecated (since := "2025-03-13")] -alias _root_.AddSubgroup.comap_normalizer_eq_of_injective_of_le_range := - AddSubgroup.comap_normalizer_eq_of_le_range - /-- The image of the normalizer is equal to the normalizer of the image of an isomorphism. -/ @[to_additive /-- The image of the normalizer is equal to the normalizer of the image of an @@ -816,9 +800,6 @@ instance prod_subgroupOf_prod_normal {H₁ K₁ : Subgroup G} {H₂ K₂ : Subgr h₂.conj_mem ⟨(n : G × N).snd, (mem_prod.mp n.2).2⟩ hgHK.2 ⟨(g : G × N).snd, (mem_prod.mp g.2).2⟩⟩ -@[deprecated (since := "2025-03-11")] -alias _root_.AddSubgroup.sum_addSubgroupOf_sum_normal := AddSubgroup.prod_addSubgroupOf_prod_normal - @[to_additive prod_normal] instance prod_normal (H : Subgroup G) (K : Subgroup N) [hH : H.Normal] [hK : K.Normal] : (H.prod K).Normal where @@ -826,9 +807,6 @@ instance prod_normal (H : Subgroup G) (K : Subgroup N) [hH : H.Normal] [hK : K.N ⟨hH.conj_mem n.fst (Subgroup.mem_prod.mp hg).1 g.fst, hK.conj_mem n.snd (Subgroup.mem_prod.mp hg).2 g.snd⟩ -@[deprecated (since := "2025-03-11")] -alias _root_.AddSubgroup.sum_normal := AddSubgroup.prod_normal - @[to_additive] theorem inf_subgroupOf_inf_normal_of_right (A B' B : Subgroup G) [hN : (B'.subgroupOf B).Normal] : ((A ⊓ B').subgroupOf (A ⊓ B)).Normal := by diff --git a/Mathlib/Algebra/Group/Subgroup/Ker.lean b/Mathlib/Algebra/Group/Subgroup/Ker.lean index 70405ecc47660d..25f86cd3b1d199 100644 --- a/Mathlib/Algebra/Group/Subgroup/Ker.lean +++ b/Mathlib/Algebra/Group/Subgroup/Ker.lean @@ -306,9 +306,6 @@ theorem ker_prod {M N : Type*} [MulOneClass M] [MulOneClass N] (f : G →* M) (g (f.prod g).ker = f.ker ⊓ g.ker := SetLike.ext fun _ => Prod.mk_eq_one -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoidHom.ker_sum := AddMonoidHom.ker_prod - @[to_additive] theorem range_le_ker_iff (f : G →* G') (g : G' →* G'') : f.range ≤ g.ker ↔ g.comp f = 1 := ⟨fun h => ext fun x => h ⟨x, rfl⟩, by rintro h _ ⟨y, rfl⟩; exact DFunLike.congr_fun h y⟩ diff --git a/Mathlib/Algebra/Group/Subgroup/Pointwise.lean b/Mathlib/Algebra/Group/Subgroup/Pointwise.lean index b52fbea93d52b6..d39952471b487c 100644 --- a/Mathlib/Algebra/Group/Subgroup/Pointwise.lean +++ b/Mathlib/Algebra/Group/Subgroup/Pointwise.lean @@ -460,8 +460,6 @@ theorem Normal.conjAct {H : Subgroup G} (hH : H.Normal) (g : ConjAct G) : g • theorem Normal.conj_smul_eq_self (g : G) (H : Subgroup G) [h : Normal H] : MulAut.conj g • H = H := h.conjAct g -@[deprecated (since := "2025-03-01")] alias smul_normal := Normal.conj_smul_eq_self - theorem Normal.of_conjugate_fixed {H : Subgroup G} (h : ∀ g : G, (MulAut.conj g) • H = H) : H.Normal := by constructor diff --git a/Mathlib/Algebra/MvPolynomial/Basic.lean b/Mathlib/Algebra/MvPolynomial/Basic.lean index 59efb848f9d951..fbd2e5eedb4987 100644 --- a/Mathlib/Algebra/MvPolynomial/Basic.lean +++ b/Mathlib/Algebra/MvPolynomial/Basic.lean @@ -402,9 +402,6 @@ theorem monomial_add_induction_on {motive : MvPolynomial σ R → Prop} (p : MvP motive p := Finsupp.induction p (C_0.rec <| C 0) monomial_add -@[deprecated (since := "2025-03-11")] -alias induction_on''' := monomial_add_induction_on - /-- Similar to `MvPolynomial.induction_on` but only a yet weaker form of `h_add` is required. In particular, this version only requires us to show diff --git a/Mathlib/Algebra/Order/Group/Abs.lean b/Mathlib/Algebra/Order/Group/Abs.lean index e5253e2f40e77e..38fa4e682f14c3 100644 --- a/Mathlib/Algebra/Order/Group/Abs.lean +++ b/Mathlib/Algebra/Order/Group/Abs.lean @@ -193,9 +193,6 @@ theorem mabs_div_le_of_le_of_le {a b lb ub : G} (hal : lb ≤ a) (hau : a ≤ ub (hbu : b ≤ ub) : |a / b|ₘ ≤ ub / lb := mabs_div_le_iff.2 ⟨div_le_div'' hau hbl, div_le_div'' hbu hal⟩ -@[deprecated (since := "2025-03-02")] -alias dist_bdd_within_interval := abs_sub_le_of_le_of_le - @[to_additive] theorem eq_of_mabs_div_le_one (h : |a / b|ₘ ≤ 1) : a = b := eq_of_mabs_div_eq_one (le_antisymm h (one_le_mabs (a / b))) diff --git a/Mathlib/Algebra/Order/Group/Unbundled/Int.lean b/Mathlib/Algebra/Order/Group/Unbundled/Int.lean index 4f9cad27b9e2bc..817d22761a562f 100644 --- a/Mathlib/Algebra/Order/Group/Unbundled/Int.lean +++ b/Mathlib/Algebra/Order/Group/Unbundled/Int.lean @@ -133,8 +133,6 @@ protected theorem sign_eq_ediv_abs' (a : ℤ) : sign a = a / |a| := if az : a = 0 then by simp [az] else (Int.ediv_eq_of_eq_mul_left (mt abs_eq_zero.1 az) (sign_mul_abs _).symm).symm -@[deprecated (since := "2025-03-10")] alias sign_eq_ediv_abs := Int.sign_eq_ediv_abs' - protected theorem sign_eq_abs_ediv (a : ℤ) : sign a = |a| / a := if az : a = 0 then by simp [az] else (Int.ediv_eq_of_eq_mul_left az (sign_mul_self_eq_abs _).symm).symm diff --git a/Mathlib/Algebra/Order/Round.lean b/Mathlib/Algebra/Order/Round.lean index 620bef67bc57ab..19c0930de14fab 100644 --- a/Mathlib/Algebra/Order/Round.lean +++ b/Mathlib/Algebra/Order/Round.lean @@ -62,9 +62,6 @@ theorem round_add_intCast (x : α) (y : ℤ) : round (x + y) = round x + y := by rw [round, round, Int.fract_add_intCast, Int.floor_add_intCast, Int.ceil_add_intCast, ← apply_ite₂, ite_self] -@[deprecated (since := "2025-03-23")] -alias round_add_int := round_add_intCast - @[simp] theorem round_add_one (a : α) : round (a + 1) = round a + 1 := by rw [← round_add_intCast a 1, cast_one] @@ -75,9 +72,6 @@ theorem round_sub_intCast (x : α) (y : ℤ) : round (x - y) = round x - y := by norm_cast rw [round_add_intCast, sub_eq_add_neg] -@[deprecated (since := "2025-03-23")] -alias round_sub_int := round_sub_intCast - @[simp] theorem round_sub_one (a : α) : round (a - 1) = round a - 1 := by rw [← round_sub_intCast a 1, cast_one] @@ -86,9 +80,6 @@ theorem round_sub_one (a : α) : round (a - 1) = round a - 1 := by theorem round_add_natCast (x : α) (y : ℕ) : round (x + y) = round x + y := mod_cast round_add_intCast x y -@[deprecated (since := "2025-03-23")] -alias round_add_nat := round_add_natCast - @[simp] theorem round_add_ofNat (x : α) (n : ℕ) [n.AtLeastTwo] : round (x + ofNat(n)) = round x + ofNat(n) := @@ -98,9 +89,6 @@ theorem round_add_ofNat (x : α) (n : ℕ) [n.AtLeastTwo] : theorem round_sub_natCast (x : α) (y : ℕ) : round (x - y) = round x - y := mod_cast round_sub_intCast x y -@[deprecated (since := "2025-03-23")] -alias round_sub_nat := round_sub_natCast - @[simp] theorem round_sub_ofNat (x : α) (n : ℕ) [n.AtLeastTwo] : round (x - ofNat(n)) = round x - ofNat(n) := @@ -110,16 +98,10 @@ theorem round_sub_ofNat (x : α) (n : ℕ) [n.AtLeastTwo] : theorem round_intCast_add (x : α) (y : ℤ) : round ((y : α) + x) = y + round x := by rw [add_comm, round_add_intCast, add_comm] -@[deprecated (since := "2025-03-23")] -alias round_int_add := round_intCast_add - @[simp] theorem round_natCast_add (x : α) (y : ℕ) : round ((y : α) + x) = y + round x := by rw [add_comm, round_add_natCast, add_comm] -@[deprecated (since := "2025-03-23")] -alias round_nat_add := round_natCast_add - @[simp] theorem round_ofNat_add (n : ℕ) [n.AtLeastTwo] (x : α) : round (ofNat(n) + x) = ofNat(n) + round x := diff --git a/Mathlib/AlgebraicGeometry/EllipticCurve/Affine/Basic.lean b/Mathlib/AlgebraicGeometry/EllipticCurve/Affine/Basic.lean index 9a81e1e394267c..d6722c319e0286 100644 --- a/Mathlib/AlgebraicGeometry/EllipticCurve/Affine/Basic.lean +++ b/Mathlib/AlgebraicGeometry/EllipticCurve/Affine/Basic.lean @@ -246,12 +246,6 @@ lemma equation_iff_nonsingular [Nontrivial R] [W.IsElliptic] {x y : R} : W.toAffine.Equation x y ↔ W.toAffine.Nonsingular x y := W.toAffine.equation_iff_nonsingular_of_Δ_ne_zero <| W.coe_Δ' ▸ W.Δ'.ne_zero -@[deprecated (since := "2025-03-01")] alias nonsingular_zero_of_Δ_ne_zero := - equation_iff_nonsingular_of_Δ_ne_zero -@[deprecated (since := "2025-03-01")] alias nonsingular_of_Δ_ne_zero := - equation_iff_nonsingular_of_Δ_ne_zero -@[deprecated (since := "2025-03-01")] alias nonsingular := equation_iff_nonsingular - /-! ## Maps and base changes -/ variable (f : R →+* S) (x y : R) diff --git a/Mathlib/AlgebraicGeometry/EllipticCurve/Affine/Formula.lean b/Mathlib/AlgebraicGeometry/EllipticCurve/Affine/Formula.lean index 8bb48faefd3a17..67895c6c6e1d7f 100644 --- a/Mathlib/AlgebraicGeometry/EllipticCurve/Affine/Formula.lean +++ b/Mathlib/AlgebraicGeometry/EllipticCurve/Affine/Formula.lean @@ -117,8 +117,6 @@ lemma evalEval_negPolynomial (x y : R) : W'.negPolynomial.evalEval x y = W'.negY rw [negY, sub_sub, negPolynomial] eval_simp -@[deprecated (since := "2025-03-05")] alias eval_negPolynomial := evalEval_negPolynomial - lemma Y_eq_of_X_eq {x₁ x₂ y₁ y₂ : F} (h₁ : W.Equation x₁ y₁) (h₂ : W.Equation x₂ y₂) (hx : x₁ = x₂) : y₁ = y₂ ∨ y₁ = W.negY x₂ y₂ := by rw [equation_iff] at h₁ h₂ @@ -196,8 +194,6 @@ lemma slope_of_Y_ne_eq_evalEval {x₁ x₂ y₁ y₂ : F} (hx : x₁ = x₂) (hy rw [negY, evalEval_polynomialY] ring1 -@[deprecated (since := "2025-03-05")] alias slope_of_Y_ne_eq_eval := slope_of_Y_ne_eq_evalEval - end slope /-! ## Addition formulae in affine coordinates -/ diff --git a/Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian/Point.lean b/Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian/Point.lean index 3ba5829741371d..b54c2093c881ec 100644 --- a/Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian/Point.lean +++ b/Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian/Point.lean @@ -403,8 +403,6 @@ lemma fromAffine_some_ne_zero [Nontrivial R] {X Y : R} (h : W'.toAffine.Nonsingu fromAffine (.some h) ≠ 0 := mk_ne_zero <| (nonsingularLift_some ..).mpr h -@[deprecated (since := "2025-03-01")] alias fromAffine_ne_zero := fromAffine_some_ne_zero - /-- The negation of a nonsingular Jacobian point on a Weierstrass curve `W`. Given a nonsingular Jacobian point `P` on `W`, use `-P` instead of `neg P`. -/ diff --git a/Mathlib/AlgebraicGeometry/EllipticCurve/Projective/Point.lean b/Mathlib/AlgebraicGeometry/EllipticCurve/Projective/Point.lean index 7518669052d806..8990f6c23a7749 100644 --- a/Mathlib/AlgebraicGeometry/EllipticCurve/Projective/Point.lean +++ b/Mathlib/AlgebraicGeometry/EllipticCurve/Projective/Point.lean @@ -390,8 +390,6 @@ lemma fromAffine_some_ne_zero [Nontrivial R] {X Y : R} (h : W'.toAffine.Nonsingu fromAffine (.some h) ≠ 0 := mk_ne_zero <| (nonsingularLift_some ..).mpr h -@[deprecated (since := "2025-03-01")] alias fromAffine_ne_zero := fromAffine_some_ne_zero - /-- The negation of a nonsingular projective point on a Weierstrass curve `W`. Given a nonsingular projective point `P` on `W`, use `-P` instead of `neg P`. -/ diff --git a/Mathlib/AlgebraicGeometry/Morphisms/QuasiSeparated.lean b/Mathlib/AlgebraicGeometry/Morphisms/QuasiSeparated.lean index 035b76d72ad0dc..6974efbc8b9e36 100644 --- a/Mathlib/AlgebraicGeometry/Morphisms/QuasiSeparated.lean +++ b/Mathlib/AlgebraicGeometry/Morphisms/QuasiSeparated.lean @@ -345,9 +345,6 @@ theorem isLocalization_basicOpen_of_qcqs {X : Scheme} {U : X.Opens} (hU : IsComp refine ⟨⟨_, n, rfl⟩, ?_⟩ simpa [mul_comm z] using e -@[deprecated (since := "2025-03-01")] -alias is_localization_basicOpen_of_qcqs := isLocalization_basicOpen_of_qcqs - lemma exists_of_res_eq_of_qcqs {X : Scheme.{u}} {U : TopologicalSpace.Opens X} (hU : IsCompact U.carrier) (hU' : IsQuasiSeparated U.carrier) {f g s : Γ(X, U)} (hfg : f |_ X.basicOpen s = g |_ X.basicOpen s) : diff --git a/Mathlib/Analysis/Analytic/Constructions.lean b/Mathlib/Analysis/Analytic/Constructions.lean index bf94ef72666830..72277afcdd262f 100644 --- a/Mathlib/Analysis/Analytic/Constructions.lean +++ b/Mathlib/Analysis/Analytic/Constructions.lean @@ -105,8 +105,6 @@ theorem AnalyticAt.fun_add (hf : AnalyticAt 𝕜 f x) (hg : AnalyticAt 𝕜 g x) let ⟨_, hqf⟩ := hg (hpf.add hqf).analyticAt -@[deprecated (since := "2025-03-11")] alias AnalyticAt.add' := AnalyticAt.fun_add - @[fun_prop] theorem AnalyticAt.add (hf : AnalyticAt 𝕜 f x) (hg : AnalyticAt 𝕜 g x) : AnalyticAt 𝕜 (f + g) x := hf.fun_add hg @@ -153,8 +151,6 @@ theorem AnalyticAt.neg (hf : AnalyticAt 𝕜 f x) : AnalyticAt 𝕜 (-f) x := mp hf := by simpa using hf.neg mpr := .neg -@[deprecated (since := "2025-03-11")] alias AnalyticAt.neg' := AnalyticAt.fun_neg - theorem HasFPowerSeriesWithinOnBall.sub (hf : HasFPowerSeriesWithinOnBall f pf s x r) (hg : HasFPowerSeriesWithinOnBall g pg s x r) : HasFPowerSeriesWithinOnBall (f - g) (pf - pg) s x r := by @@ -187,8 +183,6 @@ theorem AnalyticAt.sub (hf : AnalyticAt 𝕜 f x) (hg : AnalyticAt 𝕜 g x) : AnalyticAt 𝕜 (f - g) x := hf.fun_sub hg -@[deprecated (since := "2025-03-11")] alias AnalyticAt.sub' := AnalyticAt.fun_sub - theorem HasFPowerSeriesWithinOnBall.const_smul (hf : HasFPowerSeriesWithinOnBall f pf s x r) : HasFPowerSeriesWithinOnBall (c • f) (c • pf) s x r where r_le := le_trans hf.r_le pf.radius_le_smul @@ -225,8 +219,6 @@ theorem AnalyticAt.fun_const_smul (hf : AnalyticAt 𝕜 f x) : AnalyticAt 𝕜 ( theorem AnalyticAt.const_smul (hf : AnalyticAt 𝕜 f x) : AnalyticAt 𝕜 (c • f) x := hf.fun_const_smul -@[deprecated (since := "2025-03-11")] alias AnalyticAt.const_smul' := AnalyticAt.fun_const_smul - theorem AnalyticOn.add (hf : AnalyticOn 𝕜 f s) (hg : AnalyticOn 𝕜 g s) : AnalyticOn 𝕜 (f + g) s := fun z hz => (hf z hz).add (hg z hz) @@ -621,8 +613,6 @@ lemma AnalyticAt.smul [NormedSpace 𝕝 F] [IsScalarTower 𝕜 𝕝 F] {f : E AnalyticAt 𝕜 (f • g) z := hf.fun_smul hg -@[deprecated (since := "2025-03-11")] alias AnalyticAt.smul' := AnalyticAt.fun_smul - /-- Scalar multiplication of one analytic function by another. -/ lemma AnalyticOn.smul [NormedSpace 𝕝 F] [IsScalarTower 𝕜 𝕝 F] {f : E → 𝕝} {g : E → F} {s : Set E} @@ -654,8 +644,6 @@ lemma AnalyticAt.mul {f g : E → A} {z : E} (hf : AnalyticAt 𝕜 f z) (hg : An AnalyticAt 𝕜 (f * g) z := hf.fun_mul hg -@[deprecated (since := "2025-03-11")] alias AnalyticAt.mul' := AnalyticAt.fun_mul - /-- Multiplication of analytic functions (valued in a normed `𝕜`-algebra) is analytic. -/ lemma AnalyticOn.mul {f g : E → A} {s : Set E} (hf : AnalyticOn 𝕜 f s) (hg : AnalyticOn 𝕜 g s) : @@ -977,8 +965,6 @@ theorem AnalyticOn.fun_inv {f : E → 𝕝} {s : Set E} (fa : AnalyticOn 𝕜 f AnalyticOn 𝕜 (fun x ↦ (f x)⁻¹) s := fun x m ↦ (fa x m).inv (f0 x m) -@[deprecated (since := "2025-03-11")] alias AnalyticAt.inv' := AnalyticAt.fun_inv - /-- `(f x)⁻¹` is analytic away from `f x = 0` -/ theorem AnalyticOn.inv {f : E → 𝕝} {s : Set E} (fa : AnalyticOn 𝕜 f s) (f0 : ∀ x ∈ s, f x ≠ 0) : AnalyticOn 𝕜 f⁻¹ s := @@ -1114,8 +1100,6 @@ theorem AnalyticAt.div {f g : E → 𝕝} {x : E} AnalyticAt 𝕜 (f / g) x := fa.fun_div ga g0 -@[deprecated (since := "2025-03-11")] alias AnalyticAt.div' := AnalyticAt.fun_div - /-- `f x / g x` is analytic away from `g x = 0` -/ theorem AnalyticOn.div {f g : E → 𝕝} {s : Set E} (fa : AnalyticOn 𝕜 f s) (ga : AnalyticOn 𝕜 g s) (g0 : ∀ x ∈ s, g x ≠ 0) : diff --git a/Mathlib/Analysis/Analytic/Linear.lean b/Mathlib/Analysis/Analytic/Linear.lean index 59f8def96de4ee..34e73a5fc092ec 100644 --- a/Mathlib/Analysis/Analytic/Linear.lean +++ b/Mathlib/Analysis/Analytic/Linear.lean @@ -60,9 +60,6 @@ protected theorem analyticAt (f : E →L[𝕜] F) (x : E) : AnalyticAt 𝕜 f x protected theorem cpolynomialOn (f : E →L[𝕜] F) (s : Set E) : CPolynomialOn 𝕜 f s := fun x _ ↦ f.cpolynomialAt x -@[deprecated (since := "2025-03-22")] -protected alias colynomialOn := ContinuousLinearMap.cpolynomialOn - protected theorem analyticOnNhd (f : E →L[𝕜] F) (s : Set E) : AnalyticOnNhd 𝕜 f s := fun x _ ↦ f.analyticAt x diff --git a/Mathlib/Analysis/Calculus/ContDiff/Basic.lean b/Mathlib/Analysis/Calculus/ContDiff/Basic.lean index 0ddf0feea9e0f1..771e07bc2628aa 100644 --- a/Mathlib/Analysis/Calculus/ContDiff/Basic.lean +++ b/Mathlib/Analysis/Calculus/ContDiff/Basic.lean @@ -516,9 +516,6 @@ theorem HasFTaylorSeriesUpToOn.prodMk {n : WithTop ℕ∞} · intro m hm exact (L m).continuous.comp_continuousOn ((hf.cont m hm).prodMk (hg.cont m hm)) -@[deprecated (since := "2025-03-09")] -alias HasFTaylorSeriesUpToOn.prod := HasFTaylorSeriesUpToOn.prodMk - /-- The Cartesian product of `C^n` functions at a point in a domain is `C^n`. -/ @[fun_prop] theorem ContDiffWithinAt.prodMk {s : Set E} {f : E → F} {g : E → G} @@ -540,36 +537,24 @@ theorem ContDiffWithinAt.prodMk {s : Set E} {f : E → F} {g : E → G} exact ⟨u ∩ v, Filter.inter_mem hu hv, _, (hp.mono inter_subset_left).prodMk (hq.mono inter_subset_right)⟩ -@[deprecated (since := "2025-03-09")] -alias ContDiffWithinAt.prod := ContDiffWithinAt.prodMk - /-- The Cartesian product of `C^n` functions on domains is `C^n`. -/ @[fun_prop] theorem ContDiffOn.prodMk {s : Set E} {f : E → F} {g : E → G} (hf : ContDiffOn 𝕜 n f s) (hg : ContDiffOn 𝕜 n g s) : ContDiffOn 𝕜 n (fun x : E => (f x, g x)) s := fun x hx => (hf x hx).prodMk (hg x hx) -@[deprecated (since := "2025-03-09")] -alias ContDiffOn.prod := ContDiffOn.prodMk - /-- The Cartesian product of `C^n` functions at a point is `C^n`. -/ @[fun_prop] theorem ContDiffAt.prodMk {f : E → F} {g : E → G} (hf : ContDiffAt 𝕜 n f x) (hg : ContDiffAt 𝕜 n g x) : ContDiffAt 𝕜 n (fun x : E => (f x, g x)) x := contDiffWithinAt_univ.1 <| hf.contDiffWithinAt.prodMk hg.contDiffWithinAt -@[deprecated (since := "2025-03-09")] -alias ContDiffAt.prod := ContDiffAt.prodMk - /-- The Cartesian product of `C^n` functions is `C^n`. -/ @[fun_prop] theorem ContDiff.prodMk {f : E → F} {g : E → G} (hf : ContDiff 𝕜 n f) (hg : ContDiff 𝕜 n g) : ContDiff 𝕜 n fun x : E => (f x, g x) := contDiffOn_univ.1 <| hf.contDiffOn.prodMk hg.contDiffOn -@[deprecated (since := "2025-03-09")] -alias ContDiff.prod := ContDiff.prodMk - end prod /-! ### Being `C^k` on a union of open sets can be tested on each set -/ diff --git a/Mathlib/Analysis/Calculus/ContDiff/Operations.lean b/Mathlib/Analysis/Calculus/ContDiff/Operations.lean index 0ad7a0b98083c5..9076c278c1bf92 100644 --- a/Mathlib/Analysis/Calculus/ContDiff/Operations.lean +++ b/Mathlib/Analysis/Calculus/ContDiff/Operations.lean @@ -597,18 +597,12 @@ theorem ContDiffWithinAt.prodMap' {s : Set E} {t : Set E'} {f : E → F} {g : E' (hf.comp p contDiffWithinAt_fst (prod_subset_preimage_fst _ _)).prodMk (hg.comp p contDiffWithinAt_snd (prod_subset_preimage_snd _ _)) -@[deprecated (since := "2025-03-09")] -alias ContDiffWithinAt.prod_map' := ContDiffWithinAt.prodMap' - @[fun_prop] theorem ContDiffWithinAt.prodMap {s : Set E} {t : Set E'} {f : E → F} {g : E' → F'} {x : E} {y : E'} (hf : ContDiffWithinAt 𝕜 n f s x) (hg : ContDiffWithinAt 𝕜 n g t y) : ContDiffWithinAt 𝕜 n (Prod.map f g) (s ×ˢ t) (x, y) := ContDiffWithinAt.prodMap' hf hg -@[deprecated (since := "2025-03-09")] -alias ContDiffWithinAt.prod_map := ContDiffWithinAt.prodMap - /-- The product map of two `C^n` functions on a set is `C^n` on the product set. -/ @[fun_prop] theorem ContDiffOn.prodMap {E' : Type*} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {F' : Type*} @@ -617,9 +611,6 @@ theorem ContDiffOn.prodMap {E' : Type*} [NormedAddCommGroup E'] [NormedSpace (hf.comp contDiffOn_fst (prod_subset_preimage_fst _ _)).prodMk (hg.comp contDiffOn_snd (prod_subset_preimage_snd _ _)) -@[deprecated (since := "2025-03-09")] -alias ContDiffOn.prod_map := ContDiffOn.prodMap - /-- The product map of two `C^n` functions within a set at a point is `C^n` within the product set at the product point. -/ @[fun_prop] @@ -628,9 +619,6 @@ theorem ContDiffAt.prodMap {f : E → F} {g : E' → F'} {x : E} {y : E'} (hf : rw [ContDiffAt] at * simpa only [univ_prod_univ] using hf.prodMap hg -@[deprecated (since := "2025-03-09")] -alias ContDiffAt.prod_map := ContDiffAt.prodMap - /-- The product map of two `C^n` functions within a set at a point is `C^n` within the product set at the product point. -/ @[fun_prop] @@ -638,9 +626,6 @@ theorem ContDiffAt.prodMap' {f : E → F} {g : E' → F'} {p : E × E'} (hf : Co (hg : ContDiffAt 𝕜 n g p.2) : ContDiffAt 𝕜 n (Prod.map f g) p := hf.prodMap hg -@[deprecated (since := "2025-03-09")] -alias ContDiffAt.prod_map' := ContDiffAt.prodMap' - /-- The product map of two `C^n` functions is `C^n`. -/ @[fun_prop] theorem ContDiff.prodMap {f : E → F} {g : E' → F'} (hf : ContDiff 𝕜 n f) (hg : ContDiff 𝕜 n g) : @@ -648,23 +633,14 @@ theorem ContDiff.prodMap {f : E → F} {g : E' → F'} (hf : ContDiff 𝕜 n f) rw [contDiff_iff_contDiffAt] at * exact fun ⟨x, y⟩ => (hf x).prodMap (hg y) -@[deprecated (since := "2025-03-09")] -alias ContDiff.prod_map := ContDiff.prodMap - @[fun_prop] theorem contDiff_prodMk_left (f₀ : F) : ContDiff 𝕜 n fun e : E => (e, f₀) := contDiff_id.prodMk contDiff_const -@[deprecated (since := "2025-03-09")] -alias contDiff_prod_mk_left := contDiff_prodMk_left - @[fun_prop] theorem contDiff_prodMk_right (e₀ : E) : ContDiff 𝕜 n fun f : F => (e₀, f) := contDiff_const.prodMk contDiff_id -@[deprecated (since := "2025-03-09")] -alias contDiff_prod_mk_right := contDiff_prodMk_right - end prodMap /-! diff --git a/Mathlib/Analysis/Calculus/DSlope.lean b/Mathlib/Analysis/Calculus/DSlope.lean index b45c997288b511..a819dd5bb9676d 100644 --- a/Mathlib/Analysis/Calculus/DSlope.lean +++ b/Mathlib/Analysis/Calculus/DSlope.lean @@ -59,9 +59,6 @@ theorem dslope_eventuallyEq_slope_of_ne (f : 𝕜 → E) (h : b ≠ a) : dslope theorem dslope_eventuallyEq_slope_nhdsNE (f : 𝕜 → E) : dslope f a =ᶠ[𝓝[≠] a] slope f a := (eqOn_dslope_slope f a).eventuallyEq_of_mem self_mem_nhdsWithin -@[deprecated (since := "2025-03-02")] -alias dslope_eventuallyEq_slope_punctured_nhds := dslope_eventuallyEq_slope_nhdsNE - @[simp] theorem sub_smul_dslope (f : 𝕜 → E) (a b : 𝕜) : (b - a) • dslope f a b = f b - f a := by rcases eq_or_ne b a with (rfl | hne) <;> simp [dslope_of_ne, *] diff --git a/Mathlib/Analysis/Calculus/Deriv/Inverse.lean b/Mathlib/Analysis/Calculus/Deriv/Inverse.lean index 7c6c18f10af466..ade03ae671fcd7 100644 --- a/Mathlib/Analysis/Calculus/Deriv/Inverse.lean +++ b/Mathlib/Analysis/Calculus/Deriv/Inverse.lean @@ -98,9 +98,6 @@ theorem HasDerivAt.tendsto_nhdsNE (h : HasDerivAt f f' x) (hf' : f' ≠ 0) : tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _ h.continuousAt.continuousWithinAt (h.eventually_ne hf') -@[deprecated (since := "2025-03-02")] -alias HasDerivAt.tendsto_punctured_nhds := HasDerivAt.tendsto_nhdsNE - /-- If a function is equal to a constant at a set of points that accumulates to `x` in `s`, then its derivative within `s` at `x` equals zero, either because it has derivative zero or because it isn't differentiable at this point. -/ diff --git a/Mathlib/Analysis/Calculus/Deriv/Prod.lean b/Mathlib/Analysis/Calculus/Deriv/Prod.lean index a50671126e8ab5..e09ff68539a87a 100644 --- a/Mathlib/Analysis/Calculus/Deriv/Prod.lean +++ b/Mathlib/Analysis/Calculus/Deriv/Prod.lean @@ -40,30 +40,18 @@ nonrec theorem HasDerivAtFilter.prodMk (hf₁ : HasDerivAtFilter f₁ f₁' x L) (hf₂ : HasDerivAtFilter f₂ f₂' x L) : HasDerivAtFilter (fun x => (f₁ x, f₂ x)) (f₁', f₂') x L := hf₁.prodMk hf₂ -@[deprecated (since := "2025-03-09")] -alias HasDerivAtFilter.prod := HasDerivAtFilter.prodMk - nonrec theorem HasDerivWithinAt.prodMk (hf₁ : HasDerivWithinAt f₁ f₁' s x) (hf₂ : HasDerivWithinAt f₂ f₂' s x) : HasDerivWithinAt (fun x => (f₁ x, f₂ x)) (f₁', f₂') s x := hf₁.prodMk hf₂ -@[deprecated (since := "2025-03-09")] -alias HasDerivWithinAt.prod := HasDerivWithinAt.prodMk - nonrec theorem HasDerivAt.prodMk (hf₁ : HasDerivAt f₁ f₁' x) (hf₂ : HasDerivAt f₂ f₂' x) : HasDerivAt (fun x => (f₁ x, f₂ x)) (f₁', f₂') x := hf₁.prodMk hf₂ -@[deprecated (since := "2025-03-09")] -alias HasDerivAt.prod := HasDerivAt.prodMk - nonrec theorem HasStrictDerivAt.prodMk (hf₁ : HasStrictDerivAt f₁ f₁' x) (hf₂ : HasStrictDerivAt f₂ f₂' x) : HasStrictDerivAt (fun x => (f₁ x, f₂ x)) (f₁', f₂') x := hf₁.prodMk hf₂ -@[deprecated (since := "2025-03-09")] -alias HasStrictDerivAt.prod := HasStrictDerivAt.prodMk - end CartesianProduct section Pi diff --git a/Mathlib/Analysis/Calculus/FDeriv/Prod.lean b/Mathlib/Analysis/Calculus/FDeriv/Prod.lean index a63dbc1a10c3cd..9e88ad7097fdff 100644 --- a/Mathlib/Analysis/Calculus/FDeriv/Prod.lean +++ b/Mathlib/Analysis/Calculus/FDeriv/Prod.lean @@ -50,99 +50,63 @@ protected theorem HasStrictFDerivAt.prodMk (hf₁ : HasStrictFDerivAt f₁ f₁' HasStrictFDerivAt (fun x => (f₁ x, f₂ x)) (f₁'.prod f₂') x := .of_isLittleO <| hf₁.isLittleO.prod_left hf₂.isLittleO -@[deprecated (since := "2025-03-09")] -alias HasStrictFDerivAt.prod := HasStrictFDerivAt.prodMk - theorem HasFDerivAtFilter.prodMk (hf₁ : HasFDerivAtFilter f₁ f₁' x L) (hf₂ : HasFDerivAtFilter f₂ f₂' x L) : HasFDerivAtFilter (fun x => (f₁ x, f₂ x)) (f₁'.prod f₂') x L := .of_isLittleO <| hf₁.isLittleO.prod_left hf₂.isLittleO -@[deprecated (since := "2025-03-09")] -alias HasFDerivAtFilter.prod := HasFDerivAtFilter.prodMk - @[fun_prop] nonrec theorem HasFDerivWithinAt.prodMk (hf₁ : HasFDerivWithinAt f₁ f₁' s x) (hf₂ : HasFDerivWithinAt f₂ f₂' s x) : HasFDerivWithinAt (fun x => (f₁ x, f₂ x)) (f₁'.prod f₂') s x := hf₁.prodMk hf₂ -@[deprecated (since := "2025-03-09")] -alias HasFDerivWithinAt.prod := HasFDerivWithinAt.prodMk - @[fun_prop] nonrec theorem HasFDerivAt.prodMk (hf₁ : HasFDerivAt f₁ f₁' x) (hf₂ : HasFDerivAt f₂ f₂' x) : HasFDerivAt (fun x => (f₁ x, f₂ x)) (f₁'.prod f₂') x := hf₁.prodMk hf₂ -@[deprecated (since := "2025-03-09")] -alias HasFDerivAt.prod := HasFDerivAt.prodMk - @[fun_prop] theorem hasFDerivAt_prodMk_left (e₀ : E) (f₀ : F) : HasFDerivAt (fun e : E => (e, f₀)) (inl 𝕜 E F) e₀ := (hasFDerivAt_id e₀).prodMk (hasFDerivAt_const f₀ e₀) -@[deprecated (since := "2025-03-09")] -alias hasFDerivAt_prod_mk_left := hasFDerivAt_prodMk_left - @[fun_prop] theorem hasFDerivAt_prodMk_right (e₀ : E) (f₀ : F) : HasFDerivAt (fun f : F => (e₀, f)) (inr 𝕜 E F) f₀ := (hasFDerivAt_const e₀ f₀).prodMk (hasFDerivAt_id f₀) -@[deprecated (since := "2025-03-09")] -alias hasFDerivAt_prod_mk_right := hasFDerivAt_prodMk_right - @[fun_prop] theorem DifferentiableWithinAt.prodMk (hf₁ : DifferentiableWithinAt 𝕜 f₁ s x) (hf₂ : DifferentiableWithinAt 𝕜 f₂ s x) : DifferentiableWithinAt 𝕜 (fun x : E => (f₁ x, f₂ x)) s x := (hf₁.hasFDerivWithinAt.prodMk hf₂.hasFDerivWithinAt).differentiableWithinAt -@[deprecated (since := "2025-03-09")] -alias DifferentiableWithinAt.prod := DifferentiableWithinAt.prodMk - @[simp, fun_prop] theorem DifferentiableAt.prodMk (hf₁ : DifferentiableAt 𝕜 f₁ x) (hf₂ : DifferentiableAt 𝕜 f₂ x) : DifferentiableAt 𝕜 (fun x : E => (f₁ x, f₂ x)) x := (hf₁.hasFDerivAt.prodMk hf₂.hasFDerivAt).differentiableAt -@[deprecated (since := "2025-03-09")] -alias DifferentiableAt.prod := DifferentiableAt.prodMk - @[fun_prop] theorem DifferentiableOn.prodMk (hf₁ : DifferentiableOn 𝕜 f₁ s) (hf₂ : DifferentiableOn 𝕜 f₂ s) : DifferentiableOn 𝕜 (fun x : E => (f₁ x, f₂ x)) s := fun x hx => (hf₁ x hx).prodMk (hf₂ x hx) -@[deprecated (since := "2025-03-09")] -alias DifferentiableOn.prod := DifferentiableOn.prodMk - @[simp, fun_prop] theorem Differentiable.prodMk (hf₁ : Differentiable 𝕜 f₁) (hf₂ : Differentiable 𝕜 f₂) : Differentiable 𝕜 fun x : E => (f₁ x, f₂ x) := fun x ↦ (hf₁ x).prodMk (hf₂ x) -@[deprecated (since := "2025-03-09")] -alias Differentiable.prod := Differentiable.prodMk - theorem DifferentiableAt.fderiv_prodMk (hf₁ : DifferentiableAt 𝕜 f₁ x) (hf₂ : DifferentiableAt 𝕜 f₂ x) : fderiv 𝕜 (fun x : E => (f₁ x, f₂ x)) x = (fderiv 𝕜 f₁ x).prod (fderiv 𝕜 f₂ x) := (hf₁.hasFDerivAt.prodMk hf₂.hasFDerivAt).fderiv -@[deprecated (since := "2025-03-09")] -alias DifferentiableAt.fderiv_prod := DifferentiableAt.fderiv_prodMk - theorem DifferentiableWithinAt.fderivWithin_prodMk (hf₁ : DifferentiableWithinAt 𝕜 f₁ s x) (hf₂ : DifferentiableWithinAt 𝕜 f₂ s x) (hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 (fun x : E => (f₁ x, f₂ x)) s x = (fderivWithin 𝕜 f₁ s x).prod (fderivWithin 𝕜 f₂ s x) := (hf₁.hasFDerivWithinAt.prodMk hf₂.hasFDerivWithinAt).fderivWithin hxs -@[deprecated (since := "2025-03-09")] -alias DifferentiableWithinAt.fderivWithin_prod := DifferentiableWithinAt.fderivWithin_prodMk - end Prod section Fst @@ -350,9 +314,6 @@ protected theorem DifferentiableAt.prodMap (hf : DifferentiableAt 𝕜 f p.1) (hf₂ : DifferentiableAt 𝕜 f₂ p.2) : DifferentiableAt 𝕜 (fun p : E × G => (f p.1, f₂ p.2)) p := (hf.comp p differentiableAt_fst).prodMk (hf₂.comp p differentiableAt_snd) -@[deprecated (since := "2025-03-09")] -alias DifferentiableAt.prod_map := DifferentiableAt.prodMap - end prodMap section Pi diff --git a/Mathlib/Analysis/Calculus/LHopital.lean b/Mathlib/Analysis/Calculus/LHopital.lean index f4679609858d3b..f294aefb2150ff 100644 --- a/Mathlib/Analysis/Calculus/LHopital.lean +++ b/Mathlib/Analysis/Calculus/LHopital.lean @@ -273,9 +273,6 @@ theorem lhopital_zero_nhdsGT (hff' : ∀ᶠ x in 𝓝[>] a, HasDerivAt f (f' x) refine lhopital_zero_right_on_Ioo hau ?_ ?_ ?_ hfa hga hdiv <;> intro x hx <;> apply_assumption <;> first | exact (hu hx).1.1 | exact (hu hx).1.2 | exact (hu hx).2 -@[deprecated (since := "2025-03-02")] -alias lhopital_zero_nhds_right := lhopital_zero_nhdsGT - /-- L'Hôpital's rule for approaching a real from the left, `HasDerivAt` version -/ theorem lhopital_zero_nhdsLT (hff' : ∀ᶠ x in 𝓝[<] a, HasDerivAt f (f' x) x) (hgg' : ∀ᶠ x in 𝓝[<] a, HasDerivAt g (g' x) x) (hg' : ∀ᶠ x in 𝓝[<] a, g' x ≠ 0) @@ -293,9 +290,6 @@ theorem lhopital_zero_nhdsLT (hff' : ∀ᶠ x in 𝓝[<] a, HasDerivAt f (f' x) refine lhopital_zero_left_on_Ioo hal ?_ ?_ ?_ hfa hga hdiv <;> intro x hx <;> apply_assumption <;> first | exact (hl hx).1.1| exact (hl hx).1.2| exact (hl hx).2 -@[deprecated (since := "2025-03-02")] -alias lhopital_zero_nhds_left := lhopital_zero_nhdsLT - /-- L'Hôpital's rule for approaching a real, `HasDerivAt` version. This does not require anything about the situation at `a` -/ theorem lhopital_zero_nhdsNE (hff' : ∀ᶠ x in 𝓝[≠] a, HasDerivAt f (f' x) x) @@ -307,9 +301,6 @@ theorem lhopital_zero_nhdsNE (hff' : ∀ᶠ x in 𝓝[≠] a, HasDerivAt f (f' x exact ⟨lhopital_zero_nhdsLT hff'.1 hgg'.1 hg'.1 hfa.1 hga.1 hdiv.1, lhopital_zero_nhdsGT hff'.2 hgg'.2 hg'.2 hfa.2 hga.2 hdiv.2⟩ -@[deprecated (since := "2025-03-02")] -alias lhopital_zero_nhds' := lhopital_zero_nhdsNE - /-- **L'Hôpital's rule** for approaching a real, `HasDerivAt` version -/ theorem lhopital_zero_nhds (hff' : ∀ᶠ x in 𝓝 a, HasDerivAt f (f' x) x) (hgg' : ∀ᶠ x in 𝓝 a, HasDerivAt g (g' x) x) (hg' : ∀ᶠ x in 𝓝 a, g' x ≠ 0) @@ -371,9 +362,6 @@ theorem lhopital_zero_nhdsGT (hdf : ∀ᶠ x in 𝓝[>] a, DifferentiableAt ℝ hdg.mono fun _ => DifferentiableAt.hasDerivAt exact HasDerivAt.lhopital_zero_nhdsGT hdf' hdg' hg' hfa hga hdiv -@[deprecated (since := "2025-03-02")] -alias lhopital_zero_nhds_right := lhopital_zero_nhdsGT - /-- **L'Hôpital's rule** for approaching a real from the left, `deriv` version -/ theorem lhopital_zero_nhdsLT (hdf : ∀ᶠ x in 𝓝[<] a, DifferentiableAt ℝ f x) (hg' : ∀ᶠ x in 𝓝[<] a, deriv g x ≠ 0) (hfa : Tendsto f (𝓝[<] a) (𝓝 0)) @@ -388,9 +376,6 @@ theorem lhopital_zero_nhdsLT (hdf : ∀ᶠ x in 𝓝[<] a, DifferentiableAt ℝ hdg.mono fun _ => DifferentiableAt.hasDerivAt exact HasDerivAt.lhopital_zero_nhdsLT hdf' hdg' hg' hfa hga hdiv -@[deprecated (since := "2025-03-02")] -alias lhopital_zero_nhds_left := lhopital_zero_nhdsLT - /-- **L'Hôpital's rule** for approaching a real, `deriv` version. This does not require anything about the situation at `a` -/ theorem lhopital_zero_nhdsNE (hdf : ∀ᶠ x in 𝓝[≠] a, DifferentiableAt ℝ f x) @@ -402,9 +387,6 @@ theorem lhopital_zero_nhdsNE (hdf : ∀ᶠ x in 𝓝[≠] a, DifferentiableAt exact ⟨lhopital_zero_nhdsLT hdf.1 hg'.1 hfa.1 hga.1 hdiv.1, lhopital_zero_nhdsGT hdf.2 hg'.2 hfa.2 hga.2 hdiv.2⟩ -@[deprecated (since := "2025-03-02")] -alias lhopital_zero_nhds' := lhopital_zero_nhdsNE - /-- **L'Hôpital's rule** for approaching a real, `deriv` version -/ theorem lhopital_zero_nhds (hdf : ∀ᶠ x in 𝓝 a, DifferentiableAt ℝ f x) (hg' : ∀ᶠ x in 𝓝 a, deriv g x ≠ 0) (hfa : Tendsto f (𝓝 a) (𝓝 0)) (hga : Tendsto g (𝓝 a) (𝓝 0)) diff --git a/Mathlib/Analysis/Complex/Cardinality.lean b/Mathlib/Analysis/Complex/Cardinality.lean index 4d611f27ae1c9b..f3039ac320dff4 100644 --- a/Mathlib/Analysis/Complex/Cardinality.lean +++ b/Mathlib/Analysis/Complex/Cardinality.lean @@ -21,14 +21,9 @@ open Cardinal theorem Cardinal.mk_complex : #ℂ = 𝔠 := by rw [mk_congr Complex.equivRealProd, mk_prod, lift_id, mk_real, continuum_mul_self] -@[deprecated Cardinal.mk_complex (since := "2025-03-13")] alias mk_complex := Cardinal.mk_complex - /-- The cardinality of the complex numbers, as a set. -/ theorem Cardinal.mk_univ_complex : #(Set.univ : Set ℂ) = 𝔠 := by rw [mk_univ, mk_complex] -@[deprecated Cardinal.mk_univ_complex (since := "2025-03-13")] -alias mk_univ_complex := Cardinal.mk_univ_complex - /-- The complex numbers are not countable. -/ theorem not_countable_complex : ¬(Set.univ : Set ℂ).Countable := by rw [← le_aleph0_iff_set_countable, not_le, Cardinal.mk_univ_complex] diff --git a/Mathlib/Analysis/Convex/Gauge.lean b/Mathlib/Analysis/Convex/Gauge.lean index 6d9b5a106a2473..8ae8861a259fb7 100644 --- a/Mathlib/Analysis/Convex/Gauge.lean +++ b/Mathlib/Analysis/Convex/Gauge.lean @@ -398,9 +398,6 @@ theorem tendsto_gauge_nhds_zero_nhdsGE (hs : s ∈ 𝓝 0) : Tendsto (gauge s) ( filter_upwards [hs] with x hx exact ⟨gauge_nonneg _, gauge_le_of_mem hε.le hx⟩ -@[deprecated (since := "2025-03-02")] -alias tendsto_gauge_nhds_zero' := tendsto_gauge_nhds_zero_nhdsGE - theorem tendsto_gauge_nhds_zero (hs : s ∈ 𝓝 0) : Tendsto (gauge s) (𝓝 0) (𝓝 0) := (tendsto_gauge_nhds_zero_nhdsGE hs).mono_right inf_le_left diff --git a/Mathlib/Analysis/LocallyConvex/Basic.lean b/Mathlib/Analysis/LocallyConvex/Basic.lean index 8f0bad846cf461..aba77693f3d435 100644 --- a/Mathlib/Analysis/LocallyConvex/Basic.lean +++ b/Mathlib/Analysis/LocallyConvex/Basic.lean @@ -155,26 +155,14 @@ theorem absorbs_iff_eventually_nhdsNE_zero : Absorbs 𝕜 s t ↔ ∀ᶠ c : 𝕜 in 𝓝[≠] 0, MapsTo (c • ·) t s := by rw [absorbs_iff_eventually_cobounded_mapsTo, ← Filter.inv_cobounded₀]; rfl -@[deprecated (since := "2025-03-03")] -alias absorbs_iff_eventually_nhdsWithin_zero := absorbs_iff_eventually_nhdsNE_zero - alias ⟨Absorbs.eventually_nhdsNE_zero, _⟩ := absorbs_iff_eventually_nhdsNE_zero -@[deprecated (since := "2025-03-03")] -alias Absorbs.eventually_nhdsWithin_zero := Absorbs.eventually_nhdsNE_zero - theorem absorbent_iff_eventually_nhdsNE_zero : Absorbent 𝕜 s ↔ ∀ x : E, ∀ᶠ c : 𝕜 in 𝓝[≠] 0, c • x ∈ s := forall_congr' fun x ↦ by simp only [absorbs_iff_eventually_nhdsNE_zero, mapsTo_singleton] -@[deprecated (since := "2025-03-03")] -alias absorbent_iff_eventually_nhdsWithin_zero := absorbent_iff_eventually_nhdsNE_zero - alias ⟨Absorbent.eventually_nhdsNE_zero, _⟩ := absorbent_iff_eventually_nhdsNE_zero -@[deprecated (since := "2025-03-03")] -alias Absorbent.eventually_nhdsWithin_zero := Absorbent.eventually_nhdsNE_zero - theorem absorbs_iff_eventually_nhds_zero (h₀ : 0 ∈ s) : Absorbs 𝕜 s t ↔ ∀ᶠ c : 𝕜 in 𝓝 0, MapsTo (c • ·) t s := by rw [← nhdsNE_sup_pure, Filter.eventually_sup, Filter.eventually_pure, diff --git a/Mathlib/Analysis/Matrix.lean b/Mathlib/Analysis/Matrix.lean index e2cd46929699aa..8ebd35ef234909 100644 --- a/Mathlib/Analysis/Matrix.lean +++ b/Mathlib/Analysis/Matrix.lean @@ -137,26 +137,18 @@ instance [StarAddMonoid α] [NormedStarGroup α] : NormedStarGroup (Matrix m m theorem nnnorm_replicateCol (v : m → α) : ‖replicateCol ι v‖₊ = ‖v‖₊ := by simp [nnnorm_def, Pi.nnnorm_def] -@[deprecated (since := "2025-03-20")] alias nnnorm_col := nnnorm_replicateCol - @[simp] theorem norm_replicateCol (v : m → α) : ‖replicateCol ι v‖ = ‖v‖ := congr_arg ((↑) : ℝ≥0 → ℝ) <| nnnorm_replicateCol v -@[deprecated (since := "2025-03-20")] alias norm_col := norm_replicateCol - @[simp] theorem nnnorm_replicateRow (v : n → α) : ‖replicateRow ι v‖₊ = ‖v‖₊ := by simp [nnnorm_def, Pi.nnnorm_def] -@[deprecated (since := "2025-03-20")] alias nnnorm_row := nnnorm_replicateRow - @[simp] theorem norm_replicateRow (v : n → α) : ‖replicateRow ι v‖ = ‖v‖ := congr_arg ((↑) : ℝ≥0 → ℝ) <| nnnorm_replicateRow v -@[deprecated (since := "2025-03-20")] alias norm_row := norm_replicateRow - @[simp] theorem nnnorm_diagonal [DecidableEq n] (v : n → α) : ‖diagonal v‖₊ = ‖v‖₊ := by simp_rw [nnnorm_def, Pi.nnnorm_def] @@ -194,8 +186,6 @@ protected theorem isBoundedSMul [SeminormedRing R] [SeminormedAddCommGroup α] [ [IsBoundedSMul R α] : IsBoundedSMul R (Matrix m n α) := Pi.instIsBoundedSMul -@[deprecated (since := "2025-03-10")] protected alias boundedSMul := Matrix.isBoundedSMul - /-- This applies to the sup norm of sup norm. -/ protected theorem normSMulClass [SeminormedRing R] [SeminormedAddCommGroup α] [Module R α] [NormSMulClass R α] : NormSMulClass R (Matrix m n α) := @@ -291,26 +281,18 @@ theorem linfty_opNNNorm_replicateCol (v : m → α) : ‖replicateCol ι v‖₊ rw [linfty_opNNNorm_def, Pi.nnnorm_def] simp -@[deprecated (since := "2025-03-20")] alias linfty_opNNNorm_col := linfty_opNNNorm_replicateCol - @[simp] theorem linfty_opNorm_replicateCol (v : m → α) : ‖replicateCol ι v‖ = ‖v‖ := congr_arg ((↑) : ℝ≥0 → ℝ) <| linfty_opNNNorm_replicateCol v -@[deprecated (since := "2025-03-20")] alias linfty_opNorm_col := linfty_opNorm_replicateCol - @[simp] theorem linfty_opNNNorm_replicateRow (v : n → α) : ‖replicateRow ι v‖₊ = ∑ i, ‖v i‖₊ := by simp [linfty_opNNNorm_def] -@[deprecated (since := "2025-03-20")] alias linfty_opNNNorm_row := linfty_opNNNorm_replicateRow - @[simp] theorem linfty_opNorm_replicateRow (v : n → α) : ‖replicateRow ι v‖ = ∑ i, ‖v i‖ := (congr_arg ((↑) : ℝ≥0 → ℝ) <| linfty_opNNNorm_replicateRow v).trans <| by simp [NNReal.coe_sum] -@[deprecated (since := "2025-03-20")] alias linfty_opNorm_row := linfty_opNNNorm_replicateRow - @[simp] theorem linfty_opNNNorm_diagonal [DecidableEq m] (v : m → α) : ‖diagonal v‖₊ = ‖v‖₊ := by rw [linfty_opNNNorm_def, Pi.nnnorm_def] @@ -527,8 +509,6 @@ theorem frobeniusNormSMulClass [SeminormedRing R] [SeminormedAddCommGroup α] [M NormSMulClass R (Matrix m n α) := (by infer_instance : NormSMulClass R (PiLp 2 fun i : m => PiLp 2 fun j : n => α)) -@[deprecated (since := "2025-03-10")] alias frobeniusBoundedSMul := frobeniusIsBoundedSMul - /-- Normed space instance (using the Frobenius norm) for matrices over a normed space. Not declared as an instance because there are several natural choices for defining the norm of a matrix. -/ @@ -588,26 +568,18 @@ lemma frobenius_norm_replicateRow (v : m → α) : ‖replicateRow ι v‖ = ‖ rw [frobenius_norm_def, Fintype.sum_unique, PiLp.norm_eq_of_L2, Real.sqrt_eq_rpow] simp only [replicateRow_apply, Real.rpow_two, PiLp.toLp_apply] -@[deprecated (since := "2025-03-20")] alias frobenius_norm_row := frobenius_norm_replicateRow - @[simp] lemma frobenius_nnnorm_replicateRow (v : m → α) : ‖replicateRow ι v‖₊ = ‖toLp 2 v‖₊ := Subtype.ext <| frobenius_norm_replicateRow v -@[deprecated (since := "2025-03-20")] alias frobenius_nnnorm_row := frobenius_nnnorm_replicateRow - @[simp] lemma frobenius_norm_replicateCol (v : n → α) : ‖replicateCol ι v‖ = ‖toLp 2 v‖ := by simp [frobenius_norm_def, PiLp.norm_eq_of_L2, Real.sqrt_eq_rpow] -@[deprecated (since := "2025-03-20")] alias frobenius_norm_col := frobenius_norm_replicateCol - @[simp] lemma frobenius_nnnorm_replicateCol (v : n → α) : ‖replicateCol ι v‖₊ = ‖toLp 2 v‖₊ := Subtype.ext <| frobenius_norm_replicateCol v -@[deprecated (since := "2025-03-20")] alias frobenius_nnnorm_col := frobenius_nnnorm_replicateCol - @[simp] lemma frobenius_nnnorm_diagonal [DecidableEq n] (v : n → α) : ‖diagonal v‖₊ = ‖toLp 2 v‖₊ := by simp_rw [frobenius_nnnorm_def, ← Finset.sum_product', Finset.univ_product_univ, diff --git a/Mathlib/Analysis/Normed/Field/Basic.lean b/Mathlib/Analysis/Normed/Field/Basic.lean index 994db3e4a79c93..2ab2a35a6e6ca5 100644 --- a/Mathlib/Analysis/Normed/Field/Basic.lean +++ b/Mathlib/Analysis/Normed/Field/Basic.lean @@ -243,9 +243,6 @@ theorem nhdsNE_neBot (x : α) : NeBot (𝓝[≠] x) := by refine ⟨x + b, mt (Set.mem_singleton_iff.trans add_eq_left).1 <| norm_pos_iff.1 hb0, ?_⟩ rwa [dist_comm, dist_eq_norm, add_sub_cancel_left] -@[deprecated (since := "2025-03-02")] -alias punctured_nhds_neBot := nhdsNE_neBot - @[instance] theorem nhdsWithin_isUnit_neBot : NeBot (𝓝[{ x : α | IsUnit x }] 0) := by simpa only [isUnit_iff_ne_zero] using nhdsNE_neBot (0 : α) diff --git a/Mathlib/Analysis/Normed/Field/Lemmas.lean b/Mathlib/Analysis/Normed/Field/Lemmas.lean index a97f34baf537ad..872a774a3e5347 100644 --- a/Mathlib/Analysis/Normed/Field/Lemmas.lean +++ b/Mathlib/Analysis/Normed/Field/Lemmas.lean @@ -116,9 +116,6 @@ instance (priority := 100) NormedDivisionRing.to_continuousInv₀ : ContinuousIn instance (priority := 100) NormedDivisionRing.to_isTopologicalDivisionRing : IsTopologicalDivisionRing α where -@[deprecated (since := "2025-03-25")] alias NormedDivisionRing.to_topologicalDivisionRing := - NormedDivisionRing.to_isTopologicalDivisionRing - lemma NormedField.tendsto_norm_inv_nhdsNE_zero_atTop : Tendsto (fun x : α ↦ ‖x⁻¹‖) (𝓝[≠] 0) atTop := (tendsto_inv_nhdsGT_zero.comp tendsto_norm_nhdsNE_zero).congr fun x ↦ (norm_inv x).symm diff --git a/Mathlib/Analysis/Normed/MulAction.lean b/Mathlib/Analysis/Normed/MulAction.lean index ce8280e80c100e..382bca8cbb837f 100644 --- a/Mathlib/Analysis/Normed/MulAction.lean +++ b/Mathlib/Analysis/Normed/MulAction.lean @@ -79,15 +79,9 @@ theorem IsBoundedSMul.of_enorm_smul_le (h : ∀ (r : α) (x : β), ‖r • x‖ IsBoundedSMul α β := .of_norm_smul_le (by simpa [enorm_eq_nnnorm, ← ENNReal.coe_mul, ENNReal.coe_le_coe] using h) -@[deprecated (since := "2025-03-10")] -alias BoundedSMul.of_norm_smul_le := IsBoundedSMul.of_norm_smul_le - theorem IsBoundedSMul.of_nnnorm_smul_le (h : ∀ (r : α) (x : β), ‖r • x‖₊ ≤ ‖r‖₊ * ‖x‖₊) : IsBoundedSMul α β := .of_norm_smul_le h -@[deprecated (since := "2025-03-10")] -alias BoundedSMul.of_nnnorm_smul_le := IsBoundedSMul.of_nnnorm_smul_le - end SeminormedRing section NormSMulClass diff --git a/Mathlib/Analysis/SpecialFunctions/Log/Base.lean b/Mathlib/Analysis/SpecialFunctions/Log/Base.lean index a772c7a77e8a88..09e9d245e816f6 100644 --- a/Mathlib/Analysis/SpecialFunctions/Log/Base.lean +++ b/Mathlib/Analysis/SpecialFunctions/Log/Base.lean @@ -430,29 +430,17 @@ theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ theorem tendsto_logb_nhdsNE_zero (hb : 1 < b) : Tendsto (logb b) (𝓝[≠] 0) atBot := tendsto_log_nhdsNE_zero.atBot_div_const (log_pos hb) -@[deprecated (since := "2025-03-18")] -alias tendsto_logb_nhdsWithin_zero := tendsto_logb_nhdsNE_zero - theorem tendsto_logb_nhdsNE_zero_of_base_lt_one (hb₀ : 0 < b) (hb : b < 1) : Tendsto (logb b) (𝓝[≠] 0) atTop := tendsto_log_nhdsNE_zero.atBot_mul_const_of_neg (inv_lt_zero.2 (log_neg hb₀ hb)) -@[deprecated (since := "2025-03-18")] -alias tendsto_logb_nhdsWithin_zero_of_base_lt_one := tendsto_logb_nhdsNE_zero_of_base_lt_one - lemma tendsto_logb_nhdsGT_zero (hb : 1 < b) : Tendsto (logb b) (𝓝[>] 0) atBot := tendsto_log_nhdsGT_zero.atBot_div_const (log_pos hb) -@[deprecated (since := "2025-03-18")] -alias tendsto_logb_nhdsWithin_zero_right := tendsto_logb_nhdsGT_zero - lemma tendsto_logb_nhdsGT_zero_of_base_lt_one (hb₀ : 0 < b) (hb : b < 1) : Tendsto (logb b) (𝓝[>] 0) atTop := tendsto_log_nhdsGT_zero.atBot_mul_const_of_neg (inv_lt_zero.2 (log_neg hb₀ hb)) -@[deprecated (since := "2025-03-18")] -alias tendsto_logb_nhdsWithin_zero_right_of_base_lt_one := tendsto_logb_nhdsGT_zero_of_base_lt_one - /-- The function `|logb b x|` tends to `+∞` as `x` tendsto `+∞`. See also `tendsto_logb_atTop` and `tendsto_logb_atTop_of_base_lt_one`. diff --git a/Mathlib/Analysis/SpecialFunctions/Log/Basic.lean b/Mathlib/Analysis/SpecialFunctions/Log/Basic.lean index b5cb9e59b11896..1d7e880fd56cbe 100644 --- a/Mathlib/Analysis/SpecialFunctions/Log/Basic.lean +++ b/Mathlib/Analysis/SpecialFunctions/Log/Basic.lean @@ -322,21 +322,12 @@ theorem tendsto_log_atTop : Tendsto log atTop atTop := lemma tendsto_log_nhdsGT_zero : Tendsto log (𝓝[>] 0) atBot := by simpa [← tendsto_comp_exp_atBot] using tendsto_id -@[deprecated (since := "2025-03-18")] -alias tendsto_log_nhdsWithin_zero_right := tendsto_log_nhdsGT_zero - theorem tendsto_log_nhdsNE_zero : Tendsto log (𝓝[≠] 0) atBot := by simpa [comp_def] using tendsto_log_nhdsGT_zero.comp tendsto_abs_nhdsNE_zero -@[deprecated (since := "2025-03-18")] -alias tendsto_log_nhdsWithin_zero := tendsto_log_nhdsNE_zero - lemma tendsto_log_nhdsLT_zero : Tendsto log (𝓝[<] 0) atBot := tendsto_log_nhdsNE_zero.mono_left <| nhdsWithin_mono _ fun _ h ↦ ne_of_lt h -@[deprecated (since := "2025-03-18")] -alias tendsto_log_nhdsWithin_zero_left := tendsto_log_nhdsLT_zero - theorem continuousOn_log : ContinuousOn log {0}ᶜ := by simp +unfoldPartialApp only [continuousOn_iff_continuous_restrict, restrict] diff --git a/Mathlib/Analysis/SpecialFunctions/Pow/Asymptotics.lean b/Mathlib/Analysis/SpecialFunctions/Pow/Asymptotics.lean index ec7f1841b2cae1..cb88a49c892e35 100644 --- a/Mathlib/Analysis/SpecialFunctions/Pow/Asymptotics.lean +++ b/Mathlib/Analysis/SpecialFunctions/Pow/Asymptotics.lean @@ -353,33 +353,21 @@ theorem isLittleO_abs_log_rpow_rpow_nhdsGT_zero {s : ℝ} (r : ℝ) (hs : s < 0) (eventually_mem_nhdsWithin.mono fun x hx => by rw [Function.comp_apply, inv_rpow hx.out.le, rpow_neg hx.out.le, inv_inv]) -@[deprecated (since := "2025-03-02")] -alias isLittleO_abs_log_rpow_rpow_nhds_zero := isLittleO_abs_log_rpow_rpow_nhdsGT_zero - theorem isLittleO_log_rpow_nhdsGT_zero {r : ℝ} (hr : r < 0) : log =o[𝓝[>] 0] fun x => x ^ r := (isLittleO_abs_log_rpow_rpow_nhdsGT_zero 1 hr).neg_left.congr' (mem_of_superset (Icc_mem_nhdsGT one_pos) fun x hx => by simp [abs_of_nonpos (log_nonpos hx.1 hx.2)]) .rfl -@[deprecated (since := "2025-03-02")] -alias isLittleO_log_rpow_nhds_zero := isLittleO_log_rpow_nhdsGT_zero - theorem tendsto_log_div_rpow_nhdsGT_zero {r : ℝ} (hr : r < 0) : Tendsto (fun x => log x / x ^ r) (𝓝[>] 0) (𝓝 0) := (isLittleO_log_rpow_nhdsGT_zero hr).tendsto_div_nhds_zero -@[deprecated (since := "2025-03-02")] -alias tendsto_log_div_rpow_nhds_zero := tendsto_log_div_rpow_nhdsGT_zero - theorem tendsto_log_mul_rpow_nhdsGT_zero {r : ℝ} (hr : 0 < r) : Tendsto (fun x => log x * x ^ r) (𝓝[>] 0) (𝓝 0) := (tendsto_log_div_rpow_nhdsGT_zero <| neg_lt_zero.2 hr).congr' <| eventually_mem_nhdsWithin.mono fun x hx => by rw [rpow_neg hx.out.le, div_inv_eq_mul] -@[deprecated (since := "2025-03-02")] -alias tendsto_log_mul_rpow_nhds_zero := tendsto_log_mul_rpow_nhdsGT_zero - lemma tendsto_log_mul_self_nhdsLT_zero : Filter.Tendsto (fun x ↦ log x * x) (𝓝[<] 0) (𝓝 0) := by have h := tendsto_log_mul_rpow_nhdsGT_zero zero_lt_one simp only [Real.rpow_one] at h @@ -393,6 +381,3 @@ lemma tendsto_log_mul_self_nhdsLT_zero : Filter.Tendsto (fun x ↦ log x * x) ( refine nhdsWithin_mono 0 (fun x hx ↦ ?_) simp only [Set.mem_Iio] at hx simp only [Set.mem_compl_iff, Set.mem_singleton_iff, hx.ne, not_false_eq_true] - -@[deprecated (since := "2025-03-02")] -alias tendsto_log_mul_self_nhds_zero_left := tendsto_log_mul_self_nhdsLT_zero diff --git a/Mathlib/CategoryTheory/Adjunction/PartialAdjoint.lean b/Mathlib/CategoryTheory/Adjunction/PartialAdjoint.lean index 41ba44735c0a86..c003e4add40f07 100644 --- a/Mathlib/CategoryTheory/Adjunction/PartialAdjoint.lean +++ b/Mathlib/CategoryTheory/Adjunction/PartialAdjoint.lean @@ -49,8 +49,6 @@ to the domain of definition of the (partial) left adjoint of `F`. -/ def leftAdjointObjIsDefined : ObjectProperty C := fun X ↦ IsCorepresentable (F ⋙ coyoneda.obj (op X)) -@[deprecated (since := "2025-03-05")] alias LeftAdjointObjIsDefined := leftAdjointObjIsDefined - lemma leftAdjointObjIsDefined_iff (X : C) : F.leftAdjointObjIsDefined X ↔ IsCorepresentable (F ⋙ coyoneda.obj (op X)) := by rfl diff --git a/Mathlib/CategoryTheory/ConnectedComponents.lean b/Mathlib/CategoryTheory/ConnectedComponents.lean index ed2468d28c962e..1ab6631e55f26e 100644 --- a/Mathlib/CategoryTheory/ConnectedComponents.lean +++ b/Mathlib/CategoryTheory/ConnectedComponents.lean @@ -91,9 +91,6 @@ abbrev ConnectedComponents.ι (j : ConnectedComponents J) : j.Component ⥤ J := abbrev ConnectedComponents.mk (j : J) : ConnectedComponents J := Quotient.mk'' j -@[deprecated (since := "2025-03-04")] alias Component := ConnectedComponents.Component -@[deprecated (since := "2025-03-04")] alias Component.ι := ConnectedComponents.ι - /-- Each connected component of the category is nonempty. -/ instance (j : ConnectedComponents J) : Nonempty j.Component := by induction j using Quotient.inductionOn' diff --git a/Mathlib/CategoryTheory/Equivalence.lean b/Mathlib/CategoryTheory/Equivalence.lean index 517c57edf77745..0d6919bb3beb3c 100644 --- a/Mathlib/CategoryTheory/Equivalence.lean +++ b/Mathlib/CategoryTheory/Equivalence.lean @@ -708,9 +708,6 @@ def ObjectProperty.fullSubcategoryCongr {P P' : ObjectProperty C} (h : P = P') : unitIso := Iso.refl _ counitIso := Iso.refl _ -@[deprecated (since := "2025-03-04")] -alias Equivalence.ofFullSubcategory := ObjectProperty.fullSubcategoryCongr - namespace Iso variable {E : Type u₃} [Category.{v₃} E] {F : C ⥤ E} {G : C ⥤ D} {H : D ⥤ E} diff --git a/Mathlib/CategoryTheory/EssentialImage.lean b/Mathlib/CategoryTheory/EssentialImage.lean index 13ffab6f9cf114..92b7c742c7caee 100644 --- a/Mathlib/CategoryTheory/EssentialImage.lean +++ b/Mathlib/CategoryTheory/EssentialImage.lean @@ -73,11 +73,6 @@ theorem obj_mem_essImage (F : D ⥤ C) (Y : D) : essImage F (F.obj Y) := /-- The essential image of a functor, interpreted as a full subcategory of the target category. -/ abbrev EssImageSubcategory (F : C ⥤ D) := F.essImage.FullSubcategory -/-- The essential image as a subcategory has a fully faithful inclusion into the target category. -/ -@[deprecated "use F.essImage.ι" (since := "2025-03-04")] -def essImageInclusion (F : C ⥤ D) : F.EssImageSubcategory ⥤ D := - F.essImage.ι - lemma essImage_ext (F : C ⥤ D) {X Y : F.EssImageSubcategory} (f g : X ⟶ Y) (h : F.essImage.ι.map f = F.essImage.ι.map g) : f = g := F.essImage.ι.map_injective h @@ -97,9 +92,6 @@ surjective and the second is fully faithful. def toEssImageCompι (F : C ⥤ D) : F.toEssImage ⋙ F.essImage.ι ≅ F := ObjectProperty.liftCompιIso _ _ _ -@[deprecated (since := "2025-03-04")] alias toEssImageCompEssentialImageInclusio := - toEssImageCompι - /-- A functor `F : C ⥤ D` is essentially surjective if every object of `D` is in the essential image of `F`. In other words, for every `Y : D`, there is some `X : C` with `F.obj X ≅ Y`. -/ @[stacks 001C] diff --git a/Mathlib/CategoryTheory/Filtered/Small.lean b/Mathlib/CategoryTheory/Filtered/Small.lean index 9489f540ea2123..22c05772c41946 100644 --- a/Mathlib/CategoryTheory/Filtered/Small.lean +++ b/Mathlib/CategoryTheory/Filtered/Small.lean @@ -35,8 +35,6 @@ inductive filteredClosure : ObjectProperty C | coeq : {j j' : C} → filteredClosure j → filteredClosure j' → (f f' : j ⟶ j') → filteredClosure (coeq f f') -@[deprecated (since := "2025-03-05")] alias FilteredClosure := filteredClosure - /-- The full subcategory induced by the filtered closure of a family of objects is filtered. -/ instance : IsFilteredOrEmpty (filteredClosure f).FullSubcategory where cocone_objs j j' := @@ -186,8 +184,6 @@ inductive cofilteredClosure : ObjectProperty C | eq : {j j' : C} → cofilteredClosure j → cofilteredClosure j' → (f f' : j ⟶ j') → cofilteredClosure (eq f f') -@[deprecated (since := "2025-03-05")] alias CofilteredClosure := cofilteredClosure - /-- The full subcategory induced by the cofiltered closure of a family is cofiltered. -/ instance : IsCofilteredOrEmpty (cofilteredClosure f).FullSubcategory where cone_objs j j' := diff --git a/Mathlib/CategoryTheory/Limits/HasLimits.lean b/Mathlib/CategoryTheory/Limits/HasLimits.lean index f30163b47a6235..bbc515a5fe552b 100644 --- a/Mathlib/CategoryTheory/Limits/HasLimits.lean +++ b/Mathlib/CategoryTheory/Limits/HasLimits.lean @@ -281,8 +281,6 @@ theorem hasLimit_of_iso {F G : J ⥤ C} [HasLimit F] (α : F ≅ G) : HasLimit G { cone := (Cones.postcompose α.hom).obj (limit.cone F) isLimit := (IsLimit.postcomposeHomEquiv _ _).symm (limit.isLimit F) } -@[deprecated (since := "2025-03-03")] alias hasLimitOfIso := hasLimit_of_iso - theorem hasLimit_iff_of_iso {F G : J ⥤ C} (α : F ≅ G) : HasLimit F ↔ HasLimit G := ⟨fun _ ↦ hasLimit_of_iso α, fun _ ↦ hasLimit_of_iso α.symm⟩ @@ -443,11 +441,6 @@ theorem hasLimit_of_equivalence_comp (e : K ≌ J) [HasLimit (e.functor ⋙ F)] haveI : HasLimit (e.inverse ⋙ e.functor ⋙ F) := Limits.hasLimit_equivalence_comp e.symm apply hasLimit_of_iso (e.invFunIdAssoc F) -@[deprecated (since := "2025-03-02")] alias hasLimitEquivalenceComp := - hasLimit_equivalence_comp -@[deprecated (since := "2025-03-02")] alias hasLimitOfEquivalenceComp := - hasLimit_of_equivalence_comp - -- `hasLimitCompEquivalence` and `hasLimitOfCompEquivalence` -- are proved in `CategoryTheory/Adjunction/Limits.lean`. section LimFunctor @@ -808,8 +801,6 @@ theorem hasColimit_of_iso {F G : J ⥤ C} [HasColimit F] (α : G ≅ F) : HasCol { cocone := (Cocones.precompose α.hom).obj (colimit.cocone F) isColimit := (IsColimit.precomposeHomEquiv _ _).symm (colimit.isColimit F) } -@[deprecated (since := "2025-03-03")] alias hasColimitOfIso := hasColimit_of_iso - theorem hasColimit_iff_of_iso {F G : J ⥤ C} (α : F ≅ G) : HasColimit F ↔ HasColimit G := ⟨fun _ ↦ hasColimit_of_iso α.symm, fun _ ↦ hasColimit_of_iso α⟩ diff --git a/Mathlib/CategoryTheory/Monoidal/Cartesian/Mon_.lean b/Mathlib/CategoryTheory/Monoidal/Cartesian/Mon_.lean index ff6dc27ea10964..0421cee4e9ad6b 100644 --- a/Mathlib/CategoryTheory/Monoidal/Cartesian/Mon_.lean +++ b/Mathlib/CategoryTheory/Monoidal/Cartesian/Mon_.lean @@ -120,9 +120,6 @@ def MonObj.ofRepresentableBy (F : Cᵒᵖ ⥤ MonCat.{w}) (α : (F ⋙ forget _) @[deprecated (since := "2025-09-09")] alias Mon_Class.ofRepresentableBy := MonObj.ofRepresentableBy -@[deprecated (since := "2025-03-07")] -alias MonObjOfRepresentableBy := MonObj.ofRepresentableBy - @[deprecated (since := "2025-09-09")] alias Mon_ClassOfRepresentableBy := MonObj.ofRepresentableBy /-- If `M` is a monoid object, then `Hom(X, M)` has a monoid structure. -/ @@ -262,10 +259,6 @@ lemma MonObj.ofRepresentableBy_yonedaMonObjRepresentableBy : alias Mon_Class.ofRepresentableBy_yonedaMonObjRepresentableBy := MonObj.ofRepresentableBy_yonedaMonObjRepresentableBy -@[deprecated (since := "2025-03-07")] -alias MonObjOfRepresentableBy_yonedaMonObjRepresentableBy := - MonObj.ofRepresentableBy_yonedaMonObjRepresentableBy - @[deprecated (since := "2025-09-09")] alias Mon_ClassOfRepresentableBy_yonedaMonObjRepresentableBy := MonObj.ofRepresentableBy_yonedaMonObjRepresentableBy diff --git a/Mathlib/CategoryTheory/Monoidal/Subcategory.lean b/Mathlib/CategoryTheory/Monoidal/Subcategory.lean index 88949fb24869e7..cde9570017db6d 100644 --- a/Mathlib/CategoryTheory/Monoidal/Subcategory.lean +++ b/Mathlib/CategoryTheory/Monoidal/Subcategory.lean @@ -204,7 +204,4 @@ end Closed end ObjectProperty -@[deprecated (since := "2025-03-05")] -alias MonoidalCategory.MonoidalPredicate := ObjectProperty.IsMonoidal - end CategoryTheory diff --git a/Mathlib/CategoryTheory/NatIso.lean b/Mathlib/CategoryTheory/NatIso.lean index e3ecbba2e6dc3e..c31e21db485e67 100644 --- a/Mathlib/CategoryTheory/NatIso.lean +++ b/Mathlib/CategoryTheory/NatIso.lean @@ -89,14 +89,6 @@ theorem trans_app {F G H : C ⥤ D} (α : F ≅ G) (β : G ≅ H) (X : C) : (α ≪≫ β).app X = α.app X ≪≫ β.app X := rfl -@[deprecated Iso.app_hom (since := "2025-03-11")] -theorem app_hom {F G : C ⥤ D} (α : F ≅ G) (X : C) : (α.app X).hom = α.hom.app X := - rfl - -@[deprecated Iso.app_hom (since := "2025-03-11")] -theorem app_inv {F G : C ⥤ D} (α : F ≅ G) (X : C) : (α.app X).inv = α.inv.app X := - rfl - variable {F G : C ⥤ D} instance hom_app_isIso (α : F ≅ G) (X : C) : IsIso (α.hom.app X) := diff --git a/Mathlib/CategoryTheory/ObjectProperty/FullSubcategory.lean b/Mathlib/CategoryTheory/ObjectProperty/FullSubcategory.lean index b0e74c7e4521ce..1fda2f0357a16d 100644 --- a/Mathlib/CategoryTheory/ObjectProperty/FullSubcategory.lean +++ b/Mathlib/CategoryTheory/ObjectProperty/FullSubcategory.lean @@ -97,9 +97,6 @@ def fullyFaithfulιOfLE (h : P ≤ P') : instance full_ιOfLE (h : P ≤ P') : (ιOfLE h).Full := (fullyFaithfulιOfLE h).full instance faithful_ιOfLE (h : P ≤ P') : (ιOfLE h).Faithful := (fullyFaithfulιOfLE h).faithful -@[deprecated "use ιOfLECompιIso" (since := "2025-03-04")] -theorem FullSubcategory.map_inclusion (h : P ≤ P') : ιOfLE h ⋙ P'.ι = P.ι := rfl - /-- If `h : P ≤ P'` is an inequality of properties of objects, this is the obvious isomorphism `ιOfLE h ⋙ P'.ι ≅ P.ι`. -/ def ιOfLECompιIso (h : P ≤ P') : ιOfLE h ⋙ P'.ι ≅ P.ι := Iso.refl _ @@ -118,11 +115,6 @@ def lift : C ⥤ FullSubcategory P where obj X := ⟨F.obj X, hF X⟩ map f := F.map f -@[deprecated "use liftCompιIso" (since := "2025-03-04")] -theorem FullSubcategory.lift_comp_inclusion_eq : - P.lift F hF ⋙ P.ι = F := - rfl - /-- Composing the lift of a functor through a full subcategory with the inclusion yields the original functor. This is actually true definitionally. -/ def liftCompιIso : P.lift F hF ⋙ P.ι ≅ F := Iso.refl _ @@ -148,29 +140,8 @@ variable {Q} def liftCompιOfLEIso (h : P ≤ Q) : P.lift F hF ⋙ ιOfLE h ≅ Q.lift F (fun X ↦ h _ (hF X)) := Iso.refl _ -@[deprecated "Use liftCompιOfLEIso" (since := "2025-03-04")] -theorem FullSubcategory.lift_comp_map (h : P ≤ Q) : - P.lift F hF ⋙ ιOfLE h = - Q.lift F (fun X ↦ h _ (hF X)) := - rfl - end lift end ObjectProperty -@[deprecated (since := "2025-03-04")] alias FullSubcategory := ObjectProperty.FullSubcategory -@[deprecated (since := "2025-03-04")] alias fullSubcategoryInclusion := ObjectProperty.ι -@[deprecated (since := "2025-03-04")] alias fullSubcategoryInclusion.obj := ObjectProperty.ι_obj -@[deprecated (since := "2025-03-04")] alias fullSubcategoryInclusion.map := ObjectProperty.ι_map -@[deprecated (since := "2025-03-04")] alias fullyFaithfulFullSubcategoryInclusion := - ObjectProperty.fullyFaithfulι -@[deprecated (since := "2025-03-04")] alias FullSubcategory.map := ObjectProperty.ιOfLE -@[deprecated (since := "2025-03-04")] alias FullSubcategory.lift := ObjectProperty.lift -@[deprecated (since := "2025-03-04")] alias FullSubcategory.lift_comp_inclusion := - ObjectProperty.liftCompιIso -@[deprecated (since := "2025-03-04")] alias fullSubcategoryInclusion_obj_lift_obj := - ObjectProperty.ι_obj_lift_obj -@[deprecated (since := "2025-03-04")] alias fullSubcategoryInclusion_map_lift_map := - ObjectProperty.ι_obj_lift_map - end CategoryTheory diff --git a/Mathlib/Combinatorics/Additive/FreimanHom.lean b/Mathlib/Combinatorics/Additive/FreimanHom.lean index 77cf1788aff2b1..6da0424a08e593 100644 --- a/Mathlib/Combinatorics/Additive/FreimanHom.lean +++ b/Mathlib/Combinatorics/Additive/FreimanHom.lean @@ -359,12 +359,6 @@ lemma IsMulFreimanHom.prodMap (h₁ : IsMulFreimanHom n A₁ B₁ f₁) (h₂ : (by simpa) h.1, h₂.map_prod_eq_map_prod (by simpa [@forall_swap α₁] using hsA.2) (by simpa [@forall_swap α₁] using htA.2) (by simpa) (by simpa) h.2⟩ -@[deprecated (since := "2025-03-11")] -alias IsAddFreimanHom.sum := IsAddFreimanHom.prodMap - -@[to_additive existing, deprecated (since := "2025-03-11")] -alias IsMulFreimanHom.prod := IsMulFreimanHom.prodMap - @[to_additive prodMap] lemma IsMulFreimanIso.prodMap (h₁ : IsMulFreimanIso n A₁ B₁ f₁) (h₂ : IsMulFreimanIso n A₂ B₂ f₂) : IsMulFreimanIso n (A₁ ×ˢ A₂) (B₁ ×ˢ B₂) (Prod.map f₁ f₂) where @@ -378,12 +372,6 @@ lemma IsMulFreimanIso.prodMap (h₁ : IsMulFreimanIso n A₁ B₁ f₁) (h₂ : h₂.map_prod_eq_map_prod (by simpa [@forall_swap α₁] using hsA.2) (by simpa [@forall_swap α₁] using htA.2) (by simpa) (by simpa)] -@[deprecated (since := "2025-03-11")] -alias IsAddFreimanIso.sum := IsAddFreimanIso.prodMap - -@[to_additive existing, deprecated (since := "2025-03-11")] -alias IsMulFreimanIso.prod := IsMulFreimanIso.prodMap - end Prod namespace Fin diff --git a/Mathlib/Combinatorics/Matroid/Basic.lean b/Mathlib/Combinatorics/Matroid/Basic.lean index f5b925d820bb35..215d080a49d48f 100644 --- a/Mathlib/Combinatorics/Matroid/Basic.lean +++ b/Mathlib/Combinatorics/Matroid/Basic.lean @@ -456,8 +456,6 @@ theorem rankFinite_or_rankInfinite (M : Matroid α) : RankFinite M ∨ RankInfin let ⟨B, hB⟩ := M.exists_isBase B.finite_or_infinite.imp hB.rankFinite_of_finite hB.rankInfinite_of_infinite -@[deprecated (since := "2025-03-27")] alias finite_or_rankInfinite := rankFinite_or_rankInfinite - @[simp] theorem not_rankFinite_iff (M : Matroid α) : ¬ RankFinite M ↔ RankInfinite M := M.rankFinite_or_rankInfinite.elim (fun h ↦ iff_of_false (by simpa) M.not_rankInfinite) diff --git a/Mathlib/Combinatorics/SimpleGraph/Copy.lean b/Mathlib/Combinatorics/SimpleGraph/Copy.lean index ff07e1884d57c9..d008bc99a4c28b 100644 --- a/Mathlib/Combinatorics/SimpleGraph/Copy.lean +++ b/Mathlib/Combinatorics/SimpleGraph/Copy.lean @@ -107,8 +107,6 @@ lemma injective (f : Copy A B) : Injective f.toHom := f.injective' @[simp] lemma coe_mk (f : A →g B) (hf) : ⇑(.mk f hf : Copy A B) = f := rfl -@[deprecated (since := "2025-03-19")] alias coe_toHom_apply := toHom_apply - /-- A copy induces an embedding of edge sets. -/ def mapEdgeSet (f : Copy A B) : A.edgeSet ↪ B.edgeSet where toFun := f.toHom.mapEdgeSet @@ -288,8 +286,6 @@ protected alias IsContained.bot := bot_isContained_iff_card_le /-- A simple graph `G` contains all `Subgraph G` coercions. -/ lemma Subgraph.coe_isContained (G' : G.Subgraph) : G'.coe ⊑ G := ⟨G'.coeCopy⟩ -@[deprecated (since := "2025-03-19")] alias Subgraph.Copy.map := Copy.isoSubgraphMap - /-- `B` contains `A` if and only if `B` has a subgraph `B'` and `B'` is isomorphic to `A`. -/ theorem isContained_iff_exists_iso_subgraph : A ⊑ B ↔ ∃ B' : B.Subgraph, Nonempty (A ≃g B'.coe) where diff --git a/Mathlib/Combinatorics/SimpleGraph/Maps.lean b/Mathlib/Combinatorics/SimpleGraph/Maps.lean index 0d91518038e47d..8f9611fd281649 100644 --- a/Mathlib/Combinatorics/SimpleGraph/Maps.lean +++ b/Mathlib/Combinatorics/SimpleGraph/Maps.lean @@ -297,21 +297,6 @@ def ofLE (h : G₁ ≤ G₂) : G₁ →g G₂ := ⟨id, @h⟩ lemma ofLE_apply (h : G₁ ≤ G₂) (v : V) : ofLE h v = v := rfl -/-- The induced map for spanning subgraphs, which is the identity on vertices. -/ -@[deprecated ofLE (since := "2025-03-17")] -def mapSpanningSubgraphs {G G' : SimpleGraph V} (h : G ≤ G') : G →g G' where - toFun x := x - map_rel' ha := h ha - -@[deprecated "This is true by simp" (since := "2025-03-17")] -lemma mapSpanningSubgraphs_inj {G G' : SimpleGraph V} {v w : V} (h : G ≤ G') : - ofLE h v = ofLE h w ↔ v = w := by simp - -@[deprecated "This is true by simp" (since := "2025-03-17")] -lemma mapSpanningSubgraphs_injective {G G' : SimpleGraph V} (h : G ≤ G') : - Injective (ofLE h) := - fun v w hvw ↦ by simpa using hvw - theorem mapEdgeSet.injective (hinj : Function.Injective f) : Function.Injective f.mapEdgeSet := by rintro ⟨e₁, h₁⟩ ⟨e₂, h₂⟩ dsimp [Hom.mapEdgeSet] diff --git a/Mathlib/Combinatorics/SimpleGraph/Prod.lean b/Mathlib/Combinatorics/SimpleGraph/Prod.lean index 03f6c99813fde5..ea6d977b394782 100644 --- a/Mathlib/Combinatorics/SimpleGraph/Prod.lean +++ b/Mathlib/Combinatorics/SimpleGraph/Prod.lean @@ -144,9 +144,6 @@ theorem ofBoxProdRight_boxProdRight [DecidableEq α] [DecidableRel G.Adj] {a b · simp [ofBoxProdRight_boxProdRight] · exact ⟨h, rfl⟩ -@[deprecated (since := "2025-03-30")] -alias ofBoxProdLeft_boxProdRight := ofBoxProdRight_boxProdRight - lemma length_boxProd {a₁ a₂ : α} {b₁ b₂ : β} [DecidableEq α] [DecidableEq β] [DecidableRel G.Adj] [DecidableRel H.Adj] (w : (G □ H).Walk (a₁, b₁) (a₂, b₂)) : w.length = w.ofBoxProdLeft.length + w.ofBoxProdRight.length := by diff --git a/Mathlib/Combinatorics/SimpleGraph/Subgraph.lean b/Mathlib/Combinatorics/SimpleGraph/Subgraph.lean index b61888da45a5d5..38fc9759097564 100644 --- a/Mathlib/Combinatorics/SimpleGraph/Subgraph.lean +++ b/Mathlib/Combinatorics/SimpleGraph/Subgraph.lean @@ -719,8 +719,6 @@ protected def hom (x : Subgraph G) : x.coe →g G where theorem hom_injective {x : Subgraph G} : Function.Injective x.hom := fun _ _ ↦ Subtype.ext -@[deprecated (since := "2025-03-15")] alias hom.injective := hom_injective - @[simp] lemma map_hom_top (G' : G.Subgraph) : Subgraph.map G'.hom ⊤ = G' := by aesop (add unfold safe Relation.Map, unsafe G'.edge_vert, unsafe Adj.symm) @@ -734,8 +732,6 @@ def spanningHom (x : Subgraph G) : x.spanningCoe →g G where theorem spanningHom_injective {x : Subgraph G} : Function.Injective x.spanningHom := fun _ _ ↦ id -@[deprecated (since := "2025-03-15")] alias spanningHom.injective := spanningHom_injective - theorem neighborSet_subset_of_subgraph {x y : Subgraph G} (h : x ≤ y) (v : V) : x.neighborSet v ⊆ y.neighborSet v := fun _ h' ↦ h.2 h' diff --git a/Mathlib/Combinatorics/SimpleGraph/Walk.lean b/Mathlib/Combinatorics/SimpleGraph/Walk.lean index f8886c956594af..cfc982f09e7064 100644 --- a/Mathlib/Combinatorics/SimpleGraph/Walk.lean +++ b/Mathlib/Combinatorics/SimpleGraph/Walk.lean @@ -1321,8 +1321,6 @@ variable {H : SimpleGraph V} theorem transfer_eq_map_ofLE (hp) (GH : G ≤ H) : p.transfer H hp = p.map (.ofLE GH) := by induction p <;> simp [*] -@[deprecated (since := "2025-03-17")] alias transfer_eq_map_of_le := transfer_eq_map_ofLE - @[simp] theorem edges_transfer (hp) : (p.transfer H hp).edges = p.edges := by induction p <;> simp [*] diff --git a/Mathlib/Computability/Primrec.lean b/Mathlib/Computability/Primrec.lean index 4cb4b51cd6163c..ec57a067692771 100644 --- a/Mathlib/Computability/Primrec.lean +++ b/Mathlib/Computability/Primrec.lean @@ -316,8 +316,6 @@ theorem list_getElem?₁ : ∀ l : List α, Primrec (l[·]? : ℕ → Option α) (casesOn1 (encode a).succ <| dom_denumerable.1 <| list_getElem?₁ l).of_eq fun n => by cases n <;> simp -@[deprecated (since := "2025-02-14")] alias list_get?₁ := list_getElem?₁ - end Primrec /-- `Primrec₂ f` means `f` is a binary primitive recursive function. @@ -945,7 +943,6 @@ theorem list_getElem? : Primrec₂ ((·[·]? : List α → ℕ → Option α)) : induction l <;> simp_all · simpa using IH .. -@[deprecated (since := "2025-02-14")] alias list_get? := list_getElem? theorem list_getD (d : α) : Primrec₂ fun l n => List.getD l n d := by simp only [List.getD_eq_getElem?_getD] exact option_getD.comp₂ list_getElem? (const _) diff --git a/Mathlib/Data/ENNReal/Basic.lean b/Mathlib/Data/ENNReal/Basic.lean index fce20994479a44..899409ba779d52 100644 --- a/Mathlib/Data/ENNReal/Basic.lean +++ b/Mathlib/Data/ENNReal/Basic.lean @@ -262,30 +262,18 @@ theorem ofNNReal_toNNReal (x : ℝ) : (Real.toNNReal x : ℝ≥0∞) = ENNReal.o @[simp] theorem toNNReal_top : ∞.toNNReal = 0 := rfl -@[deprecated (since := "2025-03-20")] alias top_toNNReal := toNNReal_top - @[simp] theorem toReal_top : ∞.toReal = 0 := rfl -@[deprecated (since := "2025-03-20")] alias top_toReal := toReal_top - @[simp] theorem toReal_one : (1 : ℝ≥0∞).toReal = 1 := rfl -@[deprecated (since := "2025-03-20")] alias one_toReal := toReal_one - @[simp] theorem toNNReal_one : (1 : ℝ≥0∞).toNNReal = 1 := rfl -@[deprecated (since := "2025-03-20")] alias one_toNNReal := toNNReal_one - @[simp] theorem coe_toReal (r : ℝ≥0) : (r : ℝ≥0∞).toReal = r := rfl @[simp] theorem toNNReal_zero : (0 : ℝ≥0∞).toNNReal = 0 := rfl -@[deprecated (since := "2025-03-20")] alias zero_toNNReal := toNNReal_zero - @[simp] theorem toReal_zero : (0 : ℝ≥0∞).toReal = 0 := rfl -@[deprecated (since := "2025-03-20")] alias zero_toReal := toReal_zero - @[simp] theorem ofReal_zero : ENNReal.ofReal (0 : ℝ) = 0 := by simp [ENNReal.ofReal] @[simp] theorem ofReal_one : ENNReal.ofReal (1 : ℝ) = (1 : ℝ≥0∞) := by simp [ENNReal.ofReal] diff --git a/Mathlib/Data/Fin/Basic.lean b/Mathlib/Data/Fin/Basic.lean index 0db39d758417ae..613b4f12084954 100644 --- a/Mathlib/Data/Fin/Basic.lean +++ b/Mathlib/Data/Fin/Basic.lean @@ -260,10 +260,6 @@ section Add theorem val_one' (n : ℕ) [NeZero n] : ((1 : Fin n) : ℕ) = 1 % n := rfl -@[deprecated val_one' (since := "2025-03-10")] -theorem val_one'' {n : ℕ} : ((1 : Fin (n + 1)) : ℕ) = 1 % (n + 1) := - rfl - theorem nontrivial_iff_two_le : Nontrivial (Fin n) ↔ 2 ≤ n := by simp [← not_subsingleton_iff_nontrivial, subsingleton_iff_le_one]; cutsat diff --git a/Mathlib/Data/Fin/SuccPredOrder.lean b/Mathlib/Data/Fin/SuccPredOrder.lean index e5e9f0eda088fa..c894ffac3eb81d 100644 --- a/Mathlib/Data/Fin/SuccPredOrder.lean +++ b/Mathlib/Data/Fin/SuccPredOrder.lean @@ -45,9 +45,6 @@ lemma orderSucc_castSucc {n : ℕ} (i : Fin n) : Order.succ i.castSucc = i.succ := by simp [orderSucc_apply] -@[deprecated (since := "2025-02-06")] alias succ_eq := orderSucc_eq -@[deprecated (since := "2025-02-06")] alias succ_apply := orderSucc_apply - instance : ∀ {n : ℕ}, PredOrder (Fin n) | 0 => by constructor <;> first | intro a; exact elim0 a | n + 1 => @@ -76,7 +73,4 @@ lemma orderPred_succ {n : ℕ} (i : Fin n) : Order.pred i.succ = i.castSucc := rfl -@[deprecated (since := "2025-02-06")] alias pred_eq := orderPred_eq -@[deprecated (since := "2025-02-06")] alias pred_apply := orderPred_apply - end Fin diff --git a/Mathlib/Data/Int/Bitwise.lean b/Mathlib/Data/Int/Bitwise.lean index ec0512a469bc8b..48f962f697b75a 100644 --- a/Mathlib/Data/Int/Bitwise.lean +++ b/Mathlib/Data/Int/Bitwise.lean @@ -342,9 +342,6 @@ theorem shiftLeft_natCast (m n : ℕ) : (m : ℤ) <<< (n : ℤ) = ↑(m <<< n) : @[simp] theorem shiftRight_natCast (m n : ℕ) : (m : ℤ) >>> (n : ℤ) = m >>> n := by cases n <;> rfl -@[deprecated (since := "2025-03-10")] alias shiftLeft_coe_nat := shiftLeft_natCast -@[deprecated (since := "2025-03-10")] alias shiftRight_coe_nat := shiftRight_natCast - @[simp] theorem shiftLeft_negSucc (m n : ℕ) : -[m+1] <<< (n : ℤ) = -[Nat.shiftLeft' true m n+1] := rfl diff --git a/Mathlib/Data/Int/Init.lean b/Mathlib/Data/Int/Init.lean index 8cda4349027782..83376972e0ad25 100644 --- a/Mathlib/Data/Int/Init.lean +++ b/Mathlib/Data/Int/Init.lean @@ -29,8 +29,6 @@ variable {a b c d m n : ℤ} protected theorem neg_eq_neg {a b : ℤ} (h : -a = -b) : a = b := Int.neg_inj.1 h -@[deprecated (since := "2025-03-07")] alias neg_nonpos_iff_nonneg := Int.neg_nonpos_iff - /-! ### succ and pred -/ /-- Immediate successor of an integer: `succ n = n + 1` -/ diff --git a/Mathlib/Data/Int/Interval.lean b/Mathlib/Data/Int/Interval.lean index 1ec3cf873c935d..1ea2155d33c50d 100644 --- a/Mathlib/Data/Int/Interval.lean +++ b/Mathlib/Data/Int/Interval.lean @@ -125,26 +125,6 @@ theorem Icc_eq_pair : Finset.Icc a (a + 1) = {a, a + 1} := by simp omega -@[deprecated Fintype.card_Icc (since := "2025-03-28")] -theorem card_fintype_Icc : Fintype.card (Set.Icc a b) = (b + 1 - a).toNat := by - simp - -@[deprecated Fintype.card_Ico (since := "2025-03-28")] -theorem card_fintype_Ico : Fintype.card (Set.Ico a b) = (b - a).toNat := by - simp - -@[deprecated Fintype.card_Ioc (since := "2025-03-28")] -theorem card_fintype_Ioc : Fintype.card (Set.Ioc a b) = (b - a).toNat := by - simp - -@[deprecated Fintype.card_Ioo (since := "2025-03-28")] -theorem card_fintype_Ioo : Fintype.card (Set.Ioo a b) = (b - a - 1).toNat := by - simp - -@[deprecated Fintype.card_uIcc (since := "2025-03-28")] -theorem card_fintype_uIcc : Fintype.card (Set.uIcc a b) = (b - a).natAbs + 1 := by - simp - theorem card_fintype_Icc_of_le (h : a ≤ b + 1) : (Fintype.card (Set.Icc a b) : ℤ) = b + 1 - a := by simp [h] diff --git a/Mathlib/Data/List/Basic.lean b/Mathlib/Data/List/Basic.lean index 739a0255ae5010..791f308c8828ce 100644 --- a/Mathlib/Data/List/Basic.lean +++ b/Mathlib/Data/List/Basic.lean @@ -735,9 +735,6 @@ theorem foldl_fixed {a : α} : ∀ l : List β, foldl (fun a _ => a) a l = a := theorem foldr_fixed {b : β} : ∀ l : List α, foldr (fun _ b => b) b l = b := foldr_fixed' fun _ => rfl -@[deprecated foldr_cons_nil (since := "2025-02-10")] -theorem foldr_eta (l : List α) : foldr cons [] l = l := foldr_cons_nil - theorem reverse_foldl {l : List α} : reverse (foldl (fun t h => h :: t) [] l) = l := by simp @@ -885,19 +882,8 @@ end FoldlMFoldrM /-! ### intersperse -/ -@[deprecated (since := "2025-02-07")] alias intersperse_singleton := intersperse_single -@[deprecated (since := "2025-02-07")] alias intersperse_cons_cons := intersperse_cons₂ - /-! ### map for partial functions -/ -@[deprecated "Deprecated without replacement." (since := "2025-02-07")] -theorem sizeOf_lt_sizeOf_of_mem [SizeOf α] {x : α} {l : List α} (hx : x ∈ l) : - SizeOf.sizeOf x < SizeOf.sizeOf l := by - induction l with | nil => ?_ | cons h t ih => ?_ <;> cases hx <;> rw [cons.sizeOf_spec] - · cutsat - · specialize ih ‹_› - cutsat - /-! ### filter -/ theorem length_eq_length_filter_add {l : List (α)} (f : α → Bool) : diff --git a/Mathlib/Data/List/Lex.lean b/Mathlib/Data/List/Lex.lean index b6e88bcd2033b6..ca8d4f358c3ab9 100644 --- a/Mathlib/Data/List/Lex.lean +++ b/Mathlib/Data/List/Lex.lean @@ -44,14 +44,10 @@ theorem lex_nil_or_eq_nil {r : α → α → Prop} (l : List α) : List.Lex r [] | [] => Or.inr rfl | _ :: _ => .inl .nil -@[deprecated (since := "2025-03-14")] alias Lex.nil_left_or_eq_nil := lex_nil_or_eq_nil - @[simp] theorem lex_singleton_iff {r : α → α → Prop} (a b : α) : List.Lex r [a] [b] ↔ r a b := ⟨fun | .rel h => h, .rel⟩ -@[deprecated (since := "2025-03-14")] alias Lex.singleton_iff := lex_singleton_iff - namespace Lex instance isOrderConnected (r : α → α → Prop) [IsOrderConnected α r] [IsTrichotomous α r] : diff --git a/Mathlib/Data/NNReal/Defs.lean b/Mathlib/Data/NNReal/Defs.lean index 4bc8abb89080f4..6546c9647435fe 100644 --- a/Mathlib/Data/NNReal/Defs.lean +++ b/Mathlib/Data/NNReal/Defs.lean @@ -349,9 +349,6 @@ theorem mk_natCast (n : ℕ) : @Eq ℝ≥0 (⟨(n : ℝ), n.cast_nonneg⟩ : ℝ theorem _root_.Real.toNNReal_coe_nat (n : ℕ) : Real.toNNReal n = n := NNReal.eq <| by simp [Real.coe_toNNReal] -@[deprecated Real.toNNReal_coe_nat (since := "2025-03-12")] -alias toNNReal_coe_nat := Real.toNNReal_coe_nat - @[simp] theorem _root_.Real.toNNReal_ofNat (n : ℕ) [n.AtLeastTwo] : Real.toNNReal ofNat(n) = OfNat.ofNat n := diff --git a/Mathlib/Data/Option/Basic.lean b/Mathlib/Data/Option/Basic.lean index 0ec0604f7bd7d8..4bd703d73b6a6e 100644 --- a/Mathlib/Data/Option/Basic.lean +++ b/Mathlib/Data/Option/Basic.lean @@ -92,13 +92,6 @@ theorem bind_congr' {f g : α → Option β} {x y : Option α} (hx : x = y) (hf : ∀ a ∈ y, f a = g a) : x.bind f = y.bind g := hx.symm ▸ bind_congr hf -@[deprecated bind_congr (since := "2025-03-20")] --- This was renamed from `bind_congr` after https://github.com/leanprover/lean4/pull/7529 --- upstreamed it with a slightly different statement. -theorem bind_congr'' {f g : α → Option β} {x : Option α} - (h : ∀ a ∈ x, f a = g a) : x.bind f = x.bind g := by - grind [cases Option] - theorem joinM_eq_join : joinM = @join α := funext fun _ ↦ rfl @@ -254,8 +247,6 @@ theorem elim_apply {f : γ → α → β} {x : α → β} {i : Option γ} {y : @[deprecated (since := "2025-04-10")] alias bnot_comp_isSome := not_comp_isSome @[deprecated (since := "2025-04-10")] alias bnot_isNone := not_isNone @[deprecated (since := "2025-04-10")] alias bnot_comp_isNone := not_comp_isNone -@[deprecated (since := "2025-03-19")] alias forall_some_ne_iff_eq_none := eq_none_iff_forall_some_ne - open Function in @[simp] lemma elim'_update {α : Type*} {β : Type*} [DecidableEq α] diff --git a/Mathlib/Data/Prod/Basic.lean b/Mathlib/Data/Prod/Basic.lean index dea2e1c3797760..e76d58c61ae970 100644 --- a/Mathlib/Data/Prod/Basic.lean +++ b/Mathlib/Data/Prod/Basic.lean @@ -58,28 +58,19 @@ theorem map_snd' (f : α → γ) (g : β → δ) : Prod.snd ∘ map f g = g ∘ theorem mk_inj {a₁ a₂ : α} {b₁ b₂ : β} : (a₁, b₁) = (a₂, b₂) ↔ a₁ = a₂ ∧ b₁ = b₂ := by simp -@[deprecated (since := "2025-03-06")] alias mk.inj_iff := mk_inj - theorem mk_right_injective {α β : Type*} (a : α) : (mk a : β → α × β).Injective := by intro b₁ b₂ h simpa only [true_and, Prod.mk_inj, eq_self_iff_true] using h -@[deprecated (since := "2025-03-06")] alias mk.inj_left := mk_right_injective - theorem mk_left_injective {α β : Type*} (b : β) : (fun a ↦ mk a b : α → α × β).Injective := by intro b₁ b₂ h simpa only [and_true, eq_self_iff_true, mk_inj] using h -@[deprecated (since := "2025-03-06")] alias mk.inj_right := mk_left_injective - lemma mk_right_inj {a : α} {b₁ b₂ : β} : (a, b₁) = (a, b₂) ↔ b₁ = b₂ := (mk_right_injective _).eq_iff lemma mk_left_inj {a₁ a₂ : α} {b : β} : (a₁, b) = (a₂, b) ↔ a₁ = a₂ := (mk_left_injective _).eq_iff -@[deprecated (since := "2025-03-06")] alias mk_inj_left := mk_right_inj -@[deprecated (since := "2025-03-06")] alias mk_inj_right := mk_left_inj - theorem map_def {f : α → γ} {g : β → δ} : Prod.map f g = fun p : α × β ↦ (f p.1, g p.2) := funext fun p ↦ Prod.ext (map_fst f g p) (map_snd f g p) diff --git a/Mathlib/Data/Real/ConjExponents.lean b/Mathlib/Data/Real/ConjExponents.lean index f7a18c281b2244..f602dec9b4af39 100644 --- a/Mathlib/Data/Real/ConjExponents.lean +++ b/Mathlib/Data/Real/ConjExponents.lean @@ -577,129 +577,23 @@ end ENNReal namespace Real -@[deprecated (since := "2025-03-14")] alias IsConjExponent := HolderConjugate -@[deprecated (since := "2025-03-14")] alias isConjExponent_iff := holderConjugate_iff -@[deprecated (since := "2025-03-14")] alias IsConjExponent.one_lt := HolderTriple.lt -@[deprecated (since := "2025-03-14")] alias IsConjExponent.inv_add_inv_conj := - HolderConjugate.inv_add_inv_eq_one - namespace IsConjExponent -@[deprecated (since := "2025-03-14")] alias pos := HolderTriple.pos -@[deprecated (since := "2025-03-14")] alias nonneg := HolderTriple.nonneg -@[deprecated (since := "2025-03-14")] alias ne_zero := HolderTriple.ne_zero -@[deprecated (since := "2025-03-14")] alias sub_one_pos := HolderConjugate.sub_one_pos -@[deprecated (since := "2025-03-14")] alias sub_one_ne_zero := HolderConjugate.sub_one_ne_zero -@[deprecated (since := "2025-03-14")] alias inv_pos := HolderTriple.inv_pos -@[deprecated (since := "2025-03-14")] alias inv_nonneg := HolderTriple.inv_nonneg -@[deprecated (since := "2025-03-14")] alias inv_ne_zero := HolderTriple.inv_ne_zero -@[deprecated (since := "2025-03-14")] alias one_div_pos := HolderTriple.one_div_pos -@[deprecated (since := "2025-03-14")] alias one_div_nonneg := HolderTriple.one_div_nonneg -@[deprecated (since := "2025-03-14")] alias one_div_ne_zero := HolderTriple.one_div_ne_zero -@[deprecated (since := "2025-03-14")] alias conj_eq := HolderConjugate.conjugate_eq -@[deprecated (since := "2025-03-14")] alias conjExponent_eq := HolderConjugate.conjExponent_eq -@[deprecated (since := "2025-03-14")] alias one_sub_inv := HolderConjugate.one_sub_inv -@[deprecated (since := "2025-03-14")] alias inv_sub_one := HolderConjugate.inv_sub_one -@[deprecated (since := "2025-03-14")] alias sub_one_mul_conj := HolderConjugate.sub_one_mul_conj -@[deprecated (since := "2025-03-14")] alias mul_eq_add := HolderConjugate.mul_eq_add -@[deprecated (since := "2025-03-14")] alias symm := HolderConjugate.symm -@[deprecated (since := "2025-03-14")] alias div_conj_eq_sub_one := - HolderConjugate.div_conj_eq_sub_one -@[deprecated (since := "2025-03-14")] alias inv_inv := HolderConjugate.inv_inv -@[deprecated (since := "2025-03-14")] alias inv_one_sub_inv := HolderConjugate.inv_one_sub_inv -@[deprecated (since := "2025-03-14")] alias one_sub_inv_inv := HolderConjugate.one_sub_inv_inv -@[deprecated (since := "2025-03-14")] alias inv_add_inv_conj_ennreal := - HolderConjugate.inv_add_inv_ennreal - end IsConjExponent -@[deprecated (since := "2025-03-14")] alias isConjExponent_comm := holderConjugate_comm -@[deprecated (since := "2025-03-14")] alias isConjExponent_iff_eq_conjExponent := - holderConjugate_iff_eq_conjExponent -@[deprecated (since := "2025-03-14")] alias IsConjExponent.conjExponent := - HolderConjugate.conjExponent -@[deprecated (since := "2025-03-14")] alias isConjExponent_one_div := holderConjugate_one_div - end Real namespace NNReal -@[deprecated (since := "2025-03-14")] alias IsConjExponent := HolderConjugate -@[deprecated (since := "2025-03-14")] alias isConjExponent_iff := holderConjugate_iff -@[deprecated (since := "2025-03-14")] alias IsConjExponent.one_lt := HolderTriple.lt -@[deprecated (since := "2025-03-14")] alias IsConjExponent.inv_add_inv_conj := - HolderConjugate.inv_add_inv_eq_one -@[deprecated (since := "2025-03-14")] alias isConjExponent_coe := holderConjugate_coe_iff -@[deprecated (since := "2025-03-14")] alias IsConjExponent.coe := HolderConjugate.coe - namespace IsConjExponent -@[deprecated (since := "2025-03-14")] alias one_le := HolderTriple.lt -@[deprecated (since := "2025-03-14")] alias pos := HolderTriple.pos -@[deprecated (since := "2025-03-14")] alias nonneg := HolderTriple.nonneg -@[deprecated (since := "2025-03-14")] alias ne_zero := HolderTriple.ne_zero -@[deprecated (since := "2025-03-14")] alias sub_one_pos := HolderConjugate.sub_one_pos -@[deprecated (since := "2025-03-14")] alias sub_one_ne_zero := HolderConjugate.sub_one_ne_zero -@[deprecated (since := "2025-03-14")] alias inv_pos := HolderTriple.inv_pos -@[deprecated (since := "2025-03-14")] alias inv_nonneg := HolderTriple.inv_nonneg -@[deprecated (since := "2025-03-14")] alias inv_ne_zero := HolderTriple.inv_ne_zero -@[deprecated (since := "2025-03-14")] alias one_div_pos := HolderTriple.one_div_pos -@[deprecated (since := "2025-03-14")] alias one_div_nonneg := HolderTriple.one_div_nonneg -@[deprecated (since := "2025-03-14")] alias one_div_ne_zero := HolderTriple.one_div_ne_zero -@[deprecated (since := "2025-03-14")] alias conj_eq := HolderConjugate.conjugate_eq -@[deprecated (since := "2025-03-14")] alias conjExponent_eq := HolderConjugate.conjExponent_eq -@[deprecated (since := "2025-03-14")] alias one_sub_inv := HolderConjugate.one_sub_inv -@[deprecated (since := "2025-03-14")] alias sub_one_mul_conj := HolderConjugate.sub_one_mul_conj -@[deprecated (since := "2025-03-14")] alias mul_eq_add := HolderConjugate.mul_eq_add -@[deprecated (since := "2025-03-14")] alias symm := HolderConjugate.symm -@[deprecated (since := "2025-03-14")] alias div_conj_eq_sub_one := - HolderConjugate.div_conj_eq_sub_one -@[deprecated (since := "2025-03-14")] alias inv_inv := HolderConjugate.inv_inv -@[deprecated (since := "2025-03-14")] alias inv_one_sub_inv := HolderConjugate.inv_one_sub_inv -@[deprecated (since := "2025-03-14")] alias one_sub_inv_inv := HolderConjugate.one_sub_inv_inv -@[deprecated (since := "2025-03-14")] alias inv_add_inv_conj_ennreal := - HolderConjugate.inv_add_inv_ennreal - end IsConjExponent -@[deprecated (since := "2025-03-14")] alias isConjExponent_comm := holderConjugate_comm -@[deprecated (since := "2025-03-14")] alias isConjExponent_iff_eq_conjExponent := - holderConjugate_iff_eq_conjExponent -@[deprecated (since := "2025-03-14")] alias IsConjExponent.conjExponent := - HolderConjugate.conjExponent -@[deprecated (since := "2025-03-14")] alias isConjExponent_one_div := holderConjugate_one_div - end NNReal -@[deprecated (since := "2025-03-14")] alias Real.IsConjExponent.toNNReal := - Real.HolderTriple.toNNReal - namespace ENNReal -@[deprecated (since := "2025-03-14")] alias IsConjExponent := HolderConjugate -@[deprecated (since := "2025-03-14")] alias isConjExponent_iff := holderConjugate_iff -@[deprecated (since := "2025-03-14")] alias isConjExopnent_coe := holderConjugate_coe_iff -@[deprecated (since := "2025-03-14")] alias _root_.NNReal.IsConjExponent.coe_ennreal := - NNReal.HolderConjugate.coe_ennreal - namespace IsConjExponent -@[deprecated (since := "2025-03-14")] alias conjExponent := HolderConjugate.conjExponent -@[deprecated (since := "2025-03-14")] alias symm := HolderConjugate.symm -@[deprecated (since := "2025-03-14")] alias one_le := HolderTriple.le -@[deprecated (since := "2025-03-14")] alias pos := HolderConjugate.pos -@[deprecated (since := "2025-03-14")] alias ne_zero := HolderConjugate.ne_zero -@[deprecated (since := "2025-03-14")] alias one_sub_inv := HolderConjugate.one_sub_inv -@[deprecated (since := "2025-03-14")] alias conjExponent_eq := HolderConjugate.conjExponent_eq -@[deprecated (since := "2025-03-14")] alias conj_eq := HolderConjugate.conj_eq -@[deprecated (since := "2025-03-14")] alias mul_eq_add := HolderConjugate.mul_eq_add -@[deprecated (since := "2025-03-14")] alias div_conj_eq_sub_one := - HolderConjugate.div_conj_eq_sub_one -@[deprecated (since := "2025-03-14")] alias inv_inv := HolderConjugate.inv_inv -@[deprecated (since := "2025-03-14")] alias inv_one_sub_inv := HolderConjugate.inv_one_sub_inv -@[deprecated (since := "2025-03-14")] alias one_sub_inv_inv := HolderConjugate.one_sub_inv_inv -@[deprecated (since := "2025-03-14")] alias top_one := HolderConjugate.top_one -@[deprecated (since := "2025-03-14")] alias one_top := HolderConjugate.one_top - end IsConjExponent end ENNReal diff --git a/Mathlib/Data/Set/Pairwise/Basic.lean b/Mathlib/Data/Set/Pairwise/Basic.lean index 4c127a911fb795..d6240e409c985b 100644 --- a/Mathlib/Data/Set/Pairwise/Basic.lean +++ b/Mathlib/Data/Set/Pairwise/Basic.lean @@ -171,11 +171,6 @@ theorem Pairwise.insert_of_symmetric (hs : s.Pairwise r) (hr : Symmetric r) (h : ∀ b ∈ s, a ≠ b → r a b) : (insert a s).Pairwise r := (pairwise_insert_of_symmetric hr).2 ⟨hs, h⟩ -@[deprecated Pairwise.insert_of_symmetric (since := "2025-03-19")] -theorem Pairwise.insert_of_symmetric_of_notMem (hs : s.Pairwise r) (hr : Symmetric r) (ha : a ∉ s) - (h : ∀ b ∈ s, r a b) : (insert a s).Pairwise r := - (pairwise_insert_of_symmetric_of_notMem hr ha).2 ⟨hs, h⟩ - @[deprecated (since := "2025-05-23")] alias Pairwise.insert_of_symmetric_of_not_mem := Pairwise.insert_of_symmetric diff --git a/Mathlib/Dynamics/TopologicalEntropy/DynamicalEntourage.lean b/Mathlib/Dynamics/TopologicalEntropy/DynamicalEntourage.lean index 07891fd43c49d8..11038cdad66dd0 100644 --- a/Mathlib/Dynamics/TopologicalEntropy/DynamicalEntourage.lean +++ b/Mathlib/Dynamics/TopologicalEntropy/DynamicalEntourage.lean @@ -89,9 +89,6 @@ lemma _root_.IsSymmetricRel.dynEntourage (T : X → X) {U : Set (X × X)} refine forall₂_congr fun k _ ↦ ?_ exact map_apply' _ _ _ ▸ IsSymmetricRel.mk_mem_comm h -@[deprecated (since := "2025-03-05")] -alias _root_.SymmetricRel.dynEntourage := _root_.IsSymmetricRel.dynEntourage - lemma dynEntourage_comp_subset (T : X → X) (U V : Set (X × X)) (n : ℕ) : (dynEntourage T U n) ○ (dynEntourage T V n) ⊆ dynEntourage T (U ○ V) n := by simp only [dynEntourage, map_iterate, subset_iInter_iff] diff --git a/Mathlib/FieldTheory/Finiteness.lean b/Mathlib/FieldTheory/Finiteness.lean index e0022c359f4a07..60407094838e6d 100644 --- a/Mathlib/FieldTheory/Finiteness.lean +++ b/Mathlib/FieldTheory/Finiteness.lean @@ -89,8 +89,6 @@ theorem _root_.Module.card_eq_pow_finrank [Fintype K] [Fintype V] : let b := IsNoetherian.finsetBasis K V rw [Module.card_fintype b, ← Module.finrank_eq_card_basis b] -@[deprecated (since := "2025-03-14")] alias _root_.card_eq_pow_finrank := Module.card_eq_pow_finrank - theorem _root_.Module.natCard_eq_pow_finrank [Module.Finite K V] : Nat.card V = Nat.card K ^ finrank K V := by let b := IsNoetherian.finsetBasis K V diff --git a/Mathlib/FieldTheory/KrullTopology.lean b/Mathlib/FieldTheory/KrullTopology.lean index 77b5a5ba11e7f2..d656bb44bd680c 100644 --- a/Mathlib/FieldTheory/KrullTopology.lean +++ b/Mathlib/FieldTheory/KrullTopology.lean @@ -68,20 +68,11 @@ subsets `Gal(L/E)` of `L ≃ₐ[K] L`, where `E/K` is finite. -/ def fixedByFinite (K L : Type*) [Field K] [Field L] [Algebra K L] : Set (Subgroup (L ≃ₐ[K] L)) := IntermediateField.fixingSubgroup '' finiteExts K L -@[deprecated (since := "2025-03-16")] -alias IntermediateField.finiteDimensional_bot := IntermediateField.instFiniteSubtypeMemBot - -@[deprecated (since := "2025-03-12")] -alias IntermediateField.fixingSubgroup.bot := IntermediateField.fixingSubgroup_bot - /-- If `L/K` is a field extension, then we have `Gal(L/K) ∈ fixedByFinite K L`. -/ theorem top_fixedByFinite {K L : Type*} [Field K] [Field L] [Algebra K L] : ⊤ ∈ fixedByFinite K L := ⟨⊥, IntermediateField.instFiniteSubtypeMemBot K, IntermediateField.fixingSubgroup_bot⟩ -@[deprecated (since := "2025-03-16")] -alias finiteDimensional_sup := IntermediateField.finiteDimensional_sup - /-- Given a field extension `L/K`, `galBasis K L` is the filter basis on `L ≃ₐ[K] L` whose sets are `Gal(L/E)` for intermediate fields `E` with `E/K` finite dimensional. -/ def galBasis (K L : Type*) [Field K] [Field L] [Algebra K L] : FilterBasis (L ≃ₐ[K] L) where diff --git a/Mathlib/Geometry/Manifold/ContMDiff/Constructions.lean b/Mathlib/Geometry/Manifold/ContMDiff/Constructions.lean index dc297ebece2485..550c525007f1df 100644 --- a/Mathlib/Geometry/Manifold/ContMDiff/Constructions.lean +++ b/Mathlib/Geometry/Manifold/ContMDiff/Constructions.lean @@ -53,61 +53,37 @@ theorem ContMDiffWithinAt.prodMk {f : M → M'} {g : M → N'} (hf : ContMDiffWi rw [contMDiffWithinAt_iff] at * exact ⟨hf.1.prodMk hg.1, hf.2.prodMk hg.2⟩ -@[deprecated (since := "2025-03-08")] -alias ContMDiffWithinAt.prod_mk := ContMDiffWithinAt.prodMk - theorem ContMDiffWithinAt.prodMk_space {f : M → E'} {g : M → F'} (hf : ContMDiffWithinAt I 𝓘(𝕜, E') n f s x) (hg : ContMDiffWithinAt I 𝓘(𝕜, F') n g s x) : ContMDiffWithinAt I 𝓘(𝕜, E' × F') n (fun x => (f x, g x)) s x := by rw [contMDiffWithinAt_iff] at * exact ⟨hf.1.prodMk hg.1, hf.2.prodMk hg.2⟩ -@[deprecated (since := "2025-03-08")] -alias ContMDiffWithinAt.prod_mk_space := ContMDiffWithinAt.prodMk_space - nonrec theorem ContMDiffAt.prodMk {f : M → M'} {g : M → N'} (hf : ContMDiffAt I I' n f x) (hg : ContMDiffAt I J' n g x) : ContMDiffAt I (I'.prod J') n (fun x => (f x, g x)) x := hf.prodMk hg -@[deprecated (since := "2025-03-08")] -alias ContMDiffAt.prod_mk := ContMDiffAt.prodMk - nonrec theorem ContMDiffAt.prodMk_space {f : M → E'} {g : M → F'} (hf : ContMDiffAt I 𝓘(𝕜, E') n f x) (hg : ContMDiffAt I 𝓘(𝕜, F') n g x) : ContMDiffAt I 𝓘(𝕜, E' × F') n (fun x => (f x, g x)) x := hf.prodMk_space hg -@[deprecated (since := "2025-03-08")] -alias ContMDiffAt.prod_mk_space := ContMDiffAt.prodMk_space - theorem ContMDiffOn.prodMk {f : M → M'} {g : M → N'} (hf : ContMDiffOn I I' n f s) (hg : ContMDiffOn I J' n g s) : ContMDiffOn I (I'.prod J') n (fun x => (f x, g x)) s := fun x hx => (hf x hx).prodMk (hg x hx) -@[deprecated (since := "2025-03-08")] -alias ContMDiffOn.prod_mk := ContMDiffOn.prodMk - theorem ContMDiffOn.prodMk_space {f : M → E'} {g : M → F'} (hf : ContMDiffOn I 𝓘(𝕜, E') n f s) (hg : ContMDiffOn I 𝓘(𝕜, F') n g s) : ContMDiffOn I 𝓘(𝕜, E' × F') n (fun x => (f x, g x)) s := fun x hx => (hf x hx).prodMk_space (hg x hx) -@[deprecated (since := "2025-03-08")] -alias ContMDiffOn.prod_mk_space := ContMDiffOn.prodMk_space - nonrec theorem ContMDiff.prodMk {f : M → M'} {g : M → N'} (hf : ContMDiff I I' n f) (hg : ContMDiff I J' n g) : ContMDiff I (I'.prod J') n fun x => (f x, g x) := fun x => (hf x).prodMk (hg x) -@[deprecated (since := "2025-03-08")] -alias ContMDiff.prod_mk := ContMDiff.prodMk - theorem ContMDiff.prodMk_space {f : M → E'} {g : M → F'} (hf : ContMDiff I 𝓘(𝕜, E') n f) (hg : ContMDiff I 𝓘(𝕜, F') n g) : ContMDiff I 𝓘(𝕜, E' × F') n fun x => (f x, g x) := fun x => (hf x).prodMk_space (hg x) -@[deprecated (since := "2025-03-08")] -alias ContMDiff.prod_mk_space := ContMDiff.prodMk_space - end ProdMk section Projections @@ -337,47 +313,29 @@ theorem ContMDiffWithinAt.prodMap' {p : M × N} (hf : ContMDiffWithinAt I I' n f (hf.comp p contMDiffWithinAt_fst mapsTo_fst_prod).prodMk <| hg.comp p contMDiffWithinAt_snd mapsTo_snd_prod -@[deprecated (since := "2025-03-08")] -alias ContMDiffWithinAt.prod_map' := ContMDiffWithinAt.prodMap' - theorem ContMDiffWithinAt.prodMap (hf : ContMDiffWithinAt I I' n f s x) (hg : ContMDiffWithinAt J J' n g r y) : ContMDiffWithinAt (I.prod J) (I'.prod J') n (Prod.map f g) (s ×ˢ r) (x, y) := ContMDiffWithinAt.prodMap' hf hg -@[deprecated (since := "2025-03-08")] -alias ContMDiffWithinAt.prod_map := ContMDiffWithinAt.prodMap - theorem ContMDiffAt.prodMap (hf : ContMDiffAt I I' n f x) (hg : ContMDiffAt J J' n g y) : ContMDiffAt (I.prod J) (I'.prod J') n (Prod.map f g) (x, y) := by simp only [← contMDiffWithinAt_univ, ← univ_prod_univ] at * exact hf.prodMap hg -@[deprecated (since := "2025-03-08")] -alias ContMDiffAt.prod_map := ContMDiffAt.prodMap - theorem ContMDiffAt.prodMap' {p : M × N} (hf : ContMDiffAt I I' n f p.1) (hg : ContMDiffAt J J' n g p.2) : ContMDiffAt (I.prod J) (I'.prod J') n (Prod.map f g) p := hf.prodMap hg -@[deprecated (since := "2025-03-08")] -alias ContMDiffAt.prod_map' := ContMDiffAt.prodMap' - theorem ContMDiffOn.prodMap (hf : ContMDiffOn I I' n f s) (hg : ContMDiffOn J J' n g r) : ContMDiffOn (I.prod J) (I'.prod J') n (Prod.map f g) (s ×ˢ r) := (hf.comp contMDiffOn_fst mapsTo_fst_prod).prodMk <| hg.comp contMDiffOn_snd mapsTo_snd_prod -@[deprecated (since := "2025-03-08")] -alias ContMDiffOn.prod_map := ContMDiffOn.prodMap - theorem ContMDiff.prodMap (hf : ContMDiff I I' n f) (hg : ContMDiff J J' n g) : ContMDiff (I.prod J) (I'.prod J') n (Prod.map f g) := by intro p exact (hf p.1).prodMap' (hg p.2) -@[deprecated (since := "2025-03-08")] -alias ContMDiff.prod_map := ContMDiff.prodMap - end prodMap section PiSpace diff --git a/Mathlib/Geometry/Manifold/LocalDiffeomorph.lean b/Mathlib/Geometry/Manifold/LocalDiffeomorph.lean index 39e2d70960972b..fcf3cc7e4c1cca 100644 --- a/Mathlib/Geometry/Manifold/LocalDiffeomorph.lean +++ b/Mathlib/Geometry/Manifold/LocalDiffeomorph.lean @@ -352,9 +352,6 @@ noncomputable def IsLocalDiffeomorph.diffeomorph_of_bijective have : y = (Φ x) x := ((hgInverse.2 y).congr (hfx hx)).mp rfl exact this ▸ (Φ x).map_source hx } -@[deprecated (since := "2025-03-24")] alias -IslocalDiffeomorph.diffeomorph_of_bijective := IsLocalDiffeomorph.diffeomorph_of_bijective - end Basic section Differential diff --git a/Mathlib/Geometry/Manifold/MFDeriv/SpecificFunctions.lean b/Mathlib/Geometry/Manifold/MFDeriv/SpecificFunctions.lean index 01da07b84c7c43..9d3a85a852edd6 100644 --- a/Mathlib/Geometry/Manifold/MFDeriv/SpecificFunctions.lean +++ b/Mathlib/Geometry/Manifold/MFDeriv/SpecificFunctions.lean @@ -214,9 +214,6 @@ theorem MDifferentiableWithinAt.prodMk {f : M → M'} {g : M → M''} MDifferentiableWithinAt I (I'.prod I'') (fun x => (f x, g x)) s x := ⟨hf.1.prodMk hg.1, hf.2.prodMk hg.2⟩ -@[deprecated (since := "2025-03-08")] -alias MDifferentiableWithinAt.prod_mk := MDifferentiableWithinAt.prodMk - /-- If `f` and `g` have derivatives `df` and `dg` within `s` at `x`, respectively, then `x ↦ (f x, g x)` has derivative `df.prod dg` within `s`. -/ theorem HasMFDerivWithinAt.prodMk {f : M → M'} {g : M → M''} @@ -230,9 +227,6 @@ theorem MDifferentiableAt.prodMk {f : M → M'} {g : M → M''} (hf : MDifferent MDifferentiableAt I (I'.prod I'') (fun x => (f x, g x)) x := ⟨hf.1.prodMk hg.1, hf.2.prodMk hg.2⟩ -@[deprecated (since := "2025-03-08")] -alias MDifferentiableAt.prod_mk := MDifferentiableAt.prodMk - /-- If `f` and `g` have derivatives `df` and `dg` at `x`, respectively, then `x ↦ (f x, g x)` has derivative `df.prod dg`. -/ theorem HasMFDerivAt.prodMk {f : M → M'} {g : M → M''} @@ -247,47 +241,29 @@ theorem MDifferentiableWithinAt.prodMk_space {f : M → E'} {g : M → E''} MDifferentiableWithinAt I 𝓘(𝕜, E' × E'') (fun x => (f x, g x)) s x := ⟨hf.1.prodMk hg.1, hf.2.prodMk hg.2⟩ -@[deprecated (since := "2025-03-08")] -alias MDifferentiableWithinAt.prod_mk_space := MDifferentiableWithinAt.prodMk_space - theorem MDifferentiableAt.prodMk_space {f : M → E'} {g : M → E''} (hf : MDifferentiableAt I 𝓘(𝕜, E') f x) (hg : MDifferentiableAt I 𝓘(𝕜, E'') g x) : MDifferentiableAt I 𝓘(𝕜, E' × E'') (fun x => (f x, g x)) x := ⟨hf.1.prodMk hg.1, hf.2.prodMk hg.2⟩ -@[deprecated (since := "2025-03-08")] -alias MDifferentiableAt.prod_mk_space := MDifferentiableAt.prodMk_space - theorem MDifferentiableOn.prodMk {f : M → M'} {g : M → M''} (hf : MDifferentiableOn I I' f s) (hg : MDifferentiableOn I I'' g s) : MDifferentiableOn I (I'.prod I'') (fun x => (f x, g x)) s := fun x hx => (hf x hx).prodMk (hg x hx) -@[deprecated (since := "2025-03-08")] -alias MDifferentiableOn.prod_mk := MDifferentiableOn.prodMk - theorem MDifferentiable.prodMk {f : M → M'} {g : M → M''} (hf : MDifferentiable I I' f) (hg : MDifferentiable I I'' g) : MDifferentiable I (I'.prod I'') fun x => (f x, g x) := fun x => (hf x).prodMk (hg x) -@[deprecated (since := "2025-03-08")] -alias MDifferentiable.prod_mk := MDifferentiable.prodMk - theorem MDifferentiableOn.prodMk_space {f : M → E'} {g : M → E''} (hf : MDifferentiableOn I 𝓘(𝕜, E') f s) (hg : MDifferentiableOn I 𝓘(𝕜, E'') g s) : MDifferentiableOn I 𝓘(𝕜, E' × E'') (fun x => (f x, g x)) s := fun x hx => (hf x hx).prodMk_space (hg x hx) -@[deprecated (since := "2025-03-08")] -alias MDifferentiableOn.prod_mk_space := MDifferentiableOn.prodMk_space - theorem MDifferentiable.prodMk_space {f : M → E'} {g : M → E''} (hf : MDifferentiable I 𝓘(𝕜, E') f) (hg : MDifferentiable I 𝓘(𝕜, E'') g) : MDifferentiable I 𝓘(𝕜, E' × E'') fun x => (f x, g x) := fun x => (hf x).prodMk_space (hg x) -@[deprecated (since := "2025-03-08")] -alias MDifferentiable.prod_mk_space := MDifferentiable.prodMk_space - theorem hasMFDerivAt_fst (x : M × M') : HasMFDerivAt (I.prod I') I Prod.fst x (ContinuousLinearMap.fst 𝕜 (TangentSpace I x.1) (TangentSpace I' x.2)) := by diff --git a/Mathlib/GroupTheory/Congruence/Hom.lean b/Mathlib/GroupTheory/Congruence/Hom.lean index d22df0e0be8933..9c288d5d953668 100644 --- a/Mathlib/GroupTheory/Congruence/Hom.lean +++ b/Mathlib/GroupTheory/Congruence/Hom.lean @@ -65,23 +65,9 @@ relation `c` equals `c`. -/] theorem ker_mkMulHom_eq (c : Con M) : ker (mkMulHom c) = c := ext fun _ _ => Quotient.eq'' -/-- The kernel of a multiplication-preserving function as a congruence relation. -/ -@[to_additive -/-- The kernel of an addition-preserving function as an additive congruence relation. -/] -abbrev mulKer (f : M → P) (h : ∀ x y, f (x * y) = f x * f y) : Con M := - ker <| MulHom.mk f h - attribute [deprecated Con.ker (since := "2025-03-23")] mulKer attribute [deprecated AddCon.ker (since := "2025-03-23")] AddCon.addKer -set_option linter.deprecated false in -/-- The kernel of the quotient map induced by a congruence relation `c` equals `c`. -/ -@[to_additive (attr := simp) /-- The kernel of the quotient map induced by an additive congruence -relation `c` equals `c`. -/] -theorem mul_ker_mk_eq {c : Con M} : - (mulKer ((↑) : M → c.Quotient) fun _ _ => rfl) = c := - ext fun _ _ => Quotient.eq'' - attribute [deprecated Con.ker_mkMulHom_eq (since := "2025-03-23")] mul_ker_mk_eq attribute [deprecated AddCon.ker_mkAddHom_eq (since := "2025-03-23")] AddCon.add_ker_mk_eq diff --git a/Mathlib/GroupTheory/Coprod/Basic.lean b/Mathlib/GroupTheory/Coprod/Basic.lean index efd7c04c55f8ae..28a30029a5b029 100644 --- a/Mathlib/GroupTheory/Coprod/Basic.lean +++ b/Mathlib/GroupTheory/Coprod/Basic.lean @@ -481,9 +481,6 @@ def snd : M ∗ N →* N := lift 1 (.id N) @[to_additive toProd /-- The natural projection `AddMonoid.Coprod M N →+ M × N`. -/] def toProd : M ∗ N →* M × N := lift (.inl _ _) (.inr _ _) -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoid.Coprod.toSum := AddMonoid.Coprod.toProd - @[to_additive (attr := simp)] theorem fst_comp_inl : (fst : M ∗ N →* M).comp inl = .id _ := rfl @[to_additive (attr := simp)] theorem fst_apply_inl (x : M) : fst (inl x : M ∗ N) = x := rfl @[to_additive (attr := simp)] theorem fst_comp_inr : (fst : M ∗ N →* M).comp inr = 1 := rfl @@ -496,68 +493,38 @@ alias _root_.AddMonoid.Coprod.toSum := AddMonoid.Coprod.toProd @[to_additive (attr := simp) toProd_comp_inl] theorem toProd_comp_inl : (toProd : M ∗ N →* M × N).comp inl = .inl _ _ := rfl -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoid.Coprod.toSum_comp_inl := AddMonoid.Coprod.toProd_comp_inl - @[to_additive (attr := simp) toProd_comp_inr] theorem toProd_comp_inr : (toProd : M ∗ N →* M × N).comp inr = .inr _ _ := rfl -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoid.Coprod.toSum_comp_inr := AddMonoid.Coprod.toProd_comp_inr - @[to_additive (attr := simp) toProd_apply_inl] theorem toProd_apply_inl (x : M) : toProd (inl x : M ∗ N) = (x, 1) := rfl -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoid.Coprod.toSum_apply_inl := AddMonoid.Coprod.toProd_apply_inl - @[to_additive (attr := simp) toProd_apply_inr] theorem toProd_apply_inr (x : N) : toProd (inr x : M ∗ N) = (1, x) := rfl -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoid.Coprod.toSum_apply_inr := AddMonoid.Coprod.toProd_apply_inr - @[to_additive (attr := simp) fst_prod_snd] theorem fst_prod_snd : (fst : M ∗ N →* M).prod snd = toProd := by ext1 <;> rfl -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoid.Coprod.fst_sum_snd := AddMonoid.Coprod.fst_prod_snd - @[to_additive (attr := simp) prod_mk_fst_snd] theorem prod_mk_fst_snd (x : M ∗ N) : (fst x, snd x) = toProd x := by rw [← fst_prod_snd, MonoidHom.prod_apply] -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoid.Coprod.sum_mk_fst_snd := AddMonoid.Coprod.prod_mk_fst_snd - @[to_additive (attr := simp) fst_comp_toProd] theorem fst_comp_toProd : (MonoidHom.fst M N).comp toProd = fst := by rw [← fst_prod_snd, MonoidHom.fst_comp_prod] -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoid.Coprod.fst_comp_toSum := AddMonoid.Coprod.fst_comp_toProd - @[to_additive (attr := simp) fst_toProd] theorem fst_toProd (x : M ∗ N) : (toProd x).1 = fst x := by rw [← fst_comp_toProd]; rfl -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoid.Coprod.fst_toSum := AddMonoid.Coprod.fst_toProd - @[to_additive (attr := simp) snd_comp_toProd] theorem snd_comp_toProd : (MonoidHom.snd M N).comp toProd = snd := by rw [← fst_prod_snd, MonoidHom.snd_comp_prod] -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoid.Coprod.snd_comp_toSum := AddMonoid.Coprod.snd_comp_toProd - @[to_additive (attr := simp) snd_toProd] theorem snd_toProd (x : M ∗ N) : (toProd x).2 = snd x := by rw [← snd_comp_toProd]; rfl -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoid.Coprod.snd_toSum := AddMonoid.Coprod.snd_toProd - @[to_additive (attr := simp)] theorem fst_comp_swap : fst.comp (swap M N) = snd := lift_comp_swap _ _ @@ -592,9 +559,6 @@ theorem snd_surjective : Surjective (snd : M ∗ N →* N) := LeftInverse.surjec theorem toProd_surjective : Surjective (toProd : M ∗ N →* M × N) := fun x => ⟨inl x.1 * inr x.2, by rw [map_mul, toProd_apply_inl, toProd_apply_inr, Prod.fst_mul_snd]⟩ -@[deprecated (since := "2025-03-11")] -alias _root_.AddMonoid.Coprod.toSum_surjective := AddMonoid.Coprod.toProd_surjective - end ToProd section Group diff --git a/Mathlib/GroupTheory/Coset/Basic.lean b/Mathlib/GroupTheory/Coset/Basic.lean index 4f10e9eccd0a57..757392685f25bb 100644 --- a/Mathlib/GroupTheory/Coset/Basic.lean +++ b/Mathlib/GroupTheory/Coset/Basic.lean @@ -233,9 +233,6 @@ lemma leftRel_prod {β : Type*} [Group β] (s' : Subgroup β) : simp_rw [leftRel_apply] rfl -@[deprecated (since := "2025-03-11")] -alias _root_.QuotientAddGroup.leftRel_sum := QuotientAddGroup.leftRel_prod - @[to_additive] lemma leftRel_pi {ι : Type*} {β : ι → Type*} [∀ i, Group (β i)] (s' : ∀ i, Subgroup (β i)) : leftRel (Subgroup.pi Set.univ s') = @piSetoid _ _ fun i ↦ leftRel (s' i) := by @@ -256,9 +253,6 @@ lemma rightRel_prod {β : Type*} [Group β] (s' : Subgroup β) : simp_rw [rightRel_apply] rfl -@[deprecated (since := "2025-03-11")] -alias _root_.QuotientAddGroup.rightRel_sum := QuotientAddGroup.rightRel_prod - @[to_additive] lemma rightRel_pi {ι : Type*} {β : ι → Type*} [∀ i, Group (β i)] (s' : ∀ i, Subgroup (β i)) : rightRel (Subgroup.pi Set.univ s') = @piSetoid _ _ fun i ↦ rightRel (s' i) := by @@ -379,15 +373,6 @@ def quotientEquivProdOfLE' (h_le : s ≤ t) (f : α ⧸ t → α) (QuotientGroup.mk_mul_of_mem (f a) b.2).trans (hf a) simp_rw [Quotient.map'_mk'', id, key, inv_mul_cancel_left] -@[deprecated (since := "2025-03-11")] -alias AddSubgroup.quotientEquivSumOfLE' := AddSubgroup.quotientEquivProdOfLE' - -@[deprecated (since := "2025-03-11")] -alias AddSubgroup.quotientEquivSumOfLE'_apply := AddSubgroup.quotientEquivProdOfLE'_apply - -@[deprecated (since := "2025-03-11")] -alias AddSubgroup.quotientEquivSumOfLE'_symm_apply := AddSubgroup.quotientEquivProdOfLE'_symm_apply - /-- If `H ≤ K`, then `G/H ≃ G/K × K/H` nonconstructively. The constructive version is `quotientEquivProdOfLE'`. -/ @[to_additive (attr := simps!) quotientEquivProdOfLE @@ -396,15 +381,6 @@ constructive version is `quotientEquivProdOfLE'`. -/] noncomputable def quotientEquivProdOfLE (h_le : s ≤ t) : α ⧸ s ≃ (α ⧸ t) × t ⧸ s.subgroupOf t := quotientEquivProdOfLE' h_le Quotient.out Quotient.out_eq' -@[deprecated (since := "2025-03-11")] -alias AddSubgroup.quotientEquivSumOfLE := AddSubgroup.quotientEquivProdOfLE - -@[deprecated (since := "2025-03-11")] -alias AddSubgroup.quotientEquivSumOfLE_apply := AddSubgroup.quotientEquivProdOfLE_apply - -@[deprecated (since := "2025-03-11")] -alias AddSubgroup.quotientEquivSumOfLE_symm_apply := AddSubgroup.quotientEquivProdOfLE_symm_apply - /-- If `s ≤ t`, then there is an embedding `s ⧸ H.subgroupOf s ↪ t ⧸ H.subgroupOf t`. -/ @[to_additive /-- If `s ≤ t`, there is an embedding `s ⧸ H.addSubgroupOf s ↪ t ⧸ H.addSubgroupOf t`. -/] diff --git a/Mathlib/GroupTheory/GroupAction/Pointwise.lean b/Mathlib/GroupTheory/GroupAction/Pointwise.lean index 7abd7651ac670d..11fb79214b60ec 100644 --- a/Mathlib/GroupTheory/GroupAction/Pointwise.lean +++ b/Mathlib/GroupTheory/GroupAction/Pointwise.lean @@ -53,12 +53,6 @@ theorem Set.MapsTo.smul_setₛₗ (hst : MapsTo f s t) (c : M) : MapsTo f (c • theorem smul_preimage_set_subsetₛₗ (f : F) (c : M) (t : Set β) : c • f ⁻¹' t ⊆ f ⁻¹' (σ c • t) := ((mapsTo_preimage f t).smul_setₛₗ c).subset_preimage -@[deprecated (since := "2025-03-03")] -alias vadd_preimage_set_leₛₗ := vadd_preimage_set_subsetₛₗ - -@[to_additive existing, deprecated (since := "2025-03-03")] -alias smul_preimage_set_leₛₗ := smul_preimage_set_subsetₛₗ - /-- General version of `preimage_smul_setₛₗ`. This version assumes that the scalar multiplication by `c` is surjective while the scalar multiplication by `σ c` is injective. -/ @@ -90,12 +84,6 @@ theorem preimage_smul_setₛₗ_of_isUnit_isUnit (f : F) (hc : IsUnit c) (hc' : IsUnit (σ c)) (t : Set β) : f ⁻¹' (σ c • t) = c • f ⁻¹' t := preimage_smul_setₛₗ' hc.smul_bijective.surjective hc'.smul_bijective.injective -@[deprecated (since := "2025-03-04")] -alias preimage_vadd_setₛₗ_of_addUnits := preimage_vadd_setₛₗ_of_isAddUnit_isAddUnit - -@[to_additive existing, deprecated (since := "2025-03-04")] -alias preimage_smul_setₛₗ_of_units := preimage_smul_setₛₗ_of_isUnit_isUnit - /-- `preimage_smul_setₛₗ` when `c` is a unit and `σ` is a monoid homomorphism. -/ @[to_additive] theorem IsUnit.preimage_smul_setₛₗ {F G : Type*} [FunLike G M N] [MonoidHomClass G M N] @@ -105,12 +93,6 @@ theorem IsUnit.preimage_smul_setₛₗ {F G : Type*} [FunLike G M N] [MonoidHomC -- TODO: when you remove the next 2 aliases, -- please move the group version below out of the `Group` namespace. -@[deprecated (since := "2025-03-04")] -alias preimage_vadd_setₛₗ := IsAddUnit.preimage_vadd_setₛₗ - -@[to_additive existing, deprecated (since := "2025-03-04")] -alias preimage_smul_setₛₗ := IsUnit.preimage_smul_setₛₗ - /-- `preimage_smul_setₛₗ` when `c` is a unit and `σ` is a monoid homomorphism. -/ @[to_additive] protected theorem MonoidHom.preimage_smul_setₛₗ {F : Type*} (σ : M →* N) [FunLike F α β] @@ -144,12 +126,6 @@ theorem image_smul_set (f : F) (c : M) (s : Set α) : f '' (c • s) = c • f ' theorem smul_preimage_set_subset (f : F) (c : M) (t : Set β) : c • f ⁻¹' t ⊆ f ⁻¹' (c • t) := smul_preimage_set_subsetₛₗ f c t -@[deprecated (since := "2025-03-04")] -alias vadd_preimage_set_le := vadd_preimage_set_subset - -@[to_additive existing, deprecated (since := "2025-03-04")] -alias smul_preimage_set_le := smul_preimage_set_subset - @[to_additive] theorem Set.MapsTo.smul_set {f : F} {s : Set α} {t : Set β} (hst : MapsTo f s t) (c : M) : MapsTo f (c • s) (c • t) := @@ -165,12 +141,6 @@ theorem IsUnit.preimage_smul_set {M α β F : Type*} [Monoid M] [MulAction M α] -- TODO: when you remove the next 2 aliases, -- please move the `Group` version to the root namespace. -@[deprecated (since := "2025-03-04")] -alias preimage_vadd_set := IsAddUnit.preimage_vadd_set - -@[deprecated (since := "2025-03-04")] -alias preimage_smul_set := IsUnit.preimage_smul_set - @[to_additive] theorem Group.preimage_smul_set {G : Type*} [Group G] {α β : Type*} [MulAction G α] [MulAction G β] {F : Type*} [FunLike F α β] [MulActionHomClass F G α β] (f : F) (c : G) (t : Set β) : diff --git a/Mathlib/GroupTheory/GroupAction/Primitive.lean b/Mathlib/GroupTheory/GroupAction/Primitive.lean index aef26ec25f1fe1..11c09e7006316f 100644 --- a/Mathlib/GroupTheory/GroupAction/Primitive.lean +++ b/Mathlib/GroupTheory/GroupAction/Primitive.lean @@ -190,9 +190,6 @@ theorem IsPreprimitive.mk' (Hnt : fixedPoints G X ≠ ⊤) obtain ⟨_, ha⟩ := Hnt exact .of_isTrivialBlock_of_notMem_fixedPoints ha fun {B} _ ↦ H -@[deprecated (since := "2025-03-03")] alias _root_.AddAction.mk' := AddAction.IsPreprimitive.mk' -@[to_additive existing, deprecated (since := "2025-03-03")] alias mk' := IsPreprimitive.mk' - section EquivariantMap variable {M : Type*} [Group M] {α : Type*} [MulAction M α] diff --git a/Mathlib/GroupTheory/GroupAction/Quotient.lean b/Mathlib/GroupTheory/GroupAction/Quotient.lean index 4252e211ec9672..c1bb37307d6b98 100644 --- a/Mathlib/GroupTheory/GroupAction/Quotient.lean +++ b/Mathlib/GroupTheory/GroupAction/Quotient.lean @@ -391,9 +391,6 @@ noncomputable def selfEquivOrbitsQuotientProd' (Subgroup.quotientEquivOfEq (h _)).trans (QuotientGroup.quotientEquivSelf α)).trans <| Equiv.sigmaEquivProd _ _ -@[deprecated (since := "2025-03-11")] -alias _root_.AddAction.selfEquivOrbitsQuotientSum' := AddAction.selfEquivOrbitsQuotientProd' - /-- If `α` acts freely on `β`, `β` is equivalent to the product of the quotient of `β` by `α` and `α`. -/ @[to_additive selfEquivOrbitsQuotientProd @@ -403,9 +400,6 @@ noncomputable def selfEquivOrbitsQuotientProd (h : ∀ b : β, MulAction.stabili β ≃ Quotient (MulAction.orbitRel α β) × α := MulAction.selfEquivOrbitsQuotientProd' Quotient.out_eq' h -@[deprecated (since := "2025-03-11")] -alias _root_.AddAction.selfEquivOrbitsQuotientSum := AddAction.selfEquivOrbitsQuotientProd - end MulAction theorem ConjClasses.card_carrier {G : Type*} [Group G] [Fintype G] (g : G) diff --git a/Mathlib/GroupTheory/Index.lean b/Mathlib/GroupTheory/Index.lean index d2d5fb3b712554..b54467d9c6551e 100644 --- a/Mathlib/GroupTheory/Index.lean +++ b/Mathlib/GroupTheory/Index.lean @@ -601,9 +601,6 @@ lemma index_prod (H : Subgroup G) (K : Subgroup G') : (H.prod K).index = H.index ((Quotient.congrRight (fun x y ↦ ?_)).trans (Setoid.prodQuotientEquiv _ _).symm) rw [QuotientGroup.leftRel_prod] -@[deprecated (since := "2025-03-11")] -alias _root_.AddSubgroup.index_sum := AddSubgroup.index_prod - @[to_additive (attr := simp)] lemma index_pi {ι : Type*} [Fintype ι] (H : ι → Subgroup G) : (Subgroup.pi Set.univ H).index = ∏ i, (H i).index := by diff --git a/Mathlib/LinearAlgebra/FreeModule/Finite/Quotient.lean b/Mathlib/LinearAlgebra/FreeModule/Finite/Quotient.lean index c03ae296922f88..3d7bea7d0e18ea 100644 --- a/Mathlib/LinearAlgebra/FreeModule/Finite/Quotient.lean +++ b/Mathlib/LinearAlgebra/FreeModule/Finite/Quotient.lean @@ -98,9 +98,6 @@ theorem finiteQuotientOfFreeOfRankEq [Module.Free ℤ M] [Module.Finite ℤ M] ⟨Int.natAbs_ne_zero.mpr (smithNormalFormCoeffs_ne_zero b h i)⟩ exact Finite.of_equiv (Π i, ZMod (a i).natAbs) e.symm -@[deprecated (since := "2025-03-15")] alias fintypeQuotientOfFreeOfRankEq := - finiteQuotientOfFreeOfRankEq - theorem finiteQuotient_iff [Module.Free ℤ M] [Module.Finite ℤ M] (N : Submodule ℤ M) : Finite (M ⧸ N) ↔ Module.finrank ℤ N = Module.finrank ℤ M := by refine ⟨fun h ↦ le_antisymm (finrank_le N) <| diff --git a/Mathlib/LinearAlgebra/FreeModule/IdealQuotient.lean b/Mathlib/LinearAlgebra/FreeModule/IdealQuotient.lean index f8cabff55e063f..597a43e7f52f43 100644 --- a/Mathlib/LinearAlgebra/FreeModule/IdealQuotient.lean +++ b/Mathlib/LinearAlgebra/FreeModule/IdealQuotient.lean @@ -44,9 +44,6 @@ theorem finiteQuotientOfFreeOfNeBot [Module.Free ℤ S] [Module.Finite ℤ S] let b := Module.Free.chooseBasis ℤ S Submodule.finiteQuotientOfFreeOfRankEq (I.restrictScalars ℤ) <| finrank_eq_finrank b I hI -@[deprecated (since := "2025-03-15")] alias fintypeQuotientOfFreeOfNeBot := - finiteQuotientOfFreeOfNeBot - variable (F : Type*) [CommRing F] [Algebra F R] [Algebra F S] [IsScalarTower F R S] (b : Basis ι R S) {I : Ideal S} (hI : I ≠ ⊥) diff --git a/Mathlib/LinearAlgebra/LinearIndependent/Basic.lean b/Mathlib/LinearAlgebra/LinearIndependent/Basic.lean index 7d751997966864..011887d671cdbc 100644 --- a/Mathlib/LinearAlgebra/LinearIndependent/Basic.lean +++ b/Mathlib/LinearAlgebra/LinearIndependent/Basic.lean @@ -280,9 +280,6 @@ theorem LinearIndepOn.id_imageₛ {s : Set M} {f : M →ₗ[R] M'} (hs : LinearI (hf_inj : Set.InjOn f (span R s)) : LinearIndepOn R id (f '' s) := id_image <| hs.map_injOn f (by simpa using hf_inj) -@[deprecated (since := "2025-02-14")] alias - LinearIndependent.image_subtypeₛ := LinearIndepOn.id_imageₛ - end union theorem surjective_of_linearIndependent_of_span [Nontrivial R] (hv : LinearIndependent R v) diff --git a/Mathlib/LinearAlgebra/LinearIndependent/Defs.lean b/Mathlib/LinearAlgebra/LinearIndependent/Defs.lean index e889b0912e63a9..cdc828d9d15d35 100644 --- a/Mathlib/LinearAlgebra/LinearIndependent/Defs.lean +++ b/Mathlib/LinearAlgebra/LinearIndependent/Defs.lean @@ -126,25 +126,13 @@ theorem LinearIndepOn.linearIndependent {s : Set ι} (h : LinearIndepOn R v s) : theorem linearIndependent_iff_injective_finsuppLinearCombination : LinearIndependent R v ↔ Injective (Finsupp.linearCombination R v) := Iff.rfl -@[deprecated (since := "2025-03-18")] -alias linearIndependent_iff_injective_linearCombination := - linearIndependent_iff_injective_finsuppLinearCombination - alias ⟨LinearIndependent.finsuppLinearCombination_injective, _⟩ := linearIndependent_iff_injective_finsuppLinearCombination -@[deprecated (since := "2025-03-18")] -alias LinearIndependent.linearCombination_injective := - LinearIndependent.finsuppLinearCombination_injective - theorem linearIndependent_iff_injective_fintypeLinearCombination [Fintype ι] : LinearIndependent R v ↔ Injective (Fintype.linearCombination R v) := by simp [← Finsupp.linearCombination_eq_fintype_linearCombination, LinearIndependent] -@[deprecated (since := "2025-03-18")] -alias Fintype.linearIndependent_iff_injective := - linearIndependent_iff_injective_fintypeLinearCombination - alias ⟨LinearIndependent.fintypeLinearCombination_injective, _⟩ := linearIndependent_iff_injective_fintypeLinearCombination @@ -414,8 +402,6 @@ theorem linearIndepOn_iffₛ : LinearIndepOn R v s ↔ rwa [Finsupp.sum_mapDomain_index, Finsupp.sum_mapDomain_index] <;> intros <;> simp only [zero_smul, add_smul] -@[deprecated (since := "2025-02-15")] alias linearIndependent_comp_subtypeₛ := linearIndepOn_iffₛ - /-- An indexed set of vectors is linearly dependent iff there are two distinct `Finsupp.LinearCombination`s of the vectors with the same value. -/ theorem linearDepOn_iff'ₛ : ¬LinearIndepOn R v s ↔ @@ -423,18 +409,12 @@ theorem linearDepOn_iff'ₛ : ¬LinearIndepOn R v s ↔ Finsupp.linearCombination R v f = Finsupp.linearCombination R v g ∧ f ≠ g := by simp [linearIndepOn_iffₛ] -@[deprecated (since := "2025-02-15")] alias linearDependent_comp_subtype'ₛ := linearDepOn_iff'ₛ - /-- A version of `linearDepOn_iff'ₛ` with `Finsupp.linearCombination` unfolded. -/ theorem linearDepOn_iffₛ : ¬LinearIndepOn R v s ↔ ∃ f g : ι →₀ R, f ∈ Finsupp.supported R R s ∧ g ∈ Finsupp.supported R R s ∧ ∑ i ∈ f.support, f i • v i = ∑ i ∈ g.support, g i • v i ∧ f ≠ g := linearDepOn_iff'ₛ -@[deprecated (since := "2025-02-15")] alias linearDependent_comp_subtypeₛ := linearDepOn_iffₛ - -@[deprecated (since := "2025-02-15")] alias linearIndependent_subtypeₛ := linearIndepOn_iffₛ - theorem linearIndependent_restrict_iff : LinearIndependent R (s.restrict v) ↔ LinearIndepOn R v s := Iff.rfl @@ -447,9 +427,6 @@ theorem linearIndepOn_iff_linearCombinationOnₛ : rw [← linearIndependent_restrict_iff] simp [LinearIndependent, Finsupp.linearCombination_restrict] -@[deprecated (since := "2025-02-15")] alias - linearIndependent_iff_linearCombinationOnₛ := linearIndepOn_iff_linearCombinationOnₛ - end Indexed section repr diff --git a/Mathlib/LinearAlgebra/Matrix/Notation.lean b/Mathlib/LinearAlgebra/Matrix/Notation.lean index 8f9e990e765761..b3edadc903ff55 100644 --- a/Mathlib/LinearAlgebra/Matrix/Notation.lean +++ b/Mathlib/LinearAlgebra/Matrix/Notation.lean @@ -204,28 +204,20 @@ variable {ι : Type*} theorem replicateCol_empty (v : Fin 0 → α) : replicateCol ι v = vecEmpty := empty_eq _ -@[deprecated (since := "2025-03-20")] alias col_empty := replicateCol_empty - @[simp] theorem replicateCol_cons (x : α) (u : Fin m → α) : replicateCol ι (vecCons x u) = of (vecCons (fun _ => x) (replicateCol ι u)) := by ext i j refine Fin.cases ?_ ?_ i <;> simp -@[deprecated (since := "2025-03-20")] alias col_cons := replicateCol_cons - @[simp] theorem replicateRow_empty : replicateRow ι (vecEmpty : Fin 0 → α) = of fun _ => vecEmpty := rfl -@[deprecated (since := "2025-03-20")] alias row_empty := replicateRow_empty - @[simp] theorem replicateRow_cons (x : α) (u : Fin m → α) : replicateRow ι (vecCons x u) = of fun _ => vecCons x u := rfl -@[deprecated (since := "2025-03-20")] alias row_cons := replicateRow_cons - end ColRow section Transpose diff --git a/Mathlib/LinearAlgebra/Matrix/RowCol.lean b/Mathlib/LinearAlgebra/Matrix/RowCol.lean index b32e7f713538c4..ea52b457d4d0f8 100644 --- a/Mathlib/LinearAlgebra/Matrix/RowCol.lean +++ b/Mathlib/LinearAlgebra/Matrix/RowCol.lean @@ -70,77 +70,55 @@ theorem replicateCol_injective [Nonempty ι] : inhabit ι exact fun _x _y h => funext fun i => congr_fun₂ h i default -@[deprecated (since := "2025-03-20")] alias col_injective := replicateCol_injective - @[simp] theorem replicateCol_inj [Nonempty ι] {v w : m → α} : replicateCol ι v = replicateCol ι w ↔ v = w := replicateCol_injective.eq_iff -@[deprecated (since := "2025-03-20")] alias col_inj := replicateCol_inj - @[simp] theorem replicateCol_zero [Zero α] : replicateCol ι (0 : m → α) = 0 := rfl -@[deprecated (since := "2025-03-20")] alias col_zero := replicateCol_zero - @[simp] theorem replicateCol_eq_zero [Zero α] [Nonempty ι] (v : m → α) : replicateCol ι v = 0 ↔ v = 0 := replicateCol_inj -@[deprecated (since := "2025-03-20")] alias col_eq_zero := replicateCol_eq_zero - @[simp] theorem replicateCol_add [Add α] (v w : m → α) : replicateCol ι (v + w) = replicateCol ι v + replicateCol ι w := by ext rfl -@[deprecated (since := "2025-03-20")] alias col_add := replicateCol_add - @[simp] theorem replicateCol_smul [SMul R α] (x : R) (v : m → α) : replicateCol ι (x • v) = x • replicateCol ι v := by ext rfl -@[deprecated (since := "2025-03-20")] alias col_smul := replicateCol_smul - theorem replicateRow_injective [Nonempty ι] : Function.Injective (replicateRow ι : (n → α) → Matrix ι n α) := by inhabit ι exact fun _x _y h => funext fun j => congr_fun₂ h default j -@[deprecated (since := "2025-03-20")] alias row_injective := replicateRow_injective - @[simp] theorem replicateRow_inj [Nonempty ι] {v w : n → α} : replicateRow ι v = replicateRow ι w ↔ v = w := replicateRow_injective.eq_iff @[simp] theorem replicateRow_zero [Zero α] : replicateRow ι (0 : n → α) = 0 := rfl -@[deprecated (since := "2025-03-20")] alias row_zero := replicateRow_zero - @[simp] theorem replicateRow_eq_zero [Zero α] [Nonempty ι] (v : n → α) : replicateRow ι v = 0 ↔ v = 0 := replicateRow_inj -@[deprecated (since := "2025-03-20")] alias row_eq_zero := replicateRow_eq_zero - @[simp] theorem replicateRow_add [Add α] (v w : m → α) : replicateRow ι (v + w) = replicateRow ι v + replicateRow ι w := by ext rfl -@[deprecated (since := "2025-03-20")] alias row_add := replicateRow_add - @[simp] theorem replicateRow_smul [SMul R α] (x : R) (v : m → α) : replicateRow ι (x • v) = x • replicateRow ι v := by ext rfl -@[deprecated (since := "2025-03-20")] alias row_smul := replicateRow_smul - @[simp] theorem transpose_replicateCol (v : m → α) : (replicateCol ι v)ᵀ = replicateRow ι v := by ext @@ -157,75 +135,53 @@ theorem conjTranspose_replicateCol [Star α] (v : m → α) : ext rfl -@[deprecated (since := "2025-03-20")] alias conjTranspose_col := conjTranspose_replicateCol - @[simp] theorem conjTranspose_replicateRow [Star α] (v : m → α) : (replicateRow ι v)ᴴ = replicateCol ι (star v) := by ext rfl -@[deprecated (since := "2025-03-20")] alias conjTranspose_row := conjTranspose_replicateRow - theorem replicateRow_vecMul [Fintype m] [NonUnitalNonAssocSemiring α] (M : Matrix m n α) (v : m → α) : replicateRow ι (v ᵥ* M) = replicateRow ι v * M := by ext rfl -@[deprecated (since := "2025-03-20")] alias row_vecMul := replicateRow_vecMul - theorem replicateCol_vecMul [Fintype m] [NonUnitalNonAssocSemiring α] (M : Matrix m n α) (v : m → α) : replicateCol ι (v ᵥ* M) = (replicateRow ι v * M)ᵀ := by ext rfl -@[deprecated (since := "2025-03-20")] alias col_vecMul := replicateCol_vecMul - theorem replicateCol_mulVec [Fintype n] [NonUnitalNonAssocSemiring α] (M : Matrix m n α) (v : n → α) : replicateCol ι (M *ᵥ v) = M * replicateCol ι v := by ext rfl -@[deprecated (since := "2025-03-20")] alias col_mulVec := replicateCol_mulVec - theorem replicateRow_mulVec [Fintype n] [NonUnitalNonAssocSemiring α] (M : Matrix m n α) (v : n → α) : replicateRow ι (M *ᵥ v) = (M * replicateCol ι v)ᵀ := by ext rfl -@[deprecated (since := "2025-03-20")] alias row_mulVec := replicateRow_mulVec - theorem replicateRow_mulVec_eq_const [Fintype m] [NonUnitalNonAssocSemiring α] (v w : m → α) : replicateRow ι v *ᵥ w = Function.const _ (v ⬝ᵥ w) := rfl -@[deprecated (since := "2025-03-20")] alias row_mulVec_eq_const := replicateRow_mulVec_eq_const - theorem mulVec_replicateCol_eq_const [Fintype m] [NonUnitalNonAssocSemiring α] (v w : m → α) : v ᵥ* replicateCol ι w = Function.const _ (v ⬝ᵥ w) := rfl -@[deprecated (since := "2025-03-20")] alias mulVec_col_eq_const := mulVec_replicateCol_eq_const - theorem replicateRow_mul_replicateCol [Fintype m] [Mul α] [AddCommMonoid α] (v w : m → α) : replicateRow ι v * replicateCol ι w = of fun _ _ => v ⬝ᵥ w := rfl -@[deprecated (since := "2025-03-20")] alias row_mul_col := replicateRow_mul_replicateCol - @[simp] theorem replicateRow_mul_replicateCol_apply [Fintype m] [Mul α] [AddCommMonoid α] (v w : m → α) (i j) : (replicateRow ι v * replicateCol ι w) i j = v ⬝ᵥ w := rfl -@[deprecated (since := "2025-03-20")] alias row_mul_col_apply := replicateRow_mul_replicateCol_apply - @[simp] theorem diag_replicateCol_mul_replicateRow [Mul α] [AddCommMonoid α] [Unique ι] (a b : n → α) : diag (replicateCol ι a * replicateRow ι b) = a * b := by ext simp [Matrix.mul_apply, replicateCol, replicateRow] -@[deprecated (since := "2025-03-20")] alias diag_col_mul_row := diag_replicateCol_mul_replicateRow - variable (ι) theorem vecMulVec_eq [Mul α] [AddCommMonoid α] [Unique ι] (w : m → α) (v : n → α) : diff --git a/Mathlib/LinearAlgebra/Matrix/SchurComplement.lean b/Mathlib/LinearAlgebra/Matrix/SchurComplement.lean index 9fd347c354cac4..0874a1e752fc33 100644 --- a/Mathlib/LinearAlgebra/Matrix/SchurComplement.lean +++ b/Mathlib/LinearAlgebra/Matrix/SchurComplement.lean @@ -409,10 +409,6 @@ theorem det_one_add_replicateCol_mul_replicateRow {ι : Type*} [Unique ι] (u v rw [det_one_add_mul_comm, det_unique, Pi.add_apply, Pi.add_apply, Matrix.one_apply_eq, Matrix.replicateRow_mul_replicateCol_apply] -@[deprecated (since := "2025-03-20")] alias - det_one_add_col_mul_row := det_one_add_replicateCol_mul_replicateRow - - /-- The **Matrix determinant lemma** TODO: show the more general version without `hA : IsUnit A.det` as @@ -426,9 +422,6 @@ theorem det_add_replicateCol_mul_replicateRow {ι : Type*} [Unique ι] rwa [← Matrix.mul_nonsing_inv_cancel_left A (replicateCol ι u * replicateRow ι v), ← Matrix.mul_add, det_mul, ← Matrix.mul_assoc, det_one_add_mul_comm, ← Matrix.mul_assoc] -@[deprecated (since := "2025-03-20")] alias - det_add_col_mul_row := det_add_replicateCol_mul_replicateRow - /-- A generalization of the **Matrix determinant lemma** -/ theorem det_add_mul {A : Matrix m m α} (U : Matrix m n α) (V : Matrix n m α) (hA : IsUnit A.det) : diff --git a/Mathlib/LinearAlgebra/Matrix/Trace.lean b/Mathlib/LinearAlgebra/Matrix/Trace.lean index bb2daa1ec9bf9c..a8da227bfee62a 100644 --- a/Mathlib/LinearAlgebra/Matrix/Trace.lean +++ b/Mathlib/LinearAlgebra/Matrix/Trace.lean @@ -168,8 +168,6 @@ theorem trace_replicateCol_mul_replicateRow {ι : Type*} [Unique ι] [NonUnitalN apply Finset.sum_congr rfl simp [mul_apply] -@[deprecated (since := "2025-03-20")] alias trace_col_mul_row := trace_replicateCol_mul_replicateRow - @[simp] theorem trace_vecMulVec [NonUnitalNonAssocSemiring R] (a b : n → R) : trace (vecMulVec a b) = a ⬝ᵥ b := by diff --git a/Mathlib/Logic/Equiv/Set.lean b/Mathlib/Logic/Equiv/Set.lean index ba468588d2cb59..4af1575b9cc449 100644 --- a/Mathlib/Logic/Equiv/Set.lean +++ b/Mathlib/Logic/Equiv/Set.lean @@ -251,9 +251,6 @@ protected def singleton {α} (a : α) : ({a} : Set α) ≃ PUnit.{u} := subst x rfl, fun ⟨⟩ => rfl⟩ -@[deprecated (since := "2025-03-19"), simps! apply symm_apply] -protected alias ofEq := Equiv.setCongr - attribute [deprecated Equiv.setCongr_apply (since := "2025-03-19")] Set.ofEq_apply attribute [deprecated Equiv.setCongr_symm_apply (since := "2025-03-19")] Set.ofEq_symm_apply diff --git a/Mathlib/MeasureTheory/Function/L1Space/Integrable.lean b/Mathlib/MeasureTheory/Function/L1Space/Integrable.lean index 7a9e51a282371e..3bef0c9258f9ec 100644 --- a/Mathlib/MeasureTheory/Function/L1Space/Integrable.lean +++ b/Mathlib/MeasureTheory/Function/L1Space/Integrable.lean @@ -642,9 +642,6 @@ theorem Integrable.prodMk {f : α → β} {g : α → γ} (hf : Integrable f μ) max ‖f x‖ ‖g x‖ ≤ ‖f x‖ + ‖g x‖ := max_le_add_of_nonneg (norm_nonneg _) (norm_nonneg _) _ ≤ ‖‖f x‖ + ‖g x‖‖ := le_abs_self _⟩ -@[deprecated (since := "2025-03-05")] -alias Integrable.prod_mk := Integrable.prodMk - theorem MemLp.integrable {q : ℝ≥0∞} (hq1 : 1 ≤ q) {f : α → ε} [IsFiniteMeasure μ] (hfq : MemLp f q μ) : Integrable f μ := memLp_one_iff_integrable.mp (hfq.mono_exponent hq1) diff --git a/Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean b/Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean index 87041d9e306e1a..1179b874eb8888 100644 --- a/Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean +++ b/Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean @@ -983,9 +983,6 @@ theorem enorm_ae_le_eLpNormEssSup {_ : MeasurableSpace α} (f : α → ε) (μ : ∀ᵐ x ∂μ, ‖f x‖ₑ ≤ eLpNormEssSup f μ := ENNReal.ae_le_essSup fun x => ‖f x‖ₑ -@[deprecated (since := "2025-03-05")] alias -coe_nnnorm_ae_le_eLpNormEssSup := enorm_ae_le_eLpNormEssSup - @[simp] theorem eLpNormEssSup_eq_zero_iff {f : α → ε} : eLpNormEssSup f μ = 0 ↔ f =ᵐ[μ] 0 := by simp [EventuallyEq, eLpNormEssSup_eq_essSup_enorm] diff --git a/Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean b/Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean index 79febe203e4a06..3ff4762a5ceebb 100644 --- a/Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean +++ b/Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean @@ -448,8 +448,6 @@ instance as it is (as of writing) used only in the construction of the Bochner i protected theorem isBoundedSMul [Fact (1 ≤ p)] : IsBoundedSMul 𝕜 (Lp.simpleFunc E p μ) := IsBoundedSMul.of_norm_smul_le fun r f => (norm_smul_le r (f : Lp E p μ) :) -@[deprecated (since := "2025-03-10")] protected alias boundedSMul := simpleFunc.isBoundedSMul - attribute [local instance] simpleFunc.isBoundedSMul /-- If `E` is a normed space, `Lp.simpleFunc E p μ` is a normed space. Not declared as an diff --git a/Mathlib/MeasureTheory/Function/StronglyMeasurable/AEStronglyMeasurable.lean b/Mathlib/MeasureTheory/Function/StronglyMeasurable/AEStronglyMeasurable.lean index 68020c518ff1aa..2020ec84133813 100644 --- a/Mathlib/MeasureTheory/Function/StronglyMeasurable/AEStronglyMeasurable.lean +++ b/Mathlib/MeasureTheory/Function/StronglyMeasurable/AEStronglyMeasurable.lean @@ -235,9 +235,6 @@ protected theorem prodMk {f : α → β} {g : α → γ} (hf : AEStronglyMeasura ⟨fun x => (hf.mk f x, hg.mk g x), hf.stronglyMeasurable_mk.prodMk hg.stronglyMeasurable_mk, hf.ae_eq_mk.prodMk hg.ae_eq_mk⟩ -@[deprecated (since := "2025-03-05")] -protected alias prod_mk := AEStronglyMeasurable.prodMk - /-- The composition of a continuous function of two variables and two ae strongly measurable functions is ae strongly measurable. -/ theorem _root_.Continuous.comp_aestronglyMeasurable₂ diff --git a/Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean b/Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean index 3bbfbb3ca805e8..fb99b5bbfc5e8b 100644 --- a/Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean +++ b/Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean @@ -360,8 +360,6 @@ protected theorem prodMk {m : MeasurableSpace α} [TopologicalSpace β] [Topolog rw [nhds_prod_eq] exact Tendsto.prodMk (hf.tendsto_approx x) (hg.tendsto_approx x) -@[deprecated (since := "2025-03-05")] protected alias prod_mk := StronglyMeasurable.prodMk - @[fun_prop] theorem comp_measurable [TopologicalSpace β] {_ : MeasurableSpace α} {_ : MeasurableSpace γ} {f : α → β} {g : γ → α} (hf : StronglyMeasurable f) (hg : Measurable g) : diff --git a/Mathlib/MeasureTheory/Integral/Prod.lean b/Mathlib/MeasureTheory/Integral/Prod.lean index e19c2271e11de7..b6bd2299cc1d11 100644 --- a/Mathlib/MeasureTheory/Integral/Prod.lean +++ b/Mathlib/MeasureTheory/Integral/Prod.lean @@ -156,9 +156,6 @@ theorem integrable_measure_prodMk_left {s : Set (α × β)} (hs : MeasurableSet rw [lt_top_iff_ne_top] at hx simp [ofReal_toReal, hx] -@[deprecated (since := "2025-03-05")] -alias MeasureTheory.Measure.integrable_measure_prod_mk_left := integrable_measure_prodMk_left - end Measure open Measure @@ -200,10 +197,6 @@ theorem MeasureTheory.AEStronglyMeasurable.prodMk_left [SFinite ν] {f : α × exact ⟨fun y ↦ hf.mk f (x, y), hf.stronglyMeasurable_mk.comp_measurable measurable_prodMk_left, hx⟩ -@[deprecated (since := "2025-03-05")] -alias MeasureTheory.AEStronglyMeasurable.prod_mk_left := - MeasureTheory.AEStronglyMeasurable.prodMk_left - theorem MeasureTheory.AEStronglyMeasurable.prodMk_right [SFinite μ] [SFinite ν] {f : α × β → X} (hf : AEStronglyMeasurable f (μ.prod ν)) : ∀ᵐ y ∂ν, AEStronglyMeasurable (fun x => f (x, y)) μ := diff --git a/Mathlib/MeasureTheory/MeasurableSpace/Constructions.lean b/Mathlib/MeasureTheory/MeasurableSpace/Constructions.lean index 5e0ebf3b5bd9de..215ee939be695d 100644 --- a/Mathlib/MeasureTheory/MeasurableSpace/Constructions.lean +++ b/Mathlib/MeasureTheory/MeasurableSpace/Constructions.lean @@ -401,29 +401,17 @@ theorem Measurable.prodMk {β γ} {_ : MeasurableSpace β} {_ : MeasurableSpace {g : α → γ} (hf : Measurable f) (hg : Measurable g) : Measurable fun a : α => (f a, g a) := Measurable.prod hf hg -@[deprecated (since := "2025-03-05")] -alias Measurable.prod_mk := Measurable.prodMk - @[fun_prop] theorem Measurable.prodMap [MeasurableSpace δ] {f : α → β} {g : γ → δ} (hf : Measurable f) (hg : Measurable g) : Measurable (Prod.map f g) := (hf.comp measurable_fst).prodMk (hg.comp measurable_snd) -@[deprecated (since := "2025-03-05")] -alias Measurable.prod_map := Measurable.prodMap - theorem measurable_prodMk_left {x : α} : Measurable (@Prod.mk _ β x) := measurable_const.prodMk measurable_id -@[deprecated (since := "2025-03-05")] -alias measurable_prod_mk_left := measurable_prodMk_left - theorem measurable_prodMk_right {y : β} : Measurable fun x : α => (x, y) := measurable_id.prodMk measurable_const -@[deprecated (since := "2025-03-05")] -alias measurable_prod_mk_right := measurable_prodMk_right - theorem Measurable.of_uncurry_left {f : α → β → γ} (hf : Measurable (uncurry f)) {x : α} : Measurable (f x) := hf.comp measurable_prodMk_left diff --git a/Mathlib/MeasureTheory/MeasurableSpace/Prod.lean b/Mathlib/MeasureTheory/MeasurableSpace/Prod.lean index 956d8346af6ec2..f03704f0acff78 100644 --- a/Mathlib/MeasureTheory/MeasurableSpace/Prod.lean +++ b/Mathlib/MeasureTheory/MeasurableSpace/Prod.lean @@ -110,25 +110,16 @@ lemma MeasurableEmbedding.prodMk_left {β γ : Type*} [MeasurableSingletonClass ext x simp [Prod.ext_iff, eq_comm, ← exists_and_left, and_left_comm] -@[deprecated (since := "2025-03-05")] -alias MeasurableEmbedding.prod_mk_left := MeasurableEmbedding.prodMk_left - lemma measurableEmbedding_prodMk_left [MeasurableSingletonClass α] (x : α) : MeasurableEmbedding (Prod.mk x : β → α × β) := MeasurableEmbedding.prodMk_left x MeasurableEmbedding.id -@[deprecated (since := "2025-03-05")] -alias measurableEmbedding_prod_mk_left := measurableEmbedding_prodMk_left - lemma MeasurableEmbedding.prodMk_right {β γ : Type*} [MeasurableSingletonClass α] {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {f : γ → β} (hf : MeasurableEmbedding f) (x : α) : MeasurableEmbedding (fun y ↦ (f y, x)) := MeasurableEquiv.prodComm.measurableEmbedding.comp (hf.prodMk_left _) -@[deprecated (since := "2025-03-05")] -alias MeasurableEmbedding.prod_mk_right := MeasurableEmbedding.prodMk_right - lemma measurableEmbedding_prod_mk_right [MeasurableSingletonClass α] (x : α) : MeasurableEmbedding (fun y ↦ (y, x) : β → β × α) := MeasurableEmbedding.prodMk_right MeasurableEmbedding.id x diff --git a/Mathlib/MeasureTheory/Measure/AEMeasurable.lean b/Mathlib/MeasureTheory/Measure/AEMeasurable.lean index 95ac9879b1f99f..94e6256b1ecd44 100644 --- a/Mathlib/MeasureTheory/Measure/AEMeasurable.lean +++ b/Mathlib/MeasureTheory/Measure/AEMeasurable.lean @@ -184,9 +184,6 @@ theorem prodMk {f : α → β} {g : α → γ} (hf : AEMeasurable f μ) (hg : AE ⟨fun a => (hf.mk f a, hg.mk g a), hf.measurable_mk.prodMk hg.measurable_mk, hf.ae_eq_mk.prodMk hg.ae_eq_mk⟩ -@[deprecated (since := "2025-03-05")] -alias prod_mk := prodMk - theorem exists_ae_eq_range_subset (H : AEMeasurable f μ) {t : Set β} (ht : ∀ᵐ x ∂μ, f x ∈ t) (h₀ : t.Nonempty) : ∃ g, Measurable g ∧ range g ⊆ t ∧ f =ᵐ[μ] g := by classical diff --git a/Mathlib/MeasureTheory/Measure/Haar/InnerProductSpace.lean b/Mathlib/MeasureTheory/Measure/Haar/InnerProductSpace.lean index 0dd698a383646a..8494ce10d13ed0 100644 --- a/Mathlib/MeasureTheory/Measure/Haar/InnerProductSpace.lean +++ b/Mathlib/MeasureTheory/Measure/Haar/InnerProductSpace.lean @@ -34,18 +34,12 @@ def toMeasurableEquiv : E ≃ᵐ F where measurable_toFun := f.continuous.measurable measurable_invFun := f.symm.continuous.measurable -@[deprecated (since := "2025-03-22")] alias toMeasureEquiv := toMeasurableEquiv - @[simp] theorem coe_toMeasurableEquiv : (f.toMeasurableEquiv : E → F) = f := rfl -@[deprecated (since := "2025-03-22")] alias coe_toMeasureEquiv := coe_toMeasurableEquiv - @[simp] theorem toMeasurableEquiv_symm : f.symm.toMeasurableEquiv = f.toMeasurableEquiv.symm := rfl @[simp] lemma coe_symm_toMeasurableEquiv : ⇑f.toMeasurableEquiv.symm = f.symm := rfl -@[deprecated (since := "2025-03-22")] alias toMeasureEquiv_symm := toMeasurableEquiv_symm - end LinearIsometryEquiv variable [Fintype ι] diff --git a/Mathlib/MeasureTheory/Measure/Prod.lean b/Mathlib/MeasureTheory/Measure/Prod.lean index 41711ba907db10..76b6a71ebe4c16 100644 --- a/Mathlib/MeasureTheory/Measure/Prod.lean +++ b/Mathlib/MeasureTheory/Measure/Prod.lean @@ -82,9 +82,6 @@ theorem measurable_measure_prodMk_left_finite [IsFiniteMeasure ν] {s : Set (α exacts [hfd.mono fun _ _ ↦ .preimage _, fun i ↦ measurable_prodMk_left (hfm i)] simpa only [this] using Measurable.ennreal_tsum ihf -@[deprecated (since := "2025-03-05")] -alias measurable_measure_prod_mk_left_finite := measurable_measure_prodMk_left_finite - /-- If `ν` is an s-finite measure, and `s ⊆ α × β` is measurable, then `x ↦ ν { y | (x, y) ∈ s }` is a measurable function. @@ -98,36 +95,24 @@ theorem measurable_measure_prodMk_left [SFinite ν] {s : Set (α × β)} (hs : M simp_rw [Measure.sum_apply_of_countable] exact Measurable.ennreal_tsum (fun i ↦ measurable_measure_prodMk_left_finite hs) -@[deprecated (since := "2025-03-05")] -alias measurable_measure_prod_mk_left := measurable_measure_prodMk_left - /-- If `μ` is an s-finite measure, and `s ⊆ α × β` is measurable, then `y ↦ μ { x | (x, y) ∈ s }` is a measurable function. -/ theorem measurable_measure_prodMk_right {μ : Measure α} [SFinite μ] {s : Set (α × β)} (hs : MeasurableSet s) : Measurable fun y => μ ((fun x => (x, y)) ⁻¹' s) := measurable_measure_prodMk_left (measurableSet_swap_iff.mpr hs) -@[deprecated (since := "2025-03-05")] -alias measurable_measure_prod_mk_right := measurable_measure_prodMk_right - theorem Measurable.map_prodMk_left [SFinite ν] : Measurable fun x : α => map (Prod.mk x) ν := by apply measurable_of_measurable_coe; intro s hs simp_rw [map_apply measurable_prodMk_left hs] exact measurable_measure_prodMk_left hs -@[deprecated (since := "2025-03-05")] -alias Measurable.map_prod_mk_left := Measurable.map_prodMk_left - theorem Measurable.map_prodMk_right {μ : Measure α} [SFinite μ] : Measurable fun y : β => map (fun x : α => (x, y)) μ := by apply measurable_of_measurable_coe; intro s hs simp_rw [map_apply measurable_prodMk_right hs] exact measurable_measure_prodMk_right hs -@[deprecated (since := "2025-03-05")] -alias Measurable.map_prod_mk_right := Measurable.map_prodMk_right - /-- The Lebesgue integral is measurable. This shows that the integrand of (the right-hand-side of) Tonelli's theorem is measurable. -/ @[fun_prop, measurability] @@ -1095,16 +1080,10 @@ theorem fst_map_prodMk₀ {X : α → β} {Y : α → γ} {μ : Measure α} exact measurable_fst.comp_aemeasurable hX simp [map_of_not_aemeasurable, hX, this] -@[deprecated (since := "2025-03-05")] -alias fst_map_prod_mk₀ := fst_map_prodMk₀ - theorem fst_map_prodMk {X : α → β} {Y : α → γ} {μ : Measure α} (hY : Measurable Y) : (μ.map fun a => (X a, Y a)).fst = μ.map X := fst_map_prodMk₀ hY.aemeasurable -@[deprecated (since := "2025-03-05")] -alias fst_map_prod_mk := fst_map_prodMk - @[simp] lemma fst_add {μ ν : Measure (α × β)} : (μ + ν).fst = μ.fst + ν.fst := Measure.map_add _ _ measurable_fst @@ -1163,16 +1142,10 @@ theorem snd_map_prodMk₀ {X : α → β} {Y : α → γ} {μ : Measure α} (hX exact measurable_snd.comp_aemeasurable hY simp [map_of_not_aemeasurable, hY, this] -@[deprecated (since := "2025-03-05")] -alias snd_map_prod_mk₀ := snd_map_prodMk₀ - theorem snd_map_prodMk {X : α → β} {Y : α → γ} {μ : Measure α} (hX : Measurable X) : (μ.map fun a => (X a, Y a)).snd = μ.map Y := snd_map_prodMk₀ hX.aemeasurable -@[deprecated (since := "2025-03-05")] -alias snd_map_prod_mk := snd_map_prodMk - @[simp] lemma snd_add {μ ν : Measure (α × β)} : (μ + ν).snd = μ.snd + ν.snd := Measure.map_add _ _ measurable_snd diff --git a/Mathlib/NumberTheory/FLT/Basic.lean b/Mathlib/NumberTheory/FLT/Basic.lean index 8fd6623c5f8840..962715a3a7c97c 100644 --- a/Mathlib/NumberTheory/FLT/Basic.lean +++ b/Mathlib/NumberTheory/FLT/Basic.lean @@ -173,9 +173,6 @@ lemma fermatLastTheoremWith'_of_semifield (𝕜 : Type*) [Semifield 𝕜] (n : ⟨(mul_one a).symm, (mul_one b).symm, (mul_one c).symm⟩, ⟨ha.isUnit, hb.isUnit, hc.isUnit⟩⟩ -@[deprecated (since := "2025-03-21")] -alias fermatLastTheoremWith'_of_field := fermatLastTheoremWith'_of_semifield - lemma FermatLastTheoremWith'.fermatLastTheoremWith {R : Type*} [CommSemiring R] [IsDomain R] {n : ℕ} (h : FermatLastTheoremWith' R n) (hn : ∀ a b c : R, IsUnit a → IsUnit b → IsUnit c → a ^ n + b ^ n ≠ c ^ n) : diff --git a/Mathlib/NumberTheory/FunctionField.lean b/Mathlib/NumberTheory/FunctionField.lean index 5a2d27c8797571..027e73cc151964 100644 --- a/Mathlib/NumberTheory/FunctionField.lean +++ b/Mathlib/NumberTheory/FunctionField.lean @@ -81,9 +81,6 @@ theorem algebraMap_injective [Algebra Fq[X] F] [Algebra (RatFunc Fq) F] rw [IsScalarTower.algebraMap_eq Fq[X] (RatFunc Fq) F] exact (algebraMap (RatFunc Fq) F).injective.comp (IsFractionRing.injective Fq[X] (RatFunc Fq)) -@[deprecated (since := "2025-03-03")] -alias _root_.algebraMap_injective := FunctionField.algebraMap_injective - /-- The function field analogue of `NumberField.ringOfIntegers`: `FunctionField.ringOfIntegers Fq Fqt F` is the integral closure of `Fq[t]` in `F`. diff --git a/Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean b/Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean index de831c44a1c29c..680a14a2bbdeae 100644 --- a/Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean +++ b/Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean @@ -916,8 +916,6 @@ theorem negAt_apply_norm_isReal (x : mixedSpace K) (w : {w // IsReal w}) : ‖(negAt s x).1 w‖ = ‖x.1 w‖ := by by_cases hw : w ∈ s <;> simp [hw] -@[deprecated (since := "2025-03-01")] alias negAt_apply_abs_isReal := negAt_apply_norm_isReal - open MeasureTheory Classical in /-- `negAt` preserves the volume . -/ theorem volume_preserving_negAt [NumberField K] : diff --git a/Mathlib/NumberTheory/NumberField/FinitePlaces.lean b/Mathlib/NumberTheory/NumberField/FinitePlaces.lean index 760fbe6d1fb7f9..41b4aaa3d10306 100644 --- a/Mathlib/NumberTheory/NumberField/FinitePlaces.lean +++ b/Mathlib/NumberTheory/NumberField/FinitePlaces.lean @@ -166,9 +166,6 @@ noncomputable def FinitePlace.mk (v : HeightOneSpectrum (𝓞 K)) : FinitePlace lemma toNNReal_valued_eq_adicAbv (x : WithVal (v.valuation K)) : toNNReal (absNorm_ne_zero v) (Valued.v x) = adicAbv v x := rfl -@[deprecated (since := "2025-03-01")] - alias toNNReal_Valued_eq_vadicAbv := toNNReal_valued_eq_adicAbv - /-- The norm of the image after the embedding associated to `v` is equal to the `v`-adic absolute value. -/ theorem FinitePlace.norm_def (x : WithVal (v.valuation K)) : ‖embedding v x‖ = adicAbv v x := by diff --git a/Mathlib/Order/Atoms.lean b/Mathlib/Order/Atoms.lean index 66fa2ec3d21446..7bbe66af67bfdc 100644 --- a/Mathlib/Order/Atoms.lean +++ b/Mathlib/Order/Atoms.lean @@ -1095,9 +1095,6 @@ theorem Lattice.isStronglyAtomic [OrderBot α] [IsUpperModularLattice α] [IsAto (hbot ▸ IsUpperModularLattice.covBy_sup_of_inf_covBy) (h x hx).bot_covBy rwa [inf_eq_left] at h_inf -@[deprecated (since := "2025-03-13")] alias CompleteLattice.isStronglyAtomic := - Lattice.isStronglyAtomic - /-- A lower-modular lattice that is coatomistic is strongly coatomic. Not an instance to prevent loops. -/ theorem Lattice.isStronglyCoatomic [OrderTop α] [IsLowerModularLattice α] @@ -1105,9 +1102,6 @@ theorem Lattice.isStronglyCoatomic [OrderTop α] [IsLowerModularLattice α] rw [← isStronglyAtomic_dual_iff_is_stronglyCoatomic] exact Lattice.isStronglyAtomic -@[deprecated (since := "2025-03-13")] alias CompleteLattice.isStronglyCoatomic := - Lattice.isStronglyCoatomic - end Lattice section IsModularLattice diff --git a/Mathlib/Order/BooleanAlgebra/Set.lean b/Mathlib/Order/BooleanAlgebra/Set.lean index e9ab865a951ff6..c08894d572b868 100644 --- a/Mathlib/Order/BooleanAlgebra/Set.lean +++ b/Mathlib/Order/BooleanAlgebra/Set.lean @@ -436,8 +436,6 @@ lemma diff_singleton_eq_self (h : a ∉ s) : s \ {a} = s := lemma diff_singleton_ssubset : s \ {a} ⊂ s ↔ a ∈ s := by simp -@[deprecated (since := "2025-03-20")] alias diff_singleton_sSubset := diff_singleton_ssubset - @[simp] lemma insert_diff_singleton : insert a (s \ {a}) = insert a s := by simp [insert_eq, union_diff_self, -union_singleton, -singleton_union] diff --git a/Mathlib/Order/Filter/AtTopBot/Monoid.lean b/Mathlib/Order/Filter/AtTopBot/Monoid.lean index 135fa341bb94d1..f84936876b5b76 100644 --- a/Mathlib/Order/Filter/AtTopBot/Monoid.lean +++ b/Mathlib/Order/Filter/AtTopBot/Monoid.lean @@ -172,46 +172,6 @@ section OrderedCancelAddCommMonoid variable [AddCommMonoid M] [PartialOrder M] [IsOrderedCancelAddMonoid M] {l : Filter α} {f g : α → M} -@[deprecated Tendsto.atTop_of_isBoundedUnder_le_add (since := "2025-02-13")] -theorem tendsto_atTop_of_add_bdd_above_left' (C) (hC : ∀ᶠ x in l, f x ≤ C) - (h : Tendsto (fun x => f x + g x) l atTop) : Tendsto g l atTop := - .atTop_of_isBoundedUnder_le_add ⟨C, hC⟩ h - -@[deprecated Tendsto.atBot_of_isBoundedUnder_ge_add (since := "2025-02-13")] -theorem tendsto_atBot_of_add_bdd_below_left' (C) (hC : ∀ᶠ x in l, C ≤ f x) - (h : Tendsto (fun x => f x + g x) l atBot) : Tendsto g l atBot := - .atBot_of_isBoundedUnder_ge_add ⟨C, hC⟩ h - -@[deprecated Tendsto.atTop_of_le_const_add (since := "2025-02-13")] -theorem tendsto_atTop_of_add_bdd_above_left (C) (hC : ∀ x, f x ≤ C) : - Tendsto (fun x => f x + g x) l atTop → Tendsto g l atTop := - .atTop_of_le_const_add ⟨C, hC⟩ - -@[deprecated Tendsto.atBot_of_const_le_add (since := "2025-02-13")] -theorem tendsto_atBot_of_add_bdd_below_left (C) (hC : ∀ x, C ≤ f x) : - Tendsto (fun x => f x + g x) l atBot → Tendsto g l atBot := - .atBot_of_const_le_add ⟨C, hC⟩ - -@[deprecated Tendsto.atTop_of_add_isBoundedUnder_le (since := "2025-02-13")] -theorem tendsto_atTop_of_add_bdd_above_right' (C) (hC : ∀ᶠ x in l, g x ≤ C) - (h : Tendsto (fun x => f x + g x) l atTop) : Tendsto f l atTop := - h.atTop_of_add_isBoundedUnder_le ⟨C, hC⟩ - -@[deprecated Tendsto.atBot_of_add_isBoundedUnder_ge (since := "2025-02-13")] -theorem tendsto_atBot_of_add_bdd_below_right' (C) (hC : ∀ᶠ x in l, C ≤ g x) - (h : Tendsto (fun x => f x + g x) l atBot) : Tendsto f l atBot := - h.atBot_of_add_isBoundedUnder_ge ⟨C, hC⟩ - -@[deprecated Tendsto.atTop_of_add_le_const (since := "2025-02-13")] -theorem tendsto_atTop_of_add_bdd_above_right (C) (hC : ∀ x, g x ≤ C) : - Tendsto (fun x => f x + g x) l atTop → Tendsto f l atTop := - .atTop_of_add_le_const ⟨C, hC⟩ - -@[deprecated Tendsto.atBot_of_add_const_le (since := "2025-02-13")] -theorem tendsto_atBot_of_add_bdd_below_right (C) (hC : ∀ x, C ≤ g x) : - Tendsto (fun x => f x + g x) l atBot → Tendsto f l atBot := - .atBot_of_add_const_le ⟨C, hC⟩ - end OrderedCancelAddCommMonoid end Filter diff --git a/Mathlib/Order/Filter/Basic.lean b/Mathlib/Order/Filter/Basic.lean index c7d6d761d6493f..7a12a378b222f7 100644 --- a/Mathlib/Order/Filter/Basic.lean +++ b/Mathlib/Order/Filter/Basic.lean @@ -947,9 +947,6 @@ theorem EventuallyEq.prodMk {l} {f f' : α → β} (hf : f =ᶠ[l] f') {g g' : intros simp only [*] -@[deprecated (since := "2025-03-10")] -alias EventuallyEq.prod_mk := EventuallyEq.prodMk - -- See `EventuallyEq.comp_tendsto` further below for a similar statement w.r.t. -- composition on the right. theorem EventuallyEq.fun_comp {f g : α → β} {l : Filter α} (H : f =ᶠ[l] g) (h : β → γ) : diff --git a/Mathlib/Order/Filter/EventuallyConst.lean b/Mathlib/Order/Filter/EventuallyConst.lean index 2bf1e5a0e8b0ee..2d1cb8347234a0 100644 --- a/Mathlib/Order/Filter/EventuallyConst.lean +++ b/Mathlib/Order/Filter/EventuallyConst.lean @@ -124,9 +124,6 @@ lemma prodMk {g : α → γ} (hf : EventuallyConst f l) (hg : EventuallyConst g EventuallyConst (fun x ↦ (f x, g x)) l := hf.comp₂ Prod.mk hg -@[deprecated (since := "2025-03-10")] -alias Filter.EventuallyConst.prod_mk := prodMk - @[to_additive] lemma mul [Mul β] {g : α → β} (hf : EventuallyConst f l) (hg : EventuallyConst g l) : EventuallyConst (f * g) l := diff --git a/Mathlib/Order/Filter/Map.lean b/Mathlib/Order/Filter/Map.lean index 514afd067a2555..7e1ce3a3e7045a 100644 --- a/Mathlib/Order/Filter/Map.lean +++ b/Mathlib/Order/Filter/Map.lean @@ -113,9 +113,6 @@ lemma mem_comap_prodMk {x : α} {s : Set β} {F : Filter (α × β)} : s ∈ comap (Prod.mk x) F ↔ {p : α × β | p.fst = x → p.snd ∈ s} ∈ F := by simp_rw [mem_comap', Prod.ext_iff, and_imp, @forall_swap β (_ = _), forall_eq, eq_comm] -@[deprecated (since := "2025-03-10")] -alias mem_comap_prod_mk := mem_comap_prodMk - @[simp] theorem eventually_comap : (∀ᶠ a in comap f l, p a) ↔ ∀ᶠ b in l, ∀ a, f a = b → p a := mem_comap' diff --git a/Mathlib/Order/Filter/Prod.lean b/Mathlib/Order/Filter/Prod.lean index 046bae270d6408..7ec010664866c8 100644 --- a/Mathlib/Order/Filter/Prod.lean +++ b/Mathlib/Order/Filter/Prod.lean @@ -140,9 +140,6 @@ theorem Tendsto.prodMk {h : Filter γ} {m₁ : α → β} {m₂ : α → γ} (h₁ : Tendsto m₁ f g) (h₂ : Tendsto m₂ f h) : Tendsto (fun x => (m₁ x, m₂ x)) f (g ×ˢ h) := tendsto_inf.2 ⟨tendsto_comap_iff.2 h₁, tendsto_comap_iff.2 h₂⟩ -@[deprecated (since := "2025-03-10")] -alias Tendsto.prod_mk := Tendsto.prodMk - theorem tendsto_prod_swap : Tendsto (Prod.swap : α × β → β × α) (f ×ˢ g) (g ×ˢ f) := tendsto_snd.prodMk tendsto_fst @@ -163,17 +160,11 @@ theorem EventuallyEq.prodMap {δ} {la : Filter α} {fa ga : α → γ} (ha : fa Prod.map fa fb =ᶠ[la ×ˢ lb] Prod.map ga gb := (Eventually.prod_mk ha hb).mono fun _ h => Prod.ext h.1 h.2 -@[deprecated (since := "2025-03-10")] -alias EventuallyEq.prod_map := EventuallyEq.prodMap - theorem EventuallyLE.prodMap {δ} [LE γ] [LE δ] {la : Filter α} {fa ga : α → γ} (ha : fa ≤ᶠ[la] ga) {lb : Filter β} {fb gb : β → δ} (hb : fb ≤ᶠ[lb] gb) : Prod.map fa fb ≤ᶠ[la ×ˢ lb] Prod.map ga gb := Eventually.prod_mk ha hb -@[deprecated (since := "2025-03-10")] -alias EventuallyLE.prod_map := EventuallyLE.prodMap - theorem Eventually.curry {la : Filter α} {lb : Filter β} {p : α × β → Prop} (h : ∀ᶠ x in la ×ˢ lb, p x) : ∀ᶠ x in la, ∀ᶠ y in lb, p (x, y) := by rcases eventually_prod_iff.1 h with ⟨pa, ha, pb, hb, h⟩ @@ -360,9 +351,6 @@ theorem Tendsto.prodMap {δ : Type*} {f : α → γ} {g : β → δ} {a : Filter rw [Tendsto, Prod.map_def, ← prod_map_map_eq] exact Filter.prod_mono hf hg -@[deprecated (since := "2025-03-10")] -alias Tendsto.prod_map := Tendsto.prodMap - protected theorem map_prod (m : α × β → γ) (f : Filter α) (g : Filter β) : map m (f ×ˢ g) = (f.map fun a b => m (a, b)).seq g := by simp only [Filter.ext_iff, mem_map, mem_prod_iff, mem_map_seq_iff, exists_and_left] @@ -513,9 +501,6 @@ theorem map_prodMap_coprod_le.{u, v, w, x} {α₁ : Type u} {α₂ : Type v} {β rintro ⟨⟨u₁, hu₁, h₁⟩, u₂, hu₂, h₂⟩ refine ⟨⟨m₁ ⁻¹' u₁, hu₁, fun _ hx => h₁ ?_⟩, ⟨m₂ ⁻¹' u₂, hu₂, fun _ hx => h₂ ?_⟩⟩ <;> convert hx -@[deprecated (since := "2025-03-10")] -alias map_prod_map_coprod_le := map_prodMap_coprod_le - /-- Characterization of the coproduct of the `Filter.map`s of two principal filters `𝓟 {a}` and `𝓟 {i}`, the first under the constant function `fun a => b` and the second under the identity function. Together with the next lemma, `map_prodMap_const_id_principal_coprod_principal`, this @@ -545,18 +530,11 @@ theorem map_prodMap_const_id_principal_coprod_principal {α β ι : Type*} (a : use (a, i') simpa using h₁.symm -@[deprecated (since := "2025-03-10")] -alias map_prod_map_const_id_principal_coprod_principal := - map_prodMap_const_id_principal_coprod_principal - theorem Tendsto.prodMap_coprod {δ : Type*} {f : α → γ} {g : β → δ} {a : Filter α} {b : Filter β} {c : Filter γ} {d : Filter δ} (hf : Tendsto f a c) (hg : Tendsto g b d) : Tendsto (Prod.map f g) (a.coprod b) (c.coprod d) := map_prodMap_coprod_le.trans (coprod_mono hf hg) -@[deprecated (since := "2025-03-10")] -alias Tendsto.prod_map_coprod := Tendsto.prodMap_coprod - end Coprod end Filter diff --git a/Mathlib/Order/Fin/Basic.lean b/Mathlib/Order/Fin/Basic.lean index c979d18f58ce62..73e658151a414c 100644 --- a/Mathlib/Order/Fin/Basic.lean +++ b/Mathlib/Order/Fin/Basic.lean @@ -53,9 +53,6 @@ theorem coe_min (a b : Fin n) : ↑(min a b) = (min a b : ℕ) := rfl theorem compare_eq_compare_val (a b : Fin n) : compare a b = compare a.val b.val := rfl -@[deprecated (since := "2025-03-01")] alias coe_sup := coe_max -@[deprecated (since := "2025-03-01")] alias coe_inf := coe_min - instance instLinearOrder : LinearOrder (Fin n) := Fin.val_injective.linearOrder _ Fin.le_iff_val_le_val Fin.lt_iff_val_lt_val coe_min coe_max compare_eq_compare_val diff --git a/Mathlib/Order/Interval/Finset/Fin.lean b/Mathlib/Order/Interval/Finset/Fin.lean index 806027aa729275..ffdd384ed5ba7a 100644 --- a/Mathlib/Order/Interval/Finset/Fin.lean +++ b/Mathlib/Order/Interval/Finset/Fin.lean @@ -929,33 +929,6 @@ theorem card_Iic : #(Iic b) = b + 1 := by rw [← Nat.card_Iic b, ← map_valEmb @[simp] theorem card_Iio : #(Iio b) = b := by rw [← Nat.card_Iio b, ← map_valEmbedding_Iio, card_map] -@[deprecated Fintype.card_Icc (since := "2025-03-28")] -theorem card_fintypeIcc : Fintype.card (Set.Icc a b) = b + 1 - a := by simp - -@[deprecated Fintype.card_Ico (since := "2025-03-28")] -theorem card_fintypeIco : Fintype.card (Set.Ico a b) = b - a := by simp - -@[deprecated Fintype.card_Ioc (since := "2025-03-28")] -theorem card_fintypeIoc : Fintype.card (Set.Ioc a b) = b - a := by simp - -@[deprecated Fintype.card_Ioo (since := "2025-03-28")] -theorem card_fintypeIoo : Fintype.card (Set.Ioo a b) = b - a - 1 := by simp - -@[deprecated Fintype.card_uIcc (since := "2025-03-28")] -theorem card_fintype_uIcc : Fintype.card (Set.uIcc a b) = (b - a : ℤ).natAbs + 1 := by simp - -@[deprecated Fintype.card_Ici (since := "2025-03-28")] -theorem card_fintypeIci : Fintype.card (Set.Ici a) = n - a := by simp - -@[deprecated Fintype.card_Ioi (since := "2025-03-28")] -theorem card_fintypeIoi : Fintype.card (Set.Ioi a) = n - 1 - a := by simp - -@[deprecated Fintype.card_Iic (since := "2025-03-28")] -theorem card_fintypeIic : Fintype.card (Set.Iic b) = b + 1 := by simp - -@[deprecated Fintype.card_Iio (since := "2025-03-28")] -theorem card_fintypeIio : Fintype.card (Set.Iio b) = b := by simp - end card end Fin diff --git a/Mathlib/Order/Interval/Finset/Nat.lean b/Mathlib/Order/Interval/Finset/Nat.lean index b81fad41ffcb71..78459044b7522e 100644 --- a/Mathlib/Order/Interval/Finset/Nat.lean +++ b/Mathlib/Order/Interval/Finset/Nat.lean @@ -85,24 +85,6 @@ lemma card_Iic : #(Iic b) = b + 1 := by rw [Iic_eq_Icc, card_Icc, Nat.bot_eq_zer @[simp] theorem card_Iio : #(Iio b) = b := by rw [Iio_eq_Ico, card_Ico, Nat.bot_eq_zero, Nat.sub_zero] -@[deprecated Fintype.card_Icc (since := "2025-03-28")] -theorem card_fintypeIcc : Fintype.card (Set.Icc a b) = b + 1 - a := by simp - -@[deprecated Fintype.card_Ico (since := "2025-03-28")] -theorem card_fintypeIco : Fintype.card (Set.Ico a b) = b - a := by simp - -@[deprecated Fintype.card_Ioc (since := "2025-03-28")] -theorem card_fintypeIoc : Fintype.card (Set.Ioc a b) = b - a := by simp - -@[deprecated Fintype.card_Ioo (since := "2025-03-28")] -theorem card_fintypeIoo : Fintype.card (Set.Ioo a b) = b - a - 1 := by simp - -@[deprecated Fintype.card_Iic (since := "2025-03-28")] -theorem card_fintypeIic : Fintype.card (Set.Iic b) = b + 1 := by simp - -@[deprecated Fintype.card_Iio (since := "2025-03-28")] -theorem card_fintypeIio : Fintype.card (Set.Iio b) = b := by simp - @[deprecated Finset.Icc_succ_left_eq_Ioc (since := "2025-04-24")] theorem Icc_succ_left : Icc a.succ b = Ioc a b := by ext x diff --git a/Mathlib/Order/Interval/Set/Basic.lean b/Mathlib/Order/Interval/Set/Basic.lean index b2ebf9588d5833..d2100d3cf15cc4 100644 --- a/Mathlib/Order/Interval/Set/Basic.lean +++ b/Mathlib/Order/Interval/Set/Basic.lean @@ -89,58 +89,34 @@ theorem right_mem_Iic : a ∈ Iic a := by simp theorem Ici_toDual : Ici (toDual a) = ofDual ⁻¹' Iic a := rfl -@[deprecated (since := "2025-03-20")] -alias dual_Ici := Ici_toDual - @[simp] theorem Iic_toDual : Iic (toDual a) = ofDual ⁻¹' Ici a := rfl -@[deprecated (since := "2025-03-20")] -alias dual_Iic := Iic_toDual - @[simp] theorem Ioi_toDual : Ioi (toDual a) = ofDual ⁻¹' Iio a := rfl -@[deprecated (since := "2025-03-20")] -alias dual_Ioi := Ioi_toDual - @[simp] theorem Iio_toDual : Iio (toDual a) = ofDual ⁻¹' Ioi a := rfl -@[deprecated (since := "2025-03-20")] -alias dual_Iio := Iio_toDual - @[simp] theorem Icc_toDual : Icc (toDual a) (toDual b) = ofDual ⁻¹' Icc b a := Set.ext fun _ => and_comm -@[deprecated (since := "2025-03-20")] -alias dual_Icc := Icc_toDual - @[simp] theorem Ioc_toDual : Ioc (toDual a) (toDual b) = ofDual ⁻¹' Ico b a := Set.ext fun _ => and_comm -@[deprecated (since := "2025-03-20")] -alias dual_Ioc := Ioc_toDual - @[simp] theorem Ico_toDual : Ico (toDual a) (toDual b) = ofDual ⁻¹' Ioc b a := Set.ext fun _ => and_comm -@[deprecated (since := "2025-03-20")] -alias dual_Ico := Ico_toDual - @[simp] theorem Ioo_toDual : Ioo (toDual a) (toDual b) = ofDual ⁻¹' Ioo b a := Set.ext fun _ => and_comm -@[deprecated (since := "2025-03-20")] -alias dual_Ioo := Ioo_toDual - @[simp] theorem Ici_ofDual {x : αᵒᵈ} : Ici (ofDual x) = toDual ⁻¹' Iic x := rfl diff --git a/Mathlib/Order/Interval/Set/Disjoint.lean b/Mathlib/Order/Interval/Set/Disjoint.lean index 83d169a84f923d..fd6488ca1785ba 100644 --- a/Mathlib/Order/Interval/Set/Disjoint.lean +++ b/Mathlib/Order/Interval/Set/Disjoint.lean @@ -47,10 +47,6 @@ theorem Iic_disjoint_Ioc (h : a ≤ b) : Disjoint (Iic a) (Ioc b c) := theorem Ioc_disjoint_Ioc_of_le {d : α} (h : b ≤ c) : Disjoint (Ioc a b) (Ioc c d) := (Iic_disjoint_Ioc h).mono Ioc_subset_Iic_self le_rfl -@[deprecated Ioc_disjoint_Ioc_of_le (since := "2025-03-04")] -theorem Ioc_disjoint_Ioc_same : Disjoint (Ioc a b) (Ioc b c) := - (Iic_disjoint_Ioc le_rfl).mono Ioc_subset_Iic_self le_rfl - @[simp] theorem Ico_disjoint_Ico_same : Disjoint (Ico a b) (Ico b c) := disjoint_left.mpr fun _ hab hbc => hab.2.not_ge hbc.1 diff --git a/Mathlib/Order/Interval/Set/UnorderedInterval.lean b/Mathlib/Order/Interval/Set/UnorderedInterval.lean index a3f66b3caca2a6..a1732ad6dc6823 100644 --- a/Mathlib/Order/Interval/Set/UnorderedInterval.lean +++ b/Mathlib/Order/Interval/Set/UnorderedInterval.lean @@ -63,9 +63,6 @@ lemma uIcc_toDual (a b : α) : [[toDual a, toDual b]] = ofDual ⁻¹' [[a, b]] : -- Note: needed to hint `(α := α)` after https://github.com/leanprover-community/mathlib4/pull/8386 (elaboration order?) Icc_toDual (α := α) -@[deprecated (since := "2025-03-20")] -alias dual_uIcc := uIcc_toDual - @[simp] theorem uIcc_ofDual (a b : αᵒᵈ) : [[ofDual a, ofDual b]] = toDual ⁻¹' [[a, b]] := Icc_ofDual @@ -336,9 +333,6 @@ def uIoo (a b : α) : Set α := Ioo (a ⊓ b) (a ⊔ b) lemma uIoo_toDual (a b : α) : uIoo (toDual a) (toDual b) = ofDual ⁻¹' uIoo a b := Ioo_toDual (α := α) -@[deprecated (since := "2025-03-20")] -alias dual_uIoo := uIoo_toDual - @[simp] theorem uIoo_ofDual (a b : αᵒᵈ) : uIoo (ofDual a) (ofDual b) = toDual ⁻¹' uIoo a b := Ioo_ofDual diff --git a/Mathlib/Order/RelSeries.lean b/Mathlib/Order/RelSeries.lean index fa91722395aaa1..59624d9f5de9f5 100644 --- a/Mathlib/Order/RelSeries.lean +++ b/Mathlib/Order/RelSeries.lean @@ -900,9 +900,6 @@ protected noncomputable def withLength [InfiniteDimensionalOrder α] (n : ℕ) : lemma nonempty_of_infiniteDimensionalOrder [InfiniteDimensionalOrder α] : Nonempty α := ⟨LTSeries.withLength α 0 0⟩ -@[deprecated (since := "2025-03-01")] -alias nonempty_of_infiniteDimensionalType := nonempty_of_infiniteDimensionalOrder - lemma nonempty_of_finiteDimensionalOrder [FiniteDimensionalOrder α] : Nonempty α := by obtain ⟨p, _⟩ := (SetRel.finiteDimensional_iff _).mp ‹_› exact ⟨p 0⟩ diff --git a/Mathlib/Order/WithBot.lean b/Mathlib/Order/WithBot.lean index 83ae7220ae3e5c..f21abda17efca7 100644 --- a/Mathlib/Order/WithBot.lean +++ b/Mathlib/Order/WithBot.lean @@ -153,8 +153,6 @@ lemma ne_bot_iff_exists {x : WithBot α} : x ≠ ⊥ ↔ ∃ a : α, ↑a = x := lemma eq_bot_iff_forall_ne {x : WithBot α} : x = ⊥ ↔ ∀ a : α, ↑a ≠ x := Option.eq_none_iff_forall_some_ne -@[deprecated (since := "2025-03-19")] alias forall_ne_iff_eq_bot := eq_bot_iff_forall_ne - /-- Deconstruct a `x : WithBot α` to the underlying value in `α`, given a proof that `x ≠ ⊥`. -/ def unbot : ∀ x : WithBot α, x ≠ ⊥ → α | (x : α), _ => x @@ -359,9 +357,6 @@ lemma eq_bot_iff_forall_le [NoBotOrder α] : x = ⊥ ↔ ∀ b : α, x ≤ b := rintro rfl exact not_isBot y fun z => coe_le_coe.1 (h z) -@[deprecated (since := "2025-03-19")] alias forall_lt_iff_eq_bot := eq_bot_iff_forall_lt -@[deprecated (since := "2025-03-19")] alias forall_le_iff_eq_bot := eq_bot_iff_forall_le - lemma forall_le_coe_iff_le [NoBotOrder α] : (∀ a : α, y ≤ a → x ≤ a) ↔ x ≤ y := by obtain _ | y := y · simp [WithBot.none_eq_bot, eq_bot_iff_forall_le] @@ -686,8 +681,6 @@ lemma ne_top_iff_exists {x : WithTop α} : x ≠ ⊤ ↔ ∃ a : α, ↑a = x := lemma eq_top_iff_forall_ne {x : WithTop α} : x = ⊤ ↔ ∀ a : α, ↑a ≠ x := Option.eq_none_iff_forall_some_ne -@[deprecated (since := "2025-03-19")] alias forall_ne_iff_eq_top := eq_top_iff_forall_ne - /-- Deconstruct a `x : WithTop α` to the underlying value in `α`, given a proof that `x ≠ ⊤`. -/ def untop : ∀ x : WithTop α, x ≠ ⊤ → α | (x : α), _ => x @@ -884,9 +877,6 @@ lemma eq_top_iff_forall_gt : y = ⊤ ↔ ∀ a : α, a < y := by lemma eq_top_iff_forall_ge [NoTopOrder α] : y = ⊤ ↔ ∀ a : α, a ≤ y := WithBot.eq_bot_iff_forall_le (α := αᵒᵈ) -@[deprecated (since := "2025-03-19")] alias forall_gt_iff_eq_top := eq_top_iff_forall_gt -@[deprecated (since := "2025-03-19")] alias forall_ge_iff_eq_top := eq_top_iff_forall_ge - lemma forall_coe_le_iff_le [NoTopOrder α] : (∀ a : α, a ≤ x → a ≤ y) ↔ x ≤ y := WithBot.forall_le_coe_iff_le (α := αᵒᵈ) diff --git a/Mathlib/Probability/Independence/Basic.lean b/Mathlib/Probability/Independence/Basic.lean index 4bbeddd7556f85..674ca692325061 100644 --- a/Mathlib/Probability/Independence/Basic.lean +++ b/Mathlib/Probability/Independence/Basic.lean @@ -662,8 +662,6 @@ theorem IndepFun.congr {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β'} (hf : f =ᵐ[μ] f') (hg : g =ᵐ[μ] g') : IndepFun f' g' μ := by refine Kernel.IndepFun.congr' hfg ?_ ?_ <;> simpa -@[deprecated (since := "2025-03-18")] alias IndepFun.ae_eq := IndepFun.congr - section Prod variable {Ω Ω' : Type*} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} @@ -778,9 +776,6 @@ lemma iIndepFun.indepFun_prodMk (hf_Indep : iIndepFun f μ) (hf_meas : ∀ i, Me IndepFun (fun a => (f i a, f j a)) (f k) μ := Kernel.iIndepFun.indepFun_prodMk hf_Indep hf_meas i j k hik hjk -@[deprecated (since := "2025-03-05")] -alias iIndepFun.indepFun_prod_mk := iIndepFun.indepFun_prodMk - lemma iIndepFun.indepFun_prodMk₀ (hf_Indep : iIndepFun f μ) (hf_meas : ∀ i, AEMeasurable (f i) μ) (i j k : ι) (hik : i ≠ k) (hjk : j ≠ k) : IndepFun (fun a => (f i a, f j a)) (f k) μ := @@ -791,9 +786,6 @@ lemma iIndepFun.indepFun_prodMk_prodMk (h_indep : iIndepFun f μ) (hf : ∀ i, M IndepFun (fun a ↦ (f i a, f j a)) (fun a ↦ (f k a, f l a)) μ := Kernel.iIndepFun.indepFun_prodMk_prodMk h_indep hf i j k l hik hil hjk hjl -@[deprecated (since := "2025-03-05")] -alias iIndepFun.indepFun_prod_mk_prod_mk := iIndepFun.indepFun_prodMk_prodMk - lemma iIndepFun.indepFun_prodMk_prodMk₀ (h_indep : iIndepFun f μ) (hf : ∀ i, AEMeasurable (f i) μ) (i j k l : ι) (hik : i ≠ k) (hil : i ≠ l) (hjk : j ≠ k) (hjl : j ≠ l) : IndepFun (fun a ↦ (f i a, f j a)) (fun a ↦ (f k a, f l a)) μ := diff --git a/Mathlib/Probability/Independence/Conditional.lean b/Mathlib/Probability/Independence/Conditional.lean index b1ff54062c83db..2e5171943a4595 100644 --- a/Mathlib/Probability/Independence/Conditional.lean +++ b/Mathlib/Probability/Independence/Conditional.lean @@ -759,9 +759,6 @@ theorem iCondIndepFun.condIndepFun_prodMk {β : ι → Type*} CondIndepFun m' hm' (fun a => (f i a, f j a)) (f k) μ := Kernel.iIndepFun.indepFun_prodMk hf_Indep hf_meas i j k hik hjk -@[deprecated (since := "2025-03-05")] -alias iCondIndepFun.condIndepFun_prod_mk := iCondIndepFun.condIndepFun_prodMk - open Finset in lemma iCondIndepFun.condIndepFun_prodMk_prodMk (h_indep : iCondIndepFun m' hm' f μ) (hf : ∀ i, Measurable (f i)) @@ -773,9 +770,6 @@ lemma iCondIndepFun.condIndepFun_prodMk_prodMk (h_indep : iCondIndepFun m' hm' f have hg (i j : ι) : Measurable (g i j) := by fun_prop exact (h_indep.indepFun_finset {i, j} {k, l} (by aesop) hf).comp (hg i j) (hg k l) -@[deprecated (since := "2025-03-05")] -alias iCondIndepFun.condIndepFun_prod_mk_prod_mk := iCondIndepFun.condIndepFun_prodMk_prodMk - end iCondIndepFun section Mul diff --git a/Mathlib/Probability/Independence/Kernel.lean b/Mathlib/Probability/Independence/Kernel.lean index e2eb70c3b4ca72..12f7b898932a09 100644 --- a/Mathlib/Probability/Independence/Kernel.lean +++ b/Mathlib/Probability/Independence/Kernel.lean @@ -971,8 +971,6 @@ theorem IndepFun.congr' {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β'} have h2 : g ⁻¹' B =ᵐ[κ a] g' ⁻¹' B := hg'.fun_comp B rwa [← measure_congr h1, ← measure_congr h2, ← measure_congr (h1.inter h2)] -@[deprecated (since := "2025-03-18")] alias IndepFun.ae_eq := IndepFun.congr' - theorem IndepFun.comp {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β'} {mγ : MeasurableSpace γ} {mγ' : MeasurableSpace γ'} {φ : β → γ} {ψ : β' → γ'} (hfg : IndepFun f g κ μ) (hφ : Measurable φ) (hψ : Measurable ψ) : @@ -1163,9 +1161,6 @@ theorem iIndepFun.indepFun_prodMk (hf_Indep : iIndepFun f κ μ) simp only [s, Finset.mem_insert, Finset.mem_singleton, not_or] exact ⟨hik.symm, hjk.symm⟩ -@[deprecated (since := "2025-03-05")] -alias ProbabilityTheory.Kernel.iIndepFun.indepFun_prod_mk := iIndepFun.indepFun_prodMk - theorem iIndepFun.indepFun_prodMk₀ (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ i, AEMeasurable (f i) (κ ∘ₘ μ)) (i j k : ι) (hik : i ≠ k) (hjk : j ≠ k) : IndepFun (fun a ↦ (f i a, f j a)) (f k) κ μ := by @@ -1191,10 +1186,6 @@ lemma iIndepFun.indepFun_prodMk_prodMk (hf_indep : iIndepFun f κ μ) have hg (i j : ι) : Measurable (g i j) := by fun_prop exact (hf_indep.indepFun_finset {i, j} {k, l} (by aesop) hf_meas).comp (hg i j) (hg k l) -@[deprecated (since := "2025-03-05")] -alias ProbabilityTheory.Kernel.iIndepFun.indepFun_prod_mk_prod_mk := - iIndepFun.indepFun_prodMk_prodMk - theorem iIndepFun.indepFun_prodMk_prodMk₀ (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ i, AEMeasurable (f i) (κ ∘ₘ μ)) (i j k l : ι) (hik : i ≠ k) (hil : i ≠ l) (hjk : j ≠ k) (hjl : j ≠ l) : diff --git a/Mathlib/Probability/Kernel/Composition/IntegralCompProd.lean b/Mathlib/Probability/Kernel/Composition/IntegralCompProd.lean index 34ab7497c097c3..a8485493393e33 100644 --- a/Mathlib/Probability/Kernel/Composition/IntegralCompProd.lean +++ b/Mathlib/Probability/Kernel/Composition/IntegralCompProd.lean @@ -74,18 +74,12 @@ theorem hasFiniteIntegral_prodMk_left (a : α) {s : Set (β × γ)} (h2s : (κ _ = (κ ⊗ₖ η) a s := measure_toMeasurable s _ < ⊤ := h2s.lt_top -@[deprecated (since := "2025-03-05")] -alias hasFiniteIntegral_prod_mk_left := hasFiniteIntegral_prodMk_left - theorem integrable_kernel_prodMk_left (a : α) {s : Set (β × γ)} (hs : MeasurableSet s) (h2s : (κ ⊗ₖ η) a s ≠ ∞) : Integrable (fun b => (η (a, b)).real (Prod.mk b ⁻¹' s)) (κ a) := by constructor · exact (measurable_kernel_prodMk_left' hs a).ennreal_toReal.aestronglyMeasurable · exact hasFiniteIntegral_prodMk_left a h2s -@[deprecated (since := "2025-03-05")] -alias integrable_kernel_prod_mk_left := integrable_kernel_prodMk_left - theorem _root_.MeasureTheory.AEStronglyMeasurable.integral_kernel_compProd [NormedSpace ℝ E] ⦃f : β × γ → E⦄ (hf : AEStronglyMeasurable f ((κ ⊗ₖ η) a)) : AEStronglyMeasurable (fun x => ∫ y, f (x, y) ∂η (a, x)) (κ a) := diff --git a/Mathlib/Probability/Kernel/CondDistrib.lean b/Mathlib/Probability/Kernel/CondDistrib.lean index 9ec5fc5b623d81..bdc7215fec7925 100644 --- a/Mathlib/Probability/Kernel/CondDistrib.lean +++ b/Mathlib/Probability/Kernel/CondDistrib.lean @@ -300,10 +300,6 @@ theorem _root_.MeasureTheory.AEStronglyMeasurable.comp_snd_map_prodMk {Ω F} {m · simp · contrapose! hX; exact measurable_fst.comp_aemeasurable hX -@[deprecated (since := "2025-03-05")] -alias _root_.MeasureTheory.AEStronglyMeasurable.comp_snd_map_prod_mk := - MeasureTheory.AEStronglyMeasurable.comp_snd_map_prodMk - theorem _root_.MeasureTheory.Integrable.comp_snd_map_prodMk {Ω} {mΩ : MeasurableSpace Ω} (X : Ω → β) {μ : Measure Ω} {f : Ω → F} (hf_int : Integrable f μ) : Integrable (fun x : β × Ω => f x.2) (μ.map fun ω => (X ω, ω)) := by @@ -316,28 +312,17 @@ theorem _root_.MeasureTheory.Integrable.comp_snd_map_prodMk · simp · contrapose! hX; exact measurable_fst.comp_aemeasurable hX -@[deprecated (since := "2025-03-05")] -alias _root_.MeasureTheory.Integrable.comp_snd_map_prod_mk := - MeasureTheory.Integrable.comp_snd_map_prodMk - theorem aestronglyMeasurable_comp_snd_map_prodMk_iff {Ω F} {_ : MeasurableSpace Ω} [TopologicalSpace F] {X : Ω → β} {μ : Measure Ω} (hX : Measurable X) {f : Ω → F} : AEStronglyMeasurable (fun x : β × Ω => f x.2) (μ.map fun ω => (X ω, ω)) ↔ AEStronglyMeasurable f μ := ⟨fun h => h.comp_measurable (hX.prodMk measurable_id), fun h => h.comp_snd_map_prodMk X⟩ -@[deprecated (since := "2025-03-05")] -alias aestronglyMeasurable_comp_snd_map_prod_mk_iff := - aestronglyMeasurable_comp_snd_map_prodMk_iff - theorem integrable_comp_snd_map_prodMk_iff {Ω} {_ : MeasurableSpace Ω} {X : Ω → β} {μ : Measure Ω} (hX : Measurable X) {f : Ω → F} : Integrable (fun x : β × Ω => f x.2) (μ.map fun ω => (X ω, ω)) ↔ Integrable f μ := ⟨fun h => h.comp_measurable (hX.prodMk measurable_id), fun h => h.comp_snd_map_prodMk X⟩ -@[deprecated (since := "2025-03-05")] -alias integrable_comp_snd_map_prod_mk_iff := integrable_comp_snd_map_prodMk_iff - theorem condExp_ae_eq_integral_condDistrib_id [NormedSpace ℝ F] [CompleteSpace F] {X : Ω → β} {μ : Measure Ω} [IsFiniteMeasure μ] (hX : Measurable X) {f : Ω → F} (hf_int : Integrable f μ) : μ[f|mβ.comap X] =ᵐ[μ] fun a => ∫ y, f y ∂condDistrib id X μ (X a) := diff --git a/Mathlib/Probability/Kernel/MeasurableLIntegral.lean b/Mathlib/Probability/Kernel/MeasurableLIntegral.lean index 43a479b7cee028..922262cd459a73 100644 --- a/Mathlib/Probability/Kernel/MeasurableLIntegral.lean +++ b/Mathlib/Probability/Kernel/MeasurableLIntegral.lean @@ -71,9 +71,6 @@ theorem measurable_kernel_prodMk_left_of_finite {t : Set (α × β)} (ht : Measu · exact fun i ↦ measurable_prodMk_left (hf_meas i) simpa only [this] using Measurable.ennreal_tsum hf -@[deprecated (since := "2025-03-05")] -alias measurable_kernel_prod_mk_left_of_finite := measurable_kernel_prodMk_left_of_finite - theorem measurable_kernel_prodMk_left [IsSFiniteKernel κ] {t : Set (α × β)} (ht : MeasurableSet t) : Measurable fun a => κ a (Prod.mk a ⁻¹' t) := by rw [← Kernel.kernel_sum_seq κ] @@ -84,9 +81,6 @@ theorem measurable_kernel_prodMk_left [IsSFiniteKernel κ] {t : Set (α × β)} refine Measurable.ennreal_tsum fun n => ?_ exact measurable_kernel_prodMk_left_of_finite ht inferInstance -@[deprecated (since := "2025-03-05")] -alias measurable_kernel_prod_mk_left := measurable_kernel_prodMk_left - theorem measurable_kernel_prodMk_left' [IsSFiniteKernel η] {s : Set (β × γ)} (hs : MeasurableSet s) (a : α) : Measurable fun b => η (a, b) (Prod.mk b ⁻¹' s) := by have (b : _) : Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p : (α × β) × γ | (p.1.2, p.2) ∈ s}} := rfl @@ -94,16 +88,10 @@ theorem measurable_kernel_prodMk_left' [IsSFiniteKernel η] {s : Set (β × γ)} refine (measurable_kernel_prodMk_left ?_).comp measurable_prodMk_left exact (measurable_fst.snd.prodMk measurable_snd) hs -@[deprecated (since := "2025-03-05")] -alias measurable_kernel_prod_mk_left' := measurable_kernel_prodMk_left' - theorem measurable_kernel_prodMk_right [IsSFiniteKernel κ] {s : Set (β × α)} (hs : MeasurableSet s) : Measurable fun y => κ y ((fun x => (x, y)) ⁻¹' s) := measurable_kernel_prodMk_left (measurableSet_swap_iff.mpr hs) -@[deprecated (since := "2025-03-05")] -alias measurable_kernel_prod_mk_right := measurable_kernel_prodMk_right - end Kernel open ProbabilityTheory.Kernel diff --git a/Mathlib/Probability/Moments/Basic.lean b/Mathlib/Probability/Moments/Basic.lean index 3cfd8a1a47fd0f..ccec53558263ed 100644 --- a/Mathlib/Probability/Moments/Basic.lean +++ b/Mathlib/Probability/Moments/Basic.lean @@ -199,9 +199,6 @@ lemma mgf_pos_iff [hμ : NeZero μ] : lemma exp_cgf [hμ : NeZero μ] (hX : Integrable (fun ω ↦ exp (t * X ω)) μ) : exp (cgf X μ t) = mgf X μ t := by rw [cgf, exp_log (mgf_pos' hμ.out hX)] -@[deprecated (since := "2025-03-08")] -alias exp_cgf_of_neZero := exp_cgf - lemma mgf_map {Ω' : Type*} {mΩ' : MeasurableSpace Ω'} {μ : Measure Ω'} {Y : Ω' → Ω} {X : Ω → ℝ} (hY : AEMeasurable Y μ) {t : ℝ} (hX : AEStronglyMeasurable (fun ω ↦ exp (t * X ω)) (μ.map Y)) : mgf X (μ.map Y) t = mgf (X ∘ Y) μ t := by diff --git a/Mathlib/RMDBeL.lean b/Mathlib/RMDBeL.lean new file mode 100644 index 00000000000000..3846ea9884f03f --- /dev/null +++ b/Mathlib/RMDBeL.lean @@ -0,0 +1,4 @@ +import Mathlib +import Archive +import Counterexamples +#clear_deprecations "2025-01-01" "2025-03-30" really diff --git a/Mathlib/RingTheory/Binomial.lean b/Mathlib/RingTheory/Binomial.lean index 5fae0fbd00acb8..8e79caf71b0eb8 100644 --- a/Mathlib/RingTheory/Binomial.lean +++ b/Mathlib/RingTheory/Binomial.lean @@ -89,9 +89,6 @@ namespace Ring variable {R : Type*} [AddCommMonoid R] [Pow R ℕ] [BinomialRing R] -@[deprecated (since := "2025-03-15")] protected alias nsmul_right_injective := nsmul_right_injective -@[deprecated (since := "2025-03-15")] protected alias nsmul_right_inj := nsmul_right_inj - /-- The multichoose function is the quotient of ascending Pochhammer evaluation by the corresponding factorial. When applied to natural numbers, `multichoose k n` describes choosing a multiset of `n` items from a type of size `k`, i.e., choosing with replacement. -/ diff --git a/Mathlib/RingTheory/Localization/Defs.lean b/Mathlib/RingTheory/Localization/Defs.lean index 2e4fa42cd1bbd9..1f0f460b60c144 100644 --- a/Mathlib/RingTheory/Localization/Defs.lean +++ b/Mathlib/RingTheory/Localization/Defs.lean @@ -864,8 +864,6 @@ theorem sec_snd_ne_zero [Nontrivial R] (hM : M ≤ nonZeroDivisors R) (x : S) : variable [IsDomain R] -@[deprecated (since := "2025-03-18")] alias noZeroDivisors_of_le_nonZeroDivisors := noZeroDivisors - variable (S) in /-- A `CommRing` `S` which is the localization of an integral domain `R` at a subset of non-zero elements is an integral domain. -/ diff --git a/Mathlib/RingTheory/Localization/Integral.lean b/Mathlib/RingTheory/Localization/Integral.lean index 385abeb879011f..d2b55399822b83 100644 --- a/Mathlib/RingTheory/Localization/Integral.lean +++ b/Mathlib/RingTheory/Localization/Integral.lean @@ -403,9 +403,6 @@ theorem ideal_span_singleton_map_subset {L : Type*} [IsDomain R] [IsDomain S] [F end IsFractionRing -@[deprecated (since := "2025-03-23")] -alias isAlgebraic_of_isLocalization := IsLocalization.isAlgebraic - open nonZeroDivisors in lemma isAlgebraic_of_isFractionRing {R S} (K L) [CommRing R] [CommRing S] [Field K] [CommRing L] [Algebra R S] [Algebra R K] [Algebra R L] [Algebra S L] [Algebra K L] [IsScalarTower R S L] diff --git a/Mathlib/RingTheory/MvPowerSeries/PiTopology.lean b/Mathlib/RingTheory/MvPowerSeries/PiTopology.lean index 7032b53b4949e0..04ae9122ce581c 100644 --- a/Mathlib/RingTheory/MvPowerSeries/PiTopology.lean +++ b/Mathlib/RingTheory/MvPowerSeries/PiTopology.lean @@ -319,8 +319,6 @@ theorem instCompleteSpace [CompleteSpace R] : theorem instIsUniformAddGroup [AddGroup R] [IsUniformAddGroup R] : IsUniformAddGroup (MvPowerSeries σ R) := Pi.instIsUniformAddGroup -@[deprecated (since := "2025-03-27")] alias instUniformAddGroup := instIsUniformAddGroup - end Uniformity end WithPiTopology diff --git a/Mathlib/RingTheory/Nilpotent/Exp.lean b/Mathlib/RingTheory/Nilpotent/Exp.lean index a88376bc5f261d..1832302c7a3af8 100644 --- a/Mathlib/RingTheory/Nilpotent/Exp.lean +++ b/Mathlib/RingTheory/Nilpotent/Exp.lean @@ -183,9 +183,6 @@ theorem isUnit_exp {a : A} (h : IsNilpotent a) : IsUnit (exp a) := by use exp (- a) exact ⟨exp_mul_exp_neg_self h, exp_neg_mul_exp_self h⟩ -@[deprecated (since := "2025-03-11")] -alias exp_of_nilpotent_is_unit := isUnit_exp - theorem map_exp {B F : Type*} [Ring B] [FunLike F A B] [RingHomClass F A B] [Module ℚ B] {a : A} (ha : IsNilpotent a) (f : F) : f (exp a) = exp (f a) := by diff --git a/Mathlib/RingTheory/PowerSeries/PiTopology.lean b/Mathlib/RingTheory/PowerSeries/PiTopology.lean index d8a21285c006c1..38c94ffe5b9ae3 100644 --- a/Mathlib/RingTheory/PowerSeries/PiTopology.lean +++ b/Mathlib/RingTheory/PowerSeries/PiTopology.lean @@ -188,8 +188,6 @@ theorem instIsUniformAddGroup [AddGroup R] [IsUniformAddGroup R] : IsUniformAddGroup (PowerSeries R) := MvPowerSeries.WithPiTopology.instIsUniformAddGroup -@[deprecated (since := "2025-03-27")] alias instUniformAddGroup := instIsUniformAddGroup - end WithPiTopology end Uniform diff --git a/Mathlib/RingTheory/RingHom/FiniteType.lean b/Mathlib/RingTheory/RingHom/FiniteType.lean index d3e51f3dae7823..ae9804dd53b0be 100644 --- a/Mathlib/RingTheory/RingHom/FiniteType.lean +++ b/Mathlib/RingTheory/RingHom/FiniteType.lean @@ -231,15 +231,4 @@ theorem finiteType_isLocal : PropertyIsLocal @FiniteType := (finiteType_stableUnderComposition.stableUnderCompositionWithLocalizationAway finiteType_holdsForLocalizationAway).right⟩ -@[deprecated (since := "2025-03-01")] -alias finiteType_is_local := finiteType_isLocal - end RingHom - -@[deprecated (since := "2025-03-14")] -alias RingHom.IsLocalization.lift_mem_adjoin_finsetIntegerMultiple := - IsLocalization.lift_mem_adjoin_finsetIntegerMultiple - -@[deprecated (since := "2025-03-14")] -alias RingHom.IsLocalization.exists_smul_mem_of_mem_adjoin := - IsLocalization.exists_smul_mem_of_mem_adjoin diff --git a/Mathlib/RingTheory/RingHomProperties.lean b/Mathlib/RingTheory/RingHomProperties.lean index 92ee12989459d2..e8ba6739ce132b 100644 --- a/Mathlib/RingTheory/RingHomProperties.lean +++ b/Mathlib/RingTheory/RingHomProperties.lean @@ -84,9 +84,6 @@ theorem RespectsIso.isLocalization_away_iff (hP : RingHom.RespectsIso @P) {R S : dsimp [e, e₁, e₂, IsLocalization.Away.map] simp only [IsLocalization.map_eq, id_apply, RingHomCompTriple.comp_apply] -@[deprecated (since := "2025-03-01")] -alias RespectsIso.is_localization_away_iff := RespectsIso.isLocalization_away_iff - lemma RespectsIso.and (hP : RespectsIso P) (hQ : RespectsIso Q) : RespectsIso (fun f ↦ P f ∧ Q f) := by refine ⟨?_, ?_⟩ diff --git a/Mathlib/Tactic/Simps/Basic.lean b/Mathlib/Tactic/Simps/Basic.lean index 0ccf3ccb3790ec..71e91eee494d60 100644 --- a/Mathlib/Tactic/Simps/Basic.lean +++ b/Mathlib/Tactic/Simps/Basic.lean @@ -901,18 +901,6 @@ structure Config where /-- Function elaborating `Config` -/ declare_command_config_elab elabSimpsConfig Config -/-- A common configuration for `@[simps]`: generate equalities between functions instead equalities -between fully applied Expressions. Replaced by `@[simps -fullyApplied]`. -/ -@[deprecated "use `-fullyApplied` instead" (since := "2025-03-10")] -def Config.asFn : Simps.Config where - fullyApplied := false - -/-- A common configuration for `@[simps]`: don't tag the generated lemmas with `@[simp]`. -Replaced by `@[simps -isSimp]`. -/ -@[deprecated "use `-isSimp` instead" (since := "2025-03-10")] -def Config.lemmasOnly : Config where - isSimp := false - /-- `instantiateLambdasOrApps es e` instantiates lambdas in `e` by expressions from `es`. If the length of `es` is larger than the number of lambdas in `e`, then the term is applied to the remaining terms. diff --git a/Mathlib/Topology/Algebra/Field.lean b/Mathlib/Topology/Algebra/Field.lean index d4e410ae5c023c..6d610487b6c76d 100644 --- a/Mathlib/Topology/Algebra/Field.lean +++ b/Mathlib/Topology/Algebra/Field.lean @@ -47,8 +47,6 @@ variable (K) continuous, including inversion. -/ class IsTopologicalDivisionRing : Prop extends IsTopologicalRing K, ContinuousInv₀ K -@[deprecated (since := "2025-03-25")] alias TopologicalDivisionRing := IsTopologicalDivisionRing - section Subfield variable {α : Type*} [Field α] [TopologicalSpace α] [IsTopologicalDivisionRing α] diff --git a/Mathlib/Topology/Algebra/Group/Basic.lean b/Mathlib/Topology/Algebra/Group/Basic.lean index 9c2b5de911c3dd..6c5acfae7f505b 100644 --- a/Mathlib/Topology/Algebra/Group/Basic.lean +++ b/Mathlib/Topology/Algebra/Group/Basic.lean @@ -375,9 +375,6 @@ theorem IsTopologicalGroup.continuous_conj_prod [ContinuousInv G] : Continuous fun g : G × G => g.fst * g.snd * g.fst⁻¹ := continuous_mul.mul (continuous_inv.comp continuous_fst) -@[deprecated (since := "2025-03-11")] -alias IsTopologicalAddGroup.continuous_conj_sum := IsTopologicalAddGroup.continuous_addConj_prod - /-- Conjugation by a fixed element is continuous when `mul` is continuous. -/ @[to_additive (attr := continuity) /-- Conjugation by a fixed element is continuous when `add` is continuous. -/] diff --git a/Mathlib/Topology/Algebra/InfiniteSum/Constructions.lean b/Mathlib/Topology/Algebra/InfiniteSum/Constructions.lean index 291f0cc0cb7ba8..42bb98ba44dac2 100644 --- a/Mathlib/Topology/Algebra/InfiniteSum/Constructions.lean +++ b/Mathlib/Topology/Algebra/InfiniteSum/Constructions.lean @@ -67,12 +67,6 @@ theorem HasProd.prodMk {f : β → α} {g : β → γ} {a : α} {b : γ} (hf : H (hg : HasProd g b) : HasProd (fun x ↦ (⟨f x, g x⟩ : α × γ)) ⟨a, b⟩ := by simp [HasProd, ← prod_mk_prod, Filter.Tendsto.prodMk_nhds hf hg] -@[deprecated (since := "2025-03-10")] -alias HasSum.prod_mk := HasSum.prodMk - -@[to_additive existing HasSum.prodMk, deprecated (since := "2025-03-10")] -alias HasProd.prod_mk := HasProd.prodMk - end ProdCodomain section ContinuousMul diff --git a/Mathlib/Topology/Algebra/IsUniformGroup/Basic.lean b/Mathlib/Topology/Algebra/IsUniformGroup/Basic.lean index 5712f9a626e54e..e5dc633ba5c7ac 100644 --- a/Mathlib/Topology/Algebra/IsUniformGroup/Basic.lean +++ b/Mathlib/Topology/Algebra/IsUniformGroup/Basic.lean @@ -95,11 +95,6 @@ lemma IsUniformInducing.isUniformGroup {γ : Type*} [Group γ] [UniformSpace γ] simp_rw [hf.uniformContinuous_iff, Function.comp_def, map_div] exact uniformContinuous_div.comp (hf.uniformContinuous.prodMap hf.uniformContinuous) -@[deprecated (since := "2025-03-30")] -alias IsUniformInducing.uniformAddGroup := IsUniformInducing.isUniformAddGroup -@[to_additive existing, deprecated (since := "2025-03-30")] -alias IsUniformInducing.uniformGroup := IsUniformInducing.isUniformGroup - @[to_additive] protected theorem IsUniformGroup.comap {γ : Type*} [Group γ] {u : UniformSpace γ} [IsUniformGroup γ] {F : Type*} [FunLike F β γ] [MonoidHomClass F β γ] (f : F) : @IsUniformGroup β (u.comap f) _ := diff --git a/Mathlib/Topology/Algebra/IsUniformGroup/Defs.lean b/Mathlib/Topology/Algebra/IsUniformGroup/Defs.lean index 48af570d79efce..e5c5fdc223d2e3 100644 --- a/Mathlib/Topology/Algebra/IsUniformGroup/Defs.lean +++ b/Mathlib/Topology/Algebra/IsUniformGroup/Defs.lean @@ -41,15 +41,11 @@ variable {α : Type*} {β : Type*} class IsUniformGroup (α : Type*) [UniformSpace α] [Group α] : Prop where uniformContinuous_div : UniformContinuous fun p : α × α => p.1 / p.2 -@[deprecated (since := "2025-03-26")] alias UniformGroup := IsUniformGroup - /-- A uniform additive group is an additive group in which addition and negation are uniformly continuous. -/ class IsUniformAddGroup (α : Type*) [UniformSpace α] [AddGroup α] : Prop where uniformContinuous_sub : UniformContinuous fun p : α × α => p.1 - p.2 -@[deprecated (since := "2025-03-26")] alias UniformAddGroup := IsUniformAddGroup - attribute [to_additive] IsUniformGroup @[to_additive] @@ -496,11 +492,6 @@ theorem isUniformGroup_of_commGroup : IsUniformGroup G := by exact (continuous_div'.tendsto' 1 1 (div_one 1)).comp tendsto_comap alias comm_topologicalGroup_is_uniform := isUniformGroup_of_commGroup -@[deprecated (since := "2025-03-30")] -alias uniformAddGroup_of_addCommGroup := isUniformAddGroup_of_addCommGroup -@[to_additive existing, deprecated (since := "2025-03-30")] -alias uniformGroup_of_commGroup := isUniformGroup_of_commGroup - open Set end diff --git a/Mathlib/Topology/Algebra/OpenSubgroup.lean b/Mathlib/Topology/Algebra/OpenSubgroup.lean index 5ff400ac944691..8f6e5ea871db1d 100644 --- a/Mathlib/Topology/Algebra/OpenSubgroup.lean +++ b/Mathlib/Topology/Algebra/OpenSubgroup.lean @@ -159,25 +159,16 @@ variable {H : Type*} [Group H] [TopologicalSpace H] def prod (U : OpenSubgroup G) (V : OpenSubgroup H) : OpenSubgroup (G × H) := ⟨.prod U V, U.isOpen.prod V.isOpen⟩ -@[deprecated (since := "2025-03-11")] -alias _root_.OpenAddSubgroup.sum := OpenAddSubgroup.prod - @[to_additive (attr := simp, norm_cast) coe_prod] theorem coe_prod (U : OpenSubgroup G) (V : OpenSubgroup H) : (U.prod V : Set (G × H)) = (U : Set G) ×ˢ (V : Set H) := rfl -@[deprecated (since := "2025-03-11")] -alias _root_.OpenAddSubgroup.coe_sum := OpenAddSubgroup.coe_prod - @[to_additive (attr := simp, norm_cast) toAddSubgroup_prod] theorem toSubgroup_prod (U : OpenSubgroup G) (V : OpenSubgroup H) : (U.prod V : Subgroup (G × H)) = (U : Subgroup G).prod V := rfl -@[deprecated (since := "2025-03-11")] -alias _root_.OpenAddSubgroup.toAddSubgroup_sum := OpenAddSubgroup.toAddSubgroup_prod - end @[to_additive] diff --git a/Mathlib/Topology/Algebra/Order/Field.lean b/Mathlib/Topology/Algebra/Order/Field.lean index a1bc653c7998df..008e156c26dce5 100644 --- a/Mathlib/Topology/Algebra/Order/Field.lean +++ b/Mathlib/Topology/Algebra/Order/Field.lean @@ -39,18 +39,12 @@ theorem Filter.Tendsto.atTop_mul_pos {C : 𝕜} (hC : 0 < C) (hf : Tendsto f l a -- TODO: after removing this deprecated alias, -- rename `Filter.Tendsto.atTop_mul'` to `Filter.Tendsto.atTop_mul`. -- Same for the other 3 similar aliases below. -@[deprecated (since := "2025-03-18")] -alias Filter.Tendsto.atTop_mul := Filter.Tendsto.atTop_mul_pos - /-- In a linearly ordered semifield with the order topology, if `f` tends to a positive constant `C` and `g` tends to `Filter.atTop` then `f * g` tends to `Filter.atTop`. -/ theorem Filter.Tendsto.pos_mul_atTop {C : 𝕜} (hC : 0 < C) (hf : Tendsto f l (𝓝 C)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x * g x) l atTop := by simpa only [mul_comm] using hg.atTop_mul_pos hC hf -@[deprecated (since := "2025-03-18")] -alias Filter.Tendsto.mul_atTop := Filter.Tendsto.pos_mul_atTop - @[simp] lemma inv_atTop₀ : (atTop : Filter 𝕜)⁻¹ = 𝓝[>] 0 := (((atTop_basis_Ioi' (0 : 𝕜)).map _).comp_surjective inv_surjective).eq_of_same_basis <| @@ -163,9 +157,6 @@ theorem Filter.Tendsto.atBot_mul_pos {C : 𝕜} (hC : 0 < C) (hf : Tendsto f l a have := (tendsto_neg_atBot_atTop.comp hf).atTop_mul_pos hC hg simpa [Function.comp_def] using tendsto_neg_atTop_atBot.comp this -@[deprecated (since := "2025-03-18")] -alias Filter.Tendsto.atBot_mul := Filter.Tendsto.atBot_mul_pos - /-- In a linearly ordered field with the order topology, if `f` tends to `Filter.atBot` and `g` tends to a negative constant `C` then `f * g` tends to `Filter.atTop`. -/ theorem Filter.Tendsto.atBot_mul_neg {C : 𝕜} (hC : C < 0) (hf : Tendsto f l atBot) @@ -179,9 +170,6 @@ theorem Filter.Tendsto.pos_mul_atBot {C : 𝕜} (hC : 0 < C) (hf : Tendsto f l ( (hg : Tendsto g l atBot) : Tendsto (fun x => f x * g x) l atBot := by simpa only [mul_comm] using hg.atBot_mul_pos hC hf -@[deprecated (since := "2025-03-18")] -alias Filter.Tendsto.mul_atBot := Filter.Tendsto.pos_mul_atBot - /-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and `g` tends to `Filter.atBot` then `f * g` tends to `Filter.atTop`. -/ theorem Filter.Tendsto.neg_mul_atBot {C : 𝕜} (hC : C < 0) (hf : Tendsto f l (𝓝 C)) @@ -309,9 +297,6 @@ theorem tendsto_const_mul_zpow_atTop_nhds_iff {n : ℤ} {c d : 𝕜} (hc : c ≠ instance (priority := 100) IsStrictOrderedRing.toIsTopologicalDivisionRing : IsTopologicalDivisionRing 𝕜 := ⟨⟩ -@[deprecated (since := "2025-03-25")] alias LinearOrderedField.toTopologicalDivisionRing := - IsStrictOrderedRing.toIsTopologicalDivisionRing - -- TODO: generalize to a `GroupWithZero` theorem comap_mulLeft_nhdsGT_zero {x : 𝕜} (hx : 0 < x) : comap (x * ·) (𝓝[>] 0) = 𝓝[>] 0 := by rw [nhdsWithin, comap_inf, comap_principal, preimage_const_mul_Ioi _ hx, zero_div] diff --git a/Mathlib/Topology/Algebra/Order/Group.lean b/Mathlib/Topology/Algebra/Order/Group.lean index 1f1b166fedc12b..405f7399b46632 100644 --- a/Mathlib/Topology/Algebra/Order/Group.lean +++ b/Mathlib/Topology/Algebra/Order/Group.lean @@ -96,9 +96,6 @@ theorem tendsto_mabs_nhdsNE_one : Tendsto (mabs : G → G) (𝓝[≠] 1) (𝓝[> (continuous_mabs.tendsto' (1 : G) 1 mabs_one).inf <| tendsto_principal_principal.2 fun _x => one_lt_mabs.2 -@[deprecated (since := "2025-03-18")] -alias tendsto_abs_nhdsWithin_zero := tendsto_abs_nhdsNE_zero - /-- In a linearly ordered multiplicative group, the integer powers of an element are dense iff they are the whole group. -/ @[to_additive /-- In a linearly ordered additive group, the integer multiples of an element are diff --git a/Mathlib/Topology/Algebra/ProperAction/Basic.lean b/Mathlib/Topology/Algebra/ProperAction/Basic.lean index 97c7d709af444d..5d8aed329a9531 100644 --- a/Mathlib/Topology/Algebra/ProperAction/Basic.lean +++ b/Mathlib/Topology/Algebra/ProperAction/Basic.lean @@ -142,9 +142,6 @@ theorem t2Space_of_properSMul_of_t1Group [h_proper : ProperSMul G X] [T1Space G] rw [← range_gf] exact (proper_f.comp proper_g).isClosed_range -@[deprecated (since := "2025-03-21")] -alias t2Space_of_properSMul_of_t2Group := t2Space_of_properSMul_of_t1Group - /-- If two groups `H` and `G` act on a topological space `X` such that `G` acts properly and there exists a group homomorphism `H → G` which is a closed embedding compatible with the actions, then `H` also acts properly on `X`. -/ diff --git a/Mathlib/Topology/Algebra/UniformFilterBasis.lean b/Mathlib/Topology/Algebra/UniformFilterBasis.lean index e8b5cae644f44c..b222586bc5f013 100644 --- a/Mathlib/Topology/Algebra/UniformFilterBasis.lean +++ b/Mathlib/Topology/Algebra/UniformFilterBasis.lean @@ -35,8 +35,6 @@ topological abelian group structure is compatible with its group structure. -/ protected theorem isUniformAddGroup : @IsUniformAddGroup G B.uniformSpace _ := @isUniformAddGroup_of_addCommGroup G _ B.topology B.isTopologicalAddGroup -@[deprecated (since := "2025-03-27")] alias uniformAddGroup := AddGroupFilterBasis.isUniformAddGroup - theorem cauchy_iff {F : Filter G} : @Cauchy G B.uniformSpace F ↔ F.NeBot ∧ ∀ U ∈ B, ∃ M ∈ F, ∀ᵉ (x ∈ M) (y ∈ M), y - x ∈ U := by diff --git a/Mathlib/Topology/Category/TopCat/Basic.lean b/Mathlib/Topology/Category/TopCat/Basic.lean index ad8c2d3a5b772a..ea2f0b1a293a45 100644 --- a/Mathlib/Topology/Category/TopCat/Basic.lean +++ b/Mathlib/Topology/Category/TopCat/Basic.lean @@ -155,11 +155,6 @@ equal function coercion for a continuous map `C(X, Y)`. instance inhabited : Inhabited TopCat := ⟨TopCat.of Empty⟩ -@[deprecated - "Simply remove this from the `simp`/`rw` set: the LHS and RHS are now identical." - (since := "2025-01-30")] -lemma hom_apply {X Y : TopCat} (f : X ⟶ Y) (x : X) : f x = ContinuousMap.toFun f.hom x := rfl - /-- The discrete topology on any type. -/ def discrete : Type u ⥤ TopCat.{u} where obj X := @of X ⊥ diff --git a/Mathlib/Topology/ClusterPt.lean b/Mathlib/Topology/ClusterPt.lean index 06a60ce7ff8b0f..b5344d8d497ca7 100644 --- a/Mathlib/Topology/ClusterPt.lean +++ b/Mathlib/Topology/ClusterPt.lean @@ -62,9 +62,6 @@ theorem clusterPt_iff_nonempty {F : Filter X} : ClusterPt x F ↔ ∀ ⦃U : Set X⦄, U ∈ 𝓝 x → ∀ ⦃V⦄, V ∈ F → (U ∩ V).Nonempty := inf_neBot_iff -@[deprecated (since := "2025-03-16")] -alias clusterPt_iff := clusterPt_iff_nonempty - theorem clusterPt_iff_not_disjoint {F : Filter X} : ClusterPt x F ↔ ¬Disjoint (𝓝 x) F := by rw [disjoint_iff, ClusterPt, neBot_iff] @@ -147,9 +144,6 @@ theorem Filter.HasBasis.mapClusterPt_iff_frequently {ι : Sort*} {p : ι → Pro theorem mapClusterPt_iff_frequently : MapClusterPt x F u ↔ ∀ s ∈ 𝓝 x, ∃ᶠ a in F, u a ∈ s := (𝓝 x).basis_sets.mapClusterPt_iff_frequently -@[deprecated (since := "2025-03-16")] -alias mapClusterPt_iff := mapClusterPt_iff_frequently - theorem MapClusterPt.frequently (h : MapClusterPt x F u) {p : X → Prop} (hp : ∀ᶠ y in 𝓝 x, p y) : ∃ᶠ a in F, p (u a) := h.clusterPt.frequently hp diff --git a/Mathlib/Topology/Compactification/OnePoint/Basic.lean b/Mathlib/Topology/Compactification/OnePoint/Basic.lean index f96abc0fb449a3..e39dc4ec03ac81 100644 --- a/Mathlib/Topology/Compactification/OnePoint/Basic.lean +++ b/Mathlib/Topology/Compactification/OnePoint/Basic.lean @@ -303,9 +303,6 @@ of `OnePoint X`. -/ instance nhdsNE_coe_neBot (x : X) [h : NeBot (𝓝[≠] x)] : NeBot (𝓝[≠] (x : OnePoint X)) := by simpa [nhdsWithin_coe, preimage, coe_eq_coe] using h.map some -@[deprecated (since := "2025-03-02")] -alias nhdsWithin_compl_coe_neBot := nhdsNE_coe_neBot - theorem nhdsNE_infty_eq : 𝓝[≠] (∞ : OnePoint X) = map (↑) (coclosedCompact X) := by refine (nhdsWithin_basis_open ∞ _).ext (hasBasis_coclosedCompact.map _) ?_ ?_ · rintro s ⟨hs, hso⟩ @@ -315,24 +312,15 @@ theorem nhdsNE_infty_eq : 𝓝[≠] (∞ : OnePoint X) = map (↑) (coclosedComp refine ⟨_, ⟨mem_compl infty_notMem_image_coe, isOpen_compl_image_coe.2 ⟨h₁, h₂⟩⟩, ?_⟩ simp [compl_image_coe, ← diff_eq] -@[deprecated (since := "2025-03-02")] -alias nhdsWithin_compl_infty_eq := nhdsNE_infty_eq - /-- If `X` is a non-compact space, then `∞` is not an isolated point of `OnePoint X`. -/ instance nhdsNE_infty_neBot [NoncompactSpace X] : NeBot (𝓝[≠] (∞ : OnePoint X)) := by rw [nhdsNE_infty_eq] infer_instance -@[deprecated (since := "2025-03-02")] -alias nhdsWithin_compl_infty_neBot := nhdsNE_infty_neBot - instance (priority := 900) nhdsNE_neBot [∀ x : X, NeBot (𝓝[≠] x)] [NoncompactSpace X] (x : OnePoint X) : NeBot (𝓝[≠] x) := OnePoint.rec OnePoint.nhdsNE_infty_neBot (fun y => OnePoint.nhdsNE_coe_neBot y) x -@[deprecated (since := "2025-03-02")] -alias nhdsWithin_compl_neBot := nhdsNE_neBot - theorem nhds_infty_eq : 𝓝 (∞ : OnePoint X) = map (↑) (coclosedCompact X) ⊔ pure ∞ := by rw [← nhdsNE_infty_eq, nhdsNE_sup_pure] diff --git a/Mathlib/Topology/Constructions/SumProd.lean b/Mathlib/Topology/Constructions/SumProd.lean index 8fe14d02fdfb59..d0af828967d8c3 100644 --- a/Mathlib/Topology/Constructions/SumProd.lean +++ b/Mathlib/Topology/Constructions/SumProd.lean @@ -60,9 +60,6 @@ theorem continuous_prodMk {f : X → Y} {g : X → Z} : (Continuous fun x => (f x, g x)) ↔ Continuous f ∧ Continuous g := continuous_inf_rng.trans <| continuous_induced_rng.and continuous_induced_rng -@[deprecated (since := "2025-03-10")] -alias continuous_prod_mk := continuous_prodMk - @[continuity] theorem continuous_fst : Continuous (@Prod.fst X Y) := (continuous_prodMk.1 continuous_id).1 @@ -140,21 +137,12 @@ theorem Continuous.prodMk {f : Z → X} {g : Z → Y} (hf : Continuous f) (hg : Continuous fun x => (f x, g x) := continuous_prodMk.2 ⟨hf, hg⟩ -@[deprecated (since := "2025-03-10")] -alias Continuous.prod_mk := Continuous.prodMk - @[continuity] theorem Continuous.prodMk_right (x : X) : Continuous fun y : Y => (x, y) := by fun_prop -@[deprecated (since := "2025-03-10")] -alias Continuous.Prod.mk := Continuous.prodMk_right - @[continuity] theorem Continuous.prodMk_left (y : Y) : Continuous fun x : X => (x, y) := by fun_prop -@[deprecated (since := "2025-03-10")] -alias Continuous.Prod.mk_left := Continuous.prodMk_left - /-- If `f x y` is continuous in `x` for all `y ∈ s`, then the set of `x` such that `f x` maps `s` to `t` is closed. -/ lemma IsClosed.setOf_mapsTo {α : Type*} {f : X → α → Z} {s : Set α} {t : Set Z} (ht : IsClosed t) @@ -224,9 +212,6 @@ theorem Filter.Eventually.prodMk_nhds {px : X → Prop} {x} (hx : ∀ᶠ x in {y} (hy : ∀ᶠ y in 𝓝 y, py y) : ∀ᶠ p in 𝓝 (x, y), px (p : X × Y).1 ∧ py p.2 := (hx.prod_inl_nhds y).and (hy.prod_inr_nhds x) -@[deprecated (since := "2025-03-10")] -alias Filter.Eventually.prod_mk_nhds := Filter.Eventually.prodMk_nhds - theorem continuous_swap : Continuous (Prod.swap : X × Y → Y × X) := continuous_snd.prodMk continuous_fst @@ -342,9 +327,6 @@ theorem Filter.Tendsto.prodMk_nhds {γ} {x : X} {y : Y} {f : Filter γ} {mx : γ rw [nhds_prod_eq] exact hx.prodMk hy -@[deprecated (since := "2025-03-10")] -alias Filter.Tendsto.prod_mk_nhds := Filter.Tendsto.prodMk_nhds - theorem Filter.Tendsto.prodMap_nhds {x : X} {y : Y} {z : Z} {w : W} {f : X → Y} {g : Z → W} (hf : Tendsto f (𝓝 x) (𝓝 y)) (hg : Tendsto g (𝓝 z) (𝓝 w)) : Tendsto (Prod.map f g) (𝓝 (x, z)) (𝓝 (y, w)) := by @@ -361,9 +343,6 @@ theorem ContinuousAt.prodMk {f : X → Y} {g : X → Z} {x : X} (hf : Continuous (hg : ContinuousAt g x) : ContinuousAt (fun x => (f x, g x)) x := hf.prodMk_nhds hg -@[deprecated (since := "2025-03-10")] -alias ContinuousAt.prod := ContinuousAt.prodMk - theorem ContinuousAt.prodMap {f : X → Z} {g : Y → W} {p : X × Y} (hf : ContinuousAt f p.fst) (hg : ContinuousAt g p.snd) : ContinuousAt (Prod.map f g) p := hf.fst''.prodMk hg.snd'' diff --git a/Mathlib/Topology/ContinuousOn.lean b/Mathlib/Topology/ContinuousOn.lean index 7b24f62af2e88b..fa192a34756a7f 100644 --- a/Mathlib/Topology/ContinuousOn.lean +++ b/Mathlib/Topology/ContinuousOn.lean @@ -278,9 +278,6 @@ theorem insert_mem_nhds_iff {a : α} {s : Set α} : insert a s ∈ 𝓝 a ↔ s theorem nhdsNE_sup_pure (a : α) : 𝓝[≠] a ⊔ pure a = 𝓝 a := by rw [← nhdsWithin_singleton, ← nhdsWithin_union, compl_union_self, nhdsWithin_univ] -@[deprecated (since := "2025-03-02")] -alias nhdsWithin_compl_singleton_sup_pure := nhdsNE_sup_pure - @[simp] theorem pure_sup_nhdsNE (a : α) : pure a ⊔ 𝓝[≠] a = 𝓝 a := by rw [← sup_comm, nhdsNE_sup_pure] @@ -1059,17 +1056,11 @@ theorem ContinuousWithinAt.prodMk {f : α → β} {g : α → γ} {s : Set α} { ContinuousWithinAt (fun x => (f x, g x)) s x := hf.prodMk_nhds hg -@[deprecated (since := "2025-03-10")] -alias ContinuousWithinAt.prod := ContinuousWithinAt.prodMk - @[fun_prop] theorem ContinuousOn.prodMk {f : α → β} {g : α → γ} {s : Set α} (hf : ContinuousOn f s) (hg : ContinuousOn g s) : ContinuousOn (fun x => (f x, g x)) s := fun x hx => (hf x hx).prodMk (hg x hx) -@[deprecated (since := "2025-03-10")] -alias ContinuousOn.prod := ContinuousOn.prodMk - theorem continuousOn_fst {s : Set (α × β)} : ContinuousOn Prod.fst s := continuous_fst.continuousOn @@ -1111,16 +1102,10 @@ theorem ContinuousWithinAt.prodMap {f : α → γ} {g : β → δ} {s : Set α} .prodMk (hf.comp continuousWithinAt_fst mapsTo_fst_prod) (hg.comp continuousWithinAt_snd mapsTo_snd_prod) -@[deprecated (since := "2025-03-10")] -alias ContinuousWithinAt.prod_map := ContinuousWithinAt.prodMap - theorem ContinuousOn.prodMap {f : α → γ} {g : β → δ} {s : Set α} {t : Set β} (hf : ContinuousOn f s) (hg : ContinuousOn g t) : ContinuousOn (Prod.map f g) (s ×ˢ t) := fun ⟨x, y⟩ ⟨hx, hy⟩ => (hf x hx).prodMap (hg y hy) -@[deprecated (since := "2025-03-10")] -alias ContinuousOn.prod_map := ContinuousOn.prodMap - theorem continuousWithinAt_prod_of_discrete_left [DiscreteTopology α] {f : α × β → γ} {s : Set (α × β)} {x : α × β} : ContinuousWithinAt f s x ↔ ContinuousWithinAt (f ⟨x.1, ·⟩) {b | (x.1, b) ∈ s} x.2 := by diff --git a/Mathlib/Topology/EMetricSpace/Lipschitz.lean b/Mathlib/Topology/EMetricSpace/Lipschitz.lean index 724233dfc23803..cb154e217f77ec 100644 --- a/Mathlib/Topology/EMetricSpace/Lipschitz.lean +++ b/Mathlib/Topology/EMetricSpace/Lipschitz.lean @@ -239,21 +239,12 @@ protected theorem prodMk {f : α → β} {Kf : ℝ≥0} (hf : LipschitzWith Kf f rw [ENNReal.coe_mono.map_max, Prod.edist_eq, max_mul] exact max_le_max (hf x y) (hg x y) -@[deprecated (since := "2025-03-10")] -protected alias prod := LipschitzWith.prodMk - protected theorem prodMk_left (a : α) : LipschitzWith 1 (Prod.mk a : β → α × β) := by simpa only [max_eq_right zero_le_one] using (LipschitzWith.const a).prodMk LipschitzWith.id -@[deprecated (since := "2025-03-10")] -protected alias prod_mk_left := LipschitzWith.prodMk_left - protected theorem prodMk_right (b : β) : LipschitzWith 1 fun a : α => (a, b) := by simpa only [max_eq_left zero_le_one] using LipschitzWith.id.prodMk (LipschitzWith.const b) -@[deprecated (since := "2025-03-10")] -protected alias prod_mk_right := LipschitzWith.prodMk_right - protected theorem uncurry {f : α → β → γ} {Kα Kβ : ℝ≥0} (hα : ∀ b, LipschitzWith Kα fun a => f a b) (hβ : ∀ a, LipschitzWith Kβ (f a)) : LipschitzWith (Kα + Kβ) (Function.uncurry f) := by rintro ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ @@ -326,9 +317,6 @@ protected theorem prodMk {g : α → γ} {Kf Kg : ℝ≥0} (hf : LipschitzOnWith rw [ENNReal.coe_mono.map_max, Prod.edist_eq, max_mul] exact max_le_max (hf hx hy) (hg hx hy) -@[deprecated (since := "2025-03-10")] -protected alias prod := LipschitzOnWith.prodMk - theorem ediam_image2_le (f : α → β → γ) {K₁ K₂ : ℝ≥0} (s : Set α) (t : Set β) (hf₁ : ∀ b ∈ t, LipschitzOnWith K₁ (f · b) s) (hf₂ : ∀ a ∈ s, LipschitzOnWith K₂ (f a) t) : EMetric.diam (Set.image2 f s t) ≤ ↑K₁ * EMetric.diam s + ↑K₂ * EMetric.diam t := by @@ -385,21 +373,12 @@ protected lemma prodMk {f : α → β} (hf : LocallyLipschitz f) {g : α → γ} refine ⟨max Kf Kg, t₁ ∩ t₂, Filter.inter_mem h₁t h₂t, ?_⟩ exact (hfL.mono inter_subset_left).prodMk (hgL.mono inter_subset_right) -@[deprecated (since := "2025-03-10")] -protected alias prod := LocallyLipschitz.prodMk - protected theorem prodMk_left (a : α) : LocallyLipschitz (Prod.mk a : β → α × β) := (LipschitzWith.prodMk_left a).locallyLipschitz -@[deprecated (since := "2025-03-10")] -protected alias prod_mk_left := LocallyLipschitz.prodMk_left - protected theorem prodMk_right (b : β) : LocallyLipschitz (fun a : α => (a, b)) := (LipschitzWith.prodMk_right b).locallyLipschitz -@[deprecated (since := "2025-03-10")] -protected alias prod_mk_right := LocallyLipschitz.prodMk_right - protected theorem iterate {f : α → α} (hf : LocallyLipschitz f) : ∀ n, LocallyLipschitz f^[n] | 0 => by simpa only [pow_zero] using LocallyLipschitz.id | n + 1 => by rw [iterate_add, iterate_one]; exact (hf.iterate n).comp hf diff --git a/Mathlib/Topology/Inseparable.lean b/Mathlib/Topology/Inseparable.lean index a66e9f1902e2fd..8acbc34c6533b1 100644 --- a/Mathlib/Topology/Inseparable.lean +++ b/Mathlib/Topology/Inseparable.lean @@ -631,9 +631,6 @@ is the neighborhood of its equivalence class. -/ theorem map_mk_nhds : map mk (𝓝 x) = 𝓝 (mk x) := by rw [← comap_mk_nhds_mk, map_comap_of_surjective surjective_mk] -@[deprecated map_mk_nhds (since := "2025-03-21")] -theorem nhds_mk (x : X) : 𝓝 (mk x) = .map mk (𝓝 x) := .symm <| map_mk_nhds .. - theorem map_mk_nhdsSet : map mk (𝓝ˢ s) = 𝓝ˢ (mk '' s) := by rw [← comap_mk_nhdsSet_image, map_comap_of_surjective surjective_mk] diff --git a/Mathlib/Topology/Instances/AddCircle/Defs.lean b/Mathlib/Topology/Instances/AddCircle/Defs.lean index 3133472a9cc898..cce671d144b4b7 100644 --- a/Mathlib/Topology/Instances/AddCircle/Defs.lean +++ b/Mathlib/Topology/Instances/AddCircle/Defs.lean @@ -513,9 +513,6 @@ theorem finite_setOf_addOrderOf_eq {n : ℕ} (hn : 0 < n) : {u : AddCircle p | addOrderOf u = n}.Finite := finite_coe_iff.mp <| Nat.finite_of_card_ne_zero <| by simp [hn.ne'] -@[deprecated (since := "2025-03-26")] -alias finite_setOf_add_order_eq := finite_setOf_addOrderOf_eq - theorem finite_torsion {n : ℕ} (hn : 0 < n) : { u : AddCircle p | n • u = 0 }.Finite := by convert Set.finite_range (fun m : Fin n ↦ (↑(↑m / ↑n * p) : AddCircle p)) diff --git a/Mathlib/Topology/Instances/EReal/Lemmas.lean b/Mathlib/Topology/Instances/EReal/Lemmas.lean index 949d9cbc3868d4..0e4c7a8c1762f0 100644 --- a/Mathlib/Topology/Instances/EReal/Lemmas.lean +++ b/Mathlib/Topology/Instances/EReal/Lemmas.lean @@ -213,9 +213,6 @@ lemma _root_.Continuous.ereal_toENNReal {α : Type*} [TopologicalSpace α] {f : Continuous fun x => (f x).toENNReal := continuous_toENNReal.comp hf -@[deprecated (since := "2025-03-05")] alias _root_.Continous.ereal_toENNReal := - _root_.Continuous.ereal_toENNReal - @[fun_prop] lemma _root_.ContinuousOn.ereal_toENNReal {α : Type*} [TopologicalSpace α] {s : Set α} {f : α → EReal} (hf : ContinuousOn f s) : diff --git a/Mathlib/Topology/Instances/Matrix.lean b/Mathlib/Topology/Instances/Matrix.lean index 5c4791876e398e..74888ed8a20a79 100644 --- a/Mathlib/Topology/Instances/Matrix.lean +++ b/Mathlib/Topology/Instances/Matrix.lean @@ -123,15 +123,11 @@ theorem Continuous.matrix_replicateCol {ι : Type*} {A : X → n → R} (hA : Co Continuous fun x => replicateCol ι (A x) := continuous_matrix fun i _ => (continuous_apply i).comp hA -@[deprecated (since := "2025-03-15")] alias Continuous.matrix_col := Continuous.matrix_replicateCol - @[continuity, fun_prop] theorem Continuous.matrix_replicateRow {ι : Type*} {A : X → n → R} (hA : Continuous A) : Continuous fun x => replicateRow ι (A x) := continuous_matrix fun _ _ => (continuous_apply _).comp hA -@[deprecated (since := "2025-03-15")] alias Continuous.matrix_row := Continuous.matrix_replicateRow - @[continuity, fun_prop] theorem Continuous.matrix_diagonal [Zero R] [DecidableEq n] {A : X → n → R} (hA : Continuous A) : Continuous fun x => diagonal (A x) := diff --git a/Mathlib/Topology/LocallyConstant/Basic.lean b/Mathlib/Topology/LocallyConstant/Basic.lean index 5842c330a16ff4..5de88b1709a47d 100644 --- a/Mathlib/Topology/LocallyConstant/Basic.lean +++ b/Mathlib/Topology/LocallyConstant/Basic.lean @@ -112,9 +112,6 @@ theorem prodMk {Y'} {f : X → Y} {f' : X → Y'} (hf : IsLocallyConstant f) (iff_eventually_eq _).2 fun x => (hf.eventually_eq x).mp <| (hf'.eventually_eq x).mono fun _ hf' hf => Prod.ext hf hf' -@[deprecated (since := "2025-03-10")] -alias prod_mk := prodMk - theorem comp₂ {Y₁ Y₂ Z : Type*} {f : X → Y₁} {g : X → Y₂} (hf : IsLocallyConstant f) (hg : IsLocallyConstant g) (h : Y₁ → Y₂ → Z) : IsLocallyConstant fun x => h (f x) (g x) := (hf.prodMk hg).comp fun x : Y₁ × Y₂ => h x.1 x.2 diff --git a/Mathlib/Topology/MetricSpace/Algebra.lean b/Mathlib/Topology/MetricSpace/Algebra.lean index d3e2166f5727c5..edb29c15f58545 100644 --- a/Mathlib/Topology/MetricSpace/Algebra.lean +++ b/Mathlib/Topology/MetricSpace/Algebra.lean @@ -117,8 +117,6 @@ class IsBoundedSMul : Prop where dist_smul_pair' : ∀ x : α, ∀ y₁ y₂ : β, dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂ dist_pair_smul' : ∀ x₁ x₂ : α, ∀ y : β, dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0 -@[deprecated (since := "2025-03-10")] alias BoundedSMul := IsBoundedSMul - variable {α β} variable [IsBoundedSMul α β] diff --git a/Mathlib/Topology/MetricSpace/IsometricSMul.lean b/Mathlib/Topology/MetricSpace/IsometricSMul.lean index 9509abf9de811c..dd1e89f9e6c928 100644 --- a/Mathlib/Topology/MetricSpace/IsometricSMul.lean +++ b/Mathlib/Topology/MetricSpace/IsometricSMul.lean @@ -42,15 +42,11 @@ variable (M : Type u) (G : Type v) (X : Type w) class IsIsometricVAdd (X : Type w) [PseudoEMetricSpace X] [VAdd M X] : Prop where isometry_vadd (X) : ∀ c : M, Isometry ((c +ᵥ ·) : X → X) -@[deprecated (since := "2025-03-10")] alias IsometricVAdd := IsIsometricVAdd - /-- A multiplicative action is isometric if each map `x ↦ c • x` is an isometry. -/ @[to_additive] class IsIsometricSMul (X : Type w) [PseudoEMetricSpace X] [SMul M X] : Prop where isometry_smul (X) : ∀ c : M, Isometry ((c • ·) : X → X) -@[deprecated (since := "2025-03-10")] alias IsometricSMul := IsIsometricSMul - export IsIsometricSMul (isometry_smul) export IsIsometricVAdd (isometry_vadd) diff --git a/Mathlib/Topology/MetricSpace/Polish.lean b/Mathlib/Topology/MetricSpace/Polish.lean index f5e01994b646c7..30eef100ed5116 100644 --- a/Mathlib/Topology/MetricSpace/Polish.lean +++ b/Mathlib/Topology/MetricSpace/Polish.lean @@ -64,18 +64,6 @@ instance [TopologicalSpace α] [SeparableSpace α] [IsCompletelyMetrizableSpace haveI := UniformSpace.secondCountable_of_separable α constructor -@[deprecated (since := "2025-03-14")] alias UpgradedPolishSpace := - UpgradedIsCompletelyMetrizableSpace - -@[deprecated (since := "2025-03-14")] alias polishSpaceMetric := - completelyMetrizableMetric - -@[deprecated (since := "2025-03-14")] alias complete_polishSpaceMetric := - complete_completelyMetrizableMetric - -@[deprecated (since := "2025-03-14")] alias upgradePolishSpace := - upgradeIsCompletelyMetrizable - namespace PolishSpace /-- Any nonempty Polish space is the continuous image of the fundamental space `ℕ → ℕ`. -/ diff --git a/Mathlib/Topology/Order/LeftRightNhds.lean b/Mathlib/Topology/Order/LeftRightNhds.lean index 83809c5e752b03..92e4159d34af8e 100644 --- a/Mathlib/Topology/Order/LeftRightNhds.lean +++ b/Mathlib/Topology/Order/LeftRightNhds.lean @@ -419,9 +419,6 @@ theorem nhds_basis_one_mabs_lt [NoMaxOrder α] : (𝓝 (1 : α)).HasBasis (fun ε : α => (1 : α) < ε) fun ε => { b | |b|ₘ < ε } := by simpa using nhds_basis_mabs_div_lt (1 : α) -@[deprecated (since := "2025-03-18")] -alias nhds_basis_zero_abs_sub_lt := nhds_basis_zero_abs_lt - /-- If `a > 1`, then open intervals `(a / ε, aε)`, `1 < ε ≤ a`, form a basis of neighborhoods of `a`. diff --git a/Mathlib/Topology/Separation/Connected.lean b/Mathlib/Topology/Separation/Connected.lean index a389a061a26b16..5855e85de9918a 100644 --- a/Mathlib/Topology/Separation/Connected.lean +++ b/Mathlib/Topology/Separation/Connected.lean @@ -39,9 +39,6 @@ theorem IsPreconnected.infinite_of_nontrivial [T1Space X] {s : Set X} (h : IsPre theorem PreconnectedSpace.infinite [PreconnectedSpace X] [Nontrivial X] [T1Space X] : Infinite X := infinite_univ_iff.mp <| isPreconnected_univ.infinite_of_nontrivial nontrivial_univ -@[deprecated (since := "2025-03-21")] -alias ConnectedSpace.infinite := PreconnectedSpace.infinite - /-- A non-trivial connected T1 space has no isolated points. -/ instance (priority := 100) ConnectedSpace.neBot_nhdsWithin_compl_of_nontrivial_of_t1space [ConnectedSpace X] [Nontrivial X] [T1Space X] (x : X) : diff --git a/Mathlib/Topology/UniformSpace/Basic.lean b/Mathlib/Topology/UniformSpace/Basic.lean index e75b391180cee0..649b923d0b07fa 100644 --- a/Mathlib/Topology/UniformSpace/Basic.lean +++ b/Mathlib/Topology/UniformSpace/Basic.lean @@ -743,23 +743,14 @@ theorem UniformContinuous.prodMk {f₁ : α → β} {f₂ : α → γ} (h₁ : U rw [UniformContinuous, uniformity_prod] exact tendsto_inf.2 ⟨tendsto_comap_iff.2 h₁, tendsto_comap_iff.2 h₂⟩ -@[deprecated (since := "2025-03-10")] -alias UniformContinuous.prod_mk := UniformContinuous.prodMk - theorem UniformContinuous.prodMk_left {f : α × β → γ} (h : UniformContinuous f) (b) : UniformContinuous fun a => f (a, b) := h.comp (uniformContinuous_id.prodMk uniformContinuous_const) -@[deprecated (since := "2025-03-10")] -alias UniformContinuous.prod_mk_left := UniformContinuous.prodMk_left - theorem UniformContinuous.prodMk_right {f : α × β → γ} (h : UniformContinuous f) (a) : UniformContinuous fun b => f (a, b) := h.comp (uniformContinuous_const.prodMk uniformContinuous_id) -@[deprecated (since := "2025-03-10")] -alias UniformContinuous.prod_mk_right := UniformContinuous.prodMk_right - theorem UniformContinuous.prodMap [UniformSpace δ] {f : α → γ} {g : β → δ} (hf : UniformContinuous f) (hg : UniformContinuous g) : UniformContinuous (Prod.map f g) := (hf.comp uniformContinuous_fst).prodMk (hg.comp uniformContinuous_snd) diff --git a/Mathlib/Topology/UniformSpace/Cauchy.lean b/Mathlib/Topology/UniformSpace/Cauchy.lean index 2050125a350537..37743999e420aa 100644 --- a/Mathlib/Topology/UniformSpace/Cauchy.lean +++ b/Mathlib/Topology/UniformSpace/Cauchy.lean @@ -229,17 +229,11 @@ theorem CauchySeq.prodMap {γ δ} [UniformSpace β] [Preorder γ] [Preorder δ] (hu : CauchySeq u) (hv : CauchySeq v) : CauchySeq (Prod.map u v) := by simpa only [CauchySeq, prod_map_map_eq', prod_atTop_atTop_eq] using hu.prod hv -@[deprecated (since := "2025-03-10")] -alias CauchySeq.prod_map := CauchySeq.prodMap - theorem CauchySeq.prodMk {γ} [UniformSpace β] [Preorder γ] {u : γ → α} {v : γ → β} (hu : CauchySeq u) (hv : CauchySeq v) : CauchySeq fun x => (u x, v x) := haveI := hu.1.of_map (Cauchy.prod hu hv).mono (tendsto_map.prodMk tendsto_map) -@[deprecated (since := "2025-03-10")] -alias CauchySeq.prod := CauchySeq.prodMk - theorem CauchySeq.eventually_eventually [Preorder β] {u : β → α} (hu : CauchySeq u) {V : Set (α × α)} (hV : V ∈ 𝓤 α) : ∀ᶠ k in atTop, ∀ᶠ l in atTop, (u k, u l) ∈ V := eventually_atTop_curry <| hu.tendsto_uniformity hV @@ -456,9 +450,6 @@ theorem eq_pure_of_cauchy {f : Filter α} (hf : Cauchy f) : ∃ x : α, f = pure (Filter.nonempty_of_mem hT) H exact ⟨x, f_ne_bot.le_pure_iff.mp <| le_pure_iff.mpr hS⟩ -@[deprecated (since := "2025-03-23")] -alias _root_.UniformSpace.DiscreteUnif.cauchy_le_pure := eq_pure_of_cauchy - /-- The discrete uniformity makes a space complete. -/ instance : CompleteSpace α where complete {f} hf := by @@ -471,15 +462,9 @@ variable {X} noncomputable def cauchyConst {f : Filter α} (hf : Cauchy f) : α := (eq_pure_of_cauchy hf).choose -@[deprecated (since := "2025-03-23")] -alias _root_.UniformSpace.DiscreteUnif.cauchyConst := cauchyConst - theorem eq_pure_cauchyConst {f : Filter α} (hf : Cauchy f) : f = pure (cauchyConst hf) := (eq_pure_of_cauchy hf).choose_spec -@[deprecated (since := "2025-03-23")] -alias _root_.UniformSpace.DiscreteUnif.eq_const_of_cauchy := eq_pure_cauchyConst - end DiscreteUniformity /-- A set `s` is totally bounded if for every entourage `d` there is a finite diff --git a/Mathlib/Topology/UniformSpace/Defs.lean b/Mathlib/Topology/UniformSpace/Defs.lean index 3efc045c71e708..8a5d441c531202 100644 --- a/Mathlib/Topology/UniformSpace/Defs.lean +++ b/Mathlib/Topology/UniformSpace/Defs.lean @@ -182,9 +182,6 @@ theorem prodMk_mem_compRel {a b c : α} {s t : Set (α × α)} (h₁ : (a, c) (a, b) ∈ s ○ t := ⟨c, h₁, h₂⟩ -@[deprecated (since := "2025-03-10")] -alias prod_mk_mem_compRel := prodMk_mem_compRel - @[simp] theorem id_compRel {r : Set (α × α)} : idRel ○ r = r := Set.ext fun ⟨a, b⟩ => by simp @@ -211,9 +208,6 @@ theorem subset_iterate_compRel {s t : Set (α × α)} (h : idRel ⊆ s) (n : ℕ def IsSymmetricRel (V : Set (α × α)) : Prop := Prod.swap ⁻¹' V = V -@[deprecated (since := "2025-03-05")] -alias SymmetricRel := IsSymmetricRel - /-- The maximal symmetric relation contained in a given relation. -/ def symmetrizeRel (V : Set (α × α)) : Set (α × α) := V ∩ Prod.swap ⁻¹' V @@ -232,21 +226,12 @@ theorem IsSymmetricRel.mk_mem_comm {V : Set (α × α)} (hV : IsSymmetricRel V) (x, y) ∈ V ↔ (y, x) ∈ V := Set.ext_iff.1 hV (y, x) -@[deprecated (since := "2025-03-05")] -alias SymmetricRel.mk_mem_comm := IsSymmetricRel.mk_mem_comm - theorem IsSymmetricRel.eq {U : Set (α × α)} (hU : IsSymmetricRel U) : Prod.swap ⁻¹' U = U := hU -@[deprecated (since := "2025-03-05")] -alias SymmetricRel.eq := IsSymmetricRel.eq - theorem IsSymmetricRel.inter {U V : Set (α × α)} (hU : IsSymmetricRel U) (hV : IsSymmetricRel V) : IsSymmetricRel (U ∩ V) := by rw [IsSymmetricRel, preimage_inter, hU.eq, hV.eq] -@[deprecated (since := "2025-03-05")] -alias SymmetricRel.inter := IsSymmetricRel.inter - theorem IsSymmetricRel.iInter {U : (i : ι) → Set (α × α)} (hU : ∀ i, IsSymmetricRel (U i)) : IsSymmetricRel (⋂ i, U i) := by simp_rw [IsSymmetricRel, preimage_iInter, (hU _).eq] diff --git a/Mathlib/Topology/UniformSpace/UniformConvergence.lean b/Mathlib/Topology/UniformSpace/UniformConvergence.lean index e0a7faf6d4997c..f587e88b192dbc 100644 --- a/Mathlib/Topology/UniformSpace/UniformConvergence.lean +++ b/Mathlib/Topology/UniformSpace/UniformConvergence.lean @@ -240,9 +240,6 @@ theorem TendstoUniformlyOnFilter.prodMap {ι' α' β' : Type*} [UniformSpace β' rw [uniformity_prod_eq_comap_prod, tendsto_comap_iff, ← map_swap4_prod, tendsto_map'_iff] simpa using h.prodMap h' -@[deprecated (since := "2025-03-10")] -alias TendstoUniformlyOnFilter.prod_map := TendstoUniformlyOnFilter.prodMap - theorem TendstoUniformlyOn.prodMap {ι' α' β' : Type*} [UniformSpace β'] {F' : ι' → α' → β'} {f' : α' → β'} {p' : Filter ι'} {s' : Set α'} (h : TendstoUniformlyOn F f p s) (h' : TendstoUniformlyOn F' f' p' s') : @@ -251,18 +248,12 @@ theorem TendstoUniformlyOn.prodMap {ι' α' β' : Type*} [UniformSpace β'] {F' rw [tendstoUniformlyOn_iff_tendstoUniformlyOnFilter] at h h' ⊢ simpa only [prod_principal_principal] using h.prodMap h' -@[deprecated (since := "2025-03-10")] -alias TendstoUniformlyOn.prod_map := TendstoUniformlyOn.prodMap - theorem TendstoUniformly.prodMap {ι' α' β' : Type*} [UniformSpace β'] {F' : ι' → α' → β'} {f' : α' → β'} {p' : Filter ι'} (h : TendstoUniformly F f p) (h' : TendstoUniformly F' f' p') : TendstoUniformly (fun i : ι × ι' => Prod.map (F i.1) (F' i.2)) (Prod.map f f') (p ×ˢ p') := by rw [← tendstoUniformlyOn_univ, ← univ_prod_univ] at * exact h.prodMap h' -@[deprecated (since := "2025-03-10")] -alias TendstoUniformly.prod_map := TendstoUniformly.prodMap - theorem TendstoUniformlyOnFilter.prodMk {ι' β' : Type*} [UniformSpace β'] {F' : ι' → α → β'} {f' : α → β'} {q : Filter ι'} (h : TendstoUniformlyOnFilter F f p p') (h' : TendstoUniformlyOnFilter F' f' q p') : @@ -270,9 +261,6 @@ theorem TendstoUniformlyOnFilter.prodMk {ι' β' : Type*} [UniformSpace β'] {F' (p ×ˢ q) p' := fun u hu => ((h.prodMap h') u hu).diag_of_prod_right -@[deprecated (since := "2025-03-10")] -alias TendstoUniformlyOnFilter.prod := TendstoUniformlyOnFilter.prodMk - protected theorem TendstoUniformlyOn.prodMk {ι' β' : Type*} [UniformSpace β'] {F' : ι' → α → β'} {f' : α → β'} {p' : Filter ι'} (h : TendstoUniformlyOn F f p s) (h' : TendstoUniformlyOn F' f' p' s) : @@ -280,17 +268,11 @@ protected theorem TendstoUniformlyOn.prodMk {ι' β' : Type*} [UniformSpace β'] s := (congr_arg _ s.inter_self).mp ((h.prodMap h').comp fun a => (a, a)) -@[deprecated (since := "2025-03-10")] -alias TendstoUniformlyOn.prod := TendstoUniformlyOn.prodMk - theorem TendstoUniformly.prodMk {ι' β' : Type*} [UniformSpace β'] {F' : ι' → α → β'} {f' : α → β'} {p' : Filter ι'} (h : TendstoUniformly F f p) (h' : TendstoUniformly F' f' p') : TendstoUniformly (fun (i : ι × ι') a => (F i.1 a, F' i.2 a)) (fun a => (f a, f' a)) (p ×ˢ p') := (h.prodMap h').comp fun a => (a, a) -@[deprecated (since := "2025-03-10")] -alias TendstoUniformly.prod := TendstoUniformly.prodMk - /-- Uniform convergence on a filter `p'` to a constant function is equivalent to convergence in `p ×ˢ p'`. -/ theorem tendsto_prod_filter_iff {c : β} : @@ -532,9 +514,6 @@ theorem UniformCauchySeqOn.prodMap {ι' α' β' : Type*} [UniformSpace β'] {F' intro x hx a b ha hb exact hvw ⟨_, mk_mem_prod (hx.1 a ha) (hx.2 b hb), rfl⟩ -@[deprecated (since := "2025-03-10")] -alias UniformCauchySeqOn.prod_map := UniformCauchySeqOn.prodMap - theorem UniformCauchySeqOn.prod {ι' β' : Type*} [UniformSpace β'] {F' : ι' → α → β'} {p' : Filter ι'} (h : UniformCauchySeqOn F p s) (h' : UniformCauchySeqOn F' p' s) : UniformCauchySeqOn (fun (i : ι × ι') a => (F i.fst a, F' i.snd a)) (p ×ˢ p') s :=