
Strings 83

and a to force representational form but only using ASCII characters. Here is

an example:

>>> "{0} {0!s} {0!r} {0!a}".format(decimal.Decimal("93.4"))

"93.4 93.4 Decimal('93.4') Decimal('93.4')"

In this case, decimal.Decimal’s string form produces the same string as the

string it provides for str.format() which is what commonly happens. Also, in

this particular example, there is no difference between the representational

and ASCII representational forms since both use only ASCII characters.

Here is another example, this time concerning a string that contains the ti-

tle of a movie, " ", held in the variable movie. If we print the

string using "{0}".format(movie) the string will be output unchanged, but

if we want to avoid non-ASCII characters we can use either ascii(movie) or

"{0!a}".format(movie), both of which will produce the string '\u7ffb\u8a33

\u3067\u5931\u308f\u308c\u308b'.

So far we have seen how to put the values of variables into a format string, and

how to force string or representational forms to be used. Now we are ready to

consider the formatting of the values themselves.

Format Specifications |

The default formatting of integers, floating-point numbers, and strings is often

perfectly satisfactory. But if we want to exercise fine control, we can easily do

so using format specifications. Wewill deal separatelywith formatting strings,

integers, and floating-point numbers, to make learning the details easier. The

the general syntax that covers all of them is shown in Figure 2.6.

For strings, the things that we can control are the fill character, the alignment

within the field, and the minimum and maximum field widths.

A string format specification is introduced with a colon (:) and this is followed

by an optional pair of characters—a fill character (which may not be }) and an

alignment character (< for left align, ^ for center, > for right align). Then comes

an optional minimum width integer, and if we want to specify a maximum

width, this comes last as a period followed by an integer.

Note that if we specify a fill character we must also specify an alignment. We

omit the sign and type parts of the format specification because they have no

effect on strings. It is harmless (but pointless) to have a colon without any of

the optional elements.

Let’s see some examples:

>>> s = "The sword of truth"

>>> "{0}".format(s) # default formatting

'The sword of truth'


