diff --git a/README.md b/README.md index a5c86b0f6..afa0ec357 100644 --- a/README.md +++ b/README.md @@ -313,6 +313,9 @@ arguments: -i, --end-img [IMAGE] path to the end image, required by flf2v --control-image [IMAGE] path to image condition, control net -r, --ref-image [PATH] reference image for Flux Kontext models (can be used multiple times) + --control-video [PATH] path to control video frames, It must be a directory path. + The video frames inside should be stored as images in lexicographical (character) order + For example, if the control video path is `frames`, the directory contain images such as 00.png, 01.png, 鈥?etc. --increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1). -o, --output OUTPUT path to write result image to (default: ./output.png) -p, --prompt [PROMPT] the prompt to render @@ -379,6 +382,7 @@ arguments: --moe-boundary BOUNDARY timestep boundary for Wan2.2 MoE model. (default: 0.875) only enabled if `--high-noise-steps` is set to -1 --flow-shift SHIFT shift value for Flow models like SD3.x or WAN (default: auto) + --vace-strength wan vace strength -v, --verbose print extra info ``` diff --git a/assets/wan/Wan2.1_1.3B_vace_r2v.mp4 b/assets/wan/Wan2.1_1.3B_vace_r2v.mp4 new file mode 100644 index 000000000..05f6cfa2f Binary files /dev/null and b/assets/wan/Wan2.1_1.3B_vace_r2v.mp4 differ diff --git a/assets/wan/Wan2.1_1.3B_vace_t2v.mp4 b/assets/wan/Wan2.1_1.3B_vace_t2v.mp4 new file mode 100644 index 000000000..73862e84d Binary files /dev/null and b/assets/wan/Wan2.1_1.3B_vace_t2v.mp4 differ diff --git a/assets/wan/Wan2.1_1.3B_vace_v2v.mp4 b/assets/wan/Wan2.1_1.3B_vace_v2v.mp4 new file mode 100644 index 000000000..2cc4c0a93 Binary files /dev/null and b/assets/wan/Wan2.1_1.3B_vace_v2v.mp4 differ diff --git a/assets/wan/Wan2.1_14B_vace_r2v.mp4 b/assets/wan/Wan2.1_14B_vace_r2v.mp4 new file mode 100644 index 000000000..686371fb9 Binary files /dev/null and b/assets/wan/Wan2.1_14B_vace_r2v.mp4 differ diff --git a/assets/wan/Wan2.1_14B_vace_t2v.mp4 b/assets/wan/Wan2.1_14B_vace_t2v.mp4 new file mode 100644 index 000000000..cebe8f974 Binary files /dev/null and b/assets/wan/Wan2.1_14B_vace_t2v.mp4 differ diff --git a/assets/wan/Wan2.1_14B_vace_v2v.mp4 b/assets/wan/Wan2.1_14B_vace_v2v.mp4 new file mode 100644 index 000000000..95f30d45e Binary files /dev/null and b/assets/wan/Wan2.1_14B_vace_v2v.mp4 differ diff --git a/diffusion_model.hpp b/diffusion_model.hpp index 138ca67a7..92d3da5ad 100644 --- a/diffusion_model.hpp +++ b/diffusion_model.hpp @@ -6,23 +6,29 @@ #include "unet.hpp" #include "wan.hpp" +struct DiffusionParams { + struct ggml_tensor* x = NULL; + struct ggml_tensor* timesteps = NULL; + struct ggml_tensor* context = NULL; + struct ggml_tensor* c_concat = NULL; + struct ggml_tensor* y = NULL; + struct ggml_tensor* guidance = NULL; + std::vector ref_latents = {}; + bool increase_ref_index = false; + int num_video_frames = -1; + std::vector controls = {}; + float control_strength = 0.f; + struct ggml_tensor* vace_context = NULL; + float vace_strength = 1.f; + std::vector skip_layers = {}; +}; + struct DiffusionModel { virtual std::string get_desc() = 0; virtual void compute(int n_threads, - struct ggml_tensor* x, - struct ggml_tensor* timesteps, - struct ggml_tensor* context, - struct ggml_tensor* c_concat, - struct ggml_tensor* y, - struct ggml_tensor* guidance, - std::vector ref_latents = {}, - bool increase_ref_index = false, - int num_video_frames = -1, - std::vector controls = {}, - float control_strength = 0.f, - struct ggml_tensor** output = NULL, - struct ggml_context* output_ctx = NULL, - std::vector skip_layers = std::vector()) = 0; + DiffusionParams diffusion_params, + struct ggml_tensor** output = NULL, + struct ggml_context* output_ctx = NULL) = 0; virtual void alloc_params_buffer() = 0; virtual void free_params_buffer() = 0; virtual void free_compute_buffer() = 0; @@ -71,22 +77,18 @@ struct UNetModel : public DiffusionModel { } void compute(int n_threads, - struct ggml_tensor* x, - struct ggml_tensor* timesteps, - struct ggml_tensor* context, - struct ggml_tensor* c_concat, - struct ggml_tensor* y, - struct ggml_tensor* guidance, - std::vector ref_latents = {}, - bool increase_ref_index = false, - int num_video_frames = -1, - std::vector controls = {}, - float control_strength = 0.f, - struct ggml_tensor** output = NULL, - struct ggml_context* output_ctx = NULL, - std::vector skip_layers = std::vector()) { - (void)skip_layers; // SLG doesn't work with UNet models - return unet.compute(n_threads, x, timesteps, context, c_concat, y, num_video_frames, controls, control_strength, output, output_ctx); + DiffusionParams diffusion_params, + struct ggml_tensor** output = NULL, + struct ggml_context* output_ctx = NULL) { + return unet.compute(n_threads, + diffusion_params.x, + diffusion_params.timesteps, + diffusion_params.context, + diffusion_params.c_concat, + diffusion_params.y, + diffusion_params.num_video_frames, + diffusion_params.controls, + diffusion_params.control_strength, output, output_ctx); } }; @@ -129,21 +131,17 @@ struct MMDiTModel : public DiffusionModel { } void compute(int n_threads, - struct ggml_tensor* x, - struct ggml_tensor* timesteps, - struct ggml_tensor* context, - struct ggml_tensor* c_concat, - struct ggml_tensor* y, - struct ggml_tensor* guidance, - std::vector ref_latents = {}, - bool increase_ref_index = false, - int num_video_frames = -1, - std::vector controls = {}, - float control_strength = 0.f, - struct ggml_tensor** output = NULL, - struct ggml_context* output_ctx = NULL, - std::vector skip_layers = std::vector()) { - return mmdit.compute(n_threads, x, timesteps, context, y, output, output_ctx, skip_layers); + DiffusionParams diffusion_params, + struct ggml_tensor** output = NULL, + struct ggml_context* output_ctx = NULL) { + return mmdit.compute(n_threads, + diffusion_params.x, + diffusion_params.timesteps, + diffusion_params.context, + diffusion_params.y, + output, + output_ctx, + diffusion_params.skip_layers); } }; @@ -188,21 +186,21 @@ struct FluxModel : public DiffusionModel { } void compute(int n_threads, - struct ggml_tensor* x, - struct ggml_tensor* timesteps, - struct ggml_tensor* context, - struct ggml_tensor* c_concat, - struct ggml_tensor* y, - struct ggml_tensor* guidance, - std::vector ref_latents = {}, - bool increase_ref_index = false, - int num_video_frames = -1, - std::vector controls = {}, - float control_strength = 0.f, - struct ggml_tensor** output = NULL, - struct ggml_context* output_ctx = NULL, - std::vector skip_layers = std::vector()) { - return flux.compute(n_threads, x, timesteps, context, c_concat, y, guidance, ref_latents, increase_ref_index, output, output_ctx, skip_layers); + DiffusionParams diffusion_params, + struct ggml_tensor** output = NULL, + struct ggml_context* output_ctx = NULL) { + return flux.compute(n_threads, + diffusion_params.x, + diffusion_params.timesteps, + diffusion_params.context, + diffusion_params.c_concat, + diffusion_params.y, + diffusion_params.guidance, + diffusion_params.ref_latents, + diffusion_params.increase_ref_index, + output, + output_ctx, + diffusion_params.skip_layers); } }; @@ -248,21 +246,20 @@ struct WanModel : public DiffusionModel { } void compute(int n_threads, - struct ggml_tensor* x, - struct ggml_tensor* timesteps, - struct ggml_tensor* context, - struct ggml_tensor* c_concat, - struct ggml_tensor* y, - struct ggml_tensor* guidance, - std::vector ref_latents = {}, - bool increase_ref_index = false, - int num_video_frames = -1, - std::vector controls = {}, - float control_strength = 0.f, - struct ggml_tensor** output = NULL, - struct ggml_context* output_ctx = NULL, - std::vector skip_layers = std::vector()) { - return wan.compute(n_threads, x, timesteps, context, y, c_concat, NULL, output, output_ctx); + DiffusionParams diffusion_params, + struct ggml_tensor** output = NULL, + struct ggml_context* output_ctx = NULL) { + return wan.compute(n_threads, + diffusion_params.x, + diffusion_params.timesteps, + diffusion_params.context, + diffusion_params.y, + diffusion_params.c_concat, + NULL, + diffusion_params.vace_context, + diffusion_params.vace_strength, + output, + output_ctx); } }; diff --git a/docs/wan.md b/docs/wan.md index a3e5d6995..5bde71c7e 100644 --- a/docs/wan.md +++ b/docs/wan.md @@ -18,6 +18,12 @@ - Wan2.1 FLF2V 14B 720P - safetensors: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/diffusion_models - gguf: https://huggingface.co/city96/Wan2.1-FLF2V-14B-720P-gguf/tree/main + - Wan2.1 VACE 1.3B + - safetensors: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/diffusion_models + - gguf: https://huggingface.co/calcuis/wan-1.3b-gguf/tree/main + - Wan2.1 VACE 14B + - safetensors: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/diffusion_models + - gguf: https://huggingface.co/QuantStack/Wan2.1_14B_VACE-GGUF/tree/main - Wan2.2 - Wan2.2 TI2V 5B - safetensors: https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/tree/main/split_files/diffusion_models @@ -137,3 +143,62 @@ ``` + +### Wan2.1 VACE 1.3B + +#### T2V + +``` +.\bin\Release\sd.exe -M vid_gen --diffusion-model ..\..\ComfyUI\models\diffusion_models\wan2.1-vace-1.3b-q8_0.gguf --vae ..\..\ComfyUI\models\vae\wan_2.1_vae.safetensors --t5xxl ..\..\ComfyUI\models\text_encoders\umt5-xxl-encoder-Q8_0.gguf -p "a lovely cat" --cfg-scale 6.0 --sampling-method euler -v -n "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部, 畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" -W 832 -H 480 --diffusion-fa --video-frames 1 --offload-to-cpu +``` + + + + +#### R2V + +``` +.\bin\Release\sd.exe -M vid_gen --diffusion-model ..\..\ComfyUI\models\diffusion_models\wan2.1-vace-1.3b-q8_0.gguf --vae ..\..\ComfyUI\models\vae\wan_2.1_vae.safetensors --t5xxl ..\..\ComfyUI\models\text_encoders\umt5-xxl-encoder-Q8_0.gguf -p "a lovely cat" --cfg-scale 6.0 --sampling-method euler -v -n "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部, 畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" -W 832 -H 480 --diffusion-fa -i ..\assets\cat_with_sd_cpp_42.png --video-frames 33 --offload-to-cpu +``` + + + + +#### V2V + +``` +mkdir post+depth +ffmpeg -i ..\..\ComfyUI\input\post+depth.mp4 -qscale:v 1 -vf fps=8 post+depth\frame_%04d.jpg +.\bin\Release\sd.exe -M vid_gen --diffusion-model ..\..\ComfyUI\models\diffusion_models\wan2.1-vace-1.3b-q8_0.gguf --vae ..\..\ComfyUI\models\vae\wan_2.1_vae.safetensors --t5xxl ..\..\ComfyUI\models\text_encoders\umt5-xxl-encoder-Q8_0.gguf -p "The girl is dancing in a sea of flowers, slowly moving her hands. There is a close - up shot of her upper body. The character is surrounded by other transparent glass flowers in the style of Nicoletta Ceccoli, creating a beautiful, surreal, and emotionally expressive movie scene with a white. transparent feel and a dreamyl atmosphere." --cfg-scale 6.0 --sampling-method euler -v -n "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部, 畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" -W 480 -H 832 --diffusion-fa -i ..\..\ComfyUI\input\dance_girl.jpg --control-video ./post+depth --video-frames 33 --offload-to-cpu +``` + + + +### Wan2.1 VACE 14B + +#### T2V + +``` +.\bin\Release\sd.exe -M vid_gen --diffusion-model ..\..\ComfyUI\models\diffusion_models\Wan2.1_14B_VACE-Q8_0.gguf --vae ..\..\ComfyUI\models\vae\wan_2.1_vae.safetensors --t5xxl ..\..\ComfyUI\models\text_encoders\umt5-xxl-encoder-Q8_0.gguf -p "a lovely cat" --cfg-scale 6.0 --sampling-method euler -v -n "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部, 畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" -W 832 -H 480 --diffusion-fa --video-frames 33 --offload-to-cpu +``` + + + + +#### R2V + +``` +.\bin\Release\sd.exe -M vid_gen --diffusion-model ..\..\ComfyUI\models\diffusion_models\Wan2.1_14B_VACE-Q8_0.gguf --vae ..\..\ComfyUI\models\vae\wan_2.1_vae.safetensors --t5xxl ..\..\ComfyUI\models\text_encoders\umt5-xxl-encoder-Q8_0.gguf -p "a lovely cat" --cfg-scale 6.0 --sampling-method euler -v -n "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部, 畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" -W 832 -H 480 --diffusion-fa -i ..\assets\cat_with_sd_cpp_42.png --video-frames 33 --offload-to-cpu +``` + + + + + +#### V2V + +``` +.\bin\Release\sd.exe -M vid_gen --diffusion-model ..\..\ComfyUI\models\diffusion_models\Wan2.1_14B_VACE-Q8_0.gguf --vae ..\..\ComfyUI\models\vae\wan_2.1_vae.safetensors --t5xxl ..\..\ComfyUI\models\text_encoders\umt5-xxl-encoder-Q8_0.gguf -p "The girl is dancing in a sea of flowers, slowly moving her hands. There is a close - up shot of her upper body. The character is surrounded by other transparent glass flowers in the style of Nicoletta Ceccoli, creating a beautiful, surreal, and emotionally expressive movie scene with a white. transparent feel and a dreamyl atmosphere." --cfg-scale 6.0 --sampling-method euler -v -n "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部, 畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" -W 480 -H 832 --diffusion-fa -i ..\..\ComfyUI\input\dance_girl.jpg --control-video ./post+depth --video-frames 33 --offload-to-cpu +``` + + diff --git a/examples/cli/main.cpp b/examples/cli/main.cpp index 1c3c15ba5..af03c1579 100644 --- a/examples/cli/main.cpp +++ b/examples/cli/main.cpp @@ -35,6 +35,8 @@ #define SAFE_STR(s) ((s) ? (s) : "") #define BOOL_STR(b) ((b) ? "true" : "false") +namespace fs = std::filesystem; + const char* modes_str[] = { "img_gen", "vid_gen", @@ -75,6 +77,7 @@ struct SDParams { std::string mask_image_path; std::string control_image_path; std::vector ref_image_paths; + std::string control_video_path; bool increase_ref_index = false; std::string prompt; @@ -91,10 +94,10 @@ struct SDParams { std::vector high_noise_skip_layers = {7, 8, 9}; sd_sample_params_t high_noise_sample_params; - float moe_boundary = 0.875f; - - int video_frames = 1; - int fps = 16; + float moe_boundary = 0.875f; + int video_frames = 1; + int fps = 16; + float vace_strength = 1.f; float strength = 0.75f; float control_strength = 0.9f; @@ -159,6 +162,7 @@ void print_params(SDParams params) { for (auto& path : params.ref_image_paths) { printf(" %s\n", path.c_str()); }; + printf(" control_video_path: %s\n", params.control_video_path.c_str()); printf(" increase_ref_index: %s\n", params.increase_ref_index ? "true" : "false"); printf(" offload_params_to_cpu: %s\n", params.offload_params_to_cpu ? "true" : "false"); printf(" clip_on_cpu: %s\n", params.clip_on_cpu ? "true" : "false"); @@ -179,7 +183,7 @@ void print_params(SDParams params) { printf(" flow_shift: %.2f\n", params.flow_shift); printf(" strength(img2img): %.2f\n", params.strength); printf(" rng: %s\n", sd_rng_type_name(params.rng_type)); - printf(" seed: %ld\n", params.seed); + printf(" seed: %zd\n", params.seed); printf(" batch_count: %d\n", params.batch_count); printf(" vae_tiling: %s\n", params.vae_tiling_params.enabled ? "true" : "false"); printf(" upscale_repeats: %d\n", params.upscale_repeats); @@ -187,6 +191,7 @@ void print_params(SDParams params) { printf(" chroma_use_t5_mask: %s\n", params.chroma_use_t5_mask ? "true" : "false"); printf(" chroma_t5_mask_pad: %d\n", params.chroma_t5_mask_pad); printf(" video_frames: %d\n", params.video_frames); + printf(" vace_strength: %.2f\n", params.vace_strength); printf(" fps: %d\n", params.fps); free(sample_params_str); free(high_noise_sample_params_str); @@ -226,6 +231,9 @@ void print_usage(int argc, const char* argv[]) { printf(" -i, --end-img [IMAGE] path to the end image, required by flf2v\n"); printf(" --control-image [IMAGE] path to image condition, control net\n"); printf(" -r, --ref-image [PATH] reference image for Flux Kontext models (can be used multiple times) \n"); + printf(" --control-video [PATH] path to control video frames, It must be a directory path.\n"); + printf(" The video frames inside should be stored as images in lexicographical (character) order\n"); + printf(" For example, if the control video path is `frames`, the directory contain images such as 00.png, 01.png, … etc.\n"); printf(" --increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).\n"); printf(" -o, --output OUTPUT path to write result image to (default: ./output.png)\n"); printf(" -p, --prompt [PROMPT] the prompt to render\n"); @@ -292,6 +300,7 @@ void print_usage(int argc, const char* argv[]) { printf(" --moe-boundary BOUNDARY timestep boundary for Wan2.2 MoE model. (default: 0.875)\n"); printf(" only enabled if `--high-noise-steps` is set to -1\n"); printf(" --flow-shift SHIFT shift value for Flow models like SD3.x or WAN (default: auto)\n"); + printf(" --vace-strength wan vace strength\n"); printf(" -v, --verbose print extra info\n"); } @@ -486,6 +495,7 @@ void parse_args(int argc, const char** argv, SDParams& params) { {"", "--input-id-images-dir", "", ¶ms.input_id_images_path}, {"", "--mask", "", ¶ms.mask_image_path}, {"", "--control-image", "", ¶ms.control_image_path}, + {"", "--control-video", "", ¶ms.control_video_path}, {"-o", "--output", "", ¶ms.output_path}, {"-p", "--prompt", "", ¶ms.prompt}, {"-n", "--negative-prompt", "", ¶ms.negative_prompt}, @@ -526,6 +536,7 @@ void parse_args(int argc, const char** argv, SDParams& params) { {"", "--control-strength", "", ¶ms.control_strength}, {"", "--moe-boundary", "", ¶ms.moe_boundary}, {"", "--flow-shift", "", ¶ms.flow_shift}, + {"", "--vace-strength", "", ¶ms.vace_strength}, {"", "--vae-tile-overlap", "", ¶ms.vae_tiling_params.target_overlap}, }; @@ -1111,6 +1122,7 @@ int main(int argc, const char* argv[]) { sd_image_t control_image = {(uint32_t)params.width, (uint32_t)params.height, 3, NULL}; sd_image_t mask_image = {(uint32_t)params.width, (uint32_t)params.height, 1, NULL}; std::vector ref_images; + std::vector control_frames; auto release_all_resources = [&]() { free(init_image.data); @@ -1122,6 +1134,11 @@ int main(int argc, const char* argv[]) { ref_image.data = NULL; } ref_images.clear(); + for (auto frame : control_frames) { + free(frame.data); + frame.data = NULL; + } + control_frames.clear(); }; if (params.init_image_path.size() > 0) { @@ -1180,14 +1197,12 @@ int main(int argc, const char* argv[]) { return 1; } if (params.canny_preprocess) { // apply preprocessor - control_image.data = preprocess_canny(control_image.data, - control_image.width, - control_image.height, - 0.08f, - 0.08f, - 0.8f, - 1.0f, - false); + preprocess_canny(control_image, + 0.08f, + 0.08f, + 0.8f, + 1.0f, + false); } } @@ -1209,6 +1224,48 @@ int main(int argc, const char* argv[]) { } } + if (!params.control_video_path.empty()) { + std::string dir = params.control_video_path; + + if (!fs::exists(dir) || !fs::is_directory(dir)) { + fprintf(stderr, "'%s' is not a valid directory\n", dir.c_str()); + release_all_resources(); + return 1; + } + + for (const auto& entry : fs::directory_iterator(dir)) { + if (!entry.is_regular_file()) + continue; + + std::string path = entry.path().string(); + std::string ext = entry.path().extension().string(); + std::transform(ext.begin(), ext.end(), ext.begin(), ::tolower); + + if (ext == ".jpg" || ext == ".jpeg" || ext == ".png" || ext == ".bmp") { + if (params.verbose) { + printf("load control frame %zu from '%s'\n", control_frames.size(), path.c_str()); + } + int width = 0; + int height = 0; + uint8_t* image_buffer = load_image(path.c_str(), width, height, params.width, params.height); + if (image_buffer == NULL) { + fprintf(stderr, "load image from '%s' failed\n", path.c_str()); + release_all_resources(); + return 1; + } + + control_frames.push_back({(uint32_t)params.width, + (uint32_t)params.height, + 3, + image_buffer}); + + if (control_frames.size() >= params.video_frames) { + break; + } + } + } + } + if (params.mode == VID_GEN) { vae_decode_only = false; } @@ -1292,6 +1349,8 @@ int main(int argc, const char* argv[]) { params.clip_skip, init_image, end_image, + control_frames.data(), + (int)control_frames.size(), params.width, params.height, params.sample_params, @@ -1300,6 +1359,7 @@ int main(int argc, const char* argv[]) { params.strength, params.seed, params.video_frames, + params.vace_strength, }; results = generate_video(sd_ctx, &vid_gen_params, &num_results); @@ -1342,7 +1402,6 @@ int main(int argc, const char* argv[]) { // create directory if not exists { - namespace fs = std::filesystem; const fs::path out_path = params.output_path; if (const fs::path out_dir = out_path.parent_path(); !out_dir.empty()) { std::error_code ec; diff --git a/ggml_extend.hpp b/ggml_extend.hpp index ca7efd4d7..9d712772f 100644 --- a/ggml_extend.hpp +++ b/ggml_extend.hpp @@ -185,6 +185,14 @@ __STATIC_INLINE__ ggml_fp16_t ggml_tensor_get_f16(const ggml_tensor* tensor, int return *(ggml_fp16_t*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]); } +__STATIC_INLINE__ float sd_image_get_f32(sd_image_t image, int iw, int ih, int ic, bool scale = true) { + float value = *(image.data + ih * image.width * image.channel + iw * image.channel + ic); + if (scale) { + value /= 255.f; + } + return value; +} + static struct ggml_tensor* get_tensor_from_graph(struct ggml_cgraph* gf, const char* name) { struct ggml_tensor* res = NULL; for (int i = 0; i < ggml_graph_n_nodes(gf); i++) { @@ -235,6 +243,52 @@ __STATIC_INLINE__ void print_ggml_tensor(struct ggml_tensor* tensor, bool shape_ } } +__STATIC_INLINE__ void ggml_tensor_iter( + ggml_tensor* tensor, + const std::function& fn) { + int64_t n0 = tensor->ne[0]; + int64_t n1 = tensor->ne[1]; + int64_t n2 = tensor->ne[2]; + int64_t n3 = tensor->ne[3]; + + for (int64_t i3 = 0; i3 < n3; i3++) { + for (int64_t i2 = 0; i2 < n2; i2++) { + for (int64_t i1 = 0; i1 < n1; i1++) { + for (int64_t i0 = 0; i0 < n0; i0++) { + fn(tensor, i0, i1, i2, i3); + } + } + } + } +} + +__STATIC_INLINE__ void ggml_tensor_iter( + ggml_tensor* tensor, + const std::function& fn) { + int64_t n0 = tensor->ne[0]; + int64_t n1 = tensor->ne[1]; + int64_t n2 = tensor->ne[2]; + int64_t n3 = tensor->ne[3]; + + for (int64_t i = 0; i < ggml_nelements(tensor); i++) { + fn(tensor, i); + } +} + +__STATIC_INLINE__ void ggml_tensor_diff( + ggml_tensor* a, + ggml_tensor* b, + float gap = 0.1f) { + GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); + ggml_tensor_iter(a, [&](ggml_tensor* a, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { + float a_value = ggml_tensor_get_f32(a, i0, i1, i2, i3); + float b_value = ggml_tensor_get_f32(b, i0, i1, i2, i3); + if (abs(a_value - b_value) > gap) { + LOG_WARN("[%ld, %ld, %ld, %ld] %f %f", i3, i2, i1, i0, a_value, b_value); + } + }); +} + __STATIC_INLINE__ ggml_tensor* load_tensor_from_file(ggml_context* ctx, const std::string& file_path) { std::ifstream file(file_path, std::ios::binary); if (!file.is_open()) { @@ -366,42 +420,18 @@ __STATIC_INLINE__ uint8_t* sd_tensor_to_image(struct ggml_tensor* input, int idx return image_data; } -__STATIC_INLINE__ void sd_image_to_tensor(const uint8_t* image_data, - struct ggml_tensor* output, +__STATIC_INLINE__ void sd_image_to_tensor(sd_image_t image, + ggml_tensor* tensor, bool scale = true) { - int64_t width = output->ne[0]; - int64_t height = output->ne[1]; - int64_t channels = output->ne[2]; - GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32); - for (int iy = 0; iy < height; iy++) { - for (int ix = 0; ix < width; ix++) { - for (int k = 0; k < channels; k++) { - float value = *(image_data + iy * width * channels + ix * channels + k); - if (scale) { - value /= 255.f; - } - ggml_tensor_set_f32(output, value, ix, iy, k); - } - } - } -} - -__STATIC_INLINE__ void sd_mask_to_tensor(const uint8_t* image_data, - struct ggml_tensor* output, - bool scale = true) { - int64_t width = output->ne[0]; - int64_t height = output->ne[1]; - int64_t channels = output->ne[2]; - GGML_ASSERT(channels == 1 && output->type == GGML_TYPE_F32); - for (int iy = 0; iy < height; iy++) { - for (int ix = 0; ix < width; ix++) { - float value = *(image_data + iy * width * channels + ix); - if (scale) { - value /= 255.f; - } - ggml_tensor_set_f32(output, value, ix, iy); - } - } + GGML_ASSERT(image.width == tensor->ne[0]); + GGML_ASSERT(image.height == tensor->ne[1]); + GGML_ASSERT(image.channel == tensor->ne[2]); + GGML_ASSERT(1 == tensor->ne[3]); + GGML_ASSERT(tensor->type == GGML_TYPE_F32); + ggml_tensor_iter(tensor, [&](ggml_tensor* tensor, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { + float value = sd_image_get_f32(image, i0, i1, i2, scale); + ggml_tensor_set_f32(tensor, value, i0, i1, i2, i3); + }); } __STATIC_INLINE__ void sd_apply_mask(struct ggml_tensor* image_data, @@ -1636,6 +1666,7 @@ struct GGMLRunner { ggml_backend_tensor_copy(t, offload_t); std::swap(t->buffer, offload_t->buffer); std::swap(t->data, offload_t->data); + std::swap(t->extra, offload_t->extra); t = ggml_get_next_tensor(params_ctx, t); offload_t = ggml_get_next_tensor(offload_ctx, offload_t); @@ -1666,8 +1697,10 @@ struct GGMLRunner { while (t != NULL && offload_t != NULL) { t->buffer = offload_t->buffer; t->data = offload_t->data; + t->extra = offload_t->extra; offload_t->buffer = NULL; offload_t->data = NULL; + offload_t->extra = NULL; t = ggml_get_next_tensor(params_ctx, t); offload_t = ggml_get_next_tensor(offload_ctx, offload_t); diff --git a/preprocessing.hpp b/preprocessing.hpp index c5ecfef91..9cace2f44 100644 --- a/preprocessing.hpp +++ b/preprocessing.hpp @@ -162,7 +162,7 @@ void threshold_hystersis(struct ggml_tensor* img, float high_threshold, float lo } } -uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_threshold, float low_threshold, float weak, float strong, bool inverse) { +bool preprocess_canny(sd_image_t img, float high_threshold, float low_threshold, float weak, float strong, bool inverse) { struct ggml_init_params params; params.mem_size = static_cast(10 * 1024 * 1024); // 10MB params.mem_buffer = NULL; @@ -171,7 +171,7 @@ uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_thresh if (!work_ctx) { LOG_ERROR("ggml_init() failed"); - return NULL; + return false; } float kX[9] = { @@ -192,8 +192,8 @@ uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_thresh struct ggml_tensor* sf_ky = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 3, 3, 1, 1); memcpy(sf_ky->data, kY, ggml_nbytes(sf_ky)); gaussian_kernel(gkernel); - struct ggml_tensor* image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1); - struct ggml_tensor* image_gray = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 1, 1); + struct ggml_tensor* image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, img.width, img.height, 3, 1); + struct ggml_tensor* image_gray = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, img.width, img.height, 1, 1); struct ggml_tensor* iX = ggml_dup_tensor(work_ctx, image_gray); struct ggml_tensor* iY = ggml_dup_tensor(work_ctx, image_gray); struct ggml_tensor* G = ggml_dup_tensor(work_ctx, image_gray); @@ -209,8 +209,8 @@ uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_thresh non_max_supression(image_gray, G, tetha); threshold_hystersis(image_gray, high_threshold, low_threshold, weak, strong); // to RGB channels - for (int iy = 0; iy < height; iy++) { - for (int ix = 0; ix < width; ix++) { + for (int iy = 0; iy < img.height; iy++) { + for (int ix = 0; ix < img.width; ix++) { float gray = ggml_tensor_get_f32(image_gray, ix, iy); gray = inverse ? 1.0f - gray : gray; ggml_tensor_set_f32(image, gray, ix, iy); @@ -218,10 +218,11 @@ uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_thresh ggml_tensor_set_f32(image, gray, ix, iy, 2); } } - free(img); uint8_t* output = sd_tensor_to_image(image); + free(img.data); + img.data = output; ggml_free(work_ctx); - return output; + return true; } #endif // __PREPROCESSING_HPP__ \ No newline at end of file diff --git a/stable-diffusion.cpp b/stable-diffusion.cpp index 3749b1007..f2d1e36ee 100644 --- a/stable-diffusion.cpp +++ b/stable-diffusion.cpp @@ -776,7 +776,12 @@ class StableDiffusionGGML { int64_t t0 = ggml_time_ms(); struct ggml_tensor* out = ggml_dup_tensor(work_ctx, x_t); - diffusion_model->compute(n_threads, x_t, timesteps, c, concat, NULL, NULL, {}, false, -1, {}, 0.f, &out); + DiffusionParams diffusion_params; + diffusion_params.x = x_t; + diffusion_params.timesteps = timesteps; + diffusion_params.context = c; + diffusion_params.c_concat = concat; + diffusion_model->compute(n_threads, diffusion_params, &out); diffusion_model->free_compute_buffer(); double result = 0.f; @@ -954,7 +959,7 @@ class StableDiffusionGGML { free(resized_image.data); resized_image.data = NULL; } else { - sd_image_to_tensor(init_image.data, init_img); + sd_image_to_tensor(init_image, init_img); } if (augmentation_level > 0.f) { struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, init_img); @@ -1034,7 +1039,9 @@ class StableDiffusionGGML { SDCondition id_cond, std::vector ref_latents = {}, bool increase_ref_index = false, - ggml_tensor* denoise_mask = nullptr) { + ggml_tensor* denoise_mask = NULL, + ggml_tensor* vace_context = NULL, + float vace_strength = 1.f) { std::vector skip_layers(guidance.slg.layers, guidance.slg.layers + guidance.slg.layer_count); float cfg_scale = guidance.txt_cfg; @@ -1118,34 +1125,31 @@ class StableDiffusionGGML { // GGML_ASSERT(0); } + DiffusionParams diffusion_params; + diffusion_params.x = noised_input; + diffusion_params.timesteps = timesteps; + diffusion_params.guidance = guidance_tensor; + diffusion_params.ref_latents = ref_latents; + diffusion_params.increase_ref_index = increase_ref_index; + diffusion_params.controls = controls; + diffusion_params.control_strength = control_strength; + diffusion_params.vace_context = vace_context; + diffusion_params.vace_strength = vace_strength; + if (start_merge_step == -1 || step <= start_merge_step) { // cond + diffusion_params.context = cond.c_crossattn; + diffusion_params.c_concat = cond.c_concat; + diffusion_params.y = cond.c_vector; work_diffusion_model->compute(n_threads, - noised_input, - timesteps, - cond.c_crossattn, - cond.c_concat, - cond.c_vector, - guidance_tensor, - ref_latents, - increase_ref_index, - -1, - controls, - control_strength, + diffusion_params, &out_cond); } else { + diffusion_params.context = id_cond.c_crossattn; + diffusion_params.c_concat = cond.c_concat; + diffusion_params.y = id_cond.c_vector; work_diffusion_model->compute(n_threads, - noised_input, - timesteps, - id_cond.c_crossattn, - cond.c_concat, - id_cond.c_vector, - guidance_tensor, - ref_latents, - increase_ref_index, - -1, - controls, - control_strength, + diffusion_params, &out_cond); } @@ -1156,36 +1160,23 @@ class StableDiffusionGGML { control_net->compute(n_threads, noised_input, control_hint, timesteps, uncond.c_crossattn, uncond.c_vector); controls = control_net->controls; } + diffusion_params.controls = controls; + diffusion_params.context = uncond.c_crossattn; + diffusion_params.c_concat = uncond.c_concat; + diffusion_params.y = uncond.c_vector; work_diffusion_model->compute(n_threads, - noised_input, - timesteps, - uncond.c_crossattn, - uncond.c_concat, - uncond.c_vector, - guidance_tensor, - ref_latents, - increase_ref_index, - -1, - controls, - control_strength, + diffusion_params, &out_uncond); negative_data = (float*)out_uncond->data; } float* img_cond_data = NULL; if (has_img_cond) { + diffusion_params.context = img_cond.c_crossattn; + diffusion_params.c_concat = img_cond.c_concat; + diffusion_params.y = img_cond.c_vector; work_diffusion_model->compute(n_threads, - noised_input, - timesteps, - img_cond.c_crossattn, - img_cond.c_concat, - img_cond.c_vector, - guidance_tensor, - ref_latents, - increase_ref_index, - -1, - controls, - control_strength, + diffusion_params, &out_img_cond); img_cond_data = (float*)out_img_cond->data; } @@ -1196,21 +1187,13 @@ class StableDiffusionGGML { if (is_skiplayer_step) { LOG_DEBUG("Skipping layers at step %d\n", step); // skip layer (same as conditionned) + diffusion_params.context = cond.c_crossattn; + diffusion_params.c_concat = cond.c_concat; + diffusion_params.y = cond.c_vector; + diffusion_params.skip_layers = skip_layers; work_diffusion_model->compute(n_threads, - noised_input, - timesteps, - cond.c_crossattn, - cond.c_concat, - cond.c_vector, - guidance_tensor, - ref_latents, - increase_ref_index, - -1, - controls, - control_strength, - &out_skip, - NULL, - skip_layers); + diffusion_params, + &out_skip); skip_layer_data = (float*)out_skip->data; } float* vec_denoised = (float*)denoised->data; @@ -1826,6 +1809,7 @@ void sd_vid_gen_params_init(sd_vid_gen_params_t* sd_vid_gen_params) { sd_vid_gen_params->seed = -1; sd_vid_gen_params->video_frames = 6; sd_vid_gen_params->moe_boundary = 0.875f; + sd_vid_gen_params->vace_strength = 1.f; } struct sd_ctx_t { @@ -2056,7 +2040,7 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx, struct ggml_tensor* image_hint = NULL; if (control_image.data != NULL) { image_hint = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1); - sd_image_to_tensor(control_image.data, image_hint); + sd_image_to_tensor(control_image, image_hint); } // Sample @@ -2306,8 +2290,8 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g ggml_tensor* init_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1); ggml_tensor* mask_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 1, 1); - sd_mask_to_tensor(sd_img_gen_params->mask_image.data, mask_img); - sd_image_to_tensor(sd_img_gen_params->init_image.data, init_img); + sd_image_to_tensor(sd_img_gen_params->mask_image, mask_img); + sd_image_to_tensor(sd_img_gen_params->init_image, init_img); if (sd_version_is_inpaint(sd_ctx->sd->version)) { int64_t mask_channels = 1; @@ -2398,7 +2382,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g sd_img_gen_params->ref_images[i].height, 3, 1); - sd_image_to_tensor(sd_img_gen_params->ref_images[i].data, img); + sd_image_to_tensor(sd_img_gen_params->ref_images[i], img); ggml_tensor* latent = NULL; if (sd_ctx->sd->use_tiny_autoencoder) { @@ -2504,7 +2488,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s } struct ggml_init_params params; - params.mem_size = static_cast(1024 * 1024) * 1024; // 1GB + params.mem_size = static_cast(1024 * 1024) * 1024; // 1G params.mem_buffer = NULL; params.no_alloc = false; // LOG_DEBUG("mem_size %u ", params.mem_size); @@ -2531,6 +2515,8 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s ggml_tensor* clip_vision_output = NULL; ggml_tensor* concat_latent = NULL; ggml_tensor* denoise_mask = NULL; + ggml_tensor* vace_context = NULL; + int64_t ref_image_num = 0; // for vace if (sd_ctx->sd->diffusion_model->get_desc() == "Wan2.1-I2V-14B" || sd_ctx->sd->diffusion_model->get_desc() == "Wan2.2-I2V-14B" || sd_ctx->sd->diffusion_model->get_desc() == "Wan2.1-FLF2V-14B") { @@ -2560,23 +2546,17 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s int64_t t1 = ggml_time_ms(); ggml_tensor* image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, frames, 3); - for (int i3 = 0; i3 < image->ne[3]; i3++) { // channels - for (int i2 = 0; i2 < image->ne[2]; i2++) { - for (int i1 = 0; i1 < image->ne[1]; i1++) { // height - for (int i0 = 0; i0 < image->ne[0]; i0++) { // width - float value = 0.5f; - if (i2 == 0 && sd_vid_gen_params->init_image.data) { // start image - value = *(sd_vid_gen_params->init_image.data + i1 * width * 3 + i0 * 3 + i3); - value /= 255.f; - } else if (i2 == frames - 1 && sd_vid_gen_params->end_image.data) { - value = *(sd_vid_gen_params->end_image.data + i1 * width * 3 + i0 * 3 + i3); - value /= 255.f; - } - ggml_tensor_set_f32(image, value, i0, i1, i2, i3); - } - } - } - } + ggml_tensor_iter(image, [&](ggml_tensor* image, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { + float value = 0.5f; + if (i2 == 0 && sd_vid_gen_params->init_image.data) { // start image + value = *(sd_vid_gen_params->init_image.data + i1 * width * 3 + i0 * 3 + i3); + value /= 255.f; + } else if (i2 == frames - 1 && sd_vid_gen_params->end_image.data) { + value = *(sd_vid_gen_params->end_image.data + i1 * width * 3 + i0 * 3 + i3); + value /= 255.f; + } + ggml_tensor_set_f32(image, value, i0, i1, i2, i3); + }); concat_latent = sd_ctx->sd->encode_first_stage(work_ctx, image); // [b*c, t, h/8, w/8] @@ -2591,21 +2571,15 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s concat_latent->ne[1], concat_latent->ne[2], 4); // [b*4, t, w/8, h/8] - for (int i3 = 0; i3 < concat_mask->ne[3]; i3++) { - for (int i2 = 0; i2 < concat_mask->ne[2]; i2++) { - for (int i1 = 0; i1 < concat_mask->ne[1]; i1++) { - for (int i0 = 0; i0 < concat_mask->ne[0]; i0++) { - float value = 0.0f; - if (i2 == 0 && sd_vid_gen_params->init_image.data) { // start image - value = 1.0f; - } else if (i2 == frames - 1 && sd_vid_gen_params->end_image.data && i3 == 3) { - value = 1.0f; - } - ggml_tensor_set_f32(concat_mask, value, i0, i1, i2, i3); - } - } + ggml_tensor_iter(concat_mask, [&](ggml_tensor* concat_mask, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { + float value = 0.0f; + if (i2 == 0 && sd_vid_gen_params->init_image.data) { // start image + value = 1.0f; + } else if (i2 == frames - 1 && sd_vid_gen_params->end_image.data && i3 == 3) { + value = 1.0f; } - } + ggml_tensor_set_f32(concat_mask, value, i0, i1, i2, i3); + }); concat_latent = ggml_tensor_concat(work_ctx, concat_mask, concat_latent, 3); // [b*(c+4), t, h/8, w/8] } else if (sd_ctx->sd->diffusion_model->get_desc() == "Wan2.2-TI2V-5B" && sd_vid_gen_params->init_image.data) { @@ -2613,7 +2587,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s int64_t t1 = ggml_time_ms(); ggml_tensor* init_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1); - sd_image_to_tensor(sd_vid_gen_params->init_image.data, init_img); + sd_image_to_tensor(sd_vid_gen_params->init_image, init_img); init_img = ggml_reshape_4d(work_ctx, init_img, width, height, 1, 3); auto init_image_latent = sd_ctx->sd->encode_first_stage(work_ctx, init_img); // [b*c, 1, h/16, w/16] @@ -2624,22 +2598,95 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s sd_ctx->sd->process_latent_out(init_latent); - for (int i3 = 0; i3 < init_image_latent->ne[3]; i3++) { - for (int i2 = 0; i2 < init_image_latent->ne[2]; i2++) { - for (int i1 = 0; i1 < init_image_latent->ne[1]; i1++) { - for (int i0 = 0; i0 < init_image_latent->ne[0]; i0++) { - float value = ggml_tensor_get_f32(init_image_latent, i0, i1, i2, i3); - ggml_tensor_set_f32(init_latent, value, i0, i1, i2, i3); - if (i3 == 0) { - ggml_tensor_set_f32(denoise_mask, 0.f, i0, i1, i2, i3); - } - } - } + ggml_tensor_iter(init_image_latent, [&](ggml_tensor* t, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { + float value = ggml_tensor_get_f32(t, i0, i1, i2, i3); + ggml_tensor_set_f32(init_latent, value, i0, i1, i2, i3); + if (i3 == 0) { + ggml_tensor_set_f32(denoise_mask, 0.f, i0, i1, i2, i3); } - } + }); sd_ctx->sd->process_latent_in(init_latent); + int64_t t2 = ggml_time_ms(); + LOG_INFO("encode_first_stage completed, taking %" PRId64 " ms", t2 - t1); + } else if (sd_ctx->sd->diffusion_model->get_desc() == "Wan2.1-VACE-1.3B" || + sd_ctx->sd->diffusion_model->get_desc() == "Wan2.x-VACE-14B") { + LOG_INFO("VACE"); + int64_t t1 = ggml_time_ms(); + ggml_tensor* ref_image_latent = NULL; + if (sd_vid_gen_params->init_image.data) { + ggml_tensor* ref_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1); + sd_image_to_tensor(sd_vid_gen_params->init_image, ref_img); + ref_img = ggml_reshape_4d(work_ctx, ref_img, width, height, 1, 3); + + ref_image_latent = sd_ctx->sd->encode_first_stage(work_ctx, ref_img); // [b*c, 1, h/16, w/16] + sd_ctx->sd->process_latent_in(ref_image_latent); + auto zero_latent = ggml_dup_tensor(work_ctx, ref_image_latent); + ggml_set_f32(zero_latent, 0.f); + ref_image_latent = ggml_tensor_concat(work_ctx, ref_image_latent, zero_latent, 3); // [b*2*c, 1, h/16, w/16] + } + + ggml_tensor* control_video = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, frames, 3); + ggml_tensor_iter(control_video, [&](ggml_tensor* control_video, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { + float value = 0.5f; + if (i2 < sd_vid_gen_params->control_frames_size) { + value = sd_image_get_f32(sd_vid_gen_params->control_frames[i2], i0, i1, i3); + } + ggml_tensor_set_f32(control_video, value, i0, i1, i2, i3); + }); + ggml_tensor* mask = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, frames, 1); + ggml_set_f32(mask, 1.0f); + ggml_tensor* inactive = ggml_dup_tensor(work_ctx, control_video); + ggml_tensor* reactive = ggml_dup_tensor(work_ctx, control_video); + + ggml_tensor_iter(control_video, [&](ggml_tensor* t, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { + float control_video_value = ggml_tensor_get_f32(t, i0, i1, i2, i3) - 0.5f; + float mask_value = ggml_tensor_get_f32(mask, i0, i1, i2, 0); + float inactive_value = (control_video_value * (1.f - mask_value)) + 0.5f; + float reactive_value = (control_video_value * mask_value) + 0.5f; + + ggml_tensor_set_f32(inactive, inactive_value, i0, i1, i2, i3); + ggml_tensor_set_f32(reactive, reactive_value, i0, i1, i2, i3); + }); + + inactive = sd_ctx->sd->encode_first_stage(work_ctx, inactive); // [b*c, t, h/8, w/8] + reactive = sd_ctx->sd->encode_first_stage(work_ctx, reactive); // [b*c, t, h/8, w/8] + + sd_ctx->sd->process_latent_in(inactive); + sd_ctx->sd->process_latent_in(reactive); + + int64_t length = inactive->ne[2]; + if (ref_image_latent) { + length += 1; + frames = (length - 1) * 4 + 1; + ref_image_num = 1; + } + vace_context = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, inactive->ne[0], inactive->ne[1], length, 96); // [b*96, t, h/8, w/8] + ggml_tensor_iter(vace_context, [&](ggml_tensor* vace_context, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { + float value; + if (i3 < 32) { + if (ref_image_latent && i2 == 0) { + value = ggml_tensor_get_f32(ref_image_latent, i0, i1, 0, i3); + } else { + if (i3 < 16) { + value = ggml_tensor_get_f32(inactive, i0, i1, i2 - ref_image_num, i3); + } else { + value = ggml_tensor_get_f32(reactive, i0, i1, i2 - ref_image_num, i3 - 16); + } + } + } else { // mask + if (ref_image_latent && i2 == 0) { + value = 0.f; + } else { + int64_t vae_stride = 8; + int64_t mask_height_index = i1 * vae_stride + (i3 - 32) / vae_stride; + int64_t mask_width_index = i0 * vae_stride + (i3 - 32) % vae_stride; + value = ggml_tensor_get_f32(mask, mask_width_index, mask_height_index, i2 - ref_image_num, 0); + } + } + ggml_tensor_set_f32(vace_context, value, i0, i1, i2, i3); + }); int64_t t2 = ggml_time_ms(); LOG_INFO("encode_first_stage completed, taking %" PRId64 " ms", t2 - t1); } @@ -2721,7 +2768,10 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s -1, {}, {}, - denoise_mask); + false, + denoise_mask, + vace_context, + sd_vid_gen_params->vace_strength); int64_t sampling_end = ggml_time_ms(); LOG_INFO("sampling(high noise) completed, taking %.2fs", (sampling_end - sampling_start) * 1.0f / 1000); @@ -2753,7 +2803,10 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s -1, {}, {}, - denoise_mask); + false, + denoise_mask, + vace_context, + sd_vid_gen_params->vace_strength); int64_t sampling_end = ggml_time_ms(); LOG_INFO("sampling completed, taking %.2fs", (sampling_end - sampling_start) * 1.0f / 1000); @@ -2762,6 +2815,20 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s } } + if (ref_image_num > 0) { + ggml_tensor* trim_latent = ggml_new_tensor_4d(work_ctx, + GGML_TYPE_F32, + final_latent->ne[0], + final_latent->ne[1], + final_latent->ne[2] - ref_image_num, + final_latent->ne[3]); + ggml_tensor_iter(trim_latent, [&](ggml_tensor* trim_latent, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { + float value = ggml_tensor_get_f32(final_latent, i0, i1, i2 + ref_image_num, i3); + ggml_tensor_set_f32(trim_latent, value, i0, i1, i2, i3); + }); + final_latent = trim_latent; + } + int64_t t4 = ggml_time_ms(); LOG_INFO("generating latent video completed, taking %.2fs", (t4 - t2) * 1.0f / 1000); struct ggml_tensor* vid = sd_ctx->sd->decode_first_stage(work_ctx, final_latent, true); diff --git a/stable-diffusion.h b/stable-diffusion.h index 0a6493f95..1f8c7c259 100644 --- a/stable-diffusion.h +++ b/stable-diffusion.h @@ -214,6 +214,8 @@ typedef struct { int clip_skip; sd_image_t init_image; sd_image_t end_image; + sd_image_t* control_frames; + int control_frames_size; int width; int height; sd_sample_params_t sample_params; @@ -222,6 +224,7 @@ typedef struct { float strength; int64_t seed; int video_frames; + float vace_strength; } sd_vid_gen_params_t; typedef struct sd_ctx_t sd_ctx_t; @@ -278,14 +281,12 @@ SD_API bool convert(const char* input_path, enum sd_type_t output_type, const char* tensor_type_rules); -SD_API uint8_t* preprocess_canny(uint8_t* img, - int width, - int height, - float high_threshold, - float low_threshold, - float weak, - float strong, - bool inverse); +SD_API bool preprocess_canny(sd_image_t image, + float high_threshold, + float low_threshold, + float weak, + float strong, + bool inverse); #ifdef __cplusplus } diff --git a/upscaler.cpp b/upscaler.cpp index 13310b75e..7d09d86d2 100644 --- a/upscaler.cpp +++ b/upscaler.cpp @@ -81,7 +81,7 @@ struct UpscalerGGML { } // LOG_DEBUG("upscale work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f); ggml_tensor* input_image_tensor = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, input_image.width, input_image.height, 3, 1); - sd_image_to_tensor(input_image.data, input_image_tensor); + sd_image_to_tensor(input_image, input_image_tensor); ggml_tensor* upscaled = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, output_width, output_height, 3, 1); auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) { diff --git a/wan.hpp b/wan.hpp index 37c58f945..cd4d7a591 100644 --- a/wan.hpp +++ b/wan.hpp @@ -1532,13 +1532,13 @@ namespace WAN { blocks["ffn.2"] = std::shared_ptr(new Linear(ffn_dim, dim)); } - struct ggml_tensor* forward(struct ggml_context* ctx, - ggml_backend_t backend, - struct ggml_tensor* x, - struct ggml_tensor* e, - struct ggml_tensor* pe, - struct ggml_tensor* context, - int64_t context_img_len = 257) { + virtual struct ggml_tensor* forward(struct ggml_context* ctx, + ggml_backend_t backend, + struct ggml_tensor* x, + struct ggml_tensor* e, + struct ggml_tensor* pe, + struct ggml_tensor* context, + int64_t context_img_len = 257) { // x: [N, n_token, dim] // e: [N, 6, dim] or [N, T, 6, dim] // context: [N, context_img_len + context_txt_len, dim] @@ -1584,6 +1584,59 @@ namespace WAN { } }; + class VaceWanAttentionBlock : public WanAttentionBlock { + protected: + int block_id; + void init_params(struct ggml_context* ctx, const String2GGMLType& tensor_types = {}, const std::string prefix = "") { + enum ggml_type wtype = get_type(prefix + "weight", tensor_types, GGML_TYPE_F32); + params["modulation"] = ggml_new_tensor_3d(ctx, wtype, dim, 6, 1); + } + + public: + VaceWanAttentionBlock(bool t2v_cross_attn, + int64_t dim, + int64_t ffn_dim, + int64_t num_heads, + bool qk_norm = true, + bool cross_attn_norm = false, + float eps = 1e-6, + int block_id = 0, + bool flash_attn = false) + : WanAttentionBlock(t2v_cross_attn, dim, ffn_dim, num_heads, qk_norm, cross_attn_norm, eps, flash_attn), block_id(block_id) { + if (block_id == 0) { + blocks["before_proj"] = std::shared_ptr(new Linear(dim, dim)); + } + blocks["after_proj"] = std::shared_ptr(new Linear(dim, dim)); + } + + std::pair forward(struct ggml_context* ctx, + ggml_backend_t backend, + struct ggml_tensor* c, + struct ggml_tensor* x, + struct ggml_tensor* e, + struct ggml_tensor* pe, + struct ggml_tensor* context, + int64_t context_img_len = 257) { + // x: [N, n_token, dim] + // e: [N, 6, dim] or [N, T, 6, dim] + // context: [N, context_img_len + context_txt_len, dim] + // return [N, n_token, dim] + if (block_id == 0) { + auto before_proj = std::dynamic_pointer_cast(blocks["before_proj"]); + + c = before_proj->forward(ctx, c); + c = ggml_add(ctx, c, x); + } + + auto after_proj = std::dynamic_pointer_cast(blocks["after_proj"]); + + c = WanAttentionBlock::forward(ctx, backend, c, e, pe, context, context_img_len); + auto c_skip = after_proj->forward(ctx, c); + + return {c_skip, c}; + } + }; + class Head : public GGMLBlock { protected: int dim; @@ -1680,22 +1733,25 @@ namespace WAN { }; struct WanParams { - std::string model_type = "t2v"; - std::tuple patch_size = {1, 2, 2}; - int64_t text_len = 512; - int64_t in_dim = 16; - int64_t dim = 2048; - int64_t ffn_dim = 8192; - int64_t freq_dim = 256; - int64_t text_dim = 4096; - int64_t out_dim = 16; - int64_t num_heads = 16; - int64_t num_layers = 32; - bool qk_norm = true; - bool cross_attn_norm = true; - float eps = 1e-6; - int64_t flf_pos_embed_token_number = 0; - int theta = 10000; + std::string model_type = "t2v"; + std::tuple patch_size = {1, 2, 2}; + int64_t text_len = 512; + int64_t in_dim = 16; + int64_t dim = 2048; + int64_t ffn_dim = 8192; + int64_t freq_dim = 256; + int64_t text_dim = 4096; + int64_t out_dim = 16; + int64_t num_heads = 16; + int64_t num_layers = 32; + int64_t vace_layers = 0; + int64_t vace_in_dim = 96; + std::map vace_layers_mapping = {}; + bool qk_norm = true; + bool cross_attn_norm = true; + float eps = 1e-6; + int64_t flf_pos_embed_token_number = 0; + int theta = 10000; // wan2.1 1.3B: 1536/12, wan2.1/2.2 14B: 5120/40, wan2.2 5B: 3074/24 std::vector axes_dim = {44, 42, 42}; int64_t axes_dim_sum = 128; @@ -1746,6 +1802,31 @@ namespace WAN { if (params.model_type == "i2v") { blocks["img_emb"] = std::shared_ptr(new MLPProj(1280, params.dim, params.flf_pos_embed_token_number)); } + + // vace + if (params.vace_layers > 0) { + for (int i = 0; i < params.vace_layers; i++) { + auto block = std::shared_ptr(new VaceWanAttentionBlock(params.model_type == "t2v", + params.dim, + params.ffn_dim, + params.num_heads, + params.qk_norm, + params.cross_attn_norm, + params.eps, + i, + params.flash_attn)); + blocks["vace_blocks." + std::to_string(i)] = block; + } + + int step = params.num_layers / params.vace_layers; + int n = 0; + for (int i = 0; i < params.num_layers; i += step) { + this->params.vace_layers_mapping[i] = n; + n++; + } + + blocks["vace_patch_embedding"] = std::shared_ptr(new Conv3d(params.vace_in_dim, params.dim, params.patch_size, params.patch_size)); + } } struct ggml_tensor* pad_to_patch_size(struct ggml_context* ctx, @@ -1795,9 +1876,12 @@ namespace WAN { struct ggml_tensor* timestep, struct ggml_tensor* context, struct ggml_tensor* pe, - struct ggml_tensor* clip_fea = NULL, - int64_t N = 1) { + struct ggml_tensor* clip_fea = NULL, + struct ggml_tensor* vace_context = NULL, + float vace_strength = 1.f, + int64_t N = 1) { // x: [N*C, T, H, W], C => in_dim + // vace_context: [N*vace_in_dim, T, H, W] // timestep: [N,] or [T] // context: [N, L, text_dim] // return: [N, t_len*h_len*w_len, out_dim*pt*ph*pw] @@ -1845,10 +1929,35 @@ namespace WAN { context_img_len = clip_fea->ne[1]; // 257 } + // vace_patch_embedding + ggml_tensor* c = NULL; + if (params.vace_layers > 0) { + auto vace_patch_embedding = std::dynamic_pointer_cast(blocks["vace_patch_embedding"]); + + c = vace_patch_embedding->forward(ctx, vace_context); // [N*dim, t_len, h_len, w_len] + c = ggml_reshape_3d(ctx, c, c->ne[0] * c->ne[1] * c->ne[2], c->ne[3] / N, N); // [N, dim, t_len*h_len*w_len] + c = ggml_nn_cont(ctx, ggml_torch_permute(ctx, c, 1, 0, 2, 3)); // [N, t_len*h_len*w_len, dim] + } + + auto x_orig = x; + for (int i = 0; i < params.num_layers; i++) { auto block = std::dynamic_pointer_cast(blocks["blocks." + std::to_string(i)]); x = block->forward(ctx, backend, x, e0, pe, context, context_img_len); + + auto iter = params.vace_layers_mapping.find(i); + if (iter != params.vace_layers_mapping.end()) { + int n = iter->second; + + auto vace_block = std::dynamic_pointer_cast(blocks["vace_blocks." + std::to_string(n)]); + + auto result = vace_block->forward(ctx, backend, c, x_orig, e0, pe, context, context_img_len); + auto c_skip = result.first; + c = result.second; + c_skip = ggml_scale(ctx, c_skip, vace_strength); + x = ggml_add(ctx, x, c_skip); + } } x = head->forward(ctx, x, e); // [N, t_len*h_len*w_len, pt*ph*pw*out_dim] @@ -1864,6 +1973,8 @@ namespace WAN { struct ggml_tensor* pe, struct ggml_tensor* clip_fea = NULL, struct ggml_tensor* time_dim_concat = NULL, + struct ggml_tensor* vace_context = NULL, + float vace_strength = 1.f, int64_t N = 1) { // Forward pass of DiT. // x: [N*C, T, H, W] @@ -1892,7 +2003,7 @@ namespace WAN { t_len = ((x->ne[2] + (std::get<0>(params.patch_size) / 2)) / std::get<0>(params.patch_size)); } - auto out = forward_orig(ctx, backend, x, timestep, context, pe, clip_fea, N); // [N, t_len*h_len*w_len, pt*ph*pw*C] + auto out = forward_orig(ctx, backend, x, timestep, context, pe, clip_fea, vace_context, vace_strength, N); // [N, t_len*h_len*w_len, pt*ph*pw*C] out = unpatchify(ctx, out, t_len, h_len, w_len); // [N*C, (T+pad_t) + (T2+pad_t2), H + pad_h, W + pad_w] @@ -1927,7 +2038,19 @@ namespace WAN { std::string tensor_name = pair.first; if (tensor_name.find(prefix) == std::string::npos) continue; - size_t pos = tensor_name.find("blocks."); + size_t pos = tensor_name.find("vace_blocks."); + if (pos != std::string::npos) { + tensor_name = tensor_name.substr(pos); // remove prefix + auto items = split_string(tensor_name, '.'); + if (items.size() > 1) { + int block_index = atoi(items[1].c_str()); + if (block_index + 1 > wan_params.vace_layers) { + wan_params.vace_layers = block_index + 1; + } + } + continue; + } + pos = tensor_name.find("blocks."); if (pos != std::string::npos) { tensor_name = tensor_name.substr(pos); // remove prefix auto items = split_string(tensor_name, '.'); @@ -1937,6 +2060,7 @@ namespace WAN { wan_params.num_layers = block_index + 1; } } + continue; } if (tensor_name.find("img_emb") != std::string::npos) { wan_params.model_type = "i2v"; @@ -1958,7 +2082,11 @@ namespace WAN { wan_params.out_dim = 48; wan_params.text_len = 512; } else { - desc = "Wan2.1-T2V-1.3B"; + if (wan_params.vace_layers > 0) { + desc = "Wan2.1-VACE-1.3B"; + } else { + desc = "Wan2.1-T2V-1.3B"; + } wan_params.dim = 1536; wan_params.eps = 1e-06; wan_params.ffn_dim = 8960; @@ -1974,7 +2102,11 @@ namespace WAN { desc = "Wan2.2-I2V-14B"; wan_params.in_dim = 36; } else { - desc = "Wan2.x-T2V-14B"; + if (wan_params.vace_layers > 0) { + desc = "Wan2.x-VACE-14B"; + } else { + desc = "Wan2.x-T2V-14B"; + } wan_params.in_dim = 16; } } else { @@ -2015,7 +2147,9 @@ namespace WAN { struct ggml_tensor* context, struct ggml_tensor* clip_fea = NULL, struct ggml_tensor* c_concat = NULL, - struct ggml_tensor* time_dim_concat = NULL) { + struct ggml_tensor* time_dim_concat = NULL, + struct ggml_tensor* vace_context = NULL, + float vace_strength = 1.f) { struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, WAN_GRAPH_SIZE, false); x = to_backend(x); @@ -2024,6 +2158,7 @@ namespace WAN { clip_fea = to_backend(clip_fea); c_concat = to_backend(c_concat); time_dim_concat = to_backend(time_dim_concat); + vace_context = to_backend(vace_context); pe_vec = Rope::gen_wan_pe(x->ne[2], x->ne[1], @@ -2053,7 +2188,9 @@ namespace WAN { context, pe, clip_fea, - time_dim_concat); + time_dim_concat, + vace_context, + vace_strength); ggml_build_forward_expand(gf, out); @@ -2067,10 +2204,12 @@ namespace WAN { struct ggml_tensor* clip_fea = NULL, struct ggml_tensor* c_concat = NULL, struct ggml_tensor* time_dim_concat = NULL, + struct ggml_tensor* vace_context = NULL, + float vace_strength = 1.f, struct ggml_tensor** output = NULL, struct ggml_context* output_ctx = NULL) { auto get_graph = [&]() -> struct ggml_cgraph* { - return build_graph(x, timesteps, context, clip_fea, c_concat, time_dim_concat); + return build_graph(x, timesteps, context, clip_fea, c_concat, time_dim_concat, vace_context, vace_strength); }; GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx); @@ -2108,7 +2247,7 @@ namespace WAN { struct ggml_tensor* out = NULL; int t0 = ggml_time_ms(); - compute(8, x, timesteps, context, NULL, NULL, NULL, &out, work_ctx); + compute(8, x, timesteps, context, NULL, NULL, NULL, NULL, 1.f, &out, work_ctx); int t1 = ggml_time_ms(); print_ggml_tensor(out);