
IEEE Network • January/February 201854 0890-8044/18/$25.00 © 2018 IEEE

Abstract
Mobile edge computing provides the radio 

access networks with cloud computing capabil-
ities to fulfill the requirements of the Internet of 
Things services such as high reliability and low 
latency. Offloading services to edge servers can 
alleviate the storage and computing limitations and 
prolong the lifetimes of the IoT devices. However, 
offloading in MEC faces scalability problems due to 
the massive number of IoT devices. In this article, 
we present a new integration architecture of the 
cloud, MEC, and IoT, and propose a lightweight 
request and admission framework to resolve the 
scalability problem. Without coordination among 
devices, the proposed framework can be operated 
at the IoT devices and computing servers sepa-
rately, by encapsulating latency requirements in 
offloading requests. Then a selective offloading 
scheme is designed to minimize the energy con-
sumption of devices, where the signaling overhead 
can be further reduced by enabling the devices 
to be self-nominated or self-denied for offloading. 
Simulation results show that our proposed selective 
offloading scheme can satisfy the latency require-
ments of different services and reduce the energy 
consumption of IoT devices.

Introduction
The Internet of Things (IoT) is proposed to equip 
everyday objects with electronics, software, sen-
sors, and network connectivity, and bring the 
vision of a connected world into reality [1, 2]. 
However, computation-intensive services, such 
as e-health, automatic driving, and industrial auto-
mation, are fast developing and outgrowing the 
computing and storage capabilities of IoT devices. 
Cloud computing offers enormous storage, com-
puting facilities, and data sharing opportunities. 
By offloading the computation and storage from 
the IoT devices to the cloud through mobile net-
works, mobile cloud computing can alleviate the 
computation and storage limitations and prolong 
the lifetimes of IoT devices [3].

As the computing units in the core network use 
shared backhaul resources, mobile cloud comput-
ing may not be able to meet the reliability and 
latency requirements of IoT services. For instance, 
emergency IoT services, such as mobile vehicular 
connectivity, e-health, and industrial automation, 
require ultra low latency and extremely high reli-
ability. In addition, the services from smart sensors 
generate high volumes of data. Uploading the 

sensed data to the cloud may waste energy and 
cause traffic congestion in the core network.

Mobile edge computing (MEC) is introduced 
to provide radio access networks with cloud com-
puting capabilities [4]. For instance, macro/pico/
femto base stations (BSs) may be connected to 
co-located edge servers to reduce latency, ease 
the traffic on backhaul links, and deliver reliable 
services. Typical characteristics of MEC include 
proximity, high energy efficiency, low latency, 
high throughput, mobility support, and location 
awareness [4]. These features align well with the 
requirements of IoT services.

Offloading incurs extra energy consumption 
and latency due to the communication between 
devices and servers. Earlier works on task off-
loading focus on single-device decision making, 
where the devices make offloading decisions 
independently to minimize either latency [5] or 
energy consumption [6]. Due to the resource 
bottlenecks of edge servers, scalability becomes 
a key problem in MEC [7–10]; that is, there is a 
trade-off between the scale of offloading and the 
quality of service (QoS). Especially in the era of 
IoT, the offloaded services from millions of devic-
es will exhaust the computational resources at the 
edge servers, which leads to increased process-
ing latency that violates the requirements of the 
emergency IoT services.

The existing studies resolve the scalability prob-
lem by either executing the load balancing among 
edge servers to aggregate and sustain the work-
loads [7, 8] or implementing the coordination 
among mobile devices to select services for off-
loading [9, 10]. On the other hand, cross-platform 
IoT services have been enabled via transparent 
computing in [11], and offloading decisions and 
resource allocations have been jointly optimized 
in [12, 13]. However, the tremendous scale of 
IoT devices necessitates efficient service discovery 
and lightweight resource management for hetero-
geneous IoT services.

In this article, we present a novel three-layer 
integration architecture including the cloud, MEC, 
and IoT, and propose a lightweight request and 
admission framework to resolve the scalability 
problem. Following the proposed framework, a 
selective offloading scheme is developed to min-
imize the energy consumption of the IoT devices 
and further reduce the signaling overhead of MEC. 
Our main contributions are summarized as follows.

Integration architecture of the cloud, MEC, 
and IoT:  The cloud and the geo-distributed edge 
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servers can be complemented by each other to 
fulfill the various requirements of the IoT ser-
vices. In the integration, by exploiting the location 
awareness of edge servers and low-latency inter-
connects between them, IoT devices from a wide 
range can be grouped into virtual clusters for effi-
cient service discovery, and the edge servers are 
organized in a hierarchical structure to sustain the 
peak workloads by aggregating services across 
different tiers of servers.

Lightweight request and admission frame-
work: We encapsulate the latency requirements 
determined at each device in their offloading 
requests to decouple the dependency of task par-
titioning of different devices. The proposed request 
and admission framework resolves the intrinsic scal-
ability problem of MEC, and can be operated at 
the devices and edge servers separately, without 
the need for coordination among devices.

Selective offloading scheme:  We propose a 
selective offloading scheme under the request 
and admission framework to minimize the ener-
gy consumption of the IoT devices while satisfy-
ing the latency requirements of different services. 
The signaling overhead of MEC can be further 
reduced by enabling the devices to be self-nomi-
nated or self-denied for offloading.

The rest of this article is organized as follows. 
We present the three-layer integration architec-
ture, and propose the request and admission 
framework.. We then illustrate our selective 
offloading scheme and evaluate its efficiency 
through numerical results. Finally, we conclude 
the article.

Proposed Integration Architecture of the 
Cloud, MEC, and IoT

MEC can complement the cloud to fulfill the var-
ious requirements of IoT services, such as low 
latency, high reliability, location awareness, and 
bandwidth demand. Offloading can save the 
energy of local execution and stretch the stor-
age and computational capacities of IoT devices. 
However, the integration of the cloud, MEC, and 
IoT remains challenging in terms of service dis-
covery, service supply, and load aggregation. In 
this section, we present our proposed three-layer 
integration architecture design and illustrate the 
scalability problem in MEC for IoT.

Three-Layer Integration Architecture
Figure 1 shows the proposed three-layer integra-
tion architecture for the integration of the cloud, 
MEC, and IoT:
•	 The user plane is the bottom layer consist-

ing of both mobile users (e.g., smartphones, 
tablets, and laptops) and IoT devices, such 
as industrial actuators, wearable devices, 
and smart sensors. These devices can be 
grouped into virtual clusters based on their 
ownership, and co-location and co-service 
relationships.

•	 The edge computing plane is in close prox-
imity to the users. MEC enables cloud com-
puting capabilities within the radio access 
networks to fulfill the requirements of the 
IoT services. The geo-distributed edge 
servers can be organized in a hierarchical 
structure to efficiently utilize the resources, 

aggregate the services, and sustain the work-
loads during peak hours.

•	 The cloud computing plane is in the core net-
work, and constitutes multiple cloud servers and 
data centers, which are capable of processing 
and storing enormous amounts of data.
In this three-layer architecture, the data centers 

in the cloud can perform complex computing and 
data analysis, and hence, is responsible for process-
ing the delay-tolerant services that require a large 
number of storage and computational resources 
to augment the task processing of the edge com-
puting plane. Specifically, the IoT devices sense a 
multitude of data and offload their services only 
to the edge servers, instead of offloading directly 
to the cloud to reduce the required signaling and 
corresponding energy consumption for decision 
making. The edge servers in proximity to the user 
plane collect the offloaded services, prioritize the 
processing of delay-sensitive services to ease traffic 
on the backhaul links, and offload delay-tolerant 
services to the cloud based on their workloads. 
The advantages of the integration architecture 
mainly include the following.

Efficient service discovery:  In millions of IoT 
devices, the service discovery, that is, the search for 
the right device that can provide the desired data 
or service, is challenging due to its large scale. In 
the Social Internet of Things (SIoT) paradigm [14], 
devices can establish social relationships based on 
their ownerships, locations, and services to enhance 
the process of service discovery. The edge servers 

FIGURE 1. The three-layer integration architecture of the cloud, MEC, and IoT.
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are aware of the locations and services of these IoT 
devices, and then are responsible for grouping these 
devices into virtual clusters. The devices in a virtual 
cluster are of similar services, and can aggregate the 
sensed data to a cluster head to further enhance 
energy efficiency. Moreover, in the edge computing 
plane, the edge servers in the hierarchical structure 
can exploit the low-latency interconnects between 
them to address the devices from a wide range of 
locations and improve the service visibility for the 
IoT devices.

High-performance computing as a service: The 
IoT services may have significantly various require-
ments in terms of latency, data volumes, and reli-
ability. Traditional mobile cloud computing cannot 
fulfill the requirements of low latency and high 
reliability for industrial automation, e-health, and 
automatic driving. With the deployment of edge 
servers, MEC has the potential to make high-perfor-
mance computing a service that resolves the laten-
cy fluctuation and delivers reliable services.

Workload aggregation: To complement the 
cloud, which cannot fulfill the reliability and laten-
cy requirements of IoT services, edge servers are 
deployed in proximity to users with high flexibility 
of geo-distribution. However, the deployment of 
edge servers faces a trade-off between resource 
efficiency and service provisioning during peak 
workloads. Specifically, the scarce deployment of 
edge servers will introduce excessive delay due to 
lack of computational resources, but provisioning 
more resources through dense deployment could 
result in poor resource utilization. The tree-struc-
tured hierarchical architecture of the edge servers 
ensures efficient resource utilization by aggregating 
services across different tiers of servers, and can 
sustain heavy workloads even during peak hours.

However, considering the resource bottle-
necks in the edge servers, scalability is an inherent 
problem in the proposed architecture.

Scalability Problem
Services can be executed locally or offloaded to 
the cloud or edge servers. A large number of tasks 
that arrive at the same edge server will exhaust the 
computational resources and face scalability prob-

lems. Figure 2 illustrates the scalability problem in 
the proposed integration architecture. When tasks 
arrive non-simultaneously, the offloaded tasks can 
utilize the computational resources in turns, and 
achieve low latency and high reliability as desired. 
However, when tasks arrive simultaneously, off-
loading all the tasks to the same edge server may 
undergo severe resource scarcity and may suffer 
much longer service latency in consequence.

Especially in the IoT scenario, thousands of 
devices may wake up concurrently and compete 
for the limited resources in the edge servers. This 
not only significantly degrades the user experi-
ence for the services that require ultra low latency 
and high reliability, but also hampers the lifetimes 
of the IoT devices, since the devices have to stay 
active when waiting for the computation results. 
As a result, the resource bottlenecks and work-
loads of the edge servers introduce a trade-off 
between the number of offloaded tasks and the 
QoS. In addition, the heterogeneity among mil-
lions of devices and their services would intensify 
the scalability problem.

In Fig. 2, the blue parts of the edge severs and 
the cloud server denote their workloads (i.e., the 
congestion of tasks). Specifically, edge server 1 
is congested by the offloaded tasks and cannot 
serve the offloaded tasks promptly (i.e., face the 
scalability problem). As dictated in Fig. 2, using 
selective offloading, a device can:
•	 Execute its task locally
•	 Offload its task to edge server 2 under light 

workload (e.g., via dual connectivity) [15]
•	 Offload its task to the cloud through the 

edge computing plane so as to alleviate the 
scalability problem and balance the work-
loads among edge servers

Proposed Request and  
Admission Framework for the Green IoT

Green networking, which aims at reducing ener-
gy consumption and minimizing operational costs, 
plays an important role in the IoT paradigm. This is 
even more crucial for energy-constrained sensors, 
which are expected to run autonomously for long 
periods. The longer active time, as described in the 
scalability problem, would hamper the lifetimes of 
IoT devices, which necessitates selective offloading 
for energy saving. However, the selective offload-
ing schemes in [9, 10] require coordination among 
devices, which results in a waste of energy in mil-
lions of IoT devices. In this section, we discuss the 
key challenges in offloading in MEC, and propose a 
request and admission framework for the green IoT.

Challenges of Offloading in MEC
Offloading strategies for task partitioning have 
been extensively studied in mobile cloud comput-
ing (e.g., [5, 6]). In [5], a dynamic programming 
approach was developed to minimize the execu-
tion latency under cost constraints. In [6], an adap-
tive receding horizon offloading strategy among 
multiple devices was proposed, where the solv-
er can adjust its offloading decision according to 
environmental dynamics (e.g., fluctuating latency). 
However, compared to the cloud, the edge servers 
in MEC are heterogeneous and rather limited in 
terms of storage and computational capabilities. 
The competition for the computational resources 

FIGURE 2. Scalability problem and selective offloading.
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introduces couplings of decision making among 
devices. As a result, offloading in MEC is more 
challenging than in mobile cloud computing.

The studies in [9, 10] verify the scalability prob-
lem due to the resource bottlenecks and propose 
selective offloading schemes. In particular, in [9], 
the offloading competition among multiple devic-
es was modeled as a sequential offloading game, 
where the mobile devices made offloading deci-
sions sequentially to obtain a stable offloading 
result. Assuming that tasks are extremely resource 
demanding, in [10], only one task was selected for 
offloading at the same time, and both offline and 
online algorithms were proposed to optimize the 
allocation of wireless and computational resourc-
es. In [12], a heuristic scheme based on a sub-
modular optimization method was proposed to 
jointly optimize offloading decisions and resource 
allocation, but only for delay-tolerant services.

Developing efficient offloading schemes in 
MEC for IoT faces the following challenges.

Coordination costs: Coordination among 
devices consumes energy and incurs further laten-
cy due to communication overhead.  Moreover, 
the coordination costs increase exponentially with 
the number of devices, and therefore, enabling 
coordination may be cost-prohibitive when the 
scale of IoT (millions of devices) is considered.

Couplings among task partioning: Current 
selective offloading schemes in MEC [9, 10, 12] 
only consider offloading services as a whole instead 
of offloading part of a service to increase efficiency 
as in [5, 6]. This is because the resource bottle-
necks of the edge servers introduce strong cou-
plings among task partitioning of different devices.  
Solving the problem optimally requires full knowl-
edge on both the devices and edge servers, includ-
ing future task arrivals and channel conditions.

Heterogeneity of edge servers and devices  
Both edge servers and IoT devices are heteroge-
neous in terms of computing and storage capabili-
ties, as well as desirable services.  The heterogeneity 
makes the selection of the offloaded devices even 
more challenging.  For instance, the cloud, with 
abundant computational resources, may prefer to 
execute resource-intensive and delay-tolerant ser-
vices, while offloading the delay-sensitive services 
with large volumes of data to edge servers may 
achieve high reliability and low latency, and reduce 
the energy consumption on backhaul links.

In summary, the coordination costs necessitate 
the development of a lightweight scheme for the 
IoT devices, while the couplings among task par-
titioning require frequent communication among 
devices and even the exact prediction of future 
task arrivals and channel conditions to resolve 
the scalability problem. Moreover, the selection 
of offloaded devices from a large number of IoT 
devices is even more challenging due to the het-
erogeneity of edge servers and devices.

Request and Admission Framework for the Green IoT
The proposed request and admission framework is 
lightweight in terms of signaling overhead, where 
the devices can send offloading requests inde-
pendently while the servers only admit selected 
requests. This is because the dependency of task 
partitioning among multiple devices can be decou-
pled by encapsulating the latency requirement in 
the offloading requests to the computing servers. 

The latency requirements are set as the deadlines 
of each task determined by the task partitioning 
schemes, and the edge servers make best efforts 
to satisfy the requirements such that the tasks can 
be executed without delays. Besides, the task parti-
tioning schemes in [5] can help devices select the 
offloaded server among multiple edge servers. The 
working procedure of the proposed request and 
admission framework consists of three stages:
•	 Each mobile device partitions its tasks inde-

pendently, and sends an offloading request 
to the selected computing server including 
the latency requirements and other intrinsic 
features of the device and its service (e.g., the 
memory requirement, the thread CPU time, 
and the needed CPU cycles of the service).

•	 Each server receives the offloading requests, 
only admits the selected users for offloading, 
and pre-allocates the computational resourc-
es to satisfy latency requirements.

•	 Mobile devices offload their tasks according 
to the admission results.
The proposed lightweight framework enables the 

selection functionality in both servers and devices 
to reduce signaling overhead, where only the infor-
mation on offloading requests and admission results 
must be exchanged through the communication 
interface. As shown later, the signaling overhead can 
be further reduced by enabling the devices to be 
self-nominated and self-denied for offloading.

Figure 3 shows the major blocks of the pro-
posed request and admission framework, which 
can be operated at the devices and servers sep-
arately. The blocks in mobile devices mainly 
include program profilers, QoS managers, deci-
sion engines, and synchronizers. In particular, the 
program profiler monitors the program param-
eters such as execution time, acquired memo-
ry, thread CPU time, number of instructions, and 
method calls; the QoS manager determines the 
service requirements (e.g., the latency, energy 
consumption, and reliability) and estimates the 
required latency and energy consumption for 
execution of the service; the decision engine is 
responsible for the task partitioning and selects 
the desired server to send offloading requests; 
and the synchronizer handles the communication 
and synchronization between devices and servers 
in order to ensure integrity of the offloaded data. 
On the other hand, the blocks in computing serv-
ers consist of synchronizers, admission controllers, 
resource schedulers, and virtual machine (VM) 

FIGURE 3. The proposed request and admission framework.
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managers. Specifically, the synchronizer receives 
the offloading requests; the admission controller 
selects the devices for offloading according to 
its current available resources; and the resource 
scheduler and VM manager allocate the compu-
tational resources and activate the VM to prepare 
for the offloading from the selected devices.

Implementing the Selective Offloading Scheme
In this section, we demonstrate the implemen-
tation of the proposed request and admission 
framework in a multi-user MEC scenario, where 
the LTE macro BS is co-located with an edge serv-
er of limited computational resources, denoted 
by f0.The proposed selective offloading scheme 
follows the working procedure of the request and 
admission framework, as summarized in Fig. 4.

The working procedure mainly consists of:
1. Forming the offloading requests at the devices
2. Allocating the resources under the latency 

requirements at the resource scheduler
3. Exploiting the heterogeneity among devices 

to select the energy-saving services for off-
loading at the admission controller
In the proposed scheme, the delay-sensitive 

tasks are given high priority for processing, and 
hence, the delay-tolerant tasks are queued at the 
edge server under heavy workload. As a result, 
the edge server only processes delay-tolerant tasks 
under light workload, and offloads the queueing 
tasks to the cloud to avoid excessive queueing 
delay under heavy workload. In the following, we 
analyze these steps in detail to illustrate the selec-
tive offloading scheme.

Offloading Request Formation
The offloading requests are formed at each 
mobile device independently.

A task can be described in terms of:
1. Input Di, including system settings, program 

codes, and input parameters

2. The number of CPU cycles required to 
accomplish the task, denoted by Ci
The information about Di and Ci can be 

obtained through the program profiler. The 
latency and energy consumption of local execu-
tion, denoted by Ti

l and Ei
l, respectively, can be 

obtained at the QoS manager [9, 10]. Besides, the 
QoS manager can determine the latency require-
ment Ti

req based on the deadlines determined by 
the task partitioning schemes [5, 6].

A task can also be offloaded for remote exe-
cution to the servers. A typical remote computing 
approach consists of three stages:
1. Uploading the input
2. Remote execution at the edge server
3. Receiving the computation result
The size of computation result is much small-
er than that of input, and the overhead can be 
neglected [9]. As a result, the total remote com-
putation time of device i can be obtained as Ti

r 
= Ti

t + Ti
e, which is composed of two parts: the 

uplink transmission time Ti
t = Di/Ri and the remote 

execution time Ti
e = Ci/fi. Ri is the achieved data 

rate of device i for the uplink transmission, and fi 
is the allocated computational resources by the 
edge server. The energy consumption for remote 
computation of device i can be given by Eir = (pi/
{zi}) Ti

t, where zi is the power amplifier efficiency 
of device i.

Then the decision engine can apply the exist-
ing offloading strategies in [5, 6], to determine the 
server to send offloading requests. The offloading 
request of device i consists of both the latency 
requirement and intrinsic features of the device.

Computational Resource Allocation
At the server side, the synchronizer receives the 
offloading requests. Then the problem of interest 
becomes selecting the offloaded tasks and allocat-
ing the limited resources to minimize the system 
energy consumption while satisfying the latency 
requirements of all the offloading requests.

Note that the tasks have to be accomplished 
before the deadlines (i.e., the latency require-
ments) determined by task partitioning. As a 
result, the allocated computational resources 
should satisfy fi   fi

min = Ci/(Ti
req – Ti

t), where 
fi

min denotes the minimum resources allocated to 
device i under the latency requirements. In order 

FIGURE 4. Flow diagram of our proposed selective offloading scheme.
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to enhance the scalability and save energy, the 
resource scheduler allocates the minimum com-
putational resources to the admitted tasks accord-
ing to

fi = si fimin = si Ci/(Ti
req – Di/Ri)	 (1)

where si  {0,1} denotes whether the task is 
admitted for offloading or not (i.e., the task is off-
loaded when si = 1).

Offloading Decision
The heterogeneity of devices and their IoT ser-
vices makes offloading more beneficial for some 
devices, and local execution more beneficial for 
others. For instance, a delay-sensitive service at a 
resource-restrained device will benefit from offload-
ing. Therefore, we introduce the following condi-
tion to prioritize emergency tasks for offloading.

Condition 1. If Ti^l > Ti
req, the admission con-

troller selects device i for offloading.

The resource-restrained devices with delay-sen-
sitive tasks satisfying Condition 1 are prioritized for 
offloading, since their local computing capabilities 
cannot fulfill the latency requirements (i.e., Ti

t > Ti
req). 

Then the edge server pre-allocates fimin resources to 
these devices, determines its remaining resources ~f0 
= f0 –SiT

l
i>Ti

req fimin, and checks the following condi-
tion to exclude some devices from offloading.

Condition 2. If (Ti
r)min = Tit + Ci/~f0 > Ti

req or Eir 
 Eil, device i executes its task locally.

If this condition is satisfied, even allocating all 
the remaining resources to device i cannot satisfy 
its latency requirements, or offloading will not save 
energy. Thus, the device is excluded from offload-
ing and chooses to execute the task locally.

Note that the classification of requested users 
in S2 of Fig. 4 can be distributed to the IoT devices 
to further reduce the signaling overhead of MEC. 
Particularly, devices satisfying Condition 1 can be 
self-nominated to send an indication to the edge 
server for offloading prioritization. Then the edge 
server broadcasts its remaining resources ~f0 to the 
devices. After receiving ~f0, the devices satisfying 
Condition 2 can be self-denied for offloading with-
out sending offloading requests. As a result, only 
the undetermined devices that are neither self-nom-
inated nor self-denied send offloading requests to 
the edge server, which leads to the reduction of 
signaling overhead in implementation.

After receiving the offloading requests from 
the undetermined devices, the resource scheduler 
allocates the minimum computational resources 
by Eq. 1. Then the selective offloading problem 
can be reduced to a binary linear programming 
problem, which can be efficiently solved through 
a branch and bound algorithm.

Numerical Results
In this section, numerical results are presented 
to demonstrate the performance improvements 
brought by our proposed selective offloading 
scheme. We consider a single macrocell network 
with a radius of 250 m, which is co-located with 
an edge server with f0 = 10 GHz. The radio com-
munication parameters follow the Third Genera-

tion Partnership Project (3GPP) specification. As 
an example of a complex application, we adopt 
the face recognition application [9] where D = 
420 kB and C =1000 MCycles. The computational 
capability of devices is uniformly distributed in 
[0.5,1.5] GHz. We set the latency requirements 
Treq as 1 s or 1.5 s for delay-sensitive and delay-tol-
erant applications, respectively. Next, we evaluate 
the average latency and energy consumption of 
selective offloading, local execution, and total off-
loading when the number of offloading requests n 
varies from 5 to 20.

Figure 5 shows the average per-user latency 
in both delay-sensitive and delay-tolerant applica-
tions. Our scheme can leverage the computation-
al resources in the devices and edge servers, and 
make effective task admission to satisfy both strin-
gent and loose latency requirements. In particular, 
the average latency of our scheme approaches 
Treq = 1s of delay-sensitive applications, and is 
about 1.4 s for delay-tolerant applications. Irre-
spective of n, the average latency of local exe-
cution is 1.1 s, violating the latency requirement 
of delay-sensitive applications with Treq = 1 s. The 
average latency of total offloading grows linearly 
with N, and is up to 1.6 s when N = 20. This is 
because the scalability problem due to resource 
scarcity is intensified with increasing n.

Figure 6 demonstrates the average per-user 
energy consumption. The energy consumption 
of total offloading and local execution is relative-
ly stable, and can be lower than that of selective 
offloading with increasing n when Treq = 1 s. This 
is at the cost of violating latency requirements, as 
shown in Fig. 5. We also see that the energy con-
sumption of selective offloading in delay-tolerant 
applications stays low (0.085j), which is 22 percent 
less than local execution. However, for delay-sensi-
tive applications, the energy consumption of selec-
tive offloading only stays low and stable when N 
< 12. The energy consumption increasingly grows 
(up to 11 percent higher than that of local execu-
tion) as N increases from 12 to 20, since offloading 
the tasks of some resource-restrained devices may 
not save energy. This reveals the inherent trade-off 

The heterogeneity of devices and their IoT services makes offloading more beneficial for some devices, 
and local execution more beneficial for others. For instance, a delay-sensitive service at a resource-re-

strained device will benefit from offloading.

FIGURE 5. Comparison of average latency. Selective 
offloading approaches to the latency require-
ments.
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between latency and energy consumption in MEC, 
that is, latency and energy consumption cannot be 
minimized at the same time.

Conclusion
In this article, we propose a three-layer integra-
tion architecture of the cloud, MEC, and IoT, 
and develop a lightweight request and admission 
framework to resolve the scalability problem by 
offloading only selected services. By encapsulat-
ing latency requirements in offloading requests, 
the framework can be operated at devices and 
edge servers separately without the need to 
coordinate among devices. The proposed selec-
tive offloading scheme can minimize the energy 
consumption of devices under latency require-
ments, and the signaling overhead can be further 
reduced by enabling the devices to be self-nom-
inated or self-denied for offloading. Numerical 
results show that, by prioritizing the emergency 
offloading requests, selective offloading is able to 
satisfy the latency requirements of different ser-
vices and save energy for the IoT devices.
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FIGURE 6. Comparison of average energy consump-
tion. The trade-off between latency and energy 
consumption is inherent.
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The proposed selective offloading scheme can minimize the energy consumption of devices under 
latency requirements, and the signaling overhead can be further reduced by enabling the devices to be 

self-nominated or self-denied for offloading.


