
IEEE Network • January/February 201854 0890-8044/18/$25.00 © 2018 IEEE

Abstract
Mobile edge computing provides the radio

access networks with cloud computing capabil-
ities to fulfill the requirements of the Internet of
Things services such as high reliability and low
latency. Offloading services to edge servers can
alleviate the storage and computing limitations and
prolong the lifetimes of the IoT devices. However,
offloading in MEC faces scalability problems due to
the massive number of IoT devices. In this article,
we present a new integration architecture of the
cloud, MEC, and IoT, and propose a lightweight
request and admission framework to resolve the
scalability problem. Without coordination among
devices, the proposed framework can be operated
at the IoT devices and computing servers sepa-
rately, by encapsulating latency requirements in
offloading requests. Then a selective offloading
scheme is designed to minimize the energy con-
sumption of devices, where the signaling overhead
can be further reduced by enabling the devices
to be self-nominated or self-denied for offloading.
Simulation results show that our proposed selective
offloading scheme can satisfy the latency require-
ments of different services and reduce the energy
consumption of IoT devices.

Introduction
The Internet of Things (IoT) is proposed to equip
everyday objects with electronics, software, sen-
sors, and network connectivity, and bring the
vision of a connected world into reality [1, 2].
However, computation-intensive services, such
as e-health, automatic driving, and industrial auto-
mation, are fast developing and outgrowing the
computing and storage capabilities of IoT devices.
Cloud computing offers enormous storage, com-
puting facilities, and data sharing opportunities.
By offloading the computation and storage from
the IoT devices to the cloud through mobile net-
works, mobile cloud computing can alleviate the
computation and storage limitations and prolong
the lifetimes of IoT devices [3].

As the computing units in the core network use
shared backhaul resources, mobile cloud comput-
ing may not be able to meet the reliability and
latency requirements of IoT services. For instance,
emergency IoT services, such as mobile vehicular
connectivity, e-health, and industrial automation,
require ultra low latency and extremely high reli-
ability. In addition, the services from smart sensors
generate high volumes of data. Uploading the

sensed data to the cloud may waste energy and
cause traffic congestion in the core network.

Mobile edge computing (MEC) is introduced
to provide radio access networks with cloud com-
puting capabilities [4]. For instance, macro/pico/
femto base stations (BSs) may be connected to
co-located edge servers to reduce latency, ease
the traffic on backhaul links, and deliver reliable
services. Typical characteristics of MEC include
proximity, high energy efficiency, low latency,
high throughput, mobility support, and location
awareness [4]. These features align well with the
requirements of IoT services.

Offloading incurs extra energy consumption
and latency due to the communication between
devices and servers. Earlier works on task off-
loading focus on single-device decision making,
where the devices make offloading decisions
independently to minimize either latency [5] or
energy consumption [6]. Due to the resource
bottlenecks of edge servers, scalability becomes
a key problem in MEC [7–10]; that is, there is a
trade-off between the scale of offloading and the
quality of service (QoS). Especially in the era of
IoT, the offloaded services from millions of devic-
es will exhaust the computational resources at the
edge servers, which leads to increased process-
ing latency that violates the requirements of the
emergency IoT services.

The existing studies resolve the scalability prob-
lem by either executing the load balancing among
edge servers to aggregate and sustain the work-
loads [7, 8] or implementing the coordination
among mobile devices to select services for off-
loading [9, 10]. On the other hand, cross-platform
IoT services have been enabled via transparent
computing in [11], and offloading decisions and
resource allocations have been jointly optimized
in [12, 13]. However, the tremendous scale of
IoT devices necessitates efficient service discovery
and lightweight resource management for hetero-
geneous IoT services.

In this article, we present a novel three-layer
integration architecture including the cloud, MEC,
and IoT, and propose a lightweight request and
admission framework to resolve the scalability
problem. Following the proposed framework, a
selective offloading scheme is developed to min-
imize the energy consumption of the IoT devices
and further reduce the signaling overhead of MEC.
Our main contributions are summarized as follows.

Integration architecture of the cloud, MEC,
and IoT: The cloud and the geo-distributed edge

Selective Offloading in Mobile Edge Computing for the Green Internet of Things
Xinchen Lyu, Hui Tian, Li Jiang, Alexey Vinel, Sabita Maharjan, Stein Gjessing, and Yan Zhang

This work was supported in
part by the National Natural
Science Foundation of China
under Grant 61471060
and Grant 61421061, and
in part by the National Key
Research and Development
Program of China under
Grant 2017ZX03001003.

EDGE COMPUTING FOR THE INTERNET OF THINGS

Digital Object Identifier:
10.1109/MNET.2018.1700101

Xinchen Lyu and Hui Tian (corresponding author) are with Beijing University of Posts and Telecommunications; Li Jiang is with Guangdong University of
Technology; Alexey Vinel is with Halmstad University; Sabita Maharjan and Stein Gjessing are with Simula Research Laboratory and the University of Oslo;

Yan Zhang is with the University of Oslo.

IEEE Network • January/February 2018 55

servers can be complemented by each other to
fulfill the various requirements of the IoT ser-
vices. In the integration, by exploiting the location
awareness of edge servers and low-latency inter-
connects between them, IoT devices from a wide
range can be grouped into virtual clusters for effi-
cient service discovery, and the edge servers are
organized in a hierarchical structure to sustain the
peak workloads by aggregating services across
different tiers of servers.

Lightweight request and admission frame-
work: We encapsulate the latency requirements
determined at each device in their offloading
requests to decouple the dependency of task par-
titioning of different devices. The proposed request
and admission framework resolves the intrinsic scal-
ability problem of MEC, and can be operated at
the devices and edge servers separately, without
the need for coordination among devices.

Selective offloading scheme: We propose a
selective offloading scheme under the request
and admission framework to minimize the ener-
gy consumption of the IoT devices while satisfy-
ing the latency requirements of different services.
The signaling overhead of MEC can be further
reduced by enabling the devices to be self-nomi-
nated or self-denied for offloading.

The rest of this article is organized as follows.
We present the three-layer integration architec-
ture, and propose the request and admission
framework.. We then illustrate our selective
offloading scheme and evaluate its efficiency
through numerical results. Finally, we conclude
the article.

Proposed Integration Architecture of the
Cloud, MEC, and IoT

MEC can complement the cloud to fulfill the var-
ious requirements of IoT services, such as low
latency, high reliability, location awareness, and
bandwidth demand. Offloading can save the
energy of local execution and stretch the stor-
age and computational capacities of IoT devices.
However, the integration of the cloud, MEC, and
IoT remains challenging in terms of service dis-
covery, service supply, and load aggregation. In
this section, we present our proposed three-layer
integration architecture design and illustrate the
scalability problem in MEC for IoT.

Three-Layer Integration Architecture
Figure 1 shows the proposed three-layer integra-
tion architecture for the integration of the cloud,
MEC, and IoT:
•	 The user plane is the bottom layer consist-

ing of both mobile users (e.g., smartphones,
tablets, and laptops) and IoT devices, such
as industrial actuators, wearable devices,
and smart sensors. These devices can be
grouped into virtual clusters based on their
ownership, and co-location and co-service
relationships.

•	 The edge computing plane is in close prox-
imity to the users. MEC enables cloud com-
puting capabilities within the radio access
networks to fulfill the requirements of the
IoT services. The geo-distributed edge
servers can be organized in a hierarchical
structure to efficiently utilize the resources,

aggregate the services, and sustain the work-
loads during peak hours.

•	 The cloud computing plane is in the core net-
work, and constitutes multiple cloud servers and
data centers, which are capable of processing
and storing enormous amounts of data.
In this three-layer architecture, the data centers

in the cloud can perform complex computing and
data analysis, and hence, is responsible for process-
ing the delay-tolerant services that require a large
number of storage and computational resources
to augment the task processing of the edge com-
puting plane. Specifically, the IoT devices sense a
multitude of data and offload their services only
to the edge servers, instead of offloading directly
to the cloud to reduce the required signaling and
corresponding energy consumption for decision
making. The edge servers in proximity to the user
plane collect the offloaded services, prioritize the
processing of delay-sensitive services to ease traffic
on the backhaul links, and offload delay-tolerant
services to the cloud based on their workloads.
The advantages of the integration architecture
mainly include the following.

Efficient service discovery: In millions of IoT
devices, the service discovery, that is, the search for
the right device that can provide the desired data
or service, is challenging due to its large scale. In
the Social Internet of Things (SIoT) paradigm [14],
devices can establish social relationships based on
their ownerships, locations, and services to enhance
the process of service discovery. The edge servers

FIGURE 1. The three-layer integration architecture of the cloud, MEC, and IoT.

Transportation

Industry

Smart sensors

Smart city

Virtual cluster
Laptop

Smartphone

Wearable devices
Tablet

Cloud computing plane

Edge computing plane

User plane

Gateway

Edge server

Access network

Cloud storageCloud servers

IEEE Network • January/February 201856

are aware of the locations and services of these IoT
devices, and then are responsible for grouping these
devices into virtual clusters. The devices in a virtual
cluster are of similar services, and can aggregate the
sensed data to a cluster head to further enhance
energy efficiency. Moreover, in the edge computing
plane, the edge servers in the hierarchical structure
can exploit the low-latency interconnects between
them to address the devices from a wide range of
locations and improve the service visibility for the
IoT devices.

High-performance computing as a service: The
IoT services may have significantly various require-
ments in terms of latency, data volumes, and reli-
ability. Traditional mobile cloud computing cannot
fulfill the requirements of low latency and high
reliability for industrial automation, e-health, and
automatic driving. With the deployment of edge
servers, MEC has the potential to make high-perfor-
mance computing a service that resolves the laten-
cy fluctuation and delivers reliable services.

Workload aggregation: To complement the
cloud, which cannot fulfill the reliability and laten-
cy requirements of IoT services, edge servers are
deployed in proximity to users with high flexibility
of geo-distribution. However, the deployment of
edge servers faces a trade-off between resource
efficiency and service provisioning during peak
workloads. Specifically, the scarce deployment of
edge servers will introduce excessive delay due to
lack of computational resources, but provisioning
more resources through dense deployment could
result in poor resource utilization. The tree-struc-
tured hierarchical architecture of the edge servers
ensures efficient resource utilization by aggregating
services across different tiers of servers, and can
sustain heavy workloads even during peak hours.

However, considering the resource bottle-
necks in the edge servers, scalability is an inherent
problem in the proposed architecture.

Scalability Problem
Services can be executed locally or offloaded to
the cloud or edge servers. A large number of tasks
that arrive at the same edge server will exhaust the
computational resources and face scalability prob-

lems. Figure 2 illustrates the scalability problem in
the proposed integration architecture. When tasks
arrive non-simultaneously, the offloaded tasks can
utilize the computational resources in turns, and
achieve low latency and high reliability as desired.
However, when tasks arrive simultaneously, off-
loading all the tasks to the same edge server may
undergo severe resource scarcity and may suffer
much longer service latency in consequence.

Especially in the IoT scenario, thousands of
devices may wake up concurrently and compete
for the limited resources in the edge servers. This
not only significantly degrades the user experi-
ence for the services that require ultra low latency
and high reliability, but also hampers the lifetimes
of the IoT devices, since the devices have to stay
active when waiting for the computation results.
As a result, the resource bottlenecks and work-
loads of the edge servers introduce a trade-off
between the number of offloaded tasks and the
QoS. In addition, the heterogeneity among mil-
lions of devices and their services would intensify
the scalability problem.

In Fig. 2, the blue parts of the edge severs and
the cloud server denote their workloads (i.e., the
congestion of tasks). Specifically, edge server 1
is congested by the offloaded tasks and cannot
serve the offloaded tasks promptly (i.e., face the
scalability problem). As dictated in Fig. 2, using
selective offloading, a device can:
•	 Execute its task locally
•	 Offload its task to edge server 2 under light

workload (e.g., via dual connectivity) [15]
•	 Offload its task to the cloud through the

edge computing plane so as to alleviate the
scalability problem and balance the work-
loads among edge servers

Proposed Request and
Admission Framework for the Green IoT

Green networking, which aims at reducing ener-
gy consumption and minimizing operational costs,
plays an important role in the IoT paradigm. This is
even more crucial for energy-constrained sensors,
which are expected to run autonomously for long
periods. The longer active time, as described in the
scalability problem, would hamper the lifetimes of
IoT devices, which necessitates selective offloading
for energy saving. However, the selective offload-
ing schemes in [9, 10] require coordination among
devices, which results in a waste of energy in mil-
lions of IoT devices. In this section, we discuss the
key challenges in offloading in MEC, and propose a
request and admission framework for the green IoT.

Challenges of Offloading in MEC
Offloading strategies for task partitioning have
been extensively studied in mobile cloud comput-
ing (e.g., [5, 6]). In [5], a dynamic programming
approach was developed to minimize the execu-
tion latency under cost constraints. In [6], an adap-
tive receding horizon offloading strategy among
multiple devices was proposed, where the solv-
er can adjust its offloading decision according to
environmental dynamics (e.g., fluctuating latency).
However, compared to the cloud, the edge servers
in MEC are heterogeneous and rather limited in
terms of storage and computational capabilities.
The competition for the computational resources

FIGURE 2. Scalability problem and selective offloading.

Workload

Cloud server

2

Simultaneous arrival of tasks Non-simultaneous arrival of tasks

a b

t

Workload

Edge server 1

Workload

Edge server 2

Computational resources

1 2

t

1

2

t

12
c

t

1

IEEE Network • January/February 2018 57

introduces couplings of decision making among
devices. As a result, offloading in MEC is more
challenging than in mobile cloud computing.

The studies in [9, 10] verify the scalability prob-
lem due to the resource bottlenecks and propose
selective offloading schemes. In particular, in [9],
the offloading competition among multiple devic-
es was modeled as a sequential offloading game,
where the mobile devices made offloading deci-
sions sequentially to obtain a stable offloading
result. Assuming that tasks are extremely resource
demanding, in [10], only one task was selected for
offloading at the same time, and both offline and
online algorithms were proposed to optimize the
allocation of wireless and computational resourc-
es. In [12], a heuristic scheme based on a sub-
modular optimization method was proposed to
jointly optimize offloading decisions and resource
allocation, but only for delay-tolerant services.

Developing efficient offloading schemes in
MEC for IoT faces the following challenges.

Coordination costs: Coordination among
devices consumes energy and incurs further laten-
cy due to communication overhead. Moreover,
the coordination costs increase exponentially with
the number of devices, and therefore, enabling
coordination may be cost-prohibitive when the
scale of IoT (millions of devices) is considered.

Couplings among task partioning: Current
selective offloading schemes in MEC [9, 10, 12]
only consider offloading services as a whole instead
of offloading part of a service to increase efficiency
as in [5, 6]. This is because the resource bottle-
necks of the edge servers introduce strong cou-
plings among task partitioning of different devices.
Solving the problem optimally requires full knowl-
edge on both the devices and edge servers, includ-
ing future task arrivals and channel conditions.

Heterogeneity of edge servers and devices
Both edge servers and IoT devices are heteroge-
neous in terms of computing and storage capabili-
ties, as well as desirable services. The heterogeneity
makes the selection of the offloaded devices even
more challenging. For instance, the cloud, with
abundant computational resources, may prefer to
execute resource-intensive and delay-tolerant ser-
vices, while offloading the delay-sensitive services
with large volumes of data to edge servers may
achieve high reliability and low latency, and reduce
the energy consumption on backhaul links.

In summary, the coordination costs necessitate
the development of a lightweight scheme for the
IoT devices, while the couplings among task par-
titioning require frequent communication among
devices and even the exact prediction of future
task arrivals and channel conditions to resolve
the scalability problem. Moreover, the selection
of offloaded devices from a large number of IoT
devices is even more challenging due to the het-
erogeneity of edge servers and devices.

Request and Admission Framework for the Green IoT
The proposed request and admission framework is
lightweight in terms of signaling overhead, where
the devices can send offloading requests inde-
pendently while the servers only admit selected
requests. This is because the dependency of task
partitioning among multiple devices can be decou-
pled by encapsulating the latency requirement in
the offloading requests to the computing servers.

The latency requirements are set as the deadlines
of each task determined by the task partitioning
schemes, and the edge servers make best efforts
to satisfy the requirements such that the tasks can
be executed without delays. Besides, the task parti-
tioning schemes in [5] can help devices select the
offloaded server among multiple edge servers. The
working procedure of the proposed request and
admission framework consists of three stages:
•	 Each mobile device partitions its tasks inde-

pendently, and sends an offloading request
to the selected computing server including
the latency requirements and other intrinsic
features of the device and its service (e.g., the
memory requirement, the thread CPU time,
and the needed CPU cycles of the service).

•	 Each server receives the offloading requests,
only admits the selected users for offloading,
and pre-allocates the computational resourc-
es to satisfy latency requirements.

•	 Mobile devices offload their tasks according
to the admission results.
The proposed lightweight framework enables the

selection functionality in both servers and devices
to reduce signaling overhead, where only the infor-
mation on offloading requests and admission results
must be exchanged through the communication
interface. As shown later, the signaling overhead can
be further reduced by enabling the devices to be
self-nominated and self-denied for offloading.

Figure 3 shows the major blocks of the pro-
posed request and admission framework, which
can be operated at the devices and servers sep-
arately. The blocks in mobile devices mainly
include program profilers, QoS managers, deci-
sion engines, and synchronizers. In particular, the
program profiler monitors the program param-
eters such as execution time, acquired memo-
ry, thread CPU time, number of instructions, and
method calls; the QoS manager determines the
service requirements (e.g., the latency, energy
consumption, and reliability) and estimates the
required latency and energy consumption for
execution of the service; the decision engine is
responsible for the task partitioning and selects
the desired server to send offloading requests;
and the synchronizer handles the communication
and synchronization between devices and servers
in order to ensure integrity of the offloaded data.
On the other hand, the blocks in computing serv-
ers consist of synchronizers, admission controllers,
resource schedulers, and virtual machine (VM)

FIGURE 3. The proposed request and admission framework.

Resource
scheduler

VM
manager

Admission
controller

Synchronizer

Decision
engine

Synchronizer

Program
profiler

QoS
manager

Computing server

Request

Admission

Mobile device

Communication
interface

IEEE Network • January/February 201858

managers. Specifically, the synchronizer receives
the offloading requests; the admission controller
selects the devices for offloading according to
its current available resources; and the resource
scheduler and VM manager allocate the compu-
tational resources and activate the VM to prepare
for the offloading from the selected devices.

Implementing the Selective Offloading Scheme
In this section, we demonstrate the implemen-
tation of the proposed request and admission
framework in a multi-user MEC scenario, where
the LTE macro BS is co-located with an edge serv-
er of limited computational resources, denoted
by f0.The proposed selective offloading scheme
follows the working procedure of the request and
admission framework, as summarized in Fig. 4.

The working procedure mainly consists of:
1. Forming the offloading requests at the devices
2. Allocating the resources under the latency

requirements at the resource scheduler
3. Exploiting the heterogeneity among devices

to select the energy-saving services for off-
loading at the admission controller
In the proposed scheme, the delay-sensitive

tasks are given high priority for processing, and
hence, the delay-tolerant tasks are queued at the
edge server under heavy workload. As a result,
the edge server only processes delay-tolerant tasks
under light workload, and offloads the queueing
tasks to the cloud to avoid excessive queueing
delay under heavy workload. In the following, we
analyze these steps in detail to illustrate the selec-
tive offloading scheme.

Offloading Request Formation
The offloading requests are formed at each
mobile device independently.

A task can be described in terms of:
1. Input Di, including system settings, program

codes, and input parameters

2. The number of CPU cycles required to
accomplish the task, denoted by Ci
The information about Di and Ci can be

obtained through the program profiler. The
latency and energy consumption of local execu-
tion, denoted by Ti

l and Ei
l, respectively, can be

obtained at the QoS manager [9, 10]. Besides, the
QoS manager can determine the latency require-
ment Ti

req based on the deadlines determined by
the task partitioning schemes [5, 6].

A task can also be offloaded for remote exe-
cution to the servers. A typical remote computing
approach consists of three stages:
1. Uploading the input
2. Remote execution at the edge server
3. Receiving the computation result
The size of computation result is much small-
er than that of input, and the overhead can be
neglected [9]. As a result, the total remote com-
putation time of device i can be obtained as Ti

r
= Ti

t + Ti
e, which is composed of two parts: the

uplink transmission time Ti
t = Di/Ri and the remote

execution time Ti
e = Ci/fi. Ri is the achieved data

rate of device i for the uplink transmission, and fi
is the allocated computational resources by the
edge server. The energy consumption for remote
computation of device i can be given by Eir = (pi/
{zi}) Ti

t, where zi is the power amplifier efficiency
of device i.

Then the decision engine can apply the exist-
ing offloading strategies in [5, 6], to determine the
server to send offloading requests. The offloading
request of device i consists of both the latency
requirement and intrinsic features of the device.

Computational Resource Allocation
At the server side, the synchronizer receives the
offloading requests. Then the problem of interest
becomes selecting the offloaded tasks and allocat-
ing the limited resources to minimize the system
energy consumption while satisfying the latency
requirements of all the offloading requests.

Note that the tasks have to be accomplished
before the deadlines (i.e., the latency require-
ments) determined by task partitioning. As a
result, the allocated computational resources
should satisfy fi  fi

min = Ci/(Ti
req – Ti

t), where
fi

min denotes the minimum resources allocated to
device i under the latency requirements. In order

FIGURE 4. Flow diagram of our proposed selective offloading scheme.

Resource
scheduler

Admission
controllerSynchronizer

U3 make offloading
decision

U4 send offloading
request

S7 send
admission result

Communication
interface

S4 utilize
remaining resources

S6 admission
decision

S1 receive offloading
request

S2 classify
requested users

S3 allocate
resources

S5 prepare
for offloading

Decision
engine

Program
profiler

QoS
manager VM manager

Server sideUser side

U1 monitor
program parameters

U2 determine latency
requirement

Synchronizer

In the proposed scheme, the delay-sensitive tasks are given high priority for processing, and hence, the
delay-tolerant tasks are queued at the edge server under heavy workload. As a result, the edge server
only processes delay-tolerant tasks under light workload, and offloads the queueing tasks to the cloud

to avoid excessive queueing delay under heavy workload.

IEEE Network • January/February 2018 59

to enhance the scalability and save energy, the
resource scheduler allocates the minimum com-
putational resources to the admitted tasks accord-
ing to

fi = si fimin = si Ci/(Ti
req – Di/Ri)	 (1)

where si  {0,1} denotes whether the task is
admitted for offloading or not (i.e., the task is off-
loaded when si = 1).

Offloading Decision
The heterogeneity of devices and their IoT ser-
vices makes offloading more beneficial for some
devices, and local execution more beneficial for
others. For instance, a delay-sensitive service at a
resource-restrained device will benefit from offload-
ing. Therefore, we introduce the following condi-
tion to prioritize emergency tasks for offloading.

Condition 1. If Ti^l > Ti
req, the admission con-

troller selects device i for offloading.

The resource-restrained devices with delay-sen-
sitive tasks satisfying Condition 1 are prioritized for
offloading, since their local computing capabilities
cannot fulfill the latency requirements (i.e., Ti

t > Ti
req).

Then the edge server pre-allocates fimin resources to
these devices, determines its remaining resources ~f0
= f0 –SiT

l
i>Ti

req fimin, and checks the following condi-
tion to exclude some devices from offloading.

Condition 2. If (Ti
r)min = Tit + Ci/~f0 > Ti

req or Eir
 Eil, device i executes its task locally.

If this condition is satisfied, even allocating all
the remaining resources to device i cannot satisfy
its latency requirements, or offloading will not save
energy. Thus, the device is excluded from offload-
ing and chooses to execute the task locally.

Note that the classification of requested users
in S2 of Fig. 4 can be distributed to the IoT devices
to further reduce the signaling overhead of MEC.
Particularly, devices satisfying Condition 1 can be
self-nominated to send an indication to the edge
server for offloading prioritization. Then the edge
server broadcasts its remaining resources ~f0 to the
devices. After receiving ~f0, the devices satisfying
Condition 2 can be self-denied for offloading with-
out sending offloading requests. As a result, only
the undetermined devices that are neither self-nom-
inated nor self-denied send offloading requests to
the edge server, which leads to the reduction of
signaling overhead in implementation.

After receiving the offloading requests from
the undetermined devices, the resource scheduler
allocates the minimum computational resources
by Eq. 1. Then the selective offloading problem
can be reduced to a binary linear programming
problem, which can be efficiently solved through
a branch and bound algorithm.

Numerical Results
In this section, numerical results are presented
to demonstrate the performance improvements
brought by our proposed selective offloading
scheme. We consider a single macrocell network
with a radius of 250 m, which is co-located with
an edge server with f0 = 10 GHz. The radio com-
munication parameters follow the Third Genera-

tion Partnership Project (3GPP) specification. As
an example of a complex application, we adopt
the face recognition application [9] where D =
420 kB and C =1000 MCycles. The computational
capability of devices is uniformly distributed in
[0.5,1.5] GHz. We set the latency requirements
Treq as 1 s or 1.5 s for delay-sensitive and delay-tol-
erant applications, respectively. Next, we evaluate
the average latency and energy consumption of
selective offloading, local execution, and total off-
loading when the number of offloading requests n
varies from 5 to 20.

Figure 5 shows the average per-user latency
in both delay-sensitive and delay-tolerant applica-
tions. Our scheme can leverage the computation-
al resources in the devices and edge servers, and
make effective task admission to satisfy both strin-
gent and loose latency requirements. In particular,
the average latency of our scheme approaches
Treq = 1s of delay-sensitive applications, and is
about 1.4 s for delay-tolerant applications. Irre-
spective of n, the average latency of local exe-
cution is 1.1 s, violating the latency requirement
of delay-sensitive applications with Treq = 1 s. The
average latency of total offloading grows linearly
with N, and is up to 1.6 s when N = 20. This is
because the scalability problem due to resource
scarcity is intensified with increasing n.

Figure 6 demonstrates the average per-user
energy consumption. The energy consumption
of total offloading and local execution is relative-
ly stable, and can be lower than that of selective
offloading with increasing n when Treq = 1 s. This
is at the cost of violating latency requirements, as
shown in Fig. 5. We also see that the energy con-
sumption of selective offloading in delay-tolerant
applications stays low (0.085j), which is 22 percent
less than local execution. However, for delay-sensi-
tive applications, the energy consumption of selec-
tive offloading only stays low and stable when N
< 12. The energy consumption increasingly grows
(up to 11 percent higher than that of local execu-
tion) as N increases from 12 to 20, since offloading
the tasks of some resource-restrained devices may
not save energy. This reveals the inherent trade-off

The heterogeneity of devices and their IoT services makes offloading more beneficial for some devices,
and local execution more beneficial for others. For instance, a delay-sensitive service at a resource-re-

strained device will benefit from offloading.

FIGURE 5. Comparison of average latency. Selective
offloading approaches to the latency require-
ments.

Number of requests
105

0.8

Av
er

ag
e

lat
en

cy
 (s

)

0.6

1

1.2

1.4

1.6

15 20

Local
Total
Selective, Treq = 1 s
Selective, Treq = 1.5 s

IEEE Network • January/February 201860

between latency and energy consumption in MEC,
that is, latency and energy consumption cannot be
minimized at the same time.

Conclusion
In this article, we propose a three-layer integra-
tion architecture of the cloud, MEC, and IoT,
and develop a lightweight request and admission
framework to resolve the scalability problem by
offloading only selected services. By encapsulat-
ing latency requirements in offloading requests,
the framework can be operated at devices and
edge servers separately without the need to
coordinate among devices. The proposed selec-
tive offloading scheme can minimize the energy
consumption of devices under latency require-
ments, and the signaling overhead can be further
reduced by enabling the devices to be self-nom-
inated or self-denied for offloading. Numerical
results show that, by prioritizing the emergency
offloading requests, selective offloading is able to
satisfy the latency requirements of different ser-
vices and save energy for the IoT devices.

References
[1] X. Chen et al., “Optimal Quality-of-Service Scheduling for

Energy-Harvesting Powered Wireless Communications,”
IEEE Trans. Wireless Commun., vol. 15, no. 5, May 2016, pp.
3269–80.

[2] Y. Zhang et al., “A Survey on Emerging Computing Para-
digms for Big Data,” Chinese J. Electronics, vol. 26, no. 1,
2017, pp. 1–12.

[3] J. Ren et al., “Exploiting Mobile Crowdsourcing for Pervasive
Cloud Services: Challenges and Solutions,” IEEE Commun.
Mag., vol. 53, no. 3, Mar. 2015, pp. 98–105.

[4] “Mobile-Edge Computing Introductory Technical White Paper,”
Mobile Edge Computing (MEC) industry initiative, 2014.

[5] Y. H. Kao et al., “Hermes: Latency Optimal Task Assignment
for Resource-Constrained Mobile Computing,” IEEE Trans.
Mobile Comp., 2017.

[6] X. Lyu and H. Tian, “Adaptive Receding Horizon Offloading
Strategy Under Dynamic Environment,” IEEE Commun. Lett.,
vol. 20, no. 5, May 2016, pp. 878–81.

[7] R. Yu et al., “Decentralized and Optimal Resource Coop-
eration in Geo-Distributed Mobile Cloud Computing,” IEEE
Trans. Emerg. Topics Comp., 2016.

[8] R. Yu et al., “Cooperative Resource Management in
Cloud-Enabled Vehicular Networks,” IEEE Trans. Ind. Elec-
tronics, vol. 62, no. 12, Dec. 2015, pp. 7938–51.

[9] X. Chen et al., “Efficient Multi-User Computation Offloading
for Mobile-Edge Cloud Computing,” IEEE/ACM Trans. Net.,
vol. 24, no. 5, Oct. 2016, pp. 2795–2808.

[10] W. Labidi, M. Sarkiss, and M. Kamoun, “Joint Multi-User
Resource Scheduling and Computation Offloading in Small
Cell Networks,” IEEE Wireless and Mobile Computing, Net-
working and Commun., Oct. 2015, pp. 794–801.

[11] J. Ren et al., “Serving at the Edge: A Scalable IoT Archi-
tecture Based on Transparent Computing,” IEEE Network,
2017.

[12] X. Lyu et al., “Multiuser Joint Task Offloading and Resource
Optimization in Proximate Clouds,” IEEE Trans. Vehic. Tech.,
vol. 66, no. 4, Apr. 2017, pp. 3435–47.

[13] X. Lyu et al., “Optimal Schedule of Mobile Edge Computing
for Internet of Things Using Partial Information,” IEEE JSAC,
2017.

[14] A. M. Ortiz et al., “The Cluster Between Internet of Things
and Social Networks: Review and Research Challenges,”
IEEE Internet Things J., vol. 1, no. 3, June 2014, pp. 206–15.

[15] Y. Wu et al., “Secrecy-Based Energy-Efficient Data Offload-
ing Via Dual Connectivity Over Unlicensed Spectrums,” IEEE
JSAC, vol. 34, no. 12, Dec. 2016, pp. 3252–70.

Biographies
Xinchen Lyu received his B.E. degree from Beijing Universi-
ty of Posts and Telecommunications (BUPT), China, in 2014.
He is currently pursuing a Ph.D. degree at BUPT. His research
interests include mobile edge computing and radio resource
management.

Hui Tian received her M.S. in micro-electronics and Ph.D. degree
in circuits and systems from BUPT in 1992 and 2003, respec-
tively. Currently, she is a professor at BUPT and the Network
Information Processing Research Center director of the State Key
Laboratory of Networking and Switching Technology. Her current
research interests mainly include radio resource management,
cross-layer optimization, M2M, cooperative communication,
mobile social networks, and mobile edge computing.

Li Jiang received her Ph.D. degree from the School of Information
and Communications Engineering, BUPT, in 2017. She was also
with Simula Research Laboratory as a visiting scholar from 2015
to 2016. She is currently an associate professor with the School of
Automation, Guang Dong University of Technology. Her current
research interests include D2D communications, energy harvesting,
physical layer security, and mobile social networks.

Alexey Vinel is a professor of computer communications with the
School of Information Technology, Halmstad University, Sweden.
He received his Ph.D. degree from the Institute for Information
Transmission Problems, Russia, in 2007 His research interests
include wireless communications, vehicular networking, cooper-
ative intelligent transportation systems, and autonomous driving.

Sabita Maharjan received her M.Eng. in wireless communi-
cation from the Antenna and Propagation Laboratory, Tokyo
Institute of Technology, Japan, in 2008, and her Ph.D. degree
in network and distributed systems from the University of Oslo
and Simula Research Laboratory, Norway, in 2013. She is cur-
rently a postdoctoral fellow with Simula Research Laboratory.
Her current research interests include resource optimization,
network security, game theory, smart grid communications, and
the Internet of Things.

Stein Gjessing received his Dr.Phil. degree in computer science
from the University of Oslo in 1985. He is currently a profes-
sor of computer science with the Department of Informatics,
University of Oslo, Norway, and an adjunct researcher at Sim-
ula Research Laboratory. His current research interests include
network and transport protocols, network resilience, cognitive
radio networks, and the smart grid. His original research was in
the field of object-oriented concurrent programming. He has
researched computer interconnects such as the scalable coher-
ent interface (IEEE Standard 1596), and local area network/
metropolitan area networks such as the resilient packet ring
(IEEE Standard 802.17).

Yan Zhang received his Ph.D. degree from the School of
Electrical and Electronics Engineering, Nanyang Technologi-
cal University, Singapore. He is currently a full professor with
the Department of Informatics, University of Oslo. His current
research interests include next-generation wireless networks
leading to 5G, green and secure cyber-physical systems (e.g.,
smart grid, healthcare, and transport). He is a Regional Editor, an
Associate Editor, on the Editorial Boards, and a Guest Editor of a
number of international journals.

FIGURE 6. Comparison of average energy consump-
tion. The trade-off between latency and energy
consumption is inherent.

Number of requests
105

0.09Av
er

ag
e

en
er

gy
 co

ns
um

pt
io

n
(J)

0.095

0.1

0.105

0.11

0.115

0.12

15 20

Local
Total
Selective, Treq = 1 s
Selective, Treq = 1.5 s

0.085

The proposed selective offloading scheme can minimize the energy consumption of devices under
latency requirements, and the signaling overhead can be further reduced by enabling the devices to be

self-nominated or self-denied for offloading.

