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Geometry optimization is an important part of most quantum chemical calcu-
lations. This article surveys methods for optimizing equilibrium geometries, lo-
cating transition structures, and following reaction paths. The emphasis is on
optimizations using quasi-Newton methods that rely on energy gradients, and
the discussion includes Hessian updating, line searches, trust radius, and rational
function optimization techniques. Single-ended and double-ended methods are
discussed for transition state searches. Single-ended techniques include quasi-
Newton, reduced gradient following and eigenvector following methods. Double-
ended methods include nudged elastic band, string, and growing string methods.
The discussions conclude with methods for validating transition states and fol-
lowing steepest descent reaction paths. C© 2011 John Wiley & Sons, Ltd. WIREs Comput Mol
Sci 2011 1 790–809 DOI: 10.1002/wcms.34

INTRODUCTION

G eometry optimization is a key component of
most computational chemistry studies that are

concerned with the structure and/or reactivity of
molecules. This chapter describes some of the meth-
ods that are used to optimize equilibrium geometries,
locate transition structures (TSs), and follow reac-
tion paths. Several surveys and reviews of geometry
optimization are available.1–14 Rather than an exten-
sive review of the literature, this article is directed to-
ward practical geometry optimization methods that
are currently in use. In particular, it is concerned with
geometry optimization methods applicable to elec-
tronic structure calculations.15,16 Because electronic
structure calculations can be lengthy, geometry opti-
mization methods need to be efficient and robust. For
inexpensive molecular mechanics calculations, sim-
pler methods may be adequate. Most major electronic
structure packages have a selection of geometry op-
timization algorithms. By discussing the components
of various optimization methods we hope to aid the
reader in selecting the most appropriate optimization
methods and in overcoming the occasional difficulties
that may arise. Unconstrained nonlinear optimization
methods have been discussed extensively in numeri-
cal analysis texts (e.g., Refs 17–20). These methods
are designed to find a local minimum closest to the
starting point. Global optimization and conforma-
tional searching are more difficult problems and will
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be reviewed elsewhere in this series. Global mapping
of reaction networks21,22 is outside the scope of this
chapter. Transition path sampling and reaction paths
on free energy surfaces are also not covered.23 Dis-
cussions of optimization methods to find conical in-
tersections and minimum energy seam crossings can
be found elsewhere.22,24–36 Here, we focus on finding
the equilibrium geometry of an individual molecule,
locating a TS for a reaction, and following the reac-
tion path connecting reactants through a TS to prod-
ucts. The geometry optimization methods discussed
in this chapter use energy derivatives and depend on
factors such as the choice of coordinates, methods for
calculating the step direction, Hessian updating meth-
ods, line search, and step size control strategies. Some
of these methods have been compared recently37 for
modest set of test cases for optimizing equilibrium
geometries38 and TSs.39

POTENTIAL ENERGY SURFACES

The structure of a molecule can be specified by giv-
ing the locations of the atoms in the molecule. For a
given structure and electronic state, a molecule has a
specific energy. A potential energy surface describes
how the energy of the molecule in a particular state
varies as a function of the structure of the molecule.
A simple representation of a potential energy surface
is shown in Figure 1, in which the energy (vertical
coordinate) is a function of two geometric variables
(the two horizontal coordinates).

The notion of molecular structure and po-
tential energy surfaces are outcomes of the
Born–Oppenheimer approximation, which allows us
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FIGURE 1 | Model potential energy surface showing minima,
transition structures, second-order saddle points, reaction paths, and a
valley ridge inflection point (Reprinted with permission from Ref 5.
Copyright 1998 John Wiley & Sons.)

to separate the motion of the electrons from the mo-
tion of the nuclei. Because the nuclei are much heav-
ier and move much more slowly than the electrons,
the energy of a molecule in the Born–Oppenheimer
approximation is obtained by solving the electronic
structure problem for a set of fixed nuclear positions.
Because this can be repeated for any set of nuclear
positions, the energy of a molecule can be described
as a parametric function of the position of the nuclei,
thereby yielding a potential energy surface.

A potential energy surface, like the one shown in
Figure 1, can be visualized as a hilly landscape, with
valleys, peaks, and mountain passes. Even though
most molecules have many more than two geomet-
ric variables, most of the important features of a po-
tential energy surface can be represented in such a
landscape.

The valleys of a potential energy surface repre-
sent reactants, intermediates, and products of a reac-
tion. The position of the minimum in a valley repre-
sents the equilibrium structure. The energy difference
between the product valley and reactant valley min-
ima represents the energy of the reaction. Vibrational
motion of the molecule about the reactant and prod-
uct equilibrium geometries can be used to compute
zero-point energy and thermal corrections needed to
calculate enthalpy and free energy differences.40 The
lowest energy pathway between the reactant valley
and the product valley is the reaction path.41 The
highest point on this lowest energy reaction path is
the TS for the reaction, and the difference between
the energy of the TS and the reactant is the energy
barrier for the reaction. A TS is a maximum in one
direction (the direction connecting reactant and prod-

uct along the reaction path) and a minimum in all
other directions (directions perpendicular to the reac-
tion path). A TS is also termed as a first-order saddle
point. In Figure 1, it can be visualized as a mountain
pass connecting two valleys. A second-order saddle
point (SOSP) is a maximum in two directions and a
minimum in all the remaining directions. If a reaction
path goes through an SOSP, a lower energy reaction
path can always be found by displacing the path away
from the SOSP. An n-th order saddle point is a max-
imum in n directions and a minimum in all the other
directions.

For a thermally activated reaction, the energy of
the TS and the shape of the potential energy surface
around the TS can be used to estimate the reaction rate
(see other reviews in this series). The steepest descent
reaction path (SDP) from the TS down to the reactants
and to the products is termed the minimum energy
path (MEP) or the intrinsic reaction coordinate (IRC;
the MEP in mass-weighted coordinates). The reaction
path from reactants through intermediates (if any) to
products describes the reaction mechanism.41 A more
detailed description of a reaction can be obtained
by classical trajectory calculations42–45 that simulate
molecular dynamics by integrating the classical equa-
tions of motion for a molecule moving on a potential
energy surface. Photochemistry involves motion on
multiple potential energy surfaces and transitions be-
tween them (see Ref 46).

ENERGY DERIVATIVES

The first and second derivatives of the energy with
respect to the geometrical parameters can be used to
construct a local quadratic approximation to the po-
tential energy surface:

E(x) = E(x0) + gT
0 �x + 1/2�xT H0�x (1)

where g0 is the gradient (dE/dx) at x0, H0 is the Hes-
sian (d2E/dx2) at x0, and �x = x−x0. The gradient
and Hessian can be used to confirm the character of
minima and TSs. The negative of the gradient is the
vector of forces on the atoms in the molecule. Be-
cause the forces are zero for minima, TSs, and higher-
order saddle points, these structures are also termed
stationary points. The Hessian or matrix of second
derivatives of the energy is also known as the
force constant matrix. The eigenvectors of the mass-
weighted Hessian in Cartesian coordinates corre-
spond to the normal modes of vibration (plus five or
six modes for translation and rotation).47 For a struc-
ture to be characterized as a minimum, the gradient
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must be zero and all of the eigenvalues of the Hessian
corresponding to molecular vibrations must be pos-
itive; equivalently, the vibrational frequencies must
be real (the vibrational frequencies are proportional
to the square root of the eigenvalues of the mass-
weighted Hessian). For a TS, the potential energy
surface is a maximum in one direction (along the
reaction path) and a minimum in all other perpen-
dicular directions. Therefore, a TS is characterized by
a zero gradient and a Hessian that has one (and only
one) negative eigenvalue; correspondingly, a TS has
one and only one imaginary vibrational frequency. An
n-th order saddle point (also called a stationary point
of index n) has a zero gradient and is a maximum in
n orthogonal directions and hence has n imaginary
frequencies. For a TS, the vibrational mode corre-
sponding to the imaginary frequency is also known
as the transition vector. At the TS, the transition vec-
tor is tangent to the reaction path in mass-weighted
coordinates.

Most methods for efficient geometry optimiza-
tion rely on first derivatives of the energy; some also
require second derivatives. For most levels of theory
used routinely for geometry optimization, the first
derivatives can be calculated analytically at a cost
comparable to that for the energy. Analytic second
derivatives are also available for several levels of the-
ory, but the cost is usually considerably higher than
for first derivatives. With the possible exception of
optimization of diatomic molecules, derivative-based
geometry optimization methods are significantly more
efficient than energy-only algorithms. If analytic first
derivatives are not available, it is possible to use sim-
plex and pattern search methods,48–50 but these be-
come less efficient as the number of degree of freedom
increases.51 Thus, it may be more efficient to compute
gradients numerically and to use a gradient-based
optimization algorithm than to use an energy-only
algorithm.

COORDINATES

In principle, any complete set of coordinates can be
used to represent a molecule and its potential energy
surface. However, choosing a good coordinate system
can significantly improve the performance of geome-
try optimizations. Inspection of the Hessian used in
the local quadratic approximation to the potential
energy surface, in Eq. (1), can reveal some favorable
aspects of a good coordinate system. For example, an
optimization will be less efficient if there are some very
stiff coordinates and some very flexible coordinates.
This corresponds to a mixture of very large and very

small eigenvalues of the Hessian, (i.e., the Hessian is
an ill-conditioned matrix). Strong coupling between
coordinates can also slow down an optimization. This
corresponds to off-diagonal Hessian matrix elements
that are comparable in magnitude to the diagonal el-
ements. Strong anharmonicity can seriously degrade
the performance of an optimization. If the Hessian
changes rapidly when the geometry of the molecule is
changed, or if the valley around a minimum is strongly
curved, then the quadratic expression in Eq. (1) is a
poor approximation to the potential energy surface
and the optimization will be slow to converge. The
nature of the Hessian and the anharmonicity of the
potential energy surface will be directly affected by
the choice of the coordinate system.

There are a number of coordinate systems that
are typically used for geometry optimization. Carte-
sian coordinates are perhaps the most universal and
the least ambiguous. An advantage is that most energy
and derivative calculations are carried out in Carte-
sian coordinates. However, they are not well suited
for geometry optimization because they do not reflect
the ‘chemical structure’ and bonding of a molecule.
The x, y, and z coordinates of an atom are strongly
coupled to each other and to the coordinates of neigh-
boring atoms.

Internal coordinates such as bond lengths and
valence angles are more descriptive of the molecular
structure and are more useful for geometry optimiza-
tion. Bond stretching requires more energy than angle
bending or torsion about single bonds. More impor-
tantly, the coupling between stretches, bends, and tor-
sions are usually much smaller than between Carte-
sian coordinates. In addition, internal coordinates are
much better than Cartesians for representing curvilin-
ear motions such as valence angle bending and rota-
tion about single bonds. For an acyclic molecule with
N atoms, it is easy to select set of 3N−6 internal coor-
dinates to represent the molecule (3N−5 coordinates
for a linear molecule). Z-matrix coordinates are an ex-
ample of such a coordinate system.52 It is straightfor-
ward to convert geometries and derivatives between
Cartesian and Z-matrix internal coordinates.53

For acyclic molecules, the set of all bonds, an-
gles, and torsions represents the intrinsic connectiv-
ity and flexibility of the molecule. However, for a
cyclic molecule, this introduces more than the 3N−6
coordinates required to define the geometry of
the molecule. Such a coordinate system has a
certain amount of redundancy in the geometric
parameters.53–68 Because only 3N−6 of these redun-
dant internal coordinates can be transformed back
to Cartesian coordinates in three dimensions, cer-
tain combinations of the redundant internals must
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be constrained during the optimization. The set of all
bonds, valence angles, and torsions (if necessary, aug-
mented by out-of-plane bends and linear bends) con-
stitutes a primitive redundant coordinate system.53,58

In some cases, it may be advantageous to form lin-
ear combinations of the primitive redundant inter-
nals to form natural or delocalized redundant internal
coordinates54–57 or symmetry-adapted redundant in-
ternal coordinates. For periodic systems such as solids
or surfaces, unit cell parameters need to be added66–68

(either explicitly or implicitly via coordinates that
cross the boundaries of the unit cell). For molecules
in nonisotropic media, additional coordinates are
needed to specify the orientation of the molecule. For
systems containing more than one fragment, addi-
tional coordinates are required to specify the positions
of the fragments relative to each other. The union of
the redundant internal coordinates for the reactants
and products is usually a good coordinate system for
TS optimization.58 The transformation of Cartesian
coordinates and derivatives to redundant internals is
straightforward, but the back transformation of a fi-
nite displacement of redundant internals to Cartesian
usually is solved iteratively.53–68

NEWTON AND QUASI-NEWTON
METHODS

As described in standard texts on optimization,17–20

most nonlinear optimization algorithms are based on
a local quadratic approximation of the potential en-
ergy surface; Eq. (1). Differentiation with respect to
the coordinates yields an approximation for the gra-
dient, given by:

g(x) = g0 + H0�x. (2)

At a stationary point, the gradient is zero, g(x) =
0; thus, in the local quadratic approximation to the
potential energy surface, the displacement to the min-
imum is given by:

�x = −H−1
0 g0. (3)

This is known as the Newton or Newton–Raphson
step.

Newton and quasi-Newton methods are the
most efficient and widely used procedures for opti-
mizing equilibrium geometries and can also be used
effectively to find TSs. For each step in the Newton
method, the Hessian in Eq. (3) is calculated at the cur-
rent point. For quasi-Newton methods, Eq. (3) is used
with an approximate Hessian that is updated at each
step of the optimization (see below). Because actual
potential energy surfaces are rarely quadratic, several

Newton or quasi-Newton steps are required to reach a
stationary point. For minimization, the Hessian must
have all positive eigenvalues (i.e., positive definite).
If one or more eigenvalues are negative, the step will
be toward a first or higher-order saddle point. Thus,
without some means of controlling the step size and
direction, simple Newton steps are not robust. Sim-
ilarly, if the aim is to optimize to a TS, the Hessian
must have one and only one negative eigenvalue, and
the corresponding eigenvector (i.e., the transition vec-
tor) must be roughly parallel to the reaction path.
Methods for ensuring that the step is in the desired
direction for minimization or TS optimization are dis-
cussed in the section dealing with step size control.

At each step, Newton methods require the ex-
plicit calculation of the Hessian, which can be rather
costly. Quasi-Newton methods start with an inex-
pensive approximation to the Hessian. The difference
between the calculated change in the gradient and
the change predicted with the approximate Hessian
is used to improve the Hessian at each step in the
optimization.17–20

Hnew = Hold + �H (4)

For a quadratic surface, the updated Hessian
must fulfill the Newton condition,

�g = Hnew�x, (5)

where �g = g(xnew) − g(xold) and �x = (xnew − xold).
However, there are an infinite number of ways to
update the Hessian and fulfill the Newton condition.
One of the simplest updates is the symmetric rank
one (SR1) update,17–20 also known as the Murtagh–
Sargent update.69

�HSR1 = (�g − Hold�x) (�g − Hold�x)T

(�g − Hold�x)T�x
(6)

This formula can encounter numerical problems
if |�g − Hold�x| is very small. The Broyden family
of updates70 avoids this problem while ensuring that
the Hessian update is positive definite. The Broyden–
Fletcher–Goldfarb–Shanno (BFGS) update70–73 is the
most successful and widely used member of this
family:

�HBFGS = �g �gT

�gT�x
− Hold�x �xTHold

�xTHold�x
. (7)

For TS optimization, it is important that the
Hessian has one and only one negative eigenvalue.
This should be checked at every step of the opti-
mization. If the Hessian does not have the correct
number of negative eigenvalues, the eigenvalues need
to be shifted or one of the methods for step size control
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needs to be used (see Step Size Control). The initial es-
timate of the Hessian for TS optimizations must have
one negative eigenvalue and the associated eigenvec-
tor should be approximately parallel to the reaction
path. The Hessian update should not be forced to
be positive definite. The Powell-symmetric-Broyden
(PSB) update18 fulfills this role:

�HPSB = (�g − Hold�x)�xT + �x (�g − Hold�x)T

�xT�x

− (�xT(�g − Hold�x)) �x �xT

(�xT�x)2
. (8)

Bofill74 found that a combination of the PSB and
SR1 updates performs better for TS optimizations:

�HBofill = φ�HSR1 + (1 − φ)�HPSB,

where φ = ((�g − Hold�x)T�x) 2

|�g − Hold�x|2 |�x|2 . (9)

Farkas and Schlegel75 constructed a similar up-
date for minimization:

�HFS = φ1/2�HSR1 + (1 − φ1/2)�HBFGS, (10)

where φ is same as in Eq. (9). Bofill76 has recently re-
viewed Hessian updating methods and proposed some
promising new formulas suitable for minima and TSs.
For controlling the step size by trust radius (τ ) meth-
ods or rational function optimization (see Step Size
Control), diagonalizing the Hessian can become a
computational bottleneck for large systems. Updat-
ing the eigenvectors and eigenvalues of the Hessian
can be considerably more efficient.77

Quasi-Newton methods require an initial esti-
mate of the Hessian. A scaled identity matrix may
be sufficient in some cases, but a better starting Hes-
sian can be obtained from knowledge of the structure
and connectivity of the molecule. Simple empirical
estimates of stretching, bending, and torsional force
constants are usually satisfactory.78–80 Calculation of
an initial Hessian by molecular mechanics or semi-
empirical electronic structure methods can provide a
better estimate. If the molecule has been optimized at
a lower level of theory, the updated Hessian from the
optimization or the Hessian from a frequency calcu-
lation at a lower level of theory are even better initial
estimates. For harder cases, the rows and columns
of the Hessian can be calculated numerically for a
few critical coordinates. For more difficult cases, the
full Hessian can be calculated at the beginning of the
optimization and recalculated at every few step if nec-
essary. Recalculating the Hessian at each step corre-
sponds to the Newton method.

Standard quasi-Newton methods store and in-
vert the full Hessian. For large optimization problems,

this may be a bottleneck. The updating methods can
be reformulated to update the inverse of the Hessian.
For example, the BFGS formula for the update of the
inverse Hessian is:

�BBFGS = �x�xT

�xT�g
− Bold�g�gTBold

�gTBold�g
, (11)

where B = H−1, and the updated inverse Hessian
obeys �x = B�g. Limited memory quasi-Newton
methods such as L-BFGS80–89 avoid the storage of the
full Hessian or its inverse which would require O(n2)
memory for n variables. Instead, they start with a di-
agonal inverse Hessian, and store only the �x and �g
vectors from a limited number of previous steps; thus,
the storage is only O(n). The inverse Hessian is writ-
ten as a diagonal Hessian plus the updates using the
stored vectors. For the Newton step, xnew = xold −
B gold, the product of the updated inverse Hessian
and the gradient involves only O(n) work because it
can be expressed in terms of dot products between
vectors.

CONJUGATE GRADIENT METHODS

Conjugate gradient methods are suitable for very
large systems because they require less storage than
limited memory quasi-Newton methods. The concept
behind conjugate gradient methods is to choose a
new search direction that will lower the energy while
remaining at or near the minimum in the previous
search direction. If the Hessian has coupling between
the coordinates, the optimal search directions are not
orthogonal but are conjugate, in the sense that �xnew

H�xold = 0. Two of the most frequently used con-
jugate gradient methods are Fletcher–Reeves90 and
Polak-Ribiere91:

si = − gi + gT
i gi

gT
i−1gi−1

si−1 (12)

si = − gi + (gi − gi−1)Tgi

gT
i−1gi−1

si−1, (13)

where si and si−1 are the current and previous search
directions, respectively, and gi and gi−1 are the current
and previous gradients, respectively. Note that only
three vectors need to be stored. Unlike quasi-Newton
methods, conjugate gradient methods require a line
search at each step in order to converge.

GDIIS

Direct inversion of the iterative subspace (DIIS) con-
structs a solution to a set of linear equations such
as Eq. (3) by expanding in a set of error vectors or
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residuals from prior iterations. Geometry optimiza-
tion by DIIS (GDIIS) applies this approach to the
optimization of equilibrium geometries and transi-
tion structures.92–95 In the numerical analysis liter-
ature, DIIS is known as generalized minimum of the
residual (GMRES).96 It has its origins in methods like
the Krylov,97 Lanczos,98 and Arnoldi99 algorithms.
In GDIIS, the goal is to construct a new geometry as
a linear combination of previous geometries so as to
minimize the size of the Newton step [i.e., the residual
in the iterative solution of Eq. (3)].

x∗ =
∑

i

ci xi g∗ =
∑

i

ci g(xi )
∑

i

ci = 1 (14)

Minimize |xnew − x∗|2 with respect to ci ,

where xnew = x∗ − H−1g∗ (15)

The GDIIS coefficients are determined by minimiz-
ing the residual and can be obtained by solving the
following:[

A 1
1 0

] [
c
λ

]
=

[
0
1

]
,

where Ai j = (H−1gi )T(H−1g j ). (16)

The GEDIIS method95 uses Aij = (gi − gj) (xi −
xj). If A becomes singular, the oldest geometry is dis-
carded and the solution is attempted again. The ap-
proximate Hessian can be held constant, but better
performance is obtained if it is updated. If the mini-
mization wanders into a region with a negative eigen-
value, it may converge to a TS. For a TS optimization,
GDIIS sometimes converges not to the desired reac-
tion barrier but to the nearest saddle point. One way
to control GDIIS optimizations is to compare the pre-
dicted geometry with the one from a Newton step.94

If the angle is too large, it is safer to take the New-
ton step (provided the Hessian has the correct num-
ber of negative eigenvalues). In the final stages of a
minimization, GDIIS sometimes converges faster than
quasi-Newton methods; a hybrid of quasi-Newton
and DIIS methods can be more efficient.95

LINE SEARCH

Newton, quasi-Newton, and GDIIS methods will con-
verge without a line search if the surface is quadratic.
However, life is not quadratic. For anharmonic sur-
faces, the Newton step (Eq. (3)) may be too large or
too small. Near an inflection point, Newton steps can
get into an infinite hysteresis loop. Conjugate gradient
methods need a line search because they generate only
a search direction but not a step length. Thus, a line
search is a good idea for any method, especially if it

can be done with little or no extra cost. The line search
need not be exact but must fulfill the Wolfe condition,
�E < α gT�x and gnew T�x > β gold T�x, reducing the
function value and the magnitude of the gradient (α ≈
0.1 and β ≈ 0.5 have been found to be practical for
quasi-Newton optimizations18). A simple approach
is to fit a polynomial to the energy and gradient at
the current and the previous geometry (a cubic poly-
nomial or a quartic polynomial constrained to have
no negative second derivatives100). The minimum is
found on the polynomial, the gradient is interpolated
to the minimum, and the interpolated gradient is used
for the next quasi-Newton step. If there is a large
extrapolation to the minimum, it is safer to explic-
itly search for the minimum by doing additional en-
ergy (and gradient) calculations to obtain a sufficient
reduction in the energy (and the magnitude of the
gradient).

STEP SIZE CONTROL

The quadratic approximation to the potential energy
surface is satisfactory only for a small local region,
usually specified by a trust radius, τ . Steps outside this
region are risky and optimizations are more robust if
the step size does not exceed τ . An initial estimate of τ

can be updated during the course of an optimization
based on how well the potential energy surface can
be fit by a quadratic expression. A typical updating
recipe is as follows18:

ρ = �E/(gT�x + 1/2 �xT H0 �x).

If ρ > 0.75 and 5/4 |�x| > τ old,

then τ new = 2 τ old.

If ρ < 0.25, then τ new = 1/4 |�x|.
Otherwise, τ new = τ old. (17)

The simplest approach to step size control is to
scale the Newton step back if τ is exceeded. A better
approach is to minimize the energy under the con-
straint that the step is not larger than τ .18,20 In the
trust radius method (TRM), this is done by using a
Lagrangian multiplier, λ, and corresponds to min-
imizing E(x)−1/2 λ (�x2−τ 2). With the usual
quadratic approximation for E(x), this yields:

g0 + H0�x − λ�x = 0

or �x = −(H0 − λI)−1g0 (18)

where I is the identity matrix.
For minimizations, λ must be chosen so that all

the eigenvalues of the shifted Hessian, H − λ I, are
positive [i.e., λ must be smaller (more negative) than
the lowest eigenvalue of H]. Thus, even if H has one or
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FIGURE 2 | Plot of the displacement squared,
|�x |2 = |(H − λ I )−1g|2, as a function of the Hessian shift
parameter λ (Reprinted with permission from Ref 102. Copyright 1983
ACS Publications.). The singularties occur at the eigenvalues of the
Hessian, hi . (a) For displacement to a minimum with a trust radius of
τ 1, shift parameter λ1 must be less than the lowest eigenvalue of the
Hessian, h1. (b) For a displacement to a transition structure, the shift
parameter must be between h1 and 1

2 h2. For τ 1, the lower of the two
solutions is chosen. For a smaller trust radius τ 2, there is no solution;
λ2 is chosen as the minimum in the curve [or λ2 = 1

2 (h1 + 1
2 h2) if λ2

> 1
2 h2] and the displacement is scaled back to the trust radius (see

Refs 101–104 for more details).

more negative eigenvalues, this approach can be used
to take a controlled step downhill toward a minimum.
A plot of the square of step size as a function of λ is
shown in Figure 2(a) (the singularities occur when λ

is equal to one of the eigenvalues of H).
For TS optimization, the shifted Hessian must

have one negative eigenvalue (i.e., λ must be larger
than the lowest eigenvalue of H but smaller than the
second lowest eigenvalue). As shown in Figure 2(b), if
there are two solutions for a given step size, λ is usu-
ally chosen to be closer to the lowest eigenvalue; if
there are no solutions for a given step size, λ is chosen
as the minimum between the lowest and second low-
est eigenvalue and the resulting step is scaled back to
the τ .101–104 This procedure then allows a controlled
step to be taken toward the TS even when the Hes-
sian does not have the correct number of negative
eigenvalues.

An alternative approach for TS optimization is
to use the eigenvectors of the approximate Hessian to
divide the coordinates into two groups; the optimiza-
tion then searches for a maximum along one eigen-
vector and for a minimum in the remaining space.
The step size in this approach can be controlled by
using two Lagrangian multipliers, one for the step up-
hill along one eigenvector and the other for the step

downhill in the remainder of the space. Because this
approach allows one to follow an eigenvector uphill
even if it does not have the lowest eigenvalue, it is
also known as eigenvector following.74,101–109 Alter-
natively, a separate λ can be chosen for each eigen-
vector such that the step varies from steepest descent
for large gradients to a Newton step with a shifted
Hessian for moderate gradients to a simple Newton
step for small gradients.2 For all of these approaches
to transition structure optimization, the Hessian must
have a suitable eigenvector that resembles the desired
reaction path. Instead of focusing on a single eigen-
vector, the reduced potential surface approach selects
a small subset of the coordinates for the transition
structure search and minimizes the energy in the re-
maining space.110,111

The rational function optimization (RFO)
method is a closely related approach for con-
trolling the step size for both minimization and
transition structure searching that replaces the
quadratic approximation by a rational function
approximation.105

�E(x) = gT�x + 1/2�xTH�x
1 + �xTS�x

= 1
2

[�x 1]
[

H g
gT 0

] [
�x
1

]

[�x 1]
[

S 0
0 1

] [
�x
1

] (19)

Minimizing �E with respect to �x by setting
d�E/d�x = 0 leads to an eigenvalue equation involv-
ing the Hessian augmented by the gradient.[

H g
gT 0

] [
�x
1

]
= 2 �E

[
S 0
0 1

] [
�x
1

]
(20)

Typically, S is chosen as a constant times the
identity matrix [in this case the top row of Eq. (20) re-
duces to �x = −(H0 − λI)−1g0, as in TRM; Eq. (18)].
The lowest eigenvalue and eigenvector of the aug-
mented Hessian are used for minimizations, whereas
the second lowest eigenvalue and eigenvector are cho-
sen for transition structure optimizations. The �x
obtained by the RFO approach is reduced if it is
larger than the τ .105,106,108,109 A partitioned RFO
method may be better for saddle point searches if the
Hessian does not have the correct number of neg-
ative eigenvalues.105 In this case, one eigenvector is
chosen to be followed uphill to a maximum and the
remaining eigenvectors are chosen for minimization;
the RFO method is used for optimization in both sub-
spaces. It is possible to reach other transition struc-
tures by following an eigenvector other than the one
with the lowest eigenvalue.105–109
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WIREs Computational Molecular Science Geometry optimization

CONSTRAINED OPTIMIZATION

Under a variety of circumstances, it may be necessary
to apply constraints while optimizing the geometry
(e.g., scanning potential energy surfaces, coordinate
driving, reaction path following, etc.). For nonre-
dundant coordinate systems and simple constraints,
the coordinates being held constant can be easily re-
moved from the space of variables being optimized.
For more general constraints and/or redundant inter-
nal coordinate systems, constraints can be applied by
penalty functions, projection methods, or Lagrangian
multipliers.

In the penalty function method, the constraints
Ci (x) = 0 are imposed by adding an extra term,
1/2

∑
αiCi (x)2, to the energy in Eq. (1) and the

energy is minimized as usual. Because the α′
i s need

to have suitably large values so that the constraints
are approximately satisfied at the minimum, the opti-
mization may converge much slower than the corre-
sponding unconstrained optimization.

The preferred method for including con-
straints in an optimization is by using Lagrangian
multipliers.

L(x) = E(x) +
∑

i

λiCi (x) (21)

At convergence of the constrained optimization,
the derivative of the Lagrangian L(x) with respect
to the coordinate x and the Lagrangian multiplier λi

must be zero. In the LQA,

∂L(x)
∂x

= g0 + H0�x +
∑

i

λi
∂Ci (x)

∂x
= 0

and
∂L(x)
∂λi

= Ci (x) = 0. (22)

Because the Lagrangian multipliers are opti-
mized along with the geometric variables, this method
generally converges much faster than the penalty func-
tion method and the constraints are satisfied exactly.
In the special case in which the constraint is linear
function of the displacements, cT�x = c0, the La-
grangian multiplier problem can be solved by using
an augmented Hessian,

g0 + H0�x + λc = 0 and cT�x = c0

or
[

H c
cT 0

] [
�x
λ

]
=

[−g0

c0

]
(23)

Another way of applying linear constraints is
the projection method, in which a projector P is used
to remove the directions in which the displacements
are constrained to be zero.

Pg0 + PH0P�x + α(I − P) = 0,

P = I −
∑

i

cicT
i /|ci |2, (24)

where the ci are a set of orthogonal constraint vec-
tors and α > 0. For redundant internal coordinates,
the projector needs to remove the coordinate redun-
dancies as well as the constraint directions.58

SPECIAL CONSIDERATIONS FOR
TRANSITION STRUCTURE
OPTIMIZATION

Finding a minimum is comparatively easy because the
negative of the gradient always points downhill. By
contrast, a transition structure optimization must step
uphill in one direction and downhill in all other or-
thogonal directions. Often, the uphill direction is not
known in advance and must be determined during the
course of the optimization. As a result, numerous spe-
cial methods have been developed for transition struc-
ture searching and many of them are closely related.
They can be loosely classified as single-ended and
double-ended methods.2 Single-ended methods start
with an initial structure and displace it toward the
transition structure. These algorithms include quasi-
Newton and related methods (as discussed above and
in Quasi-Newton Methods for Transition Structures
and Related Single-Ended Methods). Double-ended
methods start from the reactants and products and
work from both sides to find the transition struc-
ture and the reaction path. These include the nudged
elastic band (NEB) method, string method (SM), and
growing string method (GSM; see Chain-of-States and
Double-Ended Methods).

The success of a given transition structure op-
timization method depends on the topology of the
surface as well as the starting structure(s), initial Hes-
sian(s), and coordinates. The two dimensional con-
tour plots in Figure 3 illustrate some of the impor-
tant features that can be found in higher dimensional
surfaces.112,113 If the change from reactant to product
is dominated by a single coordinate, the potential en-
ergy surface will have an approximately linear valley,
as shown in Figure 3(a). Hindered rotation about a
single bond is an example of such an I-shaped sur-
face. All methods should be able to find the transition
structure on this type of surface without difficulty.
Making one bond and breaking the other results in
an L- or V-shaped surface, as shown in Figure 3(b).
Because the reaction path is strongly curved, finding
the transition structure can be a bit more difficult.
A T-shaped surface involves a transition structure
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FIGURE 3 | Various classes of reaction channels near the
transition structure on reactive potential energy surfaces: (a) I-shaped
valley, (b) L- or V-shaped valley, (c) T-shaped valley, and (d) H- or
X-shaped valley. (Reprinted with permission from Ref 113. Copyright
2009 ACS Publications.)

in a hanging valley at the side of a main valley,
Figure 3(c). A method that follows the main valley
will miss the transition structure, but will reach the
transition structure if it starts from the other valley.
The H- or X-shaped surface in Figure 3(d) is the most
difficult because following the valley floor from either
the reactant or the product side will miss the transi-
tion structure.

Quasi-Newton and single-ended methods are
discussed first. These methods differ primarily in the
way they try to get close to the quadratic region of
transition structure. Double-ended methods start with
the reactants and products, and optimize the reaction
path as well as the transition structure.

Quasi-newton Methods for Transition
Structures
Newton and quasi-Newton algorithms are the most
efficient single-ended methods for optimizing transi-
tion structures if the starting geometry is within the
quadratic region of the transition structure. With suit-
able techniques for controlling the optimization steps
such as TRM, RFO and eigenvector following (see
Step Size Control), these methods will also converge
to a transition structure even if they start outside the

quadratic region. Many of the related methods differ
primarily in the techniques they use to get close to the
quadratic region. There are three main differences in
using quasi-Newton methods to optimize transition
structures compared with minima:

1. The Hessian update must allow for nega-
tive eigenvalues (Newton and Quasi-Newton
Methods). BFGS (Eq. (7)) yields a positive
definite update and is not appropriate. SR1
and PSB updates are suitable (Eqs. (6) and
(8)); the Bofill update74 (Eq. (9)) combines
SR1 and PSB yielding better results.

2. Line searches (Step Size Control) are gener-
ally not possible because the step toward the
transition structure may be uphill or down-
hill. If the coordinates can be partitioned a
priori into a subspace spanning the coordi-
nates involved in the transition vector and
the remaining subspace involving only coor-
dinates to be minimized, then a line search
can be used in the latter subspace.

3. Controlling the step size and direction (see
Step Size Control) are keys to the success of
quasi-Newton methods for transition struc-
tures, especially if the initial structure is
not in the quadratic region. For the TRM
(Eq. (18)), the shifted Hessian, H − λI, is
required to have one negative eigenvalue
and λ must be chosen so that the step size
does not exceed τ . This is illustrated in
Figure 2(b) and discussed in the section Step
Size Control. For the partitioned rational
function optimization and eigenvector fol-
lowing methods,105–109 Eqs. (19) and (20),
two different values of λ are used, one to
shift the eigenvalue for the maximization di-
rection and the other to shift the eigenvalues
for minimization in the remaining directions.

A quasi-Newton optimization of a transition
structure requires an initial geometry and an initial
estimate of the Hessian. The initial geometry must be
somewhere near the quadratic region of the transition
structure. This can be challenging at times because
our qualitative understanding of transition structure
geometries is not as well developed as for equilibrium
geometries. There are some general rules-of-thumb
that may be useful. For example, the bonds that are
being made or broken in a reaction are, in many
cases, elongated by ca 50% in the transition struc-
ture. The Hammond’s postulate114 is useful for esti-
mating the position of the transition structure along
the reaction path. It states that the transition structure
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WIREs Computational Molecular Science Geometry optimization

is more reactant-like for an exothermic reaction and
more product-like for an endothermic reaction. Or-
bital symmetry/phase conservation rules115 may indi-
cate when a reaction should occur via a non-least-
motion pathway. The choice of coordinates for the
optimization is also very important. Often the union
between the (redundant) internal coordinates of the
reactants and products provides a good coordinate set
for the transition structure. Sometimes extra dummy
atoms may need to be added to avoid problems with
the coordinate system.

When a transition structure for an analogous re-
action is not available as an initial guess, then brack-
eting the search region for the transition structure op-
timization can be useful. In the QST2 approach,116 a
structure on the reactant side and one on the product
side are used to provide bounds on transition struc-
ture geometry and to approximate the direction of
the reaction path through the transition structure.
The QST3 input adds a third structure as an initial
estimate of the transition structure. A series of steps
is taken along the path connecting these two or three
structures until a maximum is reached. Then, a full di-
mensional quasi-Newton optimization is carried out
to find the transition structure.

Quasi-Newton methods require an initial esti-
mate of the Hessian that has a negative eigenvalue
with a corresponding eigenvector that is roughly
parallel to the desired reaction path. The empir-
ical rules for estimating Hessians for equilibrium
geometries78–80 do not provide suitable estimates of
the required negative eigenvalue and eigenvector of
the Hessian. Thus, quasi-Newton transition structure
optimizations are typically started with an analytical
or numerical calculation of the full Hessian (or at least
numerical calculation of the most important compo-
nents of the Hessian needed to obtain the transition
vector). For QSTn methods,116 updating the Hessian
during initial maximization steps along the reaction
path is usually sufficient to produce a suitable nega-
tive eigenvalue and corresponding eigenvector.

An empirical valence bond (EVB) model117 of
the surface can be useful in obtaining a starting ge-
ometry and an initial Hessian for a quasi-Newton
transition structure optimization. A quadratic surface
is constructed around the reactant minimum and an-
other around the product minimum. These two sur-
faces intersect along a seam. The lowest point along
this seam is a good estimate of the transition structure
geometry118,119 (provided that there are no additional
intermediates or transition structures along the reac-
tion path). An initial estimate of the Hessian can be
obtained from the interaction of the reactant surface
and the product surface using a 2 × 2 EVB Hamilto-

nian with a suitable guess for the interaction matrix
element.120

If more information about the potential energy
surface is needed to find the quadratic region of the
transition structure, then one can calculate the energy
for a series of points along the linear synchronous
transit121 (LST) path between reactants and products
to find a maximum along this approximate path (LST
scan); internal or distance matrix coordinates are bet-
ter than Cartesian coordinates for an LST scan. For
more complex systems, two or more directions may
need to be scanned to find the ridge separating re-
actants and products. These scans could be carried
out with or without optimizing the remaining coor-
dinates (relaxed vs rigid surface scan). The reduced
surface method110,111 selects a set of coordinates to
span a two- or three-dimensional surface and mini-
mizes the energy with respect to all of the remaining
coordinates. This reduced dimensional surface can be
interpolated using distance-weighted interpolants and
searched exhaustively for the lowest energy transition
structures and reaction paths.

Related Single-Ended Methods
In principle, one should be able to start at the re-
actants (or products) and go uphill to the transi-
tion structure. However, all directions from a mini-
mum are uphill and most will end at higher energy
transition structures or higher-order saddle points.
One approach is to choose a coordinate that will
carry the molecule from reactant to product and step
along this coordinate while minimizing all other di-
rections. This is known as coordinate driving and
involves a series of constrained optimizations (see
Constrained Optimization). Coordinate driving has
its pitfalls.122–125 For example, if the dominant co-
ordinate changes along the reaction path, this ap-
proach may not work (e.g., Figure 3(c) and (d)).
Alternatively, one can choose a direction and per-
form a constrained optimization of the components
of the gradient perpendicular to this direction. This is
known variously as line-then-plane,126 reduced gradi-
ent following,127–129 and Newton trajectories.130–132

Growing string methods (GSM)131–136 are coordinate
driving or reduced gradient following/Newton trajec-
tory methods that start from both the reactant and
product side. Because GSMs are double-ended meth-
ods closely related to chain-of-states methods like
NEB method and SM; they are discussed in the next
section.

An alternative to coordinate driving and re-
duced gradient following is to step uphill along
the lowest eigenvector of the Hessian—this amounts
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to the walking up valleys or eigenvector following
method described above.101–109 Stepping toward the
transition structure is handled by a quasi-Newton ap-
proach with TRM and RFO, Eqs. (18)–(20), to con-
trol the step.

The dimer method137–140 is a variant of the
eigenvector following approach that uses gradients
calculated at two closely spaced points to keep track
of the direction to search for a maximum. At each
step, the dimer is rotated to minimize the sum of the
two energies (this can be the more costly step in the
dimer method). The minimum in the dimer energy
occurs when the vector between the points is aligned
with the Hessian eigenvector with the lowest eigen-
value. The midpoint of the dimer is displaced uphill
toward the transition structure in a manner similar to
the eigenvector following method.

Another way to walk uphill along the shal-
lowest ascent path is to follow a gradient extremal
path.141–143 Although steepest descent reaction paths
can only be followed downhill, gradient extremal
paths are defined locally (the gradient is an eigenvec-
tor of the Hessian) and can be followed uphill as well
as downhill. A number of algorithms have been de-
veloped for following gradient extremal paths.144–146

Gradient extremals do pass through minima, transi-
tion structures, and higher-order saddle points; how-
ever, they have a tendency to wander about the sur-
face rather than follow the more direct route that
steepest descent paths take.146,147 This makes gradi-
ent extremal path following less attractive for transi-
tion structure optimization.

The image function or associated surface
approach148–150 converts a transition structure search
into a minimization on a modified surface that has
a minimum that coincides with the transition struc-
ture of the original function. In a representation in
which the Hessian is diagonal, this is accomplished
by choosing an eigenvector to follow and invert-
ing the sign of the corresponding component of the
gradient and Hessian eigenvalue. A TRM approach,
Eq. (18), is then used to search for the minimum on
the image function or associated surface. The transi-
tion structure can also be optimized as a minimum
on the gradient norm surface, |g(x)| (Refs 151–153);
however, the gradient norm can have additional min-
ima at nonstationary points in which the gradient is
not zero. Because of the many minima and smaller
radius of convergence, minimizing the gradient norm
is less practical for transition structure optimizations.

Bounds on the transition structure can be found
by approaching it from both the reactant and product
side, providing progressively tighter limits.142,154,155

This is closely related to the GSM131–136 (see below).

FIGURE 4 | An example of a double-ended reaction path
optimization on the Muller–Brown surface.154 The path optimization
with 11 points starts with the linear synchronous transit path (black);
the first two iterations are shown in blue and green, respectively. The
path after 12 steps is in red and can be compared with the steepest
descent path in light blue.

Given two points on opposite sides of the ridge
separating reactants from products, the ridge
method156,157 can also be used to optimize the tran-
sition structure. A point on the ridge is obtained by
finding a maximum along a line connecting a point
in the reactant valley and a point in the product val-
ley. Two points on opposite sides of the ridge point
are generated by taking small steps along this line.
Then, a downhill step is taken from these two points
to generate two new points; the maximum along the
line between these new points is a lower energy ridge
point. The process is repeated until a minimum is
found along the ridge; this minimum is a transition
structure.

Chain-of-States and Double-Ended
Methods
Instead of optimizing a single point toward the transi-
tion structure for a reaction, an alternative approach
is to optimize the entire reaction path connecting
reactants to products. Typically this is done by repre-
senting the path by a series of points, that is, a chain-
of-states. An example of a path optimization on the
Muller–Brown surface154 is shown in Figure 4. The
various methods of this type differ primarily by how
the points are generated, what function of the points is
minimized, and what constraints are imposed to con-
trol the optimization. Many of the path optimization
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methods are based on minimizing the integral of
the energy along the path, normalized by the path
length158:

Epath = 1
L

∫
E(x(s)) ds, (25)

where L is the total length of the path. Although this
does not yield a steepest descent path,159 it provides a
good approximation to it. The elastic band or chain-
of-states method replaces the integral by a discrete
set of points, and the path is found by a constrained
minimization of the sum of the energies of the points
on the path from reactants to products,

Vpath =
∑

E(xi ), (26)

where xi are the points on the path, which are required
to remain equally spaced. Additional potentials are
sometimes introduced to prevent the path from kink-
ing or coiling up in minima.160 The number of points
needed depends on the nature of the path (e.g., num-
ber of intermediates and transition states, curvature
of the path, etc.) and can range from less than 10 to
more than 50. Typically, several thousands of steps
are required for convergence, primarily because the
motions of adjacent points are strongly coupled. The
nudged elastic band (NEB) method161–170 and string
method (SM)171–176 are two current approaches that
offer some improvement in the convergence of the
path optimization.

In the NEB method,161–163 the points are kept
equally spaced by adding a spring potential between
the points (c.f. penalty function method, Constrained
Optimization):

Vspring = 1
2

kspring
∑

(xi − xi−1)2. (27)

The gradient for a point has contributions from
the potential energy surface and from the spring po-
tential, which can be projected into components par-
allel and perpendicular to the path:

gi = dVpath

dxi
g‖

i = (
gT

i τ i
)
τ i g⊥

i = gi − g‖
i , (28)

g̃i = dVspring

dxi
g̃‖

i = (
g̃T

i τ i
)
τ i g̃⊥

i = g̃i − g̃‖
i , (29)

where τ i is the normalized tangent to the path at xi.
The tangent can be calculated by central difference
(of xi−1 and xi+1) or by forward difference using the
point uphill from xi. The NEB method161–163 uses the
gradient of the spring potential to displace (nudge)
the points along the reaction path, and uses the gra-
dient of the unmodified potential energy surface for
directions perpendicular to the path.

gNEB
i = g⊥

i + g̃‖
i (30)

The doubly NEB method164 includes a portion
of the spring gradient perpendicular to the path (e.g.,
a second nudge).

gDNEB
i = g⊥

i + g̃‖
i + (

g̃⊥
i − (

g̃⊥T
i g⊥

i

)
g⊥

i /|g⊥
i |2) (31)

This accelerates the optimization in the early stages,
but may inhibit full convergence in the later stages.168

The original NEB method used a quenched or
damped Velocity Verlet method to propagate the
points toward the path.161–163 After each step, most
of the velocity is removed. Alternatively, a quasi-
Newton method can be used for the constrained op-
timization, preferably by moving all of the points
simultaneously.164,165,167,168 Because the dimension
of the optimization problem (number of coordinate
times the number of points) can be rather large, lim-
ited memory quasi-Newton methods such as L-BFGS
and ABNR have been used.164,165,167,168 Currently,
the NEB/L-BFGS method is the most efficient and sta-
ble nudge elastic band method.168

The spring potential used to maintain uniform
spacing in the NEB method introduces additional cou-
pling between the points on the path that slows down
the convergence of the optimization. An early path
optimization method avoided the spring potential by
moving the points so that the gradient would lie on
the steepest descent path.173 The recently developed
string method171,172 also minimizes the perpendicular
gradient, g⊥

i in Eq. (28), for the points on the path.
A cubic spline is used to redistribute the points to
maintain equal spacing and the fourth-order Runge–
Kutta method is used to evolve the path.171,172 In
the quadratic string method, the points move on lo-
cal quadratic approximations to the surface using
updated Hessians.174,175 Alternatively, the L-BFGS
method can be used to propagate all of the points
at the same time.168 The efficiency of the best string
methods appears to be similar to the best NEB meth-
ods, requiring from hundreds to thousands of gradi-
ent calculations to optimize the path.168,176

The GSM133–136 reduces the total effort by gen-
erating the points one at a time starting from the
reactants and products. This is similar to the line-
then-plane method126 and reduced gradient follow-
ing/Newton trajectories131,132 from both ends of the
path. The GSM is also closely related to earlier meth-
ods that stepped from the reactant and product to-
ward the transition structure.142,154,155 As the string
grows toward the center, the endpoints of the string
provide better brackets for the transition structure.
The search can be completed by interpolating to the
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maximum along the path and optimizing the transi-
tion structure.136 If the ends of the growing string are
too far apart, a NEB method or SM can be used to
optimize of the entire path. To reduce the cost, a low
level of theory can be used to grow the string and a
higher level of theory can be used to refine the string
or to optimize the transition structure.134,135

Chain-of-state methods such as NEB, SM, and
GSM are still more costly than quasi-Newton meth-
ods for transition structures, and there is considerable
room for improving the efficiency of these methods.
However, these methods do map out the entire re-
action path. This can be advantageous if the path
contains several transition states and intermediates.
Furthermore, chain-of-states methods are more read-
ily parallelized than quasi-Newton and other single-
ended methods. The development of these methods is
ongoing.

Characterization of an Optimized
Transition Structures
Once a transition structure has been optimized, it
is necessary to confirm that it is indeed a transi-
tion structure and is appropriate for the reaction un-
der consideration. A vibrational frequency calculation
needs to be carried out for the transition structure
to confirm that it has one and only one imaginary
frequency (equivalently, the full dimensional Hessian
must have one and only one negative eigenvalue). It
is not sufficient to examine the updated Hessian used
in the quasi-Newton optimization process because it
may be subject to numerical noise and the optimiza-
tion may not have explored the full coordinate space
(e.g., modes that lower the symmetry of the molecule).
Firstly, an accurate Hessian must be calculated analyt-
ically or numerically and used for the vibrational fre-
quency analysis. Secondly, the transition vector, that
is, the vibrational normal mode associated with the
imaginary frequency must be inspected to make sure
that the motion corresponds to the desired reaction.
This is most easily done with graphical software that
can animate vibrational modes. For complex reaction
networks, reaction path following may be needed to
verify that the transition structure connects the de-
sired reactants and products. Chain-of-states meth-
ods yield good approximations to the reaction path
as a part of the optimization. For quasi-Newton and
other methods that converge on a single structure, fol-
lowing the steepest descent path (see Reaction Path
Following) will indicate the reactants and products
connected by the transition structure. Reaction path
following may also reveal other stationary points on
the path.

REACTION PATH FOLLOWING

For quasi-Newton and related methods that locate
only the transition structure, the steepest descent re-
action path can be obtained by following the gra-
dient downhill. Chain-of-states approaches such as
NEB method, SM, and GMS (see Chain-of-States and
Double-Ended Methods) provide an approximation
to the reaction path as a part of the optimization.
Methods such as variational transition state theory177

and reaction path Hamiltonian178 may require a more
accurate path. For this case, rather than trying to
obtain very tight convergence with a chain-of-states
method, it is much more efficient to calculate an ac-
curate path by a reaction path following method.

In the steepest descent reaction path (SDP) or
minimum energy path (MEP), x(s) is defined as:

dx(s)
ds

= −g(x(s))
|g(x(s))| , (32)

where s is the arc length along the path. When mass-
weighted coordinates are used, the path is the IRC
of Fukui179 and corresponds to a classical particle
moving with infinitesimal kinetic energy. A number
of reviews are available for reaction path following
methods.8,180 In principle, the reaction path can be
obtained by standard methods for numerical integra-
tion of ordinary differential equations.181 However,
in some regions of the potential energy surface, these
methods produce paths that zigzag across the valley
unless very small step sizes are used. This is charac-
teristic of stiff differential equations for which special
techniques such as implicit methods are needed.182

The Ishida, Morokuma, Komornicki (IMK)
method183 uses an Euler step followed by a line search
to step back toward the path. The LQA method
of McIver and Page,184,185 and subsequent improve-
ments by others186–188 obtain a step along the path
by integrating Eq. (32) analytically on a quadratic
energy surface using a calculated or updated Hes-
sian. Because it makes use of quadratic information,
LQA can take large steps than IMK. The second-order
method of Gonzalez and Schlegel189,190 (GS2) is an
implicit trapezoid method that combines an explicit
Euler step with an implicit Euler step. The latter is ob-
tained by a constrained optimization. The larger step
size and greater stability of the GS2 method more
than compensates for the few extra gradient calcula-
tions needed in the optimization. The implicit trape-
zoid method has been generalized and extended by
Burger and Yang191,192 to a family of implicit–explicit
methods for accurate and efficient integration of re-
action paths.
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The reaction path can be thought of as an av-
erage over a collection of classical trajectories or a
trajectory in a very viscous medium. The dynamic re-
action path method193 and the damped Velocity Ver-
let approach194 obtain a reaction path by calculat-
ing a classical trajectory in which almost all of the
kinetic energy has been removed at every step. The
Hessian-based predictor–corrector method for reac-
tion paths195,196 adapts an algorithm used for classi-
cal trajectory calculations. An LQA predictor step is
taken on a local quadratic surface; a new Hessian is
obtained at the end of the predictor step (by updat-
ing or by direct calculation); a corrector step is ob-
tained on a distance-weighted interpolant using the
local quadratics at the beginning and end of the pre-
dictor step.

A reaction path calculated at a lower level of
theory can be used to provide an estimate of the transi-
tion structure optimization at a higher level of theory
when full optimization at the higher level is not prac-
tical. The potential energy surface is more likely to
change along the path than perpendicular to the path
because reaction energies and bond making/breaking
coordinates are typically more sensitive to the ac-
curacy of the electronic structure calculation. In the
IRCMax method, single point high-level energy cal-
culations along the low-level path are interpolated to
give an estimate of the transition structure and energy
at the high level of theory.197

Reaction paths can also be formulated as a vari-
ational method by finding the path that minimizes the
following integral159,198–201:

I =
∫ √

g(x(t))T g(x(t))
√

(dx(t)/dt)T(dx(t)/dt) dt

=
∫ √

g(x(s))T g(x(s)) ds, (33)

where x(t) is the reaction path parameterized by an
arbitrary variable t, whereas x(s) is the reaction path
as a function of the arc length (see Eq. (32)). This is
closely related to obtaining a classical trajectory by
finding the path that minimizes the classical action,
and may hold promise for future developments.

SUMMARY

Methods for optimizing equilibrium geometries, lo-
cating transition structures, and following reac-
tion paths have been outlined in this chapter.
Quasi-Newton methods are very efficient for ge-
ometry optimization when used with Hessian up-
dating, approximate line searches, and trust radius
or rational function techniques for step size con-
trol. Single-ended and double-ended methods for
transition structure searches have been summarized.
Procedures for approaching transitions structures are
described. Quasi-Newton methods with eigenvector
following and rational function optimization are effi-
cient for finding transition structures. Double-ended
techniques for transition structures are discussed and
include nudged elastic band, string and growing string
methods. The chapter concludes with a discussion of
validating transition structures and a description of
methods for following steepest descent paths.
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