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ABSTRACT 
A redundant internal coordinate system for optimizing molecular geometries is 
constructed from all bonds, all valence angles between bonded atoms, and all 
dihedral angles between bonded atoms. Redundancies are removed by using the 
generalized inverse of the G matrix; constraints can be added by using an 
appropriate projector. For minimizations, redundant internal coordinates provide 
substantial improvements in optimization efficiency over Cartesian and 
nonredundant internal coordinates, especially for flexible and polycyclic systems. 
Transition structure searches are also improved when redundant coordinates are 
used and when the initial steps are guided by the quadratic synchronous transit 
approach. 0 1996 by John Wiley & Sons, Inc. 

Introduction 

eometry optimization is an important aspect G of almost all electronic structure calcula- 
tions. Most of the optimizations are carried out 
using some variety of quasi-Newton algorithm 
employing energies and gradients. Geometry opti- 
mization has been reviewed in several articles.' 

*Author to whom all correspondence should be addressed. 

The efficiency of an optimization depends on a 
number of factors: (1) the initial geometry, (2) the 
choice of coordinate system, (3) the initial estimate 
of the Hessian, (4) the Hessian updating method, 
and (5) control of the search direction and step 
size. 

As an estimate for the starting geoinetry for 
optimizing equilibrium structures, standard ge- 
ometries or structures obtained by molecular me- 
chanics minimization are often good. For transition 
structures, many quasi-Newton methods need to 

Journal of Computational Chemistry, Vol. 17, No. 1, 49-56 (1996) 
0 1996 by John Wiley & Sons, Inc. CCC 01 92-8651 196 1 01 0049-08 



PENG ET AL. 

start fairly close to the quadratic region of the 
transition state. However, initial estimates for tran- 
sition structures are more difficult to obtain than 
for equilibrium structures. Molecular mechanics 
generally cannot handle transition states involving 
the making and breaking of bonds. Standard ge- 
ometries are available for some types of transition 
states,' but transition state geometries vary much 
more than equilibrium geometries. Techniques 
such as synchronous transit? coordinate driving, 
walking up valleys, and eigenvector following4 
may be useful in getting close to the transition 
structure. 

Early work in geometry optimization using 
electronic structure methods used nonredundant 
internal coordinates ( eg ,  the Z matrix internal 
coordinates used in many molecular orbital pro- 
grams). Cartesian coordinates were shown to be 
better for some cyclic  molecule^,^ and mixed 
Cartesian and internal coordinates also had some 
advantages.6 Cartesian normal modes have also 
been used successfully.7 However, Pulay8-" 
demonstrated clearly that redundant internal coor- 
dinates are the best choice for minimizing poly- 
cyclic molecules. Baker" compared redundant in- 
ternal to Cartesian coordinates and came to a simi- 
lar conclusion. In the present work, we adopted a 
simpler system of redundant internal coordinates 
(but with more redundancies) than we have used 
previously to estimate the initial Hessian." We 
have also extended the use of redundant internal 
coordinates to transition structure optimization us- 
ing a synchronous transit guided quasi-Newton 
method.I3 

For the choice of the initial Hessian, Baker5," 
showed that minimizations with Cartesian and 
redundant internal coordinates were similar if a 
good initial estimate of the Hessian is used (i.e., a 
molecular mechanics Hessian instead of a unit 
Hessian). In this article we use a simple valence 
force field that is diagonal in the redundant inter- 
nal coordinate system, similar to the one used in 
our earlier work." Proper updating of the Hessian 
is essential for efficient optimizations; most mod- 
ern updating algorithms give similar results and 
therefore will not be discussed here. 

Choice of the search direction and control of 
step size are important in determining the effi- 
ciency of the optimization.' Trust radius and 
eigenvector following4 methods have been shown 
to be effective. For transition states, it is highly 
desirable to monitor the direction of the transition 
vector (i.e., the eigenvector corresponding to the 
negative eigenvalue). In previous workI3 we found 

that the tangent to the linear or quadratic syn- 
chronous transit path3 was useful in choosing the 
uphill search direction for optimizing transition 
states. 

Method 

GENERATION OF REDUNDANT INTERNAL 
COORDINATES 

Pulay and co-workers'-'' defined a natural in- 
ternal coordinate system that is similar to the coor- 
dinates used by vibrational spectroscopists. It min- 
imizes the number of redundancies by using local 
pseudosymmetry coordinates about each atom and 
special coordinates for ring deformation, spiro ring 
fusions, etc. Similar coordinates are used by Baker'' 
and in T~rboMole.'~ To reduce the number of 
special cases, we use a simpler set of internal 
coordinates composed of all bond lengths, valence 
angles, and dihedral angles. This coordinate set, 
however, has somewhat greater redundancy than 
the coordinates used by Pulay, but this does not 
seem to affect the efficiency of the optimization. 

Our redundant internal coordinates set is de- 
fined in the following manner. First, the inter- 
atomic distances are examined to determine which 
atoms are bonded. Two atoms are considered 
bonded if their separation is less than 1.3 times the 
sum of the (single bond) covalent radii of the two 
atoms. If the molecular system consists of two or 
more fragments that are not bonded by this crite- 
rion, then the shortest distance between the frag- 
ments is determined; all interfragment distances 
that are less !ban the smaller of 1.3 times this 
distance, or 2 A, are designated as bonds. A hydro- 
gen bond is indicated if the XH . - *  Y distance (X, Y 
= N, 0, F, P, S, Cl) is greater than the sum of the 
covalent radii, less than 0.9 times the sum of the 
van der Waals radii, and the X-H...Y angle is 
greater than 90". A bond stretching coordinate is 
assigned to each regular, interfragment, and hy- 
drogen bond. 

A valence angle bend coordinate is assigned 
for any two atoms bonded to the same third atom 
(LA-B-C, where A is bonded to B and C is 
bonded to B). Special attention must be given to 
linear valence angles. If the A-B-C angle is 
greater than - 175", then two orthogonal linear 
angle bend coordinates are generated (some care is 
needed so the orientation of the two displacements 
does not change during the course of the optimi- 
zation). 
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REDUNDANT INTERNAL COORDINATES 

A dihedral angle coordinate is assigned for each 
pair of atoms bonded to opposite ends of a bond 
(LA-B-C-D, where A is bonded to B, B is 
bonded to C, and C is bonded to D) or bonded to a 
linear array of atoms (LA-B-C-D for 
A-B-X 1 . .  Y-C-D, where B, X, Y, C are 
collinear and bonded, e.g., 2-butyne). If one or 
both of the valence angles involved in a dihedral 
angle (LA-B-C and/or LB-C-D in LA-B 
-C-D) is linear, then the dihedral angle is omit- 
ted. If there are no dihedral angles generated for 
the molecule by these criteria (e.g., for a tri-coordi- 
nate system such as H,CO or BH,), the appropri- 
ate dihedral angles are added to take care of out- 
of-plane bending. Since the values of the dihedral 
angles are chosen to be in the range -180 to 
+ 180", differences in dihedral angles may need to 
be incremented by k360" so that the smallest 
displacement is obtained. In addition to the redun- 
dant internal coordinates generated automatically, 
extra stretch, bend, and dihedral angle coordinates 
can also be specified in the input. 

The coordinate system defined above is based 
on the identification of bonds. All of the remaining 
coordinates (valence angles and dihedral angles) 
are generated from the bonding information. Tran- 
sition states could pose a problem because they 
generally contain one or more partially formed or 
partially broken bonds. For regular transition state 
optimizations starting from one structure, the 
bonds being made or broken will need to be speci- 
fied in the input. For the synchronous transit 
method for guiding transition state searches? l 3  

two or three structures are used to start the opti- 
mization--one in the reactant valley, the second in 
the product valley, and optionally a third structure 
as an initial guess for the transition state geometry. 
If the third structure is absent, the initial guess for 
the transition state geometry can be obtained by 
interpolating between the reactants and products 
in redundant internal coordinates. The reactant-like 
structure defines one set of redundant internal 
coordinates, and the product-like structure defines 
the other set. The coordinates for the transition 
state search are taken as the union of the reactant- 
like and product-like coordinates. 

TRANSFORMATION OF THE GRADIENT 
AND HESSlAN 

The transformation of the energy derivatives 
from Cartesian to redundant internal coordinates 
is performed in the manner outlined by Pulay and 
Fogarasi? If B is the Wilson B matrixI5 ( B I ,  = 

d q i / d x i )  defining the transformation from Carte- 
sian displacements to redundant internal displace- 
ments, 

Sq = B 6 x  (1) 

then the transformed gradient is given by 

B'g, = gx 

where g, is the gradient in Cartesian coordinates 
and g, is the gradient in redundant internal coor- 
dinates. Since B is rectangular, the inverse of this 
transformation is a little more complicated and can 
be written 

g, = G-Bug, ( 3 )  

where G = BuB' and u is an arbitrary matrix (a 
unit matrix is used in the present application). The 
generalized inverse of G is obtained by diagonaliz- 
ing G and inverting only the nonzero eigenvalues: 

V'GV= [ A 0  O ] ;  G - = V I A i l  :]Vf (4) 

Quasi-Newton optimization methods require an 
initial estimate of the Hessian. As the default, we 
use an empirical estimate that is diagonal in the 
redundant internal coordinate space (see ref. 12 for 
regular stretch, bend, and torsions, see ref. 16 for 
hydrogen bonds). Alternatively, the Cartesian Hes- 
sian can be calculated analytically at any number 
of levels of theory and then can be transformed to 
redundant internal coordinates. By differentiating 
eq. (21, it is apparent that the transformation of the 
Hessian involves the derivative of the B matrix, B' 
(B i l k  = d 2 q , / d x ,  dx, ) :  

BtH,B + B"g, = H ,  (5) 

where H, is the Hessian in Cartesian coordinates 
and H, is the Hessian in redundant internal coor- 
dinates. The inverse of this transformation is 

H, = G-Bu(H, - B"gg)u'B'G~- (6) 

The derivatives of the B matrix, B', are calculated 
analytically. 

For minimizations, the Hessian in redundant 
internal coordinates is updated iteratively by ap- 
plying the Broyden, Fletcher, Goldfarb, Shanno 
(BFGS) formula17 using the current point and all 
previous points, rather than using just the current 
and the next most recent point. Bofill's update" (a 
mixture of the symmetric Powell'8b and the 
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PENG ET AL. 

Murtagh-Sargent’8c updates) is used for transition 
states. Sometimes it may be necessary to calculate 
a few key rows and columns of the Hessian nu- 
merically before proceeding with an optimization. 
This is accomplished by displacing the appropriate 
redundant internal coordinates, converting to 
Cartesian coordinates, calculating the energy and 
gradient, and then updating the Hessian in redun- 
dant internal coordinates using the symmetric 
Powell method. 

OPTIMIZATION STEP IN REDUNDANT 
INTERNAL COORDINATES 

Some care must be taken in generating the 
Newton step in redundant coordinates so displace- 
ments are generated primarily in the nonredun- 
dant part of the internal coordinate space. Again 
following Pulay and Fogarasi? a projector is con- 
structed from the G matrix and its generalized 
inverse: 

p’ = GG-= G-G ( 7) 

For a constrained optimization, the projector needs 
to be modified to include the constraints. If C is 
the projector for the constraints (e.g., a diagonal 
matrix with 1’s on the diagonal for the constraints 
and 0’s elsewhere), the projector with constraints is 

P = P’ - P’c(cPc)-’cP’ (8) 

Both the gradient and the Hessian have to be 
projected. To prevent displacements in the remain- 
der of the space, the corresponding matrix ele- 
ments of the Hessian are set to arbitrarily large 
values: 

g q  = Pg,; 

H = PHP + (1 - P)A(1 - P) (9) 

= PHP + 0l(1 - P) 

where A is the identity matrix times a (a large 
constant, e.g., 1000 au). The Newton step is then 
given by 

- 
Aq = -H-’g  4 (10) 

From a numerical point of view, this gives essen- 
tially the same step as Pulay’s approach, which 
uses the projected generalized inverse of the pro- 
jected Hessian. The Newton step is not always the 
best choice. If the predicted step is too large dur- 
ing a minimization, the trust radius method is 

used to modify the step size and direction. For 
transition state searches, the eigenvector following 
method4 is used to control the step. In both cases 
it is desirable to have an invertible Hessian [e.g., 
eq. (911. 

The eigenvector following method searches up- 
hill along a designated eigenvector of the Hessian 
and downhill along the remaining eigenvectors. 
Most often, the eigenvector with the lowest eigen- 
value is used. In a previous article13 we found that 
the tangent to a synchronous transit path3 was a 
useful guide for choosing the correct eigenvector 
to follow. The same approach is used here. The 
initial few steps of a transition state optimization 
are constrained to search for a maximum along the 
synchronous transit path. In subsequent steps, the 
tangent to the synchronous transit path is used to 
choose the best vector for the eigenvector follow- 
ing method (note that the tangent vector must be 
projected onto the nonredundant part of the inter- 
nal coordinate space before it is used). 

CONVERSION FROM REDUNDANT 
INTERNAL COORDINATES TO 
CARTESIAN COORDINATES 

Because the displacements are finite and the 
transformation between redundant internal and 
Cartesian coordinates is curvilinear, the coordinate 
conversion must be done in an iterative manner.g 
The first estimate of the new Cartesian coordinates 
is given by 

x1 = x0 + uB’G-Aq (11) 

The values of the internal coordinates are com- 
puted from the Cartesian coordinates, and q1 - qo 
is compared with Aq (some care must be taken 
with dihedral angles to avoid extraneous multiples 
of 360”). The difference, AAq = Aq - (ql - so), is 
transformed in a similar fashion; the process is 
repeated until there is no further change in the 
Cartesian coordinates (root mean square [rmsl 
change less than In the rare cases in which 
the iteration does not converge, the first estimate 
of the Cartesian displacements [eq. (1111 is used 
without subsequent iteration. For a constrained 
optimization, a small additional displacement, Aq‘, 
may need to be added to reimpose the constraints. 
A similar iteration is carried out with Chq’ and 
CAAq’, where C is the projector for the constraints 
used in eq. (8). 
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REDUNDANT INTERNAL COORDINATES 

dundant internal coordinates, the initial estimate 

Results and Discussion 

The methods outlined earlier have been incor- 
porated into Gaussian 94.19 Table I compares the 
optimization of equilibrium structures carried out 
by Baker" and in the present work. The published 
starting structures of Baker were used, and the 
same final energies were obtained (with the excep- 
tion of hydrazobenzene, for which a lower energy 
minimum was found). Although the present re- 

of the Hessian, and the convergence criteria are 
somewhat different, the performance of the two 
approaches is remarkably similar. Most of the dif- 
ferences can be attributed to the different conver- 
gence criteria. In the Gaussian suite of programs, 
standard convergence requires that the rms gradi- 
ent in internal coordinates is less than 0.0003 au, 
the maximum component of the gradient is less 
than 0.00045 au, the rms of the predicted Cartesian 
displacement (after rotation and translation to 

TABLE I. 
Comparison of the Number of Steps Required to Optimize Equilibrium Geometries Using Various 
Coordinate Systems. 

Moleculea 
Degrees of 
Freedom 

Water 
Ammonia 
Ethane 
Acetylene 
Allene 
Hydroxysulphane 
Benzene 
Methylamine 
Ethanol 
Acetone 
Disilyl ether 
1,3,5-Trisilacyclohexane 
Benzaldehyde 
1,3-DifIuorobenzene 
1,3,5-TrifIuorobenzene 
Neopentane 
Furan 
Naphthalene 
1,5-DifIuoronaphthalene 
2-Hydroxybicyclopentane 
ACHTARlO 
ACAN ILO1 
Benzidine 
Pterin 
Difluoropyrazine 
Mesityl oxide 
Histidine 
Dimethylpentane 
Caffeine 
Methone 
ACTHCP 
Histamine H+ 
Hydrazobenzene 

2 
2 
3 
2 
3 
6 
2 

10 
13 
8 
7 

11 
25 
11 
4 
3 
8 
9 

17 
36 
42 
34 
18 
31 
15 
28 
54 
63 
42 
81 
42 
48 
38 

Cartesians Redundant lnternals 

Bakerb Bakerb Present work' 

5 6 4 
6 6 4 
4 5 4 
6 6 4 
5 5 4 

11 8 7 
4 4 3 
5 6 4 
6 6 5 
7 6 5 

10 8 7 
8 8 11 
6 6 4 
5 5 4 
5 5 4 
5 5 4 
8 8 5 
5 5 4 
6 6 4 

15 15 11 
11 12 9 
7 8 6 

10 9 7 
9 10 8 
8 9 6 
7 7 5 

30 19 14 
9 12 9 

10 12 6 
14 13 11 
28d 37 27 
26 21 19 
35 19 2oe 

aStarting geometries given in ref. 11 ; calculated by HF/ STO-3G. 
bRef. 11 using a Hessian from molecular mechanics. 
'Present work, using a diagonal Hessian in redundant internal coordinates. 
dConverged to a higher energy final structure than ref. 6. 
eConverged to a lower energy final structure than ref. 11: €(ad = -563,263804, LCNNC = 154.2", LHNNH = 39.8". 
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PENG ET AL. 

TABLE II. 
Comparison of the Number of Steps Required to Optimize Equilibrium Geometries Using Various 
Coordinate Systems. 

Moleculea Z Matrix Cartesianb Mixedb Redundant' 

2-Fluoro furan 
Norbornane 
Bicyclo[2.2.2loctane 
Bicyclo[3.2.1 ]octane 
Endo hydroxy bicylopentane 
Exo hydroxy bicylopentane 
ACTHCP 
1,4,5-Trihydroxy anthroquinone 
Histamine H+ 

7 
7 

11 
6 
8 

10 
65 
10 
42 

7 
5 

19 
6 

18 
20 

> 81 
11 

> 100 

7 
5 

14 
7 
9 

11 
72 
17 
47 

6 
5 
7 
5 

12 
11 
27 
8 

19 

aStarting geometries given in ref. 6; calculated by HF / STO-3G. 
bRef. 6. 
'Present work 

maximum coincidence) is less than 0.0012 au, and 
the maximum component of the predicted dis- 
placement is less than 0.0018 au (i.e., all four must 
be satisfied). Alternatively, if the maximum gradi- 
ent and rms gradient are a factor of 100 smaller 
than their respective thresholds, the optimization 
is considered converged. Baker requires that the 
maximum component of the gradient be less than 
0.0003 au and either the maximum component of 
the predicted Cartesian displacement be less than 
0.0003 au or the energy change from the previous 
cycle be less than au. 

Table I1 summarizes several optimizations of 
equilibrium structures using Z matrix coordinates 
(i.e., nonredundant internal coordinates), Cartesian 
coordinates, mixed Cartesian and nonredundant 
internal coordinates, and redundant internal coor- 
dinates. The starting structures and some of the 
optimization results were published previously.6 
For fairly rigid molecules, the results of all four 
coordinate systems are similar. For more flexible 
molecules, Cartesian coordinates perform more 
poorly. For ACTHCP and histamine H+, the re- 
dundant coordinates show a significant advantage. 
Additional examples that illustrate the efficiency 
of redundant coordinate optimizations include a 
large dye molecule (53 atoms, 153 degrees of free- 
dom, 23 steps from the PM3 geometry to the 
HF/3-21G optimized geometry) and taxol (113 
atoms, 333 degrees of freedom, 58 steps from 
the PM3 geometry to the HF/STO-3G optimized 
geometry). 

Figure 1 shows a simple example of a con- 
strained optimization using redundant internal co- 
ordinates. The potential energy curve for isomer- 

ization of cyclohexane from the chair to the twist- 
boat conformation was computed as a relaxed po- 
tential surface scan. One of the CCCC dihedral 
angles was constrained, and all remaining coordi- 
nates were optimized; the CCCC dihedral was 
incremented by 15" and the process was repeated 
until the scan was completed (six to eight opti- 
mization steps per structure). Relaxed potential 
surface scans of cyclic molecules are considerably 
more difficult to carry out in Cartesian or nonre- 
dundant internal coordinates. 

Table I11 compares the results of a number of 
transition state optimizations in nonredundant in- 

I -231.46 

-60 4 -20 0 20 40 60 

<cccc 

FIGURE 1. Relaxed potential energy surface scan of 
the conversion of chair cyclohexane to twist boat using 
redundant internal coordinates. 
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REDUNDANT INTERNAL COORDINATES 

TABLE 111. 
Comparison of the Number of Steps Required to Optimize Transition State Geometries. 

Z Matrix lnternals Redundant lnternals 

Reactiona Regularb CalcFC" QST3d CalcFC" QST2e QST3d 

CH,+F+ CH,+HF 6 4 6 5 8 5 
CH,O + CH,OH 12 9 9 8 8 9 

CH,F + C,H, + HF 16 12 15 13 17 11 
SiH, + H, --f SiH, 11 7 11 7 8 8 

Diels-Alder reaction 56 11 23 8 13 14 
Claisen reaction 38 8 15 7 15 15 
Ene reaction fail 15 28 13 18 18 

aStructures given in ref. 13; all calculations at the HF13-21G level. 
bRegular transition state optimization algorithm in Gaussian 92, starting with one structure; empirical estimate of initial Hessian with 
two to four preliminary steps to calculate key rows and columns of the Hessian by numerical differentiation. 
'Starting with one structure; initial Hessian calculated analytically at HF/ 3-21 G. 
Starting with three structures (reactants, the products, and starting geometry of the transition state); empirical estimate of the 

Hessian with no preliminary steps; quadratic synchronous transit used to guide the optimization. 
eSarne as (d) but starting with two structures (reactant and product); starting geometry transition structure estimated by linear 
interpolation between reactants and products. 

ternal (Z matrix) coordinates and the present set of 
redundant coordinates. The starting geometries 
were given previo~sly.'~,' For the three simplest 
transition states, all of the approaches give similar 
results; however, for the larger cyclic transition 
states, there are significant differences. In general, 
the redundant internal coordinates perform better 
than nonredundant internal coordinates. The regu- 
lar transition state optimization in Z-matrix coor- 
dinates takes the most steps. In this case the initial 
Hessian is estimated empirically, and two to four 
preliminary gradient calculations (included in the 
total number of steps) were used to calculate key 
rows and columns of the Hessian by numerical 
differentiation. The performance is much im- 
proved if the tangent of the quadratic synchronous 
transit is used to guide the initial steps of the 
~ptimization'~ (the initial Hessian is estimated 
empirically with no additional numerical differen- 
tiation steps). The transition state optimization 
in redundant internal coordinates takes fewer 
steps than in Z matrix coordinates, and the three- 
structure quadratic synchronous transit method is 
somewhat better than the two-structure approach. 
With either coordinate system, the fewest opti- 

'Suitable starting structures can be generated easily with a 
graphical user interface. The reactants are sketched and mini- 
mized in a conformation appropriate for the reaction (for a 
bimolecular case, the reactants should be constrained so that 
the bonds being formed are 80-120% longer than equilibrium). 
The product structures can then be generated by copying the 
reactants, changing the bonding and constraints so that they are 
appropriate for the products, and minimizing the resulting 
structure. 

mization steps are taken when the Hessian is cal- 
culated analytically. However, the time to com- 
pute the Hessian must be added in. If the Hessian 
calculation takes more than three to five times 
longer than the gradient, it may be more cost 
effective to use the three-structure quadratic syn- 
chronous transit approach in redundant internal 
coordinates. 

Summary 

The use of redundant internal coordinates sub- 
stantially improves the efficiency of optimizations 
of equilibrium geometries, particularly for flexible 
and polycyclic systems. For transition states, the 
two- and three-structure quadratic synchronous 
transit guided approach in redundant internal co- 
ordinates shows considerable promise. 
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