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1 Introduction

This document is a brief summary on an idea to co-create a video which should
help visualize and get a more physically-consistent intuition about the magnetic
vector potential. The goal of this document is to communicate the intention
and the main ideas behind the video. I do not propose this document as a story
line for a video.

The magnetic vector potential A is normally introduced as an assumption:

B = ∇×A , (1)

with B being the magnetic induction field. This assumption is normally justified
by the fact that the magnetic induction field is solenoidal, and therefore, ∇·B =
0. Since the divergence of the curl of any vector field is always equal to zero,
hence the assumption in (1).

If we accept (1), then solving some electromagnetic radiation problems be-
come much easier. For instance, consider the in-homogeneous Helmholtz equa-
tion for H = B

µ , in the presence of a current source J:

∇2H+ k2H = −∇× J , (2)

with µ the magnetic permeability of the medium where the radiation occurs, H
the magnetic field vector and k the wave-number.

Equation (1) is difficult to solve, mainly due to the rotor operation over
the current density J. When the substitution in (1) is applied to Maxwell’s
equations, (2), reduces to:

∇2A+ k2A = −µJ , (3)

and we got rid of ∇× J.
Note: there are a few mathematical steps which are not made explicit here

for the sake of brevity. The main one is the application of the Lorenz gauge, an
interesting aspect of the whole discussion. I want to focus, for the moment, on
A mainly.
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In my course, for instance, we solve (3) for the case of a point dipole. The
calculations are straightforward.

2 The motivation

I am personally motivated when we can have an intuitive visualization and in-
terpretation of the phenomena we are studying. As a teacher, I put quite some
efforts in that aspect, with various degrees of success. I think that establish-
ing relations, visualizations, interpretations, etc. are a sign of clarity and can
certainly add significantly to the motivation to study a certain topic. Your
(Grant’s, that is) videos are a prominent example of this.

Anyway, though I manage to provide such intuitions for most parts of my
course, for years I have been in trouble to assign such an interpretation to the
vector potential. Every book or explanation I saw, treats this vector as just a
mathematical aid. A trick. What is the vector potential? It’s just an abstract
and nonphysical mathematical object, whose curl is the magnetic field. For
most (of us), the magnetic field itself is something which takes time to imagine
and build an intuition for. Imagine this one other vector, whose rotation gives
the magnetic field...

So, even though for years I “followed the herd” in the explanation and intro-
duction of A, there was always something in the back of my head bothering me:
how can I provide a physically-consistent interpretation of the magnetic vector
potential?

The answer came across after many years of trying. However, it did not
from me, but from the “Maestro” himself: James Clerk Maxwell.

3 On physical lines of force...

Maxwell needed many years to come up with the compendium of equations
which now represents the whole classical EM theory. His first efforts, published
in a series of papers, were directed to try to explain electricity and magnetism
using equivalent fluid-dynamic analogies. He would, for instance, describe the
electrical potential as fluid pressure, and so on. In hindsight, one would won-
der why did he need to come up with such analogies, but what Maxwell was
trying to do was actually brilliant. The story is long and complicated, but in
a nutshell it encompasses the following components: Faraday threw a bomb by
hypothesizing this idea of “lines of force”1. In essence, Faraday’s lines of force
are what we now call “fields” and is at the basis of most of modern physics.
But... Faraday was mathematically-challenged, to put it in a certain way. The
idea of lines of force competed with the more Newtonian-like type of physics of
“action at a distance”. Many, like Weber, for instance, tried to propose models

1The circumstances and story on how do we know Faraday’s idea of lines of forces is
fascinating, highly entertaining and full of twists. For another talk...
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for electricity and magnetism in this Newtonian way. Two different views con-
tradicting each other. Positions, debates, etc. So, Maxwell took the challenge
to provide Faraday’s ideas with the necessary mathematical toolkit. At least
one that mathematicians would not have difficulty to accept.

And here’s his model. The paper can be accessed here.
Some interesting excerpts from the introduction of this paper:
“My object in this paper is to clear the way for speculation in this direction,

by investigating the mechanical results of certain stages of tension and motion
in a medium, and comparing these with the observed phenomena of magnetism
and electricity.” [the bold font is mine].

Another part:
“I propose now to examine magnetic phenomena from a mechanical point

of view, and to determine what tensions in, or motions of, a medium are capable
of producing the mechanical phenomena observed. If, by the same hypothesis,
we can connect the phenomena of magnetic attraction with electromagnetic phe-
nomena and with those of induced currents, we shall have found a theory which,
if not true, can only be proved to be erroneous by experiments which will greatly
enlarge our knowledge of this part of physics.”

In his “On physical lines of force” paper, he tackles several experimental
laws (like for instance that like charges repel each other, etc.). One of these
laws is the one which interests us the most in this study, and it is what we now
know as Faraday’s law of induction: if a loop of conducting wires is immersed in
a time-changing magnetic field, the rate of change of the magnetic flux through
the cross-section area of that loop, induces an electric current in the loop.

4 Spinning, tiny, closely-packed spheres.

Maxwell thought of a medium comprised of these tiny spheres cells which could
spin. As they spun, these spherical cells would change their shape, tending
to become an oblate spheroid, flattening in their poles and expanding in their
equators. These “equators” of course are determined orthogonal to the direction
of the spin. This simple, yet powerful, analogy is able to describe two main
characteristics of Faraday’s lines of force: some sort of “tension” (the field)
along the rotating axis of the sphere, as well as some kind of “ pressure” which
would act sideways to the spheres, transmitted to nearby spheres, and could be
a model for this kind of repulsive force which helps the lines of force “propagate”
through the medium. The inverse square law was also embedded in this model.

The model does not end there. Maxwell completed it with two key elements
(without them you wouldn’t really have a good analogy). 1) how to prevent
that neighbouring cells rub against each other and, 2) how do you set these cells
to spin?

His solution was to add smaller particles between the cells. These particles
act like ball bearings in a two-gear mechanism. In this way, two nearby spheres
can rotate in the same direction, solving the first issue above. But there’s more,
he called these in-between particles particles of electricity, which, if the material
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Figure 1: A schematic diagram of Maxwell’s model for the magnetic field.

present in the space they were in allowed it, they would move in the channels
formed by the spaces in-between the spheres. They could be moved by an
electromotive force (in the case where we have what we now call an impressed
current) or they could move due to the propagation of the rotation of the spheres
through space (induction). If a particle occupied a space where there were no
conductors, then this sphere was only allowed to rotate, not to move.

In Fig. 1 it can be seen a snapshot of Maxwell’s imagined system of spherical
cells and particles of electricity (taken form his ‘On physical lines of force’ paper)

The hexagons represent the cells. Not sure why Maxwell drew them as
hexagons, but many sources indicate he did it “for artistic reasons” (see some
references at the end). The black line of particles of electricity connecting point
A to B represent a conductor with an impressed electric current running. These
particles move from left to right (west to east, in Maxwell’s description), and
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thus make the spheres rotate counter-clock wise (seen from our side) in the
region between AB and PQ, while they rotate clock-wise in the region below
(south) of AB.

The spheres rotate and they propagate the disturbance through space by
exerting pressure on one another, until they reach the particles connecting points
P and Q (a free conductor). If this conductor is connected at both ends, then
these particles will be allowed to move as well as to rotate. If the conductor is
not connected as a circuit, then the particles will only rotate. Due to the nature
of elongation and elasticity of these spheres, the propagation of the motion will
happen provided that the current in AB is time-changing.

5 But... what is the magnetic vector potential
then?

The interpretation of the magnetic vector potential is not explicitly described
in Maxwell’s work, or in any of the references cited below, but it follows from
Maxwell’s model described above quite parsimoniously.

We can interpret the magnetic vector potential as the velocity field
of all the spinning spheres.

By recalling that B = ∇×A, and thinking of A as a velocity field, then B
becomes the angular velocity of a point/sphere in this velocity field A. Maxwell
called B the angular momentum (something proportional to angular speed).
Somehow similar to vortexes in a fluid flow (Maxwell’s first attempt). The
problem with the fluid model is that it can’t model well the fact that there
could be different pressures in different directions.

Look back, for instance, to (3). Isn’t now more straightforward to interpret
this equation? Electric currents are the direct sources of wave ‘motions’ in the
velocity field described by the spheres... If one is more interested in knowing the
magnetic field, instead of the magnetic vector potential, then one must calculate
the rotation (find the vortexes) of the velocity field.

Can we transmit these interpretation efficiently in a video? Explaining it
without visual aid takes too much time and it is very hard, in my experience.
A good video can, on the other hand, be more clear and convincing.

6 Some further considerations

There are several other ‘neighbouring’ aspects to exploit, in my opinion, regard-
ing this topic.

6.1 On the physical consistence of equivalent models.

Looking back, Maxwell’s spheres seem rough and primitive. He was able to
mature later on and to leave aside any mechanical interpretation of the elec-
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tromagnetic phenomena. However, I believe that this kind of analogies are not
only a necessary step in the learning process, they are also of great value on
their own. Provided that one is fully aware of their limitations. Maxwell seem
to be fully aware of this, as you can read in p. 346 of his paper:

“These particles, in our theory, play the part of electricity. Their motion of
translation constitutes an electric current, their rotation serves to transmit the
motion of the vortices from one part of the field to another, and the tangential
pressures thus called into play constitute electromotive force. The conception of
a particle having its motion connected with that of a vortex by perfect rolling
contact may appear somewhat awkward. I do not bring it forward as a mode of
connexion existing in nature, or even as that which I would willingly assent to as
an electrical hypothesis. It is, however, a mode of connexion which is mechan-
ically conceivable, and easily investigated, and it serves to bring out the actual
mechanical connexions between the known electro-magnetic phenomena; so that
I venture to say that any one who understands the provisional and temporary
character of this hypothesis, will find himself rather helped than hindered by it
in his search after the true interpretation of the phenomena,”

Many reflections are possible, but leaving them due to lack of time.

6.2 On the perceived importance of physical quantities.

Also, I’d just mention very briefly this point without elaboration, due to time
constraints. The main point is to argue that for Maxwell, the potentials (mag-
netic vector and electric scalar) were the real physical quantities and the fields
were abstractions. We are now taught fields, but that’s not exactly how Maxwell
thought about the phenomena. We owe mainly to Heaviside (and others) the
formulation of the theory in terms of fields, not potentials. For Heaviside, on
the contrary, fields were the real physical quantity to consider.

6.3 On the importance of scientific conversation.

EM theory came about through a myriad of debates, conversations and rebut-
tals. How important is that for the advance of knowledge! In my field, we
hardly ever see serious debates. I have recently published an article, together
with some colleagues, on a debate that I organized in a conference. Apart from
reporting on the debate (interesting only to those really in the topic), I also
reflected on their importance. If you are curious, have a look here (in case you
do not have access to this journal, let me know and I can send you a preprint).

6.4 Lorenz gauge.

One of the issues of assuming B = ∇×A is that the magnetic field is then not
uniquely determined by a vector potential. In fact, the same result would be
found if we add any arbitrary vector field to A which is the gradient of a scalar
field, i.e. B = ∇× (A+∇Φ), gives the same magnetic field.

6

https://ieeexplore.ieee.org/document/9780346


(Maybe this description is trivial to you, sorry... just for the sake of complete-
ness). This extra degrees of freedom is what normally justifies the aplication of
the so-called Lorenz gauge:

∇ ·A+ jωεµΨ = 0 , (4)

with Ψ being the electric scalar potential.

6.5 The electric scalar potential.

Two (to me) interesting considerations regard the electric scalar potential. The
first one, is how it is more easily accepted and perceived by people (students,
teachers, engineers...) as a physical quantity. This potential is something you
can measure directly with a voltmeter (it’s just the line integral of the electric
field between two points). It has a clear analogy with the gravitation potential,
and its field, etc. However, it remains as intriguing as the vector potential, in
essence... We just have a closer way to visualize it. The second consideration
comes when looking at the expression of the electric field, expressed in terms of
potentials:

E = −∇Ψ− jωA (5)

The expression in (5) is the complete expression for the electric field. How-
ever, in many (too many) applications, the electric field is simply considered to
be equal to the gradient of the scalar potential, neglecting the magnetic vector
potential. For instance, the whole circuit theory is one crucial example of such
assumption.

Neglecting the jωA term, implicitly means assuming that the electric field
is irrotational (under this assumption, ∇ × E = 0) and therefore, it is also
conservative. This is not true at all.

In engineering, neglecting the vector potential (thus using purely circuit
theory for our designs) means that a myriad of electric and magnetic phenomena
can’t be modeled, and will appear in the final design, probably making it fail.
That’s why I mention the billion dollar loss for companies.
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