Skip to content

leisurelicht/wtfpython-cn

Repository files navigation

What the f*ck Python! 🐍

一些有趣且鲜为人知的 Python 特性.

翻译版本: English | Vietnamese Tiếng Việt | Spanish Español | Korean 한국어 | Russian Русский | German Deutsch | Add translation

其他模式: Interactive

WTFPL 2.0 Commit id

Python, 是一个设计优美的解释型高级语言, 它提供了很多能让程序员感到舒适的功能特性. 但有的时候, Python 的一些输出结果对于初学者来说似乎并不是那么一目了然.

这个有趣的项目意在收集 Python 中那些难以理解和反人类直觉的例子以及鲜为人知的功能特性, 并尝试讨论这些现象背后真正的原理!

虽然下面的有些例子并不一定会让你觉得 WTFs, 但它们依然有可能会告诉你一些你所不知道的 Python 有趣特性. 我觉得这是一种学习编程语言内部原理的好办法, 而且我相信你也会从中获得乐趣!

如果您是一位经验比较丰富的 Python 程序员, 你可以尝试挑战看是否能一次就找到例子的正确答案. 你可能对其中的一些例子已经比较熟悉了, 那这也许能唤起你当年踩这些坑时的甜蜜回忆 😅

PS: 如果你不是第一次读了, 你可以在这里获取变动内容.

那么, 让我们开始吧...

Table of Contents/目录

Structure of the Examples/示例结构

所有示例的结构都如下所示:

> 一个精选的标题 *

标题末尾的星号表示该示例在第一版中不存在,是最近添加的.

# 准备代码.
# 释放魔法...

Output (Python version):

>>> 触发语句
出乎意料的输出结果

(可选): 对意外输出结果的简短描述.

💡 说明:

  • 简要说明发生了什么以及为什么会发生.
    如有必要, 举例说明
    Output:
    >>> 触发语句 # 一些让魔法变得容易理解的例子
    # 一些正常的输入

注意: 所有的示例都在 Python 3.5.2 版本的交互解释器上测试过, 如果不特别说明应该适用于所有 Python 版本.

Usage/用法

我个人建议, 最好依次阅读下面的示例, 并对每个示例:

  • 仔细阅读设置例子最开始的代码. 如果您是一位经验丰富的 Python 程序员, 那么大多数时候您都能成功预期到后面的结果.
  • 阅读输出结果,
    • 确认结果是否如你所料.
    • 确认你是否知道这背后的原理.
      • 如果不知道, 深呼吸然后阅读说明 (如果你还是看不明白, 别沉默! 可以在提个 issue).
      • 如果知道, 给自己点奖励, 然后去看下一个例子.

PS: 你也可以在命令行阅读 WTFpython. 我们有 pypi 包 和 npm 包(支持代码高亮).(译: 这两个都是英文版的)

安装 npm 包 wtfpython

$ npm install -g wtfpython

或者, 安装 pypi 包 wtfpython

$ pip install wtfpython -U

现在, 在命令行中运行 wtfpython, 你就可以开始浏览了.


👀 Examples/示例

Section: Strain your brain!/大脑运动!

> First things first!/要事优先 *

众所周知,Python 3.8 推出"海象"运算符 (:=) 方便易用,让我们一起看看。

1.

# Python 版本 3.8+

>>> a = "wtf_walrus"
>>> a
'wtf_walrus'

>>> a := "wtf_walrus"
File "<stdin>", line 1
    a := "wtf_walrus"
      ^
SyntaxError: invalid syntax

>>> (a := "wtf_walrus") # 该语句有效
'wtf_walrus'
>>> a
'wtf_walrus'

2 .

# Python 版本 3.8+

>>> a = 6, 9
>>> a
(6, 9)

>>> (a := 6, 9)
(6, 9)
>>> a
6

>>> a, b = 6, 9 # 典型拆包操作
>>> a, b
(6, 9)
>>> (a, b = 16, 19) # 出错啦
  File "<stdin>", line 1
    (a, b = 16, 19)
          ^
SyntaxError: invalid syntax

>>> (a, b := 16, 19) # 这里的结果是一个奇怪的三元组
(6, 16, 19)

>>> a # a值仍然没变?
6

>>> b
16

💡 说明

“海象”运算符简介

海象运算符 (:=) 在Python 3.8中被引入,用来在表达式中为变量赋值。

def some_func():
        # 假设这儿有一些耗时的计算
        # time.sleep(1000)
        return 5

# 引入“海象”运算符前的例子
if some_func():
        print(some_func()) # 糟糕的案例——函数运算了两次

# 或者,加以改进:
a = some_func()
if a:
    print(a)

# 有了“海象”运算符,你可以写的更简洁:
if a := some_func():
        print(a)

输出 (> Python 3.8):

5
5
5

这样既减少了一行代码,又避免了两次调用 some_func 函数。

  • 在顶层的无括号赋值操作(使用“海象”运算符)被限制,因此例1中的 a := "wtf_walrus" 出现了 SyntaxError 。用括号括起来。它就能正常工作了。

  • 一般的,包含 = 操作的表达式是不能用括号括起来的,因此 (a, b = 6, 9) 中出现了语法错误。

  • “海象”运算符的语法形式为:NAME:= exprNAME 是一个有效的标识符,而 expr 是一个有效的表达式。 因此,这意味着它不支持可迭代的打包和拆包。

    • (a := 6, 9) 等价于 ((a := 6), 9) ,最终得到 (a, 9) (其中 a 的值为6)

      >>> (a := 6, 9) == ((a := 6), 9)
      True
      >>> x = (a := 696, 9)
      >>> x
      (696, 9)
      >>> x[0] is a # 两个变量指向同一内存空间
      True
    • 类似的, (a, b := 16, 19) 等价于 (a, (b := 16), 19) ,只是一个三元组。


> Strings can be tricky sometimes/微妙的字符串 *

1.

>>> a = "some_string"
>>> id(a)
140420665652016
>>> id("some" + "_" + "string") # 注意两个的id值是相同的.
140420665652016

2.

>>> a = "wtf"
>>> b = "wtf"
>>> a is b
True

>>> a = "wtf!"
>>> b = "wtf!"
>>> a is b
False

>>> a, b = "wtf!", "wtf!"
>>> a is b 
True # 3.7 版本返回结果为 False.

3.

>>> 'a' * 20 is 'aaaaaaaaaaaaaaaaaaaa'
True
>>> 'a' * 21 is 'aaaaaaaaaaaaaaaaaaaaa'
False # 3.7 版本返回结果为 True

很好理解, 对吧?

💡 说明:

  • 这些行为是由于 Cpython 在编译优化时, 某些情况下会尝试使用已经存在的不可变对象而不是每次都创建一个新对象. (这种行为被称作字符串的驻留[string interning])

  • 发生驻留之后, 许多变量可能指向内存中的相同字符串对象. (从而节省内存)

  • 在上面的代码中, 字符串是隐式驻留的. 何时发生隐式驻留则取决于具体的实现. 这里有一些方法可以用来猜测字符串是否会被驻留:

    • 所有长度为 0 和长度为 1 的字符串都被驻留.

    • 字符串在编译时被实现 ('wtf' 将被驻留, 但是 ''.join(['w', 't', 'f']) 将不会被驻留)

    • 字符串中只包含字母,数字或下划线时将会驻留. 所以 'wtf!' 由于包含 ! 而未被驻留. 可以在这里找到 CPython 对此规则的实现.

  • 当在同一行将 ab 的值设置为 "wtf!" 的时候, Python 解释器会创建一个新对象, 然后同时引用第二个变量(译: 仅适用于3.7以下, 详细情况请看这里). 如果你在不同的行上进行赋值操作, 它就不会“知道”已经有一个 wtf! 对象 (因为 "wtf!" 不是按照上面提到的方式被隐式驻留的). 它是一种编译器优化, 特别适用于交互式环境.

  • 常量折叠(constant folding) 是 Python 中的一种 窥孔优化(peephole optimization) 技术. 这意味着在编译时表达式 'a'*20 会被替换为 'aaaaaaaaaaaaaaaaaaaa' 以减少运行时的时钟周期. 只有长度小于 20 的字符串才会发生常量折叠. (为啥? 想象一下由于表达式 'a'*10**10 而生成的 .pyc 文件的大小). 相关的源码实现在这里.

  • 如果你是使用 3.7 版本中运行上述示例代码, 会发现部分代码的运行结果与注释说明相同. 这是因为在 3.7 版本中, 常量折叠已经从窥孔优化器迁移至新的 AST 优化器, 后者可以以更高的一致性来执行优化. (由 Eugene Toder 和 INADA Naoki 在 bpo-29469bpo-11549 中贡献.)

  • (译: 但是在最新的 3.8 版本中, 结果又变回去了. 虽然 3.8 版本和 3.7 版本一样, 都是使用 AST 优化器. 目前不确定官方对 3.8 版本的 AST 做了什么调整.)


> Be careful with chained operations/小心链式操作

>>> (False == False) in [False] # 可以理解
False
>>> False == (False in [False]) # 可以理解
False
>>> False == False in [False] # 为毛?
True

>>> True is False == False
False
>>> False is False is False
True

>>> 1 > 0 < 1
True
>>> (1 > 0) < 1
False
>>> 1 > (0 < 1)
False

💡 说明:

根据 https://docs.python.org/3/reference/expressions.html#comparisons

形式上, 如果 a, b, c, ..., y, z 是表达式, 而 op1, op2, ..., opN 是比较运算符, 那么除了每个表达式最多只出现一次以外 a op1 b op2 c ... y opN z 就等于 a op1 b and b op2 c and ... y opN z.

虽然上面的例子似乎很愚蠢, 但是像 a == b == c0 <= x <= 100 就很棒了.

  • False is False is False 相当于 (False is False) and (False is False)
  • True is False == False 相当于 (True is False) and (False == False), 由于语句的第一部分 (True is False) 等于 False, 因此整个表达式的结果为 False.
  • 1 > 0 < 1 相当于 (1 > 0) and (0 < 1), 所以最终结果为 True.
  • 表达式 (1 > 0) < 1 相当于 True < 1
    >>> int(True)
    1
    >>> True + 1 # 与这个例子无关,只是娱乐一下
    2
    所以, 1 < 1 等于 False

> How not to use is operator/为什么不使用 is 操作符

下面是一个在互联网上非常有名的例子.

1.

>>> a = 256
>>> b = 256
>>> a is b
True

>>> a = 257
>>> b = 257
>>> a is b
False

2.

>>> a = []
>>> b = []
>>> a is b
False

>>> a = tuple()
>>> b = tuple()
>>> a is b
True

3. Output

>>> a, b = 257, 257
>>> a is b
True

Output (Python 3.7.x specifically)

>>> a, b = 257, 257
>>> a is b
False

💡 说明:

is== 的区别

  • is 运算符检查两个运算对象是否引用自同一对象 (即, 它检查两个运算对象是否相同).
  • == 运算符比较两个运算对象的值是否相等.
  • 因此 is 代表引用相同, == 代表值相等. 下面的例子可以很好的说明这点,
    >>> [] == []
    True
    >>> [] is [] # 这两个空列表位于不同的内存地址.
    False

256 是一个已经存在的对象, 而 257 不是

当你启动Python 的时候, 数值为 -5256 的对象就已经被分配好了. 这些数字因为经常被使用, 所以会被提前准备好.

Python 通过这种创建小整数池的方式来避免小整数频繁的申请和销毁内存空间.

引用自 https://docs.python.org/3/c-api/long.html

当前的实现为-5到256之间的所有整数保留一个整数对象数组, 当你创建了一个该范围内的整数时, 你只需要返回现有对象的引用. 所以改变1的值是有可能的. 我怀疑这种行为在Python中是未定义行为. :-)

>>> id(256)
10922528
>>> a = 256
>>> b = 256
>>> id(a)
10922528
>>> id(b)
10922528
>>> id(257)
140084850247312
>>> x = 257
>>> y = 257
>>> id(x)
140084850247440
>>> id(y)
140084850247344

这里解释器并没有智能到能在执行 y = 257 时意识到我们已经创建了一个整数 257, 所以它在内存中又新建了另一个对象.

类似的优化也适用于其他不可变对象,例如空元组。由于列表是可变的,这就是为什么 [] is [] 将返回 False() is () 将返回 True。 这解释了我们的第二个代码段。而第三个呢:

ab 在同一行中使用相同的值初始化时,会指向同一个对象.

>>> a, b = 257, 257
>>> id(a)
140640774013296
>>> id(b)
140640774013296
>>> a = 257
>>> b = 257
>>> id(a)
140640774013392
>>> id(b)
140640774013488
  • 当 a 和 b 在同一行中被设置为 257 时, Python 解释器会创建一个新对象, 然后同时引用第二个变量. 如果你在不同的行上进行, 它就不会 "知道" 已经存在一个 257 对象了.

    <