
Content Extraction Using Diverse Feature Sets

Matthew E. Peters
SEOmoz

119 Pine St., Suite 400
Seattle, WA 98101

matt@seomoz.org

Dan Lecocq
SEOmoz

119 Pine St., Suite 400
Seattle, WA 98101

dan@seomoz.org

ABSTRACT

The goal of content extraction or boilerplate detection is to
separate the main content from navigation chrome, adver-
tising blocks, copyright notices and the like in web pages.
In this paper we explore a machine learning approach to
content extraction that combines diverse feature sets and
methods. Our main contributions are: a) preliminary re-
sults that show combining feature sets generally improves
performance; and b) a method for including semantic infor-
mation via id and class attributes applicable to HTML5. We
also show that performance decreases on a new benchmark
data set that better represents modern chrome.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Re-
trieval

General Terms

Algorithms, Experimentation

Keywords

Content Extraction; Boilerplate Removal; Template Detec-
tion

1. INTRODUCTION AND RELATED WORK
Content Extraction (CE) algorithms have been well stud-

ied ([3] provides recent review), and there are many inter-
esting and commercially useful applications.1 In our case,
we embed a CE engine as a filtering step inside a large scale
information retrieval system.2 Accordingly, our final appli-
cation constrains the design of our CE algorithm. In partic-
ular we need it to be efficient and capable of running in a
streaming fashion on only the crawled HTML.

Kohlschütter et al. [1] and CETR [4] are two interesting
suitable approaches. Both algorithms work by splitting the
HTML document into a sequence of “blocks”, either by using
the Document Object Model (DOM) in [1], or by line breaks

1For example, diffbot (www.diffbot.com)
2See http://mz.cm/ZyIPCm for an overview of the architec-
ture.

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

as in [4]. They then classify the blocks into contentnon-
content through supervised (decision trees; [1]) or unsuper-
vised (k-means; [4]) learning. They both share the intu-
ition that content blocks are more “dense” then non-content
blocks, but differ greatly in the details of their approach.
In this paper we combine these two approaches by using
a single block definition and embedding the entire CETR
algorithm inside a machine learning model.

We also introduce a new set of features heuristically de-
signed to capture semantic information in the HTML code
left behind by programmers. Empirically we note that many
of the id and class attributes in modern HTML tags include
tokens such as “comment”, “header” and “nav”. These de-
scriptive names are used by programmers when writing CSS
and Javascript and since they are chosen to be meaningful
to the programmer, they embed some semantic information
about the block’s content.

Finally, we provide an updated set of 1381 HTML pages
and associated gold standard. Web layouts have changed
considerably in the last few years, and newer web pages
have a wider variety and larger abundance of chrome in-
cluding longer text passages such as article snippets. We
benchmark existing algorithms on the new data and show
that performance decreases as the task difficulty increases.

2. DATA SET
Our primary data set was collected in late 2012 and con-

sists of English language pages from three sources: i) 999
pages randomly selected from popular RSS feeds with a
large number of subscribers; ii) 204 pages from a selection
of 23 large news sites (e.g. bbc.com and nytimes.com);
and iii) 178 pages randomly sampled from a blog direc-
tory (technoratti.com) across all categories and authority
ranges.3

The gold standard was extracted with a web browser by
pasting it into a text file. We considered any article text
including title, date and author information as well as any
user generated comments to be content.

To benchmark against previous studies, we also use a
portion of the data set from [4]. This includes both the
Cleaneval data, as well as data from [2].

3. MACHINE LEARNING APPROACH
We follow [1] and split each HTML document into blocks

using the DOM and a specified set of tags that modify the on

3Our data and modeling code are available at
http://github.com/seomoz/dragnet.



Table 1: Comparison of tokens in class attributes.

Token Content : No Content Percent of blocks
menu 1 : 373.6 2.2%
widget 1 : 314.1 4.6%
nav 1 : 68.9 3.3%
facebook 1 : 18.3 1.3%
top 1 : 13.3 1.9%
twitter 1 : 8.5 2.3%
title 1 : 3.3 10.5%
header 1 : 2.9 3.7%

comment 3.2 : 1 21.3%
author 4.9 : 1 7.9%
thread 5.0 : 1 3.0%
avatar 42.1 : 1 3.2%

screen layout (e.g. <div>, <p>, <h1>). We iterate through
the DOM tree and create a new block each time one of these
tags is encountered. Blocks without any text content are
discarded. To build a labeled data set for machine learning
we first split each document into blocks and associate each
token in the full document with a single block. Then we solve
the longest common sub-sequence problem to determine the
correspondence of tokens in the gold standard with tokens
in the full document so that we can compute the percent of
each block’s tokens extracted as content. Any block with
more then 10% of the tokens extracted is tagged “content”.

The data is randomly sampled into 70%/30% training/test
split. We use L2 regularized logistic regression, with the reg-
ularization parameter set via 5-fold cross validation in the
training data.

4. MODEL FEATURES
The first set of features we include are the two most pre-

dictive shallow text (ST) features in [1], the text and link
density. We follow their definition and compute the text
density as the average number of tokens per 80 character
line and the link density as the the anchor text percent. We
also include the densities from the previous and next blocks
as features.

Motivated by CETR [4], we also include the smoothed
tag ratio (the ratio of the text length to the number of tags
in the block) and the absolute smoothed derivative of the
tag ratio. To preserve the spirit of their approach including
the two-dimensional k-means clustering, we implement the
entire CETR algorithm and and use the final prediction as
a “feature” in our model.

4.1 Semantic features from id and class

We extract these features by first accumulating all tokens
in the id and class attributes in each block, including the
outer most tag that separates the block from the surrounding
blocks. Then, we introduce a binary feature for each token
in a specified list (collectively the IC features).

To create the list of tokens to include as features, we first
list all tokens that occur frequently in our training data with
their content to no-content odds ratio. We manually select
tokens with a odds ratio larger then 2.5 that appear in more
then 1% of either content or non-content blocks and have an
obvious semantic interpretation. Table 1 lists a few selected
tokens in the class attribute along with their odds ratios.
Tokens in the upper portion of the table are more likely

Table 2: Model comparison using mean F1-score

Cleaneval-
EN

Big 5 2012
Train

2012
Test

Baseline 0.899 0.625 0.621 0.623
CETR 0.919 0.794 0.741 0.735
IC 0.887 0.641 0.709 0.701
ST 0.904 0.854 0.817 0.809
ST+IC 0.896 0.858 0.836 0.824
ST+IC+CETR 0.907 0.877 0.848 0.836

to occur in non-content blocks, while those in the bottom
are more likely to occur in content blocks. Interestingly
“facebook” and “twitter” are fairly common, and are more
likely to occur in non-content (presumably associated with
social plug-ins). All told, we include 8 id features and 24
class features.

5. RESULTS
Table 2 compares the mean F1-scores for different feature

combinations. We use the method in [4] to compute the
F1-scores, where each word in the document is distinct even
if two words are lexically the same. To demonstrate the
versatility the learning approach, we train only on the 2012
Train set and make predictions on the rest of the data.

In general, combining features does improve model per-
formance, even if the individual model performance is poor.

Model performance decreases on the newer 2012 data when
compared to the older data sets. Individually, the IC fea-
tures give a small performance improvement over the base-
line, and not surprisingly perform poorly on the older data
when CSS was less popular. The low individual performance
of the IC features may be attributable to the fact that we
accumulate tokens in each block, but meaningful tokens may
appear outside the block at higher levels in the DOM. The
small train/test differences suggest we may be slightly over-
fitting.

6. CONCLUSIONS AND FUTURE WORK
Even though these are preliminary results, combining fea-

tures does overall appear to improve model performance.
This suggests that adding additional features (e.g. CETD
[3]) or modifying the definition of the IC features will further
improve performance. We’d like to benchmark performance
against a wider variety of pages, including the more recent
data in [3]. Finally, we plan to try a more sophisticated
learning algorithm then logistic regression.

7. REFERENCES
[1] C. Kohlschütter, P. Fankhauser, and W. Nejdl.

Boilerplate detection using shallow text features. In
Proceedings of WSDM ’10, pages 441–450. ACM, 2010.

[2] J. Pasternack and D. Roth. Extracting article text from
the web with maximum subsequence segmentation. In
Proceedings of WWW ’09, pages 971–980. ACM, 2009.

[3] F. Sun, D. Song, and L. Liao. Dom based content
extraction via text density. In SIGIR, volume 11, pages
245–254, 2011.

[4] T. Weninger, W. H. Hsu, and J. Han. Cetr: content
extraction via tag ratios. In Proceedings of WWW ’10,
pages 971–980. ACM, 2010.


