Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Browse files

More POD improvements

  • Loading branch information...
commit 1dcfdfd249c6de785ecf18782e7bda3f92dca9bd 1 parent 9d9ff1a
@leto authored
Showing with 200 additions and 75 deletions.
  1. +1 −6 pod/Chebyshev.pod
  2. +199 −69 pod/Complex.pod
View
7 pod/Chebyshev.pod
@@ -22,7 +22,7 @@ Math::GSL::Chebyshev - Univariate Chebyshev Series Approximation
=head1 SYNOPSIS
- use Math::GSL::Chebyshev qw /:all/;
+ use Math::GSL::Chebyshev qw/:all/;
my $cheb = gsl_cheb_alloc(40);
my $function = sub { sin(cos($_[0])) };
@@ -35,8 +35,6 @@ Math::GSL::Chebyshev - Univariate Chebyshev Series Approximation
=head1 DESCRIPTION
-Here is a list of all the functions in this module :
-
=over
=item * C<gsl_cheb_alloc($size)>
@@ -96,9 +94,6 @@ in $deriv, which must be pre-allocated. Returns a GSL status code.
For more informations on the functions, we refer you to the GSL offcial
documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
- Tip : search on google: site:http://www.gnu.org/software/gsl/manual/html_node/ name_of_the_function_you_want
-
-
=head1 AUTHORS
Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
View
268 pod/Complex.pod
@@ -101,7 +101,7 @@ Math::GSL::Complex - Complex Numbers
my $imag = $complex->imag; # returns the imaginary part
$complex->gsl_set_real(5); # changes the real part to 5
$complex->gsl_set_imag(4); # changes the imaginary part to 4
- $complex->gsl_set_complex(7,6); # changes it to 7 + 6*I
+ $complex->gsl_set_complex(7,6); # changes it to 7 + 6*i
($real, $imag) = $complex->parts;
=head1 DESCRIPTION
@@ -110,152 +110,282 @@ Here is a list of all the functions included in this module :
=over 1
-=item C<gsl_complex_arg($z)> - return the argument of the complex number $z
+=item C<gsl_complex_arg($z)>
-=item C<gsl_complex_abs($z)> - return |$z|, the magnitude of the complex number $z
+Return the argument of the complex number $z
-=item C<gsl_complex_rect($x,$y)> - create a complex number in cartesian form $x + $y*I
+=item C<gsl_complex_abs($z)>
-=item C<gsl_complex_polar($r,$theta)> - create a complex number in polar form $r*exp(I*$theta)
+Return |$z|, the magnitude of the complex number $z
-=item C<gsl_complex_abs2($z)> - return |$z|^2, the squared magnitude of the complex number $z
+=item C<gsl_complex_rect($x,$y)>
-=item C<gsl_complex_logabs($z)> - return log(|$z|), the natural logarithm of the magnitude of the complex number $z
+Create a complex number in cartesian form $x + $y*i
-=item C<gsl_complex_add($c1, $c2)> - return a complex number which is the sum of the complex numbers $c1 and $c2
+=item C<gsl_complex_polar($r,$theta)>
-=item C<gsl_complex_sub($c1, $c2)> - return a complex number which is the difference between $c1 and $c2 ($c1 - $c2)
+Create a complex number in polar form $r*exp(i*$theta)
-=item C<gsl_complex_mul($c1, $c2)> - return a complex number which is the product of the complex numbers $c1 and $c2
+=item C<gsl_complex_abs2($z)>
-=item C<gsl_complex_div($c1, $c2)> - return a complex number which is the quotient of the complex numbers $c1 and $c2 ($c1 / $c2)
+Return |$z|^2, the squared magnitude of the complex number $z
-=item C<gsl_complex_add_real($c, $x)> - return the sum of the complex number $c and the real number $x
+=item C<gsl_complex_logabs($z)>
-=item C<gsl_complex_sub_real($c, $x)> - return the difference of the complex number $c and the real number $x
+Return log(|$z|), the natural logarithm of the magnitude of the complex number $z
-=item C<gsl_complex_mul_real($c, $x)> - return the product of the complex number $c and the real number $x
+=item C<gsl_complex_add($c1, $c2)>
-=item C<gsl_complex_div_real($c, $x)> - return the quotient of the complex number $c and the real number $x
+Return a complex number which is the sum of the complex numbers $c1 and $c2
-=item C<gsl_complex_add_imag($c, $y)> - return sum of the complex number $c and the imaginary number i*$x
+=item C<gsl_complex_sub($c1, $c2)>
-=item C<gsl_complex_sub_imag($c, $y)> - return the diffrence of the complex number $c and the imaginary number i*$x
+Return a complex number which is the difference between $c1 and $c2 ($c1 - $c2)
-=item C<gsl_complex_mul_imag($c, $y)> - return the product of the complex number $c and the imaginary number i*$x
+=item C<gsl_complex_mul($c1, $c2)>
-=item C<gsl_complex_div_imag($c, $y)> - return the quotient of the complex number $c and the imaginary number i*$x
+Return a complex number which is the product of the complex numbers $c1 and $c2
-=item C<gsl_complex_conjugate($c)> - return the conjugate of the of the complex number $c (x - i*y)
+=item C<gsl_complex_div($c1, $c2)>
-=item C<gsl_complex_inverse($c)> - return the inverse, or reciprocal of the complex number $c (1/$c)
+Return a complex number which is the quotient of the complex numbers $c1 and $c2 ($c1 / $c2)
-=item C<gsl_complex_negative($c)> - return the negative of the complex number $c (-x -i*y)
+=item C<gsl_complex_add_real($c, $x)>
-=item C<gsl_complex_sqrt($c)> - return the square root of the complex number $c
+Return the sum of the complex number $c and the real number $x
-=item C<gsl_complex_sqrt_real($x)> - return the complex square root of the real number $x, where $x may be negative
+=item C<gsl_complex_sub_real($c, $x)>
-=item C<gsl_complex_pow($c1, $c2)> - return the complex number $c1 raised to the complex power $c2
+Return the difference of the complex number $c and the real number $x
-=item C<gsl_complex_pow_real($c, $x)> - return the complex number raised to the real power $x
+=item C<gsl_complex_mul_real($c, $x)>
-=item C<gsl_complex_exp($c)> - return the complex exponential of the complex number $c
+Return the product of the complex number $c and the real number $x
-=item C<gsl_complex_log($c)> - return the complex natural logarithm (base e) of the complex number $c
+=item C<gsl_complex_div_real($c, $x)>
-=item C<gsl_complex_log10($c)> - return the complex base-10 logarithm of the complex number $c
+Return the quotient of the complex number $c and the real number $x
-=item C<gsl_complex_log_b($c, $b)> - return the complex base-$b of the complex number $c
+=item C<gsl_complex_add_imag($c, $y)>
-=item C<gsl_complex_sin($c)> - return the complex sine of the complex number $c
+Return sum of the complex number $c and the imaginary number i*$x
-=item C<gsl_complex_cos($c)> - return the complex cosine of the complex number $c
+=item C<gsl_complex_sub_imag($c, $y)>
-=item C<gsl_complex_sec($c)> - return the complex secant of the complex number $c
+Return the diffrence of the complex number $c and the imaginary number i*$x
-=item C<gsl_complex_csc($c)> - return the complex cosecant of the complex number $c
+=item C<gsl_complex_mul_imag($c, $y)>
-=item C<gsl_complex_tan($c)> - return the complex tangent of the complex number $c
+Return the product of the complex number $c and the imaginary number i*$x
-=item C<gsl_complex_cot($c)> - return the complex cotangent of the complex number $c
+=item C<gsl_complex_div_imag($c, $y)>
-=item C<gsl_complex_arcsin($c)> - return the complex arcsine of the complex number $c
+Return the quotient of the complex number $c and the imaginary number i*$x
-=item C<gsl_complex_arcsin_real($x)> - return the complex arcsine of the real number $x
+=item C<gsl_complex_conjugate($c)>
-=item C<gsl_complex_arccos($c)> - return the complex arccosine of the complex number $c
+Return the conjugate of the of the complex number $c (x - i*y)
-=item C<gsl_complex_arccos_real($x)> - return the complex arccosine of the real number $x
+=item C<gsl_complex_inverse($c)>
-=item C<gsl_complex_arcsec($c)> - return the complex arcsecant of the complex number $c
+Return the inverse, or reciprocal of the complex number $c (1/$c)
-=item C<gsl_complex_arcsec_real($x)> - return the complex arcsecant of the real number $x
+=item C<gsl_complex_negative($c)>
-=item C<gsl_complex_arccsc($c)> - return the complex arccosecant of the complex number $c
+Return the negative of the complex number $c (-x -i*y)
-=item C<gsl_complex_arccsc_real($x)> - return the complex arccosecant of the real number $x
+=item C<gsl_complex_sqrt($c)>
-=item C<gsl_complex_arctan($c)> - return the complex arctangent of the complex number $c
+Return the square root of the complex number $c
-=item C<gsl_complex_arccot($c)> - return the complex arccotangent of the complex number $c
+=item C<gsl_complex_sqrt_real($x)>
-=item C<gsl_complex_sinh($c)> - return the complex hyperbolic sine of the complex number $c
+Return the complex square root of the real number $x, where $x may be negative
-=item C<gsl_complex_cosh($c)> - return the complex hyperbolic cosine of the complex number $cy
+=item C<gsl_complex_pow($c1, $c2)>
-=item C<gsl_complex_sech($c)> - return the complex hyperbolic secant of the complex number $c
+Return the complex number $c1 raised to the complex power $c2
-=item C<gsl_complex_csch($c)> - return the complex hyperbolic cosecant of the complex number $c
+=item C<gsl_complex_pow_real($c, $x)>
-=item C<gsl_complex_tanh($c)> - return the complex hyperbolic tangent of the complex number $c
+Return the complex number raised to the real power $x
-=item C<gsl_complex_coth($c)> - return the complex hyperbolic cotangent of the complex number $c
+=item C<gsl_complex_exp($c)>
-=item C<gsl_complex_arcsinh($c)> - return the complex hyperbolic arcsine of the complex number $c
+Return the complex exponential of the complex number $c
-=item C<gsl_complex_arccosh($c)> - return the complex hyperbolic arccosine of the complex number $c
+=item C<gsl_complex_log($c)>
-=item C<gsl_complex_arccosh_real($x)> - return the complex hyperbolic arccosine of the real number $x
+Return the complex natural logarithm (base e) of the complex number $c
-=item C<gsl_complex_arcsech($c)> - return the complex hyperbolic arcsecant of the complex number $c
+=item C<gsl_complex_log10($c)>
-=item C<gsl_complex_arccsch($c)> - return the complex hyperbolic arccosecant of the complex number $c
+Return the complex base-10 logarithm of the complex number $c
-=item C<gsl_complex_arctanh($c)> - return the complex hyperbolic arctangent of the complex number $c
+=item C<gsl_complex_log_b($c, $b)>
-=item C<gsl_complex_arctanh_real($x)> - return the complex hyperbolic arctangent of the real number $x
+Return the complex base-$b of the complex number $c
-=item C<gsl_complex_arccoth($c)> - return the complex hyperbolic arccotangent of the complex number $c
+=item C<gsl_complex_sin($c)>
-=item C<gsl_real($z)> - return the real part of $z
+Return the complex sine of the complex number $c
-=item C<gsl_imag($z)> - return the imaginary part of $z
+=item C<gsl_complex_cos($c)>
-=item C<gsl_parts($z)> - return a list of the real and imaginary parts of $z
+Return the complex cosine of the complex number $c
-=item C<gsl_set_real($z, $x)> - sets the real part of $z to $x
+=item C<gsl_complex_sec($c)>
-=item C<gsl_set_imag($z, $y)> - sets the imaginary part of $z to $y
+Return the complex secant of the complex number $c
-=item C<gsl_set_complex($z, $x, $h)> - sets the real part of $z to $x and the imaginary part to $y
+=item C<gsl_complex_csc($c)>
+
+Return the complex cosecant of the complex number $c
+
+=item C<gsl_complex_tan($c)>
+
+Return the complex tangent of the complex number $c
+
+=item C<gsl_complex_cot($c)>
+
+Return the complex cotangent of the complex number $c
+
+=item C<gsl_complex_arcsin($c)>
+
+Return the complex arcsine of the complex number $c
+
+=item C<gsl_complex_arcsin_real($x)>
+
+Return the complex arcsine of the real number $x
+
+=item C<gsl_complex_arccos($c)>
+
+Return the complex arccosine of the complex number $c
+
+=item C<gsl_complex_arccos_real($x)>
+
+Return the complex arccosine of the real number $x
+
+=item C<gsl_complex_arcsec($c)>
+
+Return the complex arcsecant of the complex number $c
+
+=item C<gsl_complex_arcsec_real($x)>
+
+Return the complex arcsecant of the real number $x
+
+=item C<gsl_complex_arccsc($c)>
+
+Return the complex arccosecant of the complex number $c
+
+=item C<gsl_complex_arccsc_real($x)>
+
+Return the complex arccosecant of the real number $x
+
+=item C<gsl_complex_arctan($c)>
+
+Return the complex arctangent of the complex number $c
+
+=item C<gsl_complex_arccot($c)>
+
+Return the complex arccotangent of the complex number $c
+
+=item C<gsl_complex_sinh($c)>
+
+Return the complex hyperbolic sine of the complex number $c
+
+=item C<gsl_complex_cosh($c)>
+
+Return the complex hyperbolic cosine of the complex number $cy
+
+=item C<gsl_complex_sech($c)>
+
+Return the complex hyperbolic secant of the complex number $c
+
+=item C<gsl_complex_csch($c)>
+
+Return the complex hyperbolic cosecant of the complex number $c
+
+=item C<gsl_complex_tanh($c)>
+
+Return the complex hyperbolic tangent of the complex number $c
+
+=item C<gsl_complex_coth($c)>
+
+Return the complex hyperbolic cotangent of the complex number $c
+
+=item C<gsl_complex_arcsinh($c)>
+
+Return the complex hyperbolic arcsine of the complex number $c
+
+=item C<gsl_complex_arccosh($c)>
+
+Return the complex hyperbolic arccosine of the complex number $c
+
+=item C<gsl_complex_arccosh_real($x)>
+
+Return the complex hyperbolic arccosine of the real number $x
+
+=item C<gsl_complex_arcsech($c)>
+
+Return the complex hyperbolic arcsecant of the complex number $c
+
+=item C<gsl_complex_arccsch($c)>
+
+Return the complex hyperbolic arccosecant of the complex number $c
+
+=item C<gsl_complex_arctanh($c)>
+
+Return the complex hyperbolic arctangent of the complex number $c
+
+=item C<gsl_complex_arctanh_real($x)>
+
+Return the complex hyperbolic arctangent of the real number $x
+
+=item C<gsl_complex_arccoth($c)>
+
+Return the complex hyperbolic arccotangent of the complex number $c
+
+=item C<gsl_real($z)>
+
+Return the real part of $z
+
+=item C<gsl_imag($z)>
+
+Return the imaginary part of $z
+
+=item C<gsl_parts($z)>
+
+Return a list of the real and imaginary parts of $z
+
+=item C<gsl_set_real($z, $x)>
+
+Sets the real part of $z to $x
+
+=item C<gsl_set_imag($z, $y)>
+
+Sets the imaginary part of $z to $y
+
+=item C<gsl_set_complex($z, $x, $h)>
+
+Sets the real part of $z to $x and the imaginary part to $y
=back
=head1 EXAMPLES
-This code defines $z as 6 + 4*I, takes the complex conjugate of that number, then prints it out.
+This code defines $z as 6 + 4*i, takes the complex conjugate of that number, then prints it out.
=over 1
my $z = gsl_complex_rect(6,4);
my $y = gsl_complex_conjugate($z);
my ($real, $imag) = gsl_parts($y);
- print "z = $real + $imag*I\n";
+ print "z = $real + $imag*i\n";
=back
-This code defines $z as 5 + 3*I, multiplies it by 2 and then prints it out.
+This code defines $z as 5 + 3*i, multiplies it by 2 and then prints it out.
=over 1
Please sign in to comment.
Something went wrong with that request. Please try again.