Skip to content
This repository
Browse code

Clean up Sys POD

  • Loading branch information...
commit d873388479961b9ef014f770bdd09a7758b56ff7 1 parent fbfb9b5
Duke Leto authored

Showing 1 changed file with 64 additions and 20 deletions. Show diff stats Hide diff stats

  1. +64 20 pod/Sys.pod
84 pod/Sys.pod
Source Rendered
@@ -37,36 +37,66 @@ __END__
37 37
38 38 =head1 NAME
39 39
40   -Math::GSL::Sys -
  40 +Math::GSL::Sys - Misc Math Functions
41 41
42 42 =head1 SYNOPSIS
43 43
44   -use Math::GSL::Sys qw /:all/;
  44 + use Math::GSL::Sys qw/:all/;
45 45
46 46 =head1 DESCRIPTION
47 47
48   -Here is a list of all the functions in this module :
  48 +This module contains various useful math functions that are not usually
  49 +provided by standard libraries.
49 50
50 51 =over
51 52
52   -=item * C<gsl_log1p($x)> - This function computes the value of \log(1+$x) in a way that is accurate for small $x. It provides an alternative to the BSD math function log1p(x).
53   -=item * C<gsl_expm1($x)> - This function computes the value of \exp($x)-1 in a way that is accurate for small $x. It provides an alternative to the BSD math function expm1(x).
  53 +=item * C<gsl_log1p($x)>
54 54
55   -=item * C<gsl_hypot($x, $y)> - This function computes the value of \sqrt{$x^2 + $y^2} in a way that avoids overflow. It provides an alternative to the BSD math function hypot($x,$y).
  55 +This function computes the value of \log(1+$x) in a way that is accurate for
  56 +small $x. It provides an alternative to the BSD math function log1p(x).
56 57
57   -=item * C<gsl_hypot3($x, $y, $z)> - This function computes the value of \sqrt{$x^2 + $y^2 + $z^2} in a way that avoids overflow.
  58 +=item * C<gsl_expm1($x)>
58 59
59   -=item * C<gsl_acosh($x)> - This function computes the value of \arccosh($x). It provides an alternative to the standard math function acosh($x).
  60 +This function computes the value of \exp($x)-1 in a way that is accurate for
  61 +small $x. It provides an alternative to the BSD math function expm1(x).
60 62
61   -=item * C<gsl_asinh($x)> - This function computes the value of \arcsinh($x). It provides an alternative to the standard math function asinh($x).
  63 +=item * C<gsl_hypot($x, $y)>
62 64
63   -=item * C<gsl_atanh($x)> - This function computes the value of \arctanh($x). It provides an alternative to the standard math function atanh($x).
  65 +This function computes the value of \sqrt{$x^2 + $y^2} in a way that avoids
  66 +overflow. It provides an alternative to the BSD math function hypot($x,$y).
64 67
65   -=item * C<gsl_isnan($x)> - This function returns 1 if $x is not-a-number.
  68 +=item * C<gsl_hypot3($x, $y, $z)>
66 69
67   -=item * C<gsl_isinf($x)> - This function returns +1 if $x is positive infinity, -1 if $x is negative infinity and 0 otherwise.
  70 +This function computes the value of \sqrt{$x^2 + $y^2 + $z^2} in a way that
  71 +avoids overflow.
68 72
69   -=item * C<gsl_finite($x)> - This function returns 1 if $x is a real number, and 0 if it is infinite or not-a-number.
  73 +=item * C<gsl_acosh($x)>
  74 +
  75 +This function computes the value of \arccosh($x). It provides an alternative to
  76 +the standard math function acosh($x).
  77 +
  78 +=item * C<gsl_asinh($x)>
  79 +
  80 +This function computes the value of \arcsinh($x). It provides an alternative to
  81 +the standard math function asinh($x).
  82 +
  83 +=item * C<gsl_atanh($x)>
  84 +
  85 +This function computes the value of \arctanh($x). It provides an alternative to
  86 +the standard math function atanh($x).
  87 +
  88 +=item * C<gsl_isnan($x)>
  89 +
  90 +This function returns 1 if $x is not-a-number.
  91 +
  92 +=item * C<gsl_isinf($x)>
  93 +
  94 +This function returns +1 if $x is positive infinity, -1 if $x is negative
  95 +infinity and 0 otherwise.
  96 +
  97 +=item * C<gsl_finite($x)>
  98 +
  99 +This function returns 1 if $x is a real number, and 0 if it is infinite or not-a-number.
70 100
71 101 =item * C<gsl_posinf >
72 102
@@ -80,20 +110,35 @@ Here is a list of all the functions in this module :
80 110
81 111 =item * C<gsl_coerce_long_double >
82 112
83   -=item * C<gsl_ldexp($x, $e)> - This function computes the value of $x * 2**$e. It provides an alternative to the standard math function ldexp($x,$e).
  113 +=item * C<gsl_ldexp($x, $e)>
  114 +
  115 +This function computes the value of $x * 2**$e. It provides an alternative to
  116 +the standard math function ldexp($x,$e).
  117 +
  118 +=item * C<gsl_frexp($x)>
84 119
85   -=item * C<gsl_frexp($x)> - This function splits the number $x into its normalized fraction f and exponent e, such that $x = f * 2^e and 0.5 <= f < 1. The function returns f and then the exponent in e. If $x is zero, both f and e are set to zero. This function provides an alternative to the standard math function frexp(x, e).
  120 +This function splits the number $x into its normalized fraction f and exponent
  121 +e, such that $x = f * 2^e and 0.5 <= f < 1. The function returns f and then the
  122 +exponent in e. If $x is zero, both f and e are set to zero. This function
  123 +provides an alternative to the standard math function frexp(x, e).
86 124
87   -=item * C<gsl_fcmp($x, $y, $epsilon)> - This function determines whether $x and $y are approximately equal to a relative accuracy $epsilon. The relative accuracy is measured using an interval of size 2 \delta, where \delta = 2^k \epsilon and k is the maximum base-2 exponent of $x and $y as computed by the function frexp. If $x and $y lie within this interval, they are considered approximately equal and the function returns 0. Otherwise if $x < $y, the function returns -1, or if $x > $y, the function returns +1. Note that $x and $y are compared to relative accuracy, so this function is not suitable for testing whether a value is approximately zero. The implementation is based on the package fcmp by T.C. Belding.
  125 +=item * C<gsl_fcmp($x, $y, $epsilon)>
  126 +
  127 +This function determines whether $x and $y are approximately equal to a
  128 +relative accuracy $epsilon. The relative accuracy is measured using an interval
  129 +of size 2 \delta, where \delta = 2^k \epsilon and k is the maximum base-2
  130 +exponent of $x and $y as computed by the function frexp. If $x and $y lie
  131 +within this interval, they are considered approximately equal and the function
  132 +returns 0. Otherwise if $x < $y, the function returns -1, or if $x > $y, the
  133 +function returns +1. Note that $x and $y are compared to relative accuracy, so
  134 +this function is not suitable for testing whether a value is approximately
  135 +zero. The implementation is based on the package fcmp by T.C. Belding.
88 136
89 137 =back
90 138
91 139 For more informations on the functions, we refer you to the GSL offcial
92 140 documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
93 141
94   - Tip : search on google: site:http://www.gnu.org/software/gsl/manual/html_node/ name_of_the_function_you_want
95   -
96   -
97 142 =head1 AUTHORS
98 143
99 144 Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
@@ -108,4 +153,3 @@ under the same terms as Perl itself.
108 153 =cut
109 154
110 155 %}
111   -

0 comments on commit d873388

Please sign in to comment.
Something went wrong with that request. Please try again.