
1 Overview

This document

1. defines terms relating to arrow models of LF programs;

2. describes properties of such models, including properties of an addition operation
over logical times;

3. describes an algorithm for producing finite canonical representations of such models;

4. describes an algorithm for abstracting parts of a program out of such models, e.g.,
to conceal the internals of a module; and

5. includes examples to illustrate the meaning and purpose of such models.

2 Comments about the original post of discussion

#1307

A few high-level comments on the discussion post:

1. Discussion #1307 includes motivation, description, and intuition. This document
was written because the discussion post does not communicate any detailed under-
standing or analysis.

2. The need for function-like reactors1 was the primary motivation for the discussion
post. A reasonable question in the context of any programming language is, “if I
put something in (to a procedure, function, method, etc.), is it certain or uncertain
that I get something out?”2 In addition, in the context of reactors, it also makes
sense to ask, “if I do get a response, when do I get it?” Even the question of
“when” pertains to correctness of the computation, not just the timing of it; for
elaboration on this point, see section 11. Given this context, it is unsurprising
that the models discussed here represent functions accurately but have problems
in representing certain other types of modules, such as sporadic producers (section
12) or even FSMs (section 10).

3. Another of the initial motivations was our discussions of causality interfaces (which
are needed to maintain encapsulation while explaining causality loops to end users).
Although it is possible to imagine that an approach similar to the one discussed here
could also be used to generate causality interfaces, I have come to view causality
interfaces as a separate problem.3

1The term Marten used in describing Magnition’s feedback was “request-response patterns,” which
might mean the same as what Edward has described as function reactors.

2Originally, I had constructs like null-safe type systems and Haskell-style “maybe” types in mind be-
cause these specify whether a module (e.g. procedure, method) returns something meaningful. However,
the lack of interface information about whether a reactor produces a response is worse than that. One
does not know whether the module returns at all, so now we have unspecified control flow in addition
to unspecified data validity. I think Marten said that some users regard our programming model as a
throwback to GO TO-oriented programming, probably for this reason.

3Indeed, a fundamentally different concept of causality is used in this document than the one that
we need to in order to construct causality interfaces. To avoid muddying the waters, I will restrict my
focus to just one concept of causality.

1

https://github.com/lf-lang/lingua-franca/discussions/1307


4. It might have been a mistake to use the symbols ? and ! in my original post
because their meaning there is unrelated to their meaning in the context of interface
automata. It is a coincidence that, like in interface automata, they have opposite
and complementary implications for the compatibility of different components.

3 Definitions/Interpretation

I will use the term “present” to apply to reactions as well as to ports and triggers. A
reaction is present at a tag4 g ∈ N×Z if it is triggered at any point during the execution
of g. Ports and triggers are present at a tag g if their is present field is set to be true
at any point during the execution of g.

A (logical) time difference is5 an element of N×Z. Although I use the word “difference”
to distinguish these conceptually from absolute logical times, time differences and logical
times are mathematically identical because an (absolute) logical time is a difference from
time zero; therefore I will use similar notation for both.6

A (logical) time smear ∆g is a set of (logical) time differences.

Addition7 of time differences can be defined as follows:8

(t0, n0) + (t1, n1) =

{
(t0, n0 + n1), t1 = 0

(t0 + t1, n1), otherwise

4It will be apparent later why it might be useful to allow microsteps to be integers instead of just
natural numbers.

5This definition will be extended in section 11, but it is good enough to get started.
6The extension proposed in 11 is in this sense a generalization of the concept of logical times.
7It is intuitive to use the term “addition” even though we are not talking about an abelian group nor

even a group; I hope this abuse of language will be forgiven.
8This addition is (obviously) intended to model how events are scheduled in actual LF programs. I

recently found out that the scheduling rules are more complicated than this in the C target, but the
C++ target does not have this problem, and the situation might change depending on how we handle
issue #1464.

2

https://github.com/lf-lang/lingua-franca/issues/1464


Such addition is not commutative,9 but it is associative.10

Note also that the operation of left-addition by some fixed element of N×Z is injective,11

hence left-invertible, whereas right-addition is not injective in general.12 The range of
left-addition by (t, n) is {(t′, n′) : t′ ≥ t, n′ ∈ Z}.

A consequence of this non-injectivity of right-addition is that we cannot have equivalence
classes modulo some closed-under-addition subset.13 Perhaps the closest approximation
to equivalence modulo λ > (0, 0) is “equivalence in λ-reachability from g0,” where we can
declare two time differences g1, g2 equivalent if there exists a time difference (0, 0) ≤ h < λ

9For the rules of “commuting” summands with each other, see section 8. It works, but summands do
not pass through each other unaltered.

10Proof of associativity:

((t0, n0) + (t1, n1)) + (t2, n2) =

({
(t0, n0 + n1), t1 = 0

(t0 + t1, n1), otherwise

)
+ (t2, n2) (1)

=


(t0, (n0 + n1) + n2), t1 = 0 ∧ t2 = 0

(t0 + t2, n2), t1 = 0 ∧ t2 ̸= 0

((t0 + t1), n1 + n2), t1 ̸= 0 ∧ t2 = 0

((t0 + t1) + t2, n2), t1 ̸= 0 ∧ t2 ̸= 0

(2)

=


(t0, n0 + (n1 + n2)), t1 = 0 ∧ t2 = 0

(t0 + (t1 + t2), n2), t1 = 0 ∧ t2 ̸= 0

(t0 + t1, (n1 + n2)), t1 ̸= 0 ∧ t2 = 0

(t0 + (t1 + t2), n2), t1 ̸= 0 ∧ t2 ̸= 0

(3)

= (t0, n0) +

({
(t1, n1 + n2), t2 = 0

(t1 + t2, n2), otherwise

)
(4)

= (t0, n0) + ((t1, n1) + (t0, n0)) (5)

Note that I made use of the fact that time differences were elements of N × Z and not Z × Z when I
assumed on line 4 that t1 + t2 = 0 ⇐⇒ t1 = 0 ∧ t2 = 0.

11 Proof: suppose g + g0 = g + g1. Let first(g) denote the first element of g and second(g) denote
the second element of g. Then either the first(g0) = first(g1) or not. In the latter case, we already
have a contradiction because our addition acts like regular integer addition in the first slot, and integer
addition is injective. Now, consider two sub-cases of the first case: Either first(g0) = first(g1) = 0, or
first(g0) = first(g1) = t ̸= 0. In the latter case, we must have that g0 = g1 because when the right
summand is zero in the first slot, addition acts like regular addition in the second slot. In the former
case, we also must have that g0 = g1 because second(g0) = second(g+g0) = second(g+g1) = second(g1).

12This non-injectivity will cause some awkwardness, but nothing insurmountable, in section 8. The
left/right asymmetry, and in particular the non-invertibility of right-addition, has an advantage that
may justify the complication. This advantage will be explored in section 11.2. The basic idea is that
we may need to drop events to enforce certain guarantees in the presence of turing-complete scheduling
logic, and that one controlled, predictable way to drop events is to make right-addition by a time smear
non-injective.

13As a naive attempt, you say that a is congruent to b modulo H if a−1b ∈ H. Then you don’t have
symmetry necessarily because there is no guarantee that b−1a ∈ H, even if you require H to be closed
under left-inversion, since b−1a is not necessarily the inverse of a−1b (since a−1 is not the right-inverse
of a, or equivalently, a is not the left-inverse of a−1). Suppose you then try to force symmetry by simply
declaring the relation symmetric. Then you do not have transitivity: a−1b might be in H, and c−1b
might be in H, but together those will not imply that a−1c ∈ H nor that c−1a ∈ H. For example, both
c and a might have a different microstep from all elements of H, while b has the same microstep as some
element of H, and all non-identity elements of H might have nonzero first element. (If this explanation
was unclear, it should make sense in the context of section 11.)

3



such that there exist integers j, k such that g1 = g0 + jλ+ h and g2 = g0 + kλ+ h.14

Despite these unpleasant properties, every time difference is uniquely expressible as the
sum of an element of T = {(t, 0) : t ∈ N} with an element of N := {(0, n) : n ∈ Z}. T
and N are isomorphic to the natural numbers and integers respectively, which both do
have nice properties such as commutative addition, injective right addition, and existence
of at least one common divisor for each pair of elements.

The sum of a logical time or logical time difference g and a logical time smear ∆g is
another time smear:

g +∆g = {g + g′ : g′ ∈ ∆g}

∆g + g = {g′ + g : g′ ∈ ∆g}

The sum15 of a logical time smear ∆g1 and a logical time smear ∆g2 is another logical
time smear:

∆g1 +∆g2 = {g′1 + g′2 : g
′
1 ∈ ∆g1 ∧ g′2 ∈ ∆g2}

This generalization of the addition from elements of N×Z to elements of 2N×Z preserves
associativity but not necessarily invertibility.

Multiplication of a time smear or time difference g by a natural number n is the n-fold
addition of g with itself.16

Suppose b is an object (a port, reaction, or trigger), and we are interested in the question
of whether b is present at some tag g.

1. If a -> ∆g! b, then the presence of a at some time g0 is a sufficient condition for
the presence of b at some time that is in the set g0 +∆g. I think of arrows that are
followed by ! as “certainly” arrows because they can guarantee the presence of b
within some set of logical times.

2. Suppose b is any object17 other than startup.18 The following predicate is a neces-
sary condition for the presence of b at tag g: There exists an object a, a tag g0, and
a time smear ∆g such that a is present at tag g0 and (a -> ∆g ? b or a -> ∆g
! b) and g ∈ g0 +∆g. I think of arrows that are followed by ! or ? as “maybe”
arrows because they they are used to determine whether b might be present at time
g.

14We have symmetry here by construction. By the injectivity of left-addition and the fact that h < λ,
if h exists then h is unique for each g1, g2 given g0, λ, so we have transitivity. Reflexivity is obvious.

15Due to the relationship between this addition and the Cartesian product, and due to the worst-
case multiplicative effect it might have on the cardinalities of finite smears, it is tempting to call it a
multiplication. I will persist in calling it an addition to emphasize its role in translating events across
time.

16Obviously even time differences that are invertible do not form a group – let alone an abelian group
– because they may not be invertible on both the left and right. Even if invertibility is used to permit
multiplication by negative integers, we therefore cannot have a module.

17Physical actions can also become present spontaneously from the perspective of the program, but
that can be modeled by drawing a “maybe” arrow with time smear N×N from startup to any physical
action. Therefore, startup is the only exception that need be made.

18I will use the (obvious) assumption that startup is present at tag g iff g = (0, 0).

4



A set of “certainly” and “maybe” arrows is said to be invalid if it gives any false guaran-
tees19 about when some object will or will not be present.

The following are consequences of the definitions of “certainly” and “maybe” arrows:

1. “certainly” arrows are a subset of “maybe” arrows.

2. A “maybe” arrow from a to b with a time smear ∆g has the same meaning as a
set of “maybe” arrows from a to b, the union of whose time smears is equal to ∆g.
In particular, it can be replaced with a set of arrows, each corresponding to a time
smear of cardinality one.20

3. Addition of a “maybe” arrow to a valid set of arrows can never make the arrows
invalid. However, the new arrow can make the set of arrows less informative in the
sense that it removes counterfactual causality information.21

4. Weakening of a “certainly” arrow to just a general “maybe” arrow in a set of arrows
can never make the set of arrows invalid.

5. Weakening of the time smear ∆g of an arrow to a superset of ∆g can never make
the set of arrows invalid.

6. A consequence of the previous two items is that any LF program has at least one
valid arrow model; a trivial way to find one is to connect every object to every
other object using -> (*, *) ? arrows.22 This model is the top of the type lattice
corresponding to the given set of objects.23 However, this does not mean that the

19A set of arrows gives a false guarantee whenever the semantics of the corresponding LF program
admits an execution trace that includes a counterexample to the sufficient and/or necessary condition
semantics of the set of arrows, regardless of whether such an execution trace is realized physically. Note
that validity is a property of the set of arrows, and not of any individual arrow. This is because unlike the
“sufficient condition” semantics of “certainly” arrows, the “necessary condition” semantics of “maybe”
arrows involves all arrows that have a given object as their target, as opposed to just one arrow.

20This raises the question of why it is necessary to permit time smears to be sets of pairs of numbers
instead of just individual pairs. The obvious reason is that this rule does not work for “certainly” arrows.
Another reason is that the discussion presented in section 5 requires that a finite number of arrows can
represent the possibility that a reaction can schedule an action at any of an infinite number of times in
the future.

21Proof: Suppose A is the set of all objects that have “maybe” arrows to an object b and we are
interested in whether b might occur at time g. If no objects in A (or any superset thereof) are present at
tags g0 such that g is in the set g0 plus the time smear of a “maybe” arrow, then b will not be present.
Suppose we add some extra “maybe” arrows going to b; then A′ ⊋ A is the new set of all objects that
have “maybe” arrows going to b. Given the new set of “maybe” arrows, it is no longer sufficient for all
objects in A to be absent (at the relevant tags) in order to conclude that b will be absent; instead, we
need all elements of A′ to be absent. But before we added the extra arrows, we already had enough
information to conclude that b would be absent whenever A′ ⊃ A (or any superset A′′ ⊃ A′ ⊃ A of A′)
was absent. The counterfactual causality information that we had before adding the “maybe” arrows
is a strict superset of the counterfactual causality information that we had after adding the “maybe”
arrows.

22Proof: Suppose a program has some valid arrow model; I want to show that this implies that the
top is a valid arrow model. Apply property 4 to weaken all arrows to “maybe” arrows. Then apply
property 5 to weaken all the time smears to N × N, which will be a superset of all time smears arising
from the explicit arrows of the program. Then there are finitely many distinct arrows, and they are the
ones described for the top.

23The arrow models possible for the set of objects do indeed form a lattice, by the way, if you consider
arrow models obtained from each other using property 2 to be equivalent. The join of any two elements
is the arrow model with the intersection of their “certainly” arrows and the union of their “maybe”

5



arrows can describe the program in a way that is informative; a more informative
way of finding an arrow model is discussed in section 5.

7. When you compose two arrows associated with time smears ∆g1 and ∆g2, respec-
tively, the resulting arrow has time smear ∆g1 + ∆g2. The associativity of arrow
composition follows from the associativity of time smear addition.

8. Composition of a “certainly” arrow from a to b with a “certainly” arrow from b to
c yields a “certainly” arrow from a to c (cuz hypothetical syllogism).

The following is not a strictly necessary consequence of the definitions, and it pertains to
the addition of extra “maybe” arrows and therefore the loss of (potentially important!)
counterfactual causality information.

9. Composition of a “maybe” arrow from a to b with a “maybe” arrow from b to c
yields a “maybe” arrow from a to c. That the resulting arrow is not necessarily a
“certainly” arrow when the two component arrows are not both “certainly” arrows is
clear; furthermore, from our intuition about the relationship between the arrows and
some concept of causality, it seems like composition should be possible. However,
because this rule removes counterfactual causality information, a more thorough
justification for it is warranted. Its usefulness only becomes evident when we want
to abstract away certain objects, as discussed in sections 6 and 8.

A valid arrow model of a program is defined to be a set of objects together with a valid
set of arrows that is closed under composition.

4 Example

Suppose we have a reaction that is triggered by a timer, and by nothing else:

Figure 1: A simple periodic producer.

The following finite set of arrows arrows is explicit in the structure of the program:24

arrows, and the meet of any two elements is the arrow model with the union of their “certainly” arrows
and the intersection of their “maybe” arrows. If the meet is valid then the two original models are both
valid, and if either of the two original models is valid then the join is valid.

24The arrow from r to p is not a “certainly” arrow because r is a reaction. However, if the reaction body
is analyzed, the arrow from r to p could potentially be strengthened to a “certainly” arrow. Shaokai has
shown that control-flow analysis of reaction bodies is not out of reach. Control-flow analysis is, after all,
what structured programming is designed for, and it is well-understood and frequently used in practice
(e.g., by linters). Moreover, the fact that linters are often wrong does not imply that control-flow analysis
cannot be used to rigorously prove trivial facts about important classes of simple programs; instead, it
is a reflection of the fact that not everyone has the time to formally specify what they want the linters
to prove.

6



t

startup

r p

(0, 0) !

(3 ms, 0) !
(0, 0) ! (0, 0) ?

Figure 2: Arrows explicit in the program.

In addition, there are many more arrows that can be drawn by composing this original
set of generating arrows. For example, the self-loop can be composed with itself, the
arrow going into the timer can be composed with the self-loop, and the self-loop can be
composed with arrows going out of the timer. Here are a few of the arrows that result:

t

startup

r p

(0, 0) !

(3 ms, 0) !

(3 ms, 0) !
(6 ms, 0) !

(0, 0) !

(3 ms, 0) !

(0, 0) ?

(0, 0) ?

Figure 3: Arrows resulting from composition.

In fact, composition lets us have infinitely many arrows:

7



t

startup

r p

...

...

...

...
...

...

...

Figure 4: The closure of the original arrows.

The presence of infinite arrows extending from startup to all other objects in the program
means that each object other than startup might be present at infinitely many moments
in time relative to the start time. It is the presence of the self-loop that allows this
program to have infinite arrows. In this sense, among all arrows in the original explicit
generating set of figure 2, the self-loop holds the special role of encoding the program’s
periodicity.

So far all of the arrows added beyond those explicit in the program were created by com-
posing the original set of arrows. We may also wish to have valid arrows that are contrary
to our intuition about causality, which typically involves physical temporal precedence.
These arrows can be inferred using only the original set of arrows when there is only one
way for an object to be present at a particular time.25 For example, there is only one
zero-delay26 “maybe” arrow whose target is p; this means that the presence of r at a
tag g is a necessary condition for the presence of p at a tag g, which in turn means that
the presence of p at a tag g is a sufficient condition for the presence of r at tag g. This
fact can be represented using a “certainly” arrow. A similar line of reasoning justifies a
“certainly” arrow from r to t:

25It is worth pointing out that such “acausal” arrows would be far more prevalent if reactions were
triggered by the logical AND of the presence of their inputs instead of the logical OR.

26Unfortunately, it is important that this arrow is zero-delay, for that means that the corresponding
arrow that we will infer in the opposite direction can also have zero delay. If the delay were strictly
positive, then the acausal arrow would have a negative delay, which is not permitted by our definition
of time smears nor by our notion of addition. This problem will be revisited in section 11.

8



t

startup

r p

(0, 0) !

(3 ms, 0) !
(0, 0) !

(0, 0) !

(0, 0) ?

(0, 0) !

Figure 5: Arrows that are contrary to our intuition about causality.

In light of this example, a problem with such inferred arrows arises. By composing the
arrow from p to r with the arrow from r to p, we see that p has a zero-delay “maybe”
self-loop. According to the “necessary condition” semantics of “maybe” arrows, this gives
p (and with it, r and t) free license to spontaneously be present at any time during pro-
gram execution, regardless of events in the rest of the program!27 Clearly, counterfactual
causality information was lost in the addition of the inferred arrow because of the inferred
arrow’s “maybe” semantics. Therefore, I define a new type of arrow, symbolized by !!,
and call it an “acausal” arrow because it lacks the “necessary condition” semantics which
is associated with counterfactual causality and which all “maybe” arrows have. Acausal
arrows have the following properties:

10. Removal of an acausal arrow from a valid set of arrows can never make that set of
arrows invalid.28

11. The composition of an acausal arrow with a “certainly” arrow is an acausal arrow.29

12. The composition of an acausal arrow with a “maybe” arrow is nothing.30

27The semantics of “maybe” arrows are violated if p is present at time g1, but no object a was present
at a time g0 such that there exists a “maybe” arrow from a to p with time smear ∆g, and g1 ∈ g0 +∆g.
Now, suppose p has a zero-delay self-loop that is a “maybe” arrow. Then an appearance of p at an
arbitrary tag g cannot violate the semantics of “maybe” arrows because p is itself the object a, and
g0 = g, and g ∈ g0 + {(0, 0)}.

28Compare this to property 3.
29This completes a symmetry with the rule for composing “certainly” arrows with “maybe” arrows.

In both, the rule is that the arrow resulting from the composition has the intersection of the semantics
of the component arrows.

30If it bothers you that the two types of arrow do not compose, say that they compose to form a
“nothing” arrow, which exists but has no meaning; this continues the pattern that arrows resulting from
composition have the intersection of the component arrows’ semantics.

9



Figure 6: From left to right: !!, !, and ? arrows.

5 Finite representability

There are two aspects of arrow models that are not necessarily finite: The set of arrows,
and any given time smear which might be associated with the arrows. For these to be
analyzed, they must be represented finitely, and ideally, scalably.31

In particular, any LF program explicitly presents some finite32 set of arrows via its port
connections and via the declared effects of its reactions.33 Some additional arrows may
optionally be inferred, and all of the (perhaps infinitely many!) remaining arrows can be
obtained by composition.

Since time smears have thus far been defined as arbitrary subsets of an infinite set, it is
impossible to represent arbitrary time smears finitely.34 Therefore, the original generating
set of explicit arrows that the programmer can specify must be restricted. Even in the
presence of reasonable restrictions, however, it is difficult to limit the complexity of
representations of compositions of time smears without using the overapproximation of
property 5. A specific approach would be to require the time smears of the original,
explicit set of arrows to be expressible by a minimum m, an upper bound M ∈ (N×N)∪
{∞}, and an increment g. The time smear would then be {m+ng : m+ng < M,n ∈ N},
and its finite representation would be the triple (m,M, g). An overapproximation35 of
the sum of two time smears (m0,M0, g0) and (m1,M1, g1) would be (m0 + m1,M0 +
M1, gcd(g0, g1)) if g0 and g1 have any common divisors.

31In the sense that representations should ideally grow sublinearly wrt program size.
32If we permit recursive instantiation, the set of objects and the set of explicit arrows will not in general

be finite. To solve this, guess a limiting arrow model m that is a fixed point with respect to adding
another step of recursion and abstracting away the internals of the resulting module by the algorithm
of section 8. Then, in order to analyze any program (including the recursive module!) that instantiates
the recursive module, use m as the arrow model of the recursive module instead of trying to infinitely
unroll it.

33In example 1, this was shown in figure 2.
34If any time smear can be represented using a finite number of symbols from a finite alphabet then

the power set of the natural numbers is countable, which is not true.
35Bezout’s identity suggests that this should be a close approximation (as measured by set difference,

if elements of the set that are close to zero are not given disproportionately large weight) if −m0 +M0

and −m1+M1 are both large in comparison to both g0 and g1. Note also that property 5 gives us license
to use this approximation without rendering our model invalid.

10



If g0 and g1 do not have a common divisor, then sadly, even this overapproximation will
not work, and we may have to use the unreduced representation of the sum smear.36 g0
and g1 have a common divisor if they both have zero as their first element or if they have
the same second element and neither has zero as its first element. The common divisor
can be found by running the Euclidean algorithm, as usual.37 This divisibility property
will become important again near the end of section 9.

6 Modularity

One way to maintain encapsulation and to limit the complexity of the arrow models of
large programs is to model the program’s modules with arrow models that avoid any
mention of the objects that are encapsulated inside the module. In abstract terms, it is
necessary to

• Extract the arrows that are explicitly encoded in the program.

• Optionally infer some other arrows, such as the acausal arrows from objects that
have only one way to be present at a given time.

• Use the explicit (and optionally, inferred) arrows to generate all of the other arrows
(of which there might be infinitely many!38)

• Delete the objects (reactions, triggers) that are encapsulated within the module, so
that only global triggers (startup, shutdown) and the ports exposed by the module
remain. Delete all arrows that were incident to the deleted objects.

• Encode the arrows that remain using a finite set of generating arrows that all start
and end at global triggers or at ports of the reactor.

The problem with the last step in this process is that it seems difficult to provide a
good algorithm for finding a finite set of arrows that generate infinitely many arrows of
interest. In section 5, I mentioned that the finite generators are given in the structure of
the entire program, but that fact is not so easily applicable if we wish to abstract part
of the program away.

Property 6 provides an easy escape hatch, but it provides a fully uninformative model of
the program.

In search of a better solution, I return to the example of section 4. We can see by
inspection that the following two arrows generate the infinite set of arrows involving
startup and p:

36Obviously elements of the additive closure of the restricted set of possible generating smears will
still be finitely representable (and countable) – the only problem is that it will not be possible to make
the length of the expression grow sublinearly with the number of generating smears in the sum using the
means explored here.

37In the first case, time differences with zero as their first element are isomorphic to the natural numbers
(and will be isomorphic to the integers, should we later decide to allow the second element to be negative),
so of course the Euclidean algorithm works. Similarly, for any n, the set {(t, n) : t ∈ Z+} ∪ {(0, 0)} is
isomorphic to the natural numbers, so the Euclidean algorithm works for the second case as well. The
isomorphism N → {(t, n) : t ∈ Z+} ∪ {(0, 0)} maps 0 to (0, 0) and it maps t to (t, n) for t > 0.

38Clearly this is not an implementable algorithm. The purpose is just to convey an idea of what is
being asked.

11



startup

p

(0, 0) ?

(3, 0) ?

Figure 7: A reduced representation of the program of figure 1.

In this case, the self-loop at p is a composition of a “certainly” arrow from p to r, a
“certainly” arrow from r to t, a “certainly” arrow from t to r, and a “maybe” arrow from
r to p.

In order to obtain the infinite set that we needed, we seem to have “commuted out”
the self-loop at the timer t and migrated it to the port p. This example can serve as
inspiration for the algorithm of section 8. Section 8 uses another algorithm which could
be useful in its own right, and which I will describe first.

7 Algorithm for canonical representation

There should be a way to compute a canonical representation for an arrow model that
has a finite set of generating arrows. This might make it easier to determine whether
two arrow models of a program (e.g., one that is specified by a human, and one that is
machine-computed) are equivalent,39 or more generally, whether the validity of one arrow
model implies the validity of the other.

I must make two significant caveats to the claim that the representation proposed here is
unique. The first is that although it is a unique representation of a given set of arrows,
it is not a unique representation of the meaning of such arrows.40 The second is that
even this weak kind of uniqueness requires arrows not to form zero-delay cycles; this
requirement is incompatible with the extensions proposed in section 11.41

The idea is to represent a set of arrows using only the minimal arrows of the set. The
existence of an algorithm for finding the minimal arrows will prove that they are finite in
number for any implementable program. I will also argue that they generate all arrows
in the set.

Minimality of arrows is defined as follows: An arrow a->b is minimal if it cannot be
represented as a sequence of existing arrows, at least one of which is a self-loop not equal
to a->b, such that the same sequence of arrows with the self-loop elided is not equal to
a->b. For example, in figure 3, the arrow from t to itself with time smear {(3ms, 0)} is
minimal, as is the arrow from t to p with time smear {(0, 0)}, but the arrow from t to

39If they imply each other’s validity then they are equivalent.
40Two distinct sets of arrows may have the same meaning in the sense of implying each other’s validity,

e.g. due to property 2.
41In section 8, uniqueness is not used. Instead, we only use the property that the arrows in the output

of this algorithm are a finite superset of the set of minimal arrows. This property can be guaranteed by
modifying this algorithm to omit the pruning step.

12



itself with time smear {(6ms, 0)} is not minimal, nor is the arrow from startup to t with
time smear {3ms, 0}.

I consider an arrow that results from composing a finite set of generators42 with each
other. Such an arrow can be represented as a finite sequence of those generators, in
the order in which they were composed. Such a sequence consists of loops that have
no repetition except in the first and last object visited, interspersed with straight-line
sequences that have no repetition at all. Because there are finitely many generators, we
can find all such no-repetition loops43 and summarize them with the single self-loop arrow
that is their composition. We can also find all no-repetition sequences and summarize
them with direct arrows from the object at the beginning of the sequence to the object at
the end of the sequence. The resulting “summary” arrows are a superset44 of the minimal
arrows of the arrow model. This finite set of arrows arising from no-repetition sequences
and self-loops can be pruned of arrows that are not minimal. Doing so preserves the
property that the set generates all arrows.45

The following is the canonical representation of one of the valid arrow models of the
example program of section 4:

t

startup

r p

(0, 0) !

(0, 0) !

(0, 0) ?

(3 ms, 0) !

(0, 0) !

(0, 0) ?

(0, 0) ?

Figure 8: A canonical representation of the arrow model of figure 4.

42The finite generators that one would typically start with would be the arrows explicit in the program,
as in figure 2.

43The number of such no-repetition self-loops and sequences is upper-bounded by the factorial of the
number of generators, which is finite.

44We have obtained all arrows that can be generated without self-loops, but the minimal arrows are
the arrows that cannot be generated with self-loops. The only arrows in the latter set but not the former
would be those arrows which cannot be generated at all, but we are not interested in those.

45The arrows that generate -> cannot be generated by -> if there are no zero-delay cycles. (It is
not too restrictive to require that “maybe” arrows never form zero-delay cycles.) Therefore, given the
assumptions used in this section, the closure wrt composition of the set cannot be diminished by removing
-> when -> can be generated from other arrows.

13



8 Algorithm for abstracting objects out of an arrow

model

This algorithm will require some way to “commute” arrows with each other. Sadly, we
can’t commute arrows with each other: As mentioned in 3, when arrows are composed,
their time smears add, and time smears do not commute in general.

The next best thing to commutation of a time difference g0 with another time difference
g1 is existence of a time difference C(g0, g1) such that g0 + g1 = g1 + C(g0, g1). Such
C(g0, g1) is unique if g1 is expressible as an element of N × Z and exists if g1 and g0
are elements of N × Z.46 Uniqueness follows from the injectivity of left-addition of an
element of N×Z, which was proved in footnote 11.47 Existence can be proved as follows:
Suppose g0 = (t0, n0) and g1 = (t1, n1). Since our addition acts on the first element of
time differences like integer addition, which is commutative, the first element of C(g0, g1)
is t0. To determine the second element, there are four cases:

1. t0 ̸= 0 and t1 ̸= 0. Then the second element of C(g0, g1) is n1.

2. t0 ̸= 0 and t1 = 0. Then the second element of C(g0, g1) is n0 + n1.

3. t0 = 0 and t1 ̸= 0. Then the second element of C(g0, g1) is 0. Note that in this case
C(g0, g1) is the identity element and so g0 + g1 = g1, regardless of n0.

4. t0 = 0 and t1 = 0. Then the second element of C(g0, g1) is n0.

Obviously, if g0 and g1 are both in the subset of the time differences which is isomorphic
to the natural numbers, or if they are both in one of the groups which are isomorphic to
the integers, then C(g0, g1) = g0.

As shorthand, let us define C(∆g0,∆g1), where ∆g0 and ∆g1 are time smears, to be
{C(g0, g1) : g0 ∈ ∆g0 ∧ g1 ∈ ∆g1}.

8.1 Algorithm

Start with the representation computed in section 7. Then greedily remove the objects
that need to be abstracted away, one at a time. When you remove an object from the
arrow model, you also remove its incident arrows, so care is required to ensure the object
is “safe to remove” in the sense that removing it cannot result in an invalid arrow model.48

An object a that has no self-loops is already safe to remove. Suppose some implicit ar-
row b1->0bn is generated by a composition b1->0bn = b1->1b2->2 · · · ->i−1bi->ia->i+1bi+2

->i+2 · · · ->n−1bn. Then the canonical representation will include the arrow bi-̃>bi+2 :=
bi->ia->i+1bi+2 (i.e., the composition of the arrow bi->ia entering a and the arrow a->bi+2

46These requirements are problematic in the context of section 11. To make them compatible, we
would need additional commutation rules, the development and application of which is not in the scope
of this document.

47In the notation of 11, by left-adding the additive left-inverse of g1 to both sides, we must conclude
that C(g0, g1) = −g1 + (g0 + g1).

48In practice, the way to ensure that removing an object a will not result in an invalid arrow model is
to assume that the starting arrow model is valid, and then to ensure that after a and its incident arrows
are removed from the arrow model of the program, the remaining explicit arrows will still generate all
of the arrows involving objects not removed from the model. Properties 3 and 4 apply.

14



leaving a) as one of its finite set of explicitly represented generators (if bi-̃>bi+2 is mini-
mal), or it will include arrows not involving a that generate bi-̃>bi+2 – in particular, one
or more self-loops at bi and an arrow from bi to bi+2, or an arrow from bi to bi+2 and one
or more self-loops at bi+2.

49 Therefore, even after removing a, the implicit arrow b1->0bn
can still be obtained as ->0 = b1->1b2->2 · · · ->i−1bi-̃>bi+2->i+2 · · · bn.

In the preceding argument, I used the facts that bi ̸= a and bi+2 ̸= a; if these were not true,
then the inductive step would not necessarily have reduced the number of occurrences of
a in the composition.50 Therefore, an object a that does have a self-loop may not be safe
to remove. However, it can be made safe to remove. The idea is to “commute out” the
self-loop.

Suppose a has a self-loop with time smear ∆ga. For each object b and time smear ∆g
such that there exists an arrow from a to b with smear ∆g, add a “maybe” self-loop from
b to b with time smear C(∆ga,∆g) if C(∆ga,∆g) is not the identity time smear {(0, 0)},
and do nothing otherwise.

I must prove that once this is done, a is safe to remove. Suppose some implicit arrow
b1->0bn is generated by a composition

->0 = b1->1b2->2 · · · ->i−1bi->ia->i+1 · · · ->j−2a->j−1bj->j+1 · · · ->n−1bn

If we added an arrow bj->Cbj with the time smear C(∆ga,∆g), then a->j−2a->j−1bj
can be safely replaced with51 a->j−1bj->Cbj. If we did not add such an arrow, then
a->j−2a->j−1bj can be safely replaced with52 a->j−1bj.

In either case, the composition of arrows can be replaced with another composition of
arrows in which the length of the sequence of self-loops starting and ending at a is reduced
by one. Eventually, we reach the base case where no self-loops at a remain. This case has
already been discussed, and so we can conclude that after possibly adding some “maybe”
self-loops to all objects downstream of a, a can be made safe to remove.

9 Relationship to some of Shaokai’s comments dur-

ing and after the 10/24 meeting

I start by re-phrasing some of the general ideas that I think he mentioned, just to see if
I understood.

For a given program there are many ways to define a time evolution operator. For
example, it is possible to imagine a time evolution operator that evolves the system

49The point here is that the self-loops must be at bi or bi+2 and not at a since a has no self-loops.
50For example, if bi->ia->i+1bi+2 were replaced with an arrow from bi to bi+2 followed by a self-loop

at bi+2, and bi+2 = a, then we would have gone from two visits of a to two visits of a.
51The two are not necessarily equal because there may have been information loss, i.e., the resulting

arrow will be a “maybe” arrow even though the previous arrow might have been a “certainly” arrow.
However, this operation will not result in an invalid model.

52There is a subtlety here, which is that a->j−2a might have been a “maybe” arrow while a->j−1bj
might have been a “certainly” arrow; in that case, it is not obvious from property 4 that this transfor-
mation is safe. However, the entire composition of arrows is in that case strictly weaker in its guarantees
than another composition which does not include the “maybe” self-loop at a, and this other composition
must also exist and be valid. It is this other composition which guarantees that our transformation will
not create an invalid model.

15



forward by a fixed amount of logical time, physical time, or number of tags executed. If
I understood Shaokai, the time evolution operator M that we are interested in is of the
third type.53 Let us define Mk to be the time evolution operator that evolves the system
forward by k tag executions, regardless of the logical or physical time spacings between
the executed tags. The eigenvalues of Mk are a superset of the eigenvalues of Mj if j|k
because in that case Mk is a power of Mj.

If I understood Shaokai, in a program with n objects, a state is defined to be a vector of
n logical times corresponding to the times at which each object is scheduled to next be
present. For the purpose of this section, I will prefer to use the times when each object
actually will be present,54 and I will assume that the state somehow contains enough
additional information for the state evolution operator to be a function (which maps its
inputs to unique outputs).55

Another point is that Shaokai was talking about physical times, if I understood him,
whereas this document discusses logical times. However, both seem relevant to the prob-
lem of pre-computing static schedules.

An important concept that Shaokai discussed is that of an eigenspace of the time evolution
operator of a system. If I understand, we are interested in an eigenspaces because they
are a special kind of invariant subspace56 of the state space, and invariant subspaces
allow us to prune the state space to a simpler one in which the time evolution operator
still makes sense.57 More generally, even in programs that do not reach eigenstates, the
most interesting of all invariant subspaces is the smallest58 one that is ever reached in
a program’s execution, for that is the simplest one that we have any reason to optimize
for.59

The following are true about arrow models of LF programs and invariant subspaces:

1. According to any valid definition of the state space, the state space V of an LF
program is trivially invariant wrt any time evolution operator. In the context of
arrow models, let us define the state space60 as the set of all n-length lists of logical
times61 v satisfying the following properties:

(a) For all i, the ith entry vi of v is either ∞ or an element of the time smear of

53If we hold an ambitious goal of pinning tag executions to precise physical times, where physical times
are measured in clock cycles on a PRET machine, then the time evolution operator that he discussed
could also be of the second type.

54Because the arrow model of a program only describes what is present, not how or why, it is ill-suited
for use with the first definition, so for convenience I will use the second. I hope the resulting observations
will be at least somewhat relevant.

55The existence of a such a definition of state is another way to describe our claim of determinism.
56A subspace W of the state space V is invariant wrt time evolution if no element of V \W is reachable

from W .
57“Makes sense” in the sense that when the state evolution operator is restricted to the invariant

subspace, it does not map anything outside of its domain.
58Wrt the partial ordering imposed by set containment.
59Furthermore, as Shaokai explained, it is usually sufficient to optimize only for this subspace since it

includes all states that will be visited for infinitely many tag executions.
60Note that this definition of the state space might already be a much smaller space than other

definitions of the state space that do not use as much of the structure of the program; conversely, an
even smaller space might also be valid for some programs.

61This is not a vector space, so I avoid the terminology of “vectors.”

16



an arrow extending from startup to the ith object

(b) There exists no “certainly” arrow from startup to the ith object with a time
smear all of whose elements are greater than or equal to minj vj but less than
vi

2. The set Wmax, g of elements of V with all entries greater than some fixed time g
is trivially an invariant subspace of all time evolution operators corresponding to
timesteps greater than or equal to zero.

3. The set Wmin, g of the elements of Wg whose ith entries are either ∞ or the sole
element of the time smear of a “certainly” arrow extending from startup to the
ith object is not an invariant subspace of any time evolution operator, in general;
however,

4. If Wmin, g = Wmax, g =: Wg, and the totally ordered62 sequence63 of all elements of
Wg is n-periodic with respect to the equivalence imposed by “λ-reachability from
some time g0” in the terminology of 3, then Wg is an eigenspace of Mn.

Perhaps the most practical way to use an arrow model to determine the worst-case64

schedule that should be optimized for is to, for each object b in the program, run the
algorithm of section 8 to abstract away all objects other than b and startup. Then there
are a few possibilities, each covering a broader set of cases than the previous:

1. If b has no self-loop in the resulting arrow model, or if b has a self-loop with zero time
and the program is expected to continue for nonzero time, then b is not recurrent
and can be ignored.

2. If65 all self-loops of b in the resulting arrow model have some GCD d, then for each
minimal arrow from startup to b with time smear66 ∆g, plan for the possibility
that b occurs periodically with period d starting at all times in ∆g. Then it should
be possible to use any established techniques67 for scheduling a set of periodic tasks
with known periods and start times.

3. In any case, the first elements of all explicit self-loops of b will certainly have some
GCD d, and the second elements of all explicit self-loops will also have a GCD

62States in this context are ordered according to their least entry (where the least entry is an element
of N×N, which we order lexicographically). In this context, no two states have the same least element,
so all states are comparable. The reason why no two states have the same least element is that property
2 in the definition of the state space ensures that when Wmin, g = Wmax, g, a state with least element g
is the unique vector that lists the first time when each object is present at or after time g.

63The term “sequence” here implies bijection with the natural numbers, which we do indeed have for
all programs that can execute on an existing computer.

64The “worst case” here is when all objects that might be present are present. My use of this phrase is
based on the implicit assumption that a decrease in the number of present objects will not cause deadline
misses. Although this may be a poor assumption for some popular dynamic scheduling algorithms, I
consider it to be a reasonable assumption when the schedule is computed offline.

65Although it might seem like this is a special case given the infinite number of possible microsteps,
this case could be quite common. There might be only a few paths from b back to itself; furthermore, if
those paths all have a common suffix that includes a time smear whose time differences all have nonzero
first element, then the possible microsteps of all the resulting arrows will all be the same.

66If ∆g is infinite, then it will be difficult in general to create a static schedule involving the object b,
so assume that ∆g contains only one or a few elements.

67I know little about such techniques, but I assume they exist.

17



e. Consider execution of b at a tag to be a task while execution of b at all tags
corresponding to a given time may in general be a “supertask” (i.e., a task that
consists of many tasks).68 Then we have a supertask which we must pessimistically
assume to have period (d, 0), and in the schedule for executing the supertask, we
may consider execution of b to have period (0, e). Of course, this case can also be
divided into subcases, e.g. where the “supertask” actually is known to be finite
with a known bound because the first element of all elements of all smears of the
self-loops of b is nonzero.

This strategy of abstracting away all objects other than the one of interest and startup

also yields a straightforward way of determining whether any two objects can co-occur.
Specifically, if we know that b0 might be present at times {(t0, n0) : t0 ∈ X0 (mod d0) ∧
n0 ∈ Y0 (mod e0)} and b1 might be present at times {(t1, n1) : t1 ∈ X1 (mod d1) ∧
n1 ∈ Y1 (mod e1)}, then b0 might be present at the same time as b1 if X0 ∩ X1 ̸= ∅
(mod gcd(d0, d1)) and Y0 ∩ Y1 ̸= ∅ (mod gcd(e0, e1)). We can then build a graph where
two objects are connected if they might be present at the same time. This could be useful
for limiting the state space. For example, suppose we wish to have a static schedule for
the execution of a tag when various sets of actions and triggers are present, like the
schedules that the quasi-static scheduler uses currently. Then we need only provide a
schedule that can handle the presence of subsets of each strongly connected component
in this graph since the set of present actions and triggers will always be a subset of some
strongly connected component.69

Furthermore, because this discretizes the times at which an object b can be present, it
permits the inference on finite bounds on the number of events involving b in the event
queue if there is an upper bound L on the maximum time into the future when b can be
scheduled and a finite70 multiple of the minimum spacing imposed by the discretization71

is greater than L.72

10 Edward’s comments on discussion #1307

Edward had a couple of comments on the discussion post.

68Apparently some people use “supertask” as a technical term such that it must have countably infinite
component tasks. It is true that LF programs will in general admit the possibility that a countably infinite
number of tasks might be scheduled at any given time, which is consistent with the assumption used
here that we pessimistically consider there to be a task whenever something might need doing. We are
able to execute with bounded lag precisely when there exists a last task that takes nonzero time, i.e.,
when all tasks following that last one do not actually need doing. This is the only way for a standard
computer, which does work in discrete chunks (e.g., instructions), to complete supertasks.

69If this were implemented, then the strategy would probably be to check the strongly connected com-
ponents from smallest to largest, in order of containment, until the set of all present objects intersected
with the complement of the strongly connected component is empty, as can be determined by a fast
bitwise AND operation.

70If L ≥ (1, 0) and the minimum spacing is strictly less than (1, 0), then this condition will not hold.
71To be explicit: If all microsteps when b is present are equivalent modulo e then the minimum spacing

is at least e, and if all times when b can be present are equal to some time g plus a multiple of some time
difference λ, then the minimum spacing is at least λ.

72As with the case of so-called “supertasks” which actually have a known bound on tasks that actually
need doing, we can refine these rules to bound the number of events involving b in the event queue even
when b has nonzero self-loops whose second elements are not equal.

18



One was that it is related to this paper, which discusses a behavioral type system. This
behavioral type system explicitly models state, and it is similar in flavor to Hoare’s
CSP formalism in the sense that concurrent processes interlock with each other (except
through transitions instead of states). This discussion post is different from that because
it avoids explicitly modeling state and is therefore too simple to represent the kinds of
handshaking that a behavioral type system could model using FSMs. In particular, it
provides no way to detect illegal states – states in which one component cannot accept
some input which it might receive from another.

Given the communities from which LF takes inspiration, it might seem strange to argue
that the way of modeling LF programs described here is closer to the LF core language
than one based on concurrent finite-state machines. I perceive LF to be a purely declara-
tive domain-specific language for describing correlations and timing relationships between
activity in different components. According to such a perspective on LF, the core lan-
guage of LF is the connection statement, which intrinsically has little relation to any
concept of state.73 Furthermore, there is practical heuristic reason to desire similarity
between the model and the “core language.” If the model is similar to the code, then
concise code is likely to be accompanied by a simple model. For example, a model based
on composition of finite state machines can become very complex for a parent reactor
whose child reactors can legally be in any combination of states because they are not
tightly coupled. This can happen even if the code for the parent reactor itself looks like
it should expose a simple interface. In contrast, a model that only uses arrows between
ports that are declared in the code as inputs and outputs of the parent reactor might,
according to this heuristic, have a good chance74 of being simple and easy to infer from
the “core language.”

Another comment from Edward was that type systems can be prohibitively cumbersome,
that type inference might be required, and that the need for type inference can heavily
restrict the kinds of type systems that are possible. In particular, he pointed out that
language designers are sometimes constrained to base their type systems on Hindley-
Milner in order for type inference to be practical; this is one paper that discusses such
issues. Perhaps I should not have described this idea as a type system. The idea discussed
here does not really require type inference because when the programmer does not bother
with an arrow model of the program, the compiler need not bother with one either.75 The
program will still work because no arrow model of the program is required to produce
a valid executable. Furthermore, when an explicit reactor definition is given, sections 7
and 8 provide ways to compute either a complete or a simplified arrow model without
programmer intervention.

73This perspective is mostly arbitrary, but because some people might find it strange, I will attempt
to justify it. Connection statements can be annotated with after delays, which means they can represent
“certainly” arrows with time smears of cardinality one. They can also represent “maybe” arrows if
their source is a reaction. Timers can be implemented using after delays. Logical actions cannot –
they are necessary in order to represent arrows with time smears with cardinality greater than one.
However, arrows implemented using logical actions can be thought of as a generalization of those which
are implemented by connection statements with “after” delays, so I regard the non-implementability of
logical actions using connection statements alone to be more an accident of syntax than a fundamental
consequence of design intent.

74The purpose of the preceding sections has been to make this claim precise.
75This is not a particularly unusual property even for systems that we commonly refer to as “type

systems” – for example, Java uses type erasure with generics, and static types used in TypeScript also
are not required because TypeScript compiles to dynamically typed JavaScript anyway.

19

https://dl.acm.org/doi/10.1007/s00165-004-0043-8
https://ptolemy.berkeley.edu/publications/papers/05/Xiong_StructuredTypes/


11 Functional correctness

I previously asserted that timing information encoded by the arrows would be useful for
determining functional correctness. I here endeavor to justify that claim.

First, it is useful to revisit the idea of acausal arrows. If the meaning of such arrows is
to be generalized beyond zero-delay arrows, it is necessary to extend the definition of a
time smear such that an arrow can point backward in time.76

To do this, give any time difference g an additive left-inverse77 −g. Instead of our previous
definition of time differences as N × Z, we should define time differences as the closure
under addition78 of elements of N×Z and their left-inverses; for example, time differences
will include finite-length expressions such as (0, 1) +−(1, 2).

The introduction of left-inverses is consistent with the associativity of addition. One
way to explain this is to identify time differences with functions79 that act on elements
of N × Z and to identify left-addition with left-composition.80 Then associativity is
obvious because function composition is associative, and the existence of left-inverses is
also immediate from the injectivity of left-addition by a time smear.

76The way I do this might seem strange to some people. To illustrate why it is necessary, here is a
seemingly simpler approach that does not work: Define time smears as subsets of Z×Z instead of subsets
of N×Z. Suppose that, in the initial set of arrows explicit in the program, some object b is the target of
only one “maybe” arrow with source a and time smear {(t, n)}, where t might be strictly positive. You
can add an acausal arrow with time smear {(−t, z) : z ∈ Z} to reflect the fact that tags with all possible
microsteps are in the preimage of the function that adds {(t, n)}. So far so good. Then, compose the
acausal arrow on the right with an arrow from a to b′ with time smear {t, n} where k > 0 to obtain
an arrow from b to b′ with time smear (0, n). Oops! If all the arrows involved were “certainly” arrows
or acausal arrows, then the new arrow from b to b′ means that b′ is guaranteed to be present exactly n
microsteps after b, but in fact b′ is guaranteed to be simultaneous with b. Recall also that the proof of
associativity used the fact that time differences were elements of N× Z instead of elements of Z× Z.

77This means −g + g = (0, 0), but we do not necessarily have that g + −g = (0, 0). Our extension of
addition will preserve the fact that (0, 0) is the unique additive identity.

78Note that we are not using the closure under left-inversion. There is no guarantee that all left-inverses
have left-inverses; instead, there is only a guarantee that they have right-inverses.

79There is a potential source of confusion here wrt left vs. right: Left-addition corresponds to left-
composition, which is intuitive. However, we like to think of right-addition as the operation that we
perform as we follow arrows in the direction in which they point, which makes right-addition together
with Polish function notation more intuitive. We are not interested in right-addition because it does not
have the same nice properties.

80This map is injective (its left-inverse is the operation of applying the resulting function to (0, 0)),
hence bijective onto its range, giving us license to identify elements of its domain with those of its
range. Furthermore, this map respects left-addition. It is not hard to check that (t0, n0) + (t1, n1) is
the function that maps (t2, n2) to (t0 + t1 + t2, n2) if t2 is nonzero and to either (t0 + t1 + t2, n1 + n2)
or (t0 + t1 + t2, n0 + n1 + n2), depending on whether t1 is nonzero, regardless of whether we add
(t0, n0) + (t1, n1) before considering them as functions or consider them as functions and then compose
them.

20



Here is an example of the resulting arithmetic:

(((0, 1) +−(3, 3)) + (1, 2)) + (1, 2)

= (0, 1) +−(3, 3) + ((1, 2) + (1, 2)) Associativity

= (0, 1) +−(3, 3) + (2, 2) “Regular” addition

= (0, 1) +−((2, 2) + (1, 3)) + (2, 2) (2, 2) + (1, 3) = (3, 3)

= (0, 1) +−(1, 3) +−(2, 2) + (2, 2) −(1, 3) +−(2, 2) + (2, 2) + (1, 3) = 0

= (0, 1) +−(1, 3) −(1, 3) +−(2, 2) + (2, 2) + (1, 3) = 0

= (0, 1) +−(1, 3) Cannot reduce (0, 1) +−(1, 3)

The ordering structure of time differences can be extended. Left-inverses are compared
according to the reverse of the ordering of the time differences of which they are inverses.81

Time differences of the form g+−h, where g, h are pairs, cannot be represented as pairs
or their additive inverses in general, so comparisons involving such time differences must
be defined separately. If h > g, then h = g + f for some left-invertible f . Therefore
−h = −f +−g, in which case g+−h = g+−f +−g. Otherwise, if h < g, then g = h+f
for some f , and −g = −f + −h, and g + −h = g + f + −g. Now, let us declare that a
time difference f (positive or negative) conjugated by g ∈ N× Z82 to obtain g + f +−g
is less than everything greater than f and greater than everything less than f .83 This
exhaustively determines the ordering of time differences because time differences of the
form g+−h are the only ones that cannot be simplified to either an element of N×Z or
an inverse thereof. 84

11.1 Example: Logical simultaneity

Suppose we implement a fork-join pattern:

Figure 9: A fork-join pattern.

81Note that this creates no contradiction in the case of left-inverses of time differences of the form
(0, z), since it agrees with the ordering of the integers.

82If you conjugate the other way as −g + f + g (or equivalently, if g is a left-inverse of an element of
N × Z), we have a contradiction, so we must forbid that. Suppose f is in N × N. Then f + g ≥ g, so
f+g = g+h for some h. This h could be strictly greater than or strictly less than f , but −g+f+g = h.

83This implies that g +−g is either equal to zero (if g = 0) or incomparable to zero.
84Indeed, expressions of the form −g+h, where g and h are in N×Z, can be simplified. If h < g, then

g = h + f , and −g = −f + −h, so −g + h = −f . If h ≥ g, then h = g + f for some f , so −g + h = f .
Since the ordering of N × Z is total, these two cases are exhaustive, and so we are done. Now let us
consider an expression g1 + g2 + · · · + gn in the additive closure of the elements of N × Z and their
left-inverses where n ≥ 3. Then either gn−1 + gn is reducible, or gn−1 ∈ N × Z and gn is a left-inverse
of an element of N × Z. In the former case, we have already made the inductive step, and in the latter
case, gn−2 + gn−1 can certainly be reduced. This proves that all elements of the additive closure of the
elements of N× Z and their left-inverses are equal to a sum of at most two elements of N× Z and their
left-inverses. Furthermore, the only such expressions of length 2 that cannot be simplified to one of
length 1 are those of the form g1 +−g2.

21



The Merge reactor can be simplified and optimized if we know whether result a and
result b will be present simultaneously. The advantage is not merely in optimizing out a
branch that depends on an is present field. If result a is a large data structure, and the
Merge reactor is not guaranteed that result b will be simultaneous with result a, then
it might have to perform a deep copy85 of result a to save while it waits for result b.
Such a precaution would be a performance red flag and an unnecessary responsibility for
the programmer, even if the copy routine is never executed in practice.

The problem is that it is not obvious given the information provided so far that result a

and result b will be logically simultaneous. For example, ComputationA might have an
internal delay of several milliseconds, whereas ComputationB might be logically instanta-
neous. To obtain more information about the two modules, suppose we run the algorithm
of section 8 on each of ComputationA and ComputationB and obtain the following results:

a.in a.out

(0, 0) ! (0, 1) ?

Figure 10: Arrow model of ComputationA.

b.in b.out

(0, 0) !

Figure 11: Arrow model of ComputationB.

Then, because ComputationA and ComputationB only involve microstep delays, it is
guaranteed that result a and result b will be simultaneously visible to Merge at the
time when ForkJoin.in was present plus (1msec, 0). Note that it does not matter that
ComputationA could have produced its final output after any number of microsteps, nor
that a.out could have been present infinitely many times.

To prove this formally, it suffices to show that there exists a valid arrow model of ForkJoin
with zero-delay arrows with “sufficient condition” semantics86 going between result a

and result b – this is the precondition that the author of the Merge reactor would have
to write in order to justify his simple implementation with minimal runtime checks. And
indeed, we have

result b -> {−(1msec, 0)}!! ComputationB.out -> {(0, 0)}!! ComputationB.in

-> {(0, 0)}!! ForkJoin.in -> {(0, 0)}! ComputationA.in -> {(0, 0)}!
ComputationA.out -> {(1msec, 0)}! result a = result b -> {(0, 0)}!!
result a

because {−(1msec, 0)}+{(0, 0)}+{(0, 0)}+{(0, 0)}+{(0, 0)}+{(1msec, 0)} = {−(1msec, 0)}+
85It is possible that we could guarantee that ports will always hold the data that they had when they

were most recently present. However, if one thinks of an is present field as a software analogue of a
valid bit, it seems non-obvious that such semantics will be optimal for the implementations of LF that
we might wish to explore. Furthermore, it is still possible that result a will be present multiple times
before result b is next present. Should all the different values of result a be cached, or should all but
the latest be discarded? Such questions do not even arise if one knows that result a and result b are
always logically simultaneous.

86This means “certainly” arrows or acausal arrows; see figure 6.

22



{(1msec, 0)} = {(0, 0)}.

A similar calculation can be done to draw a zero-delay “certainly” arrow from result a to
result b. A slight hiccup might be forseen in inferring the zero-delay “certainly” arrow
of time smear −{(0, k) : k ∈ N} from a.out to a.in, but this should be no problem
because there must be a first microstep at which result a is present. Furthermore, the
addition still works out: −{(1msec, 0)}+−{(0, k) : k ∈ N}+{(0, 0)}+{(0, 0)}+{(0, 0)}+
{(1msec, 0)} = −{(1msec, 0)} + (−{(0, k) : k ∈ N} + {(1msec, 0)}) = −{(1msec, 0)} +
{(1msec, 0)} = {(0, 0)}.

Note that a similar advantage would be realized by simpler means in the case where both
ComputationA and ComputationB have fixed, finite microstep delays due to several stages
of internal pipelining.87

11.2 Example: Sequencing of events

Suppose we wish to implement an “anytime” algorithm without compromising determin-
ism:88

Figure 12: An anytime computation.

After k iterations of the anytime computation, the port Prime.stop becomes present,
the computation stops, and the best result that has been found so far is used 1 second
later in the Print reactor. Note that k might be determined at runtime. How do we
know that this program will not livelock? That is, how do we know that k is finite?

This cannot be inferred given the information provided so far. For example, if stop is
scheduled to be present a millisecond after start is present, the program will livelock
because even though Prime is scheduled to stop, it has an infinite89 number of microsteps
to process before it reaches its stop time. However, if we run the algorithm90 of section 8
on StartStop with the following result, then we can conclude that the program will not
livelock:

87I am not sure how common pipelining will be in idiomatic LF programs, but it is possible to imagine
that it will be pervasive, and that microstep delays will appear everywhere in attempts to increase
parallelism and to improve performance by giving reactions multiple zero-delay triggers/sources as rarely
as possible, so that chain ID is rarely needed.

88 Our current version of AnytimePrime is intentionally nondeterministic, and the reason for its non-
determinism can be characterized as “fundamental” in the sense that the specification of a piece of
machinery is more likely to specify a limited amount of physical time to allocate to a task than a limited
amount of logical time. However, a number of logical timesteps can be used as a proxy for physical time,
so the use of logical time instead of physical time in an “anytime” computation seems like a reasonable
tradeoff: You can have deterministic computations or (mostly) deterministic physical timing, but not
both.

89I deliberately neglect to model the fact that we are working with the numbers modulo 232 instead
of N.

90Unfortunately, it might be difficult to actually infer the arrow model shown below from an LF
program, depending on how it is written. If stop is produced after several microsteps by some static
pipeline that always produces a result, then it is easy to infer that stop will certainly be present, but
if stop is scheduled to be present conditionally after a large number of microsteps, then typically the
programmer would have to assert e.g. with an annotation that stop will indeed become present.

23

https://github.com/lf-lang/examples-lingua-franca/blob/fe22ff53709f7294199ecc1f75cf24f5ea63d603/C/src/AnytimePrime/AnytimePrime.lf


startup

start stop

(0, 0) ! (0, *) !

(0, *) !

Figure 13: Arrow model of StartStop.

To prove that AnytimePrime will not livelock, it suffices to show that there exists a
valid arrow model of the program with a “certainly” arrow from AnytimePrime.start

to AnytimePrime.stop with a time smear in 2N×N, all of whose elements have zero as
their first element. This is the precondition that the author of the AnytimePrime reactor
would have to write in order to protect his users.

Indeed, we can infer an acausal arrow from AnytimePrime.start to StartStop.start,
an arrow from StartStop.start to StartStop.stop, and an arrow from StartStop

.stop to AnytimePrime.stop, with time smears −{(0, 0)} = {(0, 0)}, {(0, n) : n ∈ N},
and {(0, 0)} respectively. The sum of these three time smears is just {(0, n) : n ∈ N},
which does indeed have zero as its first entry; furthermore, the composition of the three
arrows is indeed an acausal arrow (and not a “nothing” arrow) since they all are either
“certainly” arrows or acausal arrows.

It is worth comparing the requirements that can be specified this way with those that
can be specified with interface automata. An interface automaton can require that inputs
are present in one of a set of input sequences, whereas by requiring input ports to have
acausal arrows between them, we require that when an input appears at a given port,
the input sequence is required to contain one of a set of (possibly finite) subsequences.

12 Problems resulting from information loss

The following two diagrams show how information is lost about the rates of sporadic
events even in the presence of min spacings. The elliptical path, which starts at the
bottom left and trails off to infinity at the top of the image, is a logical timeline; the
lines secant to the ellipse represent possible sequences of events, or equivalently, possible
paths through time.

Figure 14: A naive interpretation of what a->(0, ∗)?b “should” mean.

24



The above arrow characterization of the program, a->(0, ∗)?b, might encode the knowl-
edge that a can be followed by b once, any number of microsteps later – this is the idea
illustrated by the image, where the starting point of each secant line is an occurrence of
a and the ending point is a possible later ocurrence of b. However, given the semantics
of the arrow as it is defined in the preceding sections, the arrow might encode the possi-
bility that b could happen repeatedly, at any number of times within the same moment.
The first possibility is commonplace and safe; the second possiblity is a potential Zeno
condition.

Figure 15: A naive interpretation of what a->(3..5, 0)!a “should” mean.

One might guess that the intent of the arrows in this second image is to encode that,
for each occurrence of a, a can occur once more, 3-5 time units later – this is the idea
illustrated by the image. However, given the semantics of the arrow as defined in the
preceding sections, the first arrow might encode the possibility that a could happen any
number of times with any frequency; furthermore, even if the first arrow were associated
with a fixed time smear, it would still be possible for a to be present with any frequency at
any time, after an initial startup period; this is because the interval [3, 5] includes integers
that are coprime to each other. The one arrow with the time smear {(3, 0), (4, 0), (5, 0)} is
equivalent91 to three arrows with time differences that are coprime in T , the part of N×N
isomorphic to N. Such arrows can, through composition, eventually generate arrows in
T from a to itself (and therefore from startup to a) corresponding to all natural numbers
greater than or equal to seven.92

I am not sure how to solve this.

One way would be to allow objects to be events (presence of reactions, actions, and ports)
instead of the reactions, actions, and ports themselves. This would make the resulting
arrow model look more like the two images presented here, both of which convey the
frequency information correctly. However, this would result in infinitely many objects,
which might make analysis more difficult.

Another way would be to give the arrows a different meaning so that they somehow
indicate a one-to-one relationship (i.e., the presence of an object at one time cannot
imply the presence of another object at multiple other times). I have not thought much
about this idea because it seems complicated.

91See property 2
927 = 3 + 4; 8 = 3 + 5; 9 = 4 + 5; and numbers greater than 9 differ from 7, 8, or 9 by some positive

integer multiple of 3. Bezout’s identity tells us that something like this will happen whenever we have
time differences in T (or in a right-translation of T by an element of N) or in N (defined in 3) that are
coprime to each other in those respective sets.

25



Alternatively, we may simply accept that time smears with coprime time differences are
an antipattern that should be avoided. The ability to schedule events in coprime intervals
may, in general, result in chaos for typical programs, whereas the existence of well-defined,
non-coprime intervals at which events can be present can enhance predictability. This
intuition can be made precise in specific examples.

One metric of the size of a program’s complexity is the number of events in one of its
hyperperiods. If reaction r is scheduled with period p and with period q, and the GCD
of p and q is d hyperperiod will be pq

d
. If d = 1, corresponding to 1 nanosecond, and p

and q are on the order of milliseconds, then the hyperperiod will be on the order of 106

times greater than either p or q. If p and q were required to be of millisecond granularity
(i.e., d ≥ 106), then the hyperperiod might be only a few times greater than p or q.

A second example is the prevention of overutilization. An event producer may guarantee
minimum spacings between its events so that downstream event consumers have enough
time to finish their work before receiving another event; this works fine. When there
are two event producers, however, whose outgoing event streams are merged and both
consumed by a single consumer, the property of min spacing is not preserved. Instead,
only the rate limit is preserved, which is sufficient for the weak guarantee of bounded
lag but insufficient for the stronger guarantee that all events can be serviced by event
consumers immediately. By contrast, the discretization approach which discourages the
possibility of mutually coprime time differences will in many practical situations preserve
the property that minimum spacings are greater than one even when event streams are
merged.

A third example which came up in Erling’s work is that if two events need to occur at the
same logical time on a system with a single processor, one of them will be delayed. To
guarantee that this never happens, it suffices to require that the periods of both events
have a common divisor93 d and that the times at which the two events occur are never
equal94 modulo d.

A fourth example is when it is desirable for events at certain objects to be processed
in parallel when they are on a single federate with multiple processors.95 This is much
more likely to happen when some arrows from startup to each of two objects involve time
differences that are equivalent in λ-reachability from g0 for some g0 and some λ that is
large relative to the actual periods of the two events.

Such examples have led me to guess that we can reasonably dismiss as pathological the
programs that exhibit the information loss described here.

93The microstep of the periods should be zero if the two events must both be timed precisely, so the
set we are working with is isomorphic to N.

94One would likely also wish the times modulo d to differ by at least some minimal time difference, so
that the execution of one tag does not delay the execution of the next.

95Even when there is a single processor, we can imagine strategies when performance improvements
could result from knowing that many events might happen at a single time. Erling has recently found
that we incur unnecessary overhead, e.g. in the Big benchmark, when many simultaneous events are
given their own place on the event queue. We could instead merge them into a single event with some
information attached to it regarding what is actually scheduled.

26



13 Summary

An arrow model of an LF program can be used to check simple relationships between
objects that are relevant to functional correctness. It might be useful for describing timing
behavior as well.

A valid arrow model exists for any LF program. Furthermore, it is possible to make
such models modular and scalable in the sense that their complexity does not necessarily
increase as modules are composed. The cost of such generality and simplicity is the use
of extra “maybe” arrows as an overapproximation.

27


	Overview
	Comments about the original post of discussion #1307
	Definitions/Interpretation
	Example
	Finite representability
	Modularity
	Algorithm for canonical representation
	Algorithm for abstracting objects out of an arrow model
	Algorithm

	Relationship to some of Shaokai's comments during and after the 10/24 meeting
	Edward's comments on discussion #1307
	Functional correctness
	Example: Logical simultaneity
	Example: Sequencing of events

	Problems resulting from information loss
	Summary

