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1 Introduction

Discrete-event simulation plays a major role in modeling the behavior of discrete-event systems,
which covers many applications and domains such as cyber-physical systems (CPS) and Conway’s
Game of Life. In the past semester, though many parallel languages and frameworks are introduced,
the interactions between threads/actors, however, if not constrained, admit nondeterminism. In
this project, we aim to bring more parallelism to a framework called Lingua Franca (LF) [13],
which is suitable for discrete-event simulation, and its underlying reactors model of computation,
a recently introduced framework for building computation models that are deterministic and con-
current by construction [10]. We aim to build a framework which has exploitable parallelism,
executing on multi-threads without compromising determinacy. Based on this, we bring up a
quasi-static scheduler which implements a static schedule of parallel tasks, as static schedules
can be inferred from the program topology and be partitioned among worker threads for Lingua
Franca. This static parallel task scheduler possesses these advantages on parallelism according to
our theoretical analysis, some of which have been verified by our experiments:

• Parallelism: the scheduler can generate very efficient parallel schedules at compile time.

• Less synchronization overhead: a worker thread could potentially stick to its static schedule
at a logical instant without talking to other threads.

• Less data movement: the static schedule can try to promote spatial and temporal locality.

• Analyzability: the order in which reactions are processed is determined at compile-time,
making the real-time behavior more analyzable and verifiable.

2 Background

2.1 Reactors

The reactors model [12] is a deterministic, concurrent, reactive, and timing-aware model of com-
putation. The model has roots in classical models including actors [7], dataflow [6, 3], process
networks [2], and synchronous languages [5, 4].

In the reactors model, stateful objects are represented by individual reactors, each of which
contains its own state variables and message handlers. A reactor has ports, with input ports
receiving data from the outside and output ports sending data to objects outside of the reactor. A
reactor “reacts” to external inputs by invoking its reactions which are sensitive to specific triggers,
including ports and actions. When two reactions in the same reactor are triggered simultaneously,
the order of invocation is determined by their priorities. The earlier an reaction is declared, the
higher priority the reaction has. An action is a trigger scheduled by a reaction, and it is used to
invoke multiple reactions inside the same reactor (potentially at different time instants). An action
can be logical, which is scheduled by a reaction, or physical, which is scheduled asynchronously by
the external environment. There are also special triggers, startup and shutdown, provided by the
runtime environment to be present at the beginning of the system and at the end of the execution.
A reactor a can connect to another reactor b by drawing a connection between an output port of
a and an input port of b. A connection by default transmits signals from one end to the other
logically instantaneously, unless logical delays are specified. A reactor can also contain nested
reactors.
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Lingua Franca (LF) [13] is a polyglot coordination language that implements the reactors
model. In LF, the body of a reaction is written in a target language, such as C/C++, Python,
Typescript, or Rust. As a running example, we use an LF implementation of the classic Sleeping
Barber Problem [1] (shown in Fig. 1) to demonstrate the above concepts.

Figure 1: An LF implementation of the Sleeping Barber Problem.

In this program, there are four types of reactors - Barber, WaitingRoom, Customer, and
CustomerFactory - each rendered as a gray box with rounded corners. The reactions are ren-
dered as dark gray chevron shapes with numbers denoting their priorities. Ports are rendered as
black solid triangles. Logical actions are rendered as white triangles with the letter “L” inside.
The white circle denotes the startup trigger, and the white diamond denotes the shutdown trigger.

When the program begins to execute, the startup trigger (denoted as white circle) becomes
present and triggers reaction 1 of CustomerFactory. Reaction 1 of CustomerFactory can further
schedule a logical action, which triggers itself again at a future time step, as well as send an output
through the output port, which 1triggers reaction 2 of Barber at the current logical instant. The
program executes until there are no more events in the system.

2.2 Related Work

There is a rich literature behind scheduling for concurrent models of computation from generat-
ing static schedules in Synchronous Dataflow [3] to hard real-time schedulers based on directed
acyclic graph (DAG) [8]. The current reactor runtime environment for LF automatically exploits
parallelism exposed by the (lack of) dependencies between reactions in the dependency graph. The
runtime scheduling mechanism for Lingua Franca has been extensively described in [11]. To realize
the discrete-event semantics, LF uses an event queue to store all events with time tags greater than
the current logical time and a reaction queue to store events occurred at the current logical time.
LF features thread-level parallelism, and it is achieved by work stealing (shown in Fig. 2) - having
multiple worker threads contend with each other for tasks on the reaction queue and using locks to
ensure only one worker thread can modify the reaction queue at a time. These existing approaches,
however, tend to require centralized control, pose challenges to modular system design. Since crit-
ical data structures, such as event queue and reaction queue, are shared across multiple worker
threads in the current implementation, it is inevitable that lock contentions and synchronization
between threads contribute to the majority of the computation overhead and prevent the system
from scaling efficiently.

Reaction Queue

Worker 1 Worker 2

Figure 2: (Current impl.) Two worker threads compete for work from the same reaction queue.
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3 Quasi-Static Scheduling

In this section, we introduce our proposed quasi-static scheduling approach. The proposed method
contains two parts, a compile-time algorithm and a runtime algorithm. We will now describe these
two algorithms in detail.

3.1 Compile-Time Algorithm

The compile-time algorithm analyzes the structure of the LF program and generates a static
schedule. To achieve this, the compiler goes through several steps.

Step 1. Obtain a DAG-based dependency graph. The determinism guarantee of the re-
actors model comes from a well-defined order of the reaction executions, which is captured by a
dependency graph, represented in a directed acyclic graph (DAG) shown in Fig. 3. Each node
represents a reaction, with the letter prefix denoting the reactor this reaction belongs to and the
number postfix denoting the reaction priority. Each edge represents a dependency relation intro-
duced by a connection or the order of reaction priorities. The dependency graph contains two
pieces of information: a. the maximum number of reactions to be executed at an instant when
they are all triggered simultaneously; b. the order in which these reactions should be executed.
In this example, reaction CF1 should be executed before WR1, and WR1 can only execute after both
CF1 and CF2 complete.

+------------------------------------------------+

| |

| +----------------------------------+ |

| | | |

| v | |

CF1 ---> WR1 ---> C1 ---> CF3 <------------ CF2 <-+

| | | |

| | | +-----------------------+

| | v |

| +-----> C2 ------+ |

| | | |

| | v |

| +-----> B2 ---> C3 -------------+ |

| ^ ^ | |

| | | | |

| | +-------------+ | |

| | | v v

| | B1 ---> C4 ---> CF4

| | |

+--------------------+ | | |

|B = Barber | | | +-----> WR2

|WR = WaitingRoom | | | | ^

|C = Customer | | +------------------------+ |

|CF = CustomerFactory| | |

+--------------------+ +-----------------------------------+

Figure 3: The dependency graph of SleepingBarber.lf

Step 2. Partition the graph using an SMT solver. To achieve maximum parallelism, we
seek to partition the dependency graph among the number of available worker threads. To do this,
we encode the graph partitioning problem into an SMT problem. We first define the following
types shown in Fig. 4.

task ∈ {ϵ, rxn0, ..., rxnn} schedule := {task0, ..., taskn} workers := {schedule0, ..., schedulew}

Figure 4: Type definitions.
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Then we define a set of axioms that capture the constraints specified in the dependency graph,
which the solution obtained by the SMT solver is required to fulfill. First, the generated schedule
cannot be empty.

∃ schedule ∈ workers. ∃ i ∈ {0, 1, ..., n}. schedule(i) ̸= ϵ (NotEmpty)

Each reaction in a time step can only appear once.

∀schedule1, schedule2 ∈ workers. ∀i, j ∈ {0, 1, ..., n}. schedule1(i) ̸= ϵ

=⇒ [schedule1 = schedule2 ∧ i = j ⇐⇒ schedule1(i) = schedule2(j)] (OnlyOnce)

In addition, each reaction must happen at least once.

∀task ∈ {rxn0, ..., rxnn}. ∃schedule ∈ workers. ∃i ∈ {0, 1, ..., n}. schedule(i) = task (AtLeastOnce)

We further define a binary relation ≺ and say that taska ≺ taskb iff there exists an edge in
the dependency graph that goes from taska to taskb. Next, we define an axiom that states the
dependency requirement.

∀schedule1, schedule2 ∈ workers. ∀i, j ∈ {0, 1, ..., n}. schedule1(i) ≺ schedule2(j) =⇒ i < j
(Dependency)

Our compiler extension analyzes the LF program and encodes the above types and contraints
into a Uclid5 [9] program. Uclid5, a formal verification engine, compiles the given file into an
SMT file. Our compiler extension then further inserts the optimization objective, which requires
the solver to find the most parallel schedule, and invokes the Z3 solver. After the Z3 solver returns
an optimal partition, represented in a Z3 Model, the compiler further generates an executable static
schedule for each worker using a custom instruction set.

Step 3. Generate an executable static schedule for each worker. The custom instruction
set only contains four instructions shown in Table. 3.1: execute, wait, notify, and stop. The
execute instruction instructs the worker to process a triggered reaction. The wait instruction
instructs the worker to wait until a semaphore with a specific ID is released. This is used in the
case that an upstream reaction, which the current reaction depends on, has not yet been finished
by another worker. The notify instruction instructs the worker to release a semaphore, so that
some downstream reaction owned by another worker can safely proceed. The stop instruction
instructs the worker to conclude the current time step and wait for new tasks in the next time
step.

Instruction Format Explanation
execute e [reaction id] Execute a reaction.
wait w [semaphore id] Wait for a semaphore.
notify n [semaphore id] Release a semaphore.
stop s [reaction id] Conclude the current time step.

The generated schedule is then stored in a schedule.h file along with other C files generated by
LF. The data structures in schedule.h are declared using the static keyword, so that they are
placed in the .text region of the compiled binary. We are now ready to proceed to the runtime
algorithm.

3.2 Runtime Algorithm

The runtime algorithm makes use of the generated executable schedules and executes them re-
peatedly until there are no more events to be processed. More specifically, our runtime algorithm
performs the following steps.

Step 1. Create a struct variable called current schedule and a priority queue called the pend-
ing events, with each element being a list of events to be present at some future time t. For each
thread, current table contains a sequence of instructions (defined in the previous section) for the
worker thread to execute. The priority queue is used to hold all future events so that closer events
will be nearer to the head.
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Figure 5: Executing Step 1 & 2 of the runtime algorithm on SleepingBarber.lf.

Step 2. Remove all events present at time t from pending events. All events contains information
that indicate what reactions will be triggered, and we mark all triggered reactions runnable in our
schedule. From Fig. 5, we pop the list of signals for t = 0 off pending events, observe that it
only contains startup, look for the static schedule corresponding to startup being present, and set
current schedule to the static schedule.

Step 3. Run the entire schedule sequence when the worker thread is requesting a new reaction
to execute. The engine will go down the sequence, perform ”wait” and ”notify” instructions, and
return the reaction if we encounter an ”execute” instructions and the reaction is marked runnable.
Any output generate by the reaction will be converted to events in the system as defined in the LF
model. Events in the same time stamp will cause the downstream reaction to be marked runnable
immediately before the execution engine resume, and events in the future will be appended to
the priority queue pending events. We proceed to the next time step once all threads reach their
stopping point. According to Fig. 6, we proceed with executing the static schedule for t = 0.
Assume that CF1 has just finished and CustomerFactory.next is scheduled 1 second later. The
state of the data structures at this moment looks like chart Step 3.1, Assume that C1 does not
produce an output that triggers CF3. Shown in Step 3.2, while no trigger, CF3 in the static
schedule will be marked as ”to be skipped.” Assume that, at this point, B2 finishes and schedules
Barber.done at t = 500 msec. The state of the data structure becomes what is shown in Step 3.3.

Step 4. Repeat Step 2 until there are no more events to process.

4 Structural Parallelism in LF

The execution of an LF program strictly follows the semantics of the reactors model. More specifi-
cally, for an execution to be valid, it needs to satisfy the constraints that a) events are timestamped,
b) reactors process events in timestamp order, and c) reactors process reactions in the order spec-
ified by the dependency graph. For this reason, the maximum degree of parallelism is largely
dictated by the structure of the program, as we later verified in our experiments.

There are two fundamental patterns that are of special interests. When the reactions form a
single chain (i.e. cascade composition) without logical delays, since a downstream reaction needs
to wait for its immediate upstream reaction to finish, it is impossible to parallelize the execution
regardless how many workers there are (Fig. 7). However, if we introduce logical delays on the
connections, the LF program becomes a pipeline and is thus parallelizable (Fig. 8). On the other
hand, the scatter-gather pattern shows a subset of the reactions under a parallel composition. In
this case, the execution can be easily parallelizable by mapping each reaction in parallel to a worker
(Fig. 9).

Figure 7: Reactions in cascade composition without logical delays.
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Figure 6: Executing Step 3 of the runtime algorithm on SleepingBarber.lf.

Figure 8: Reactions in cascade composition with logical delays.

Figure 9: Two reactions in parallel composition.

We algorithmically generate a maximally parallel schedule by inserting an optimization objec-
tive in the SMT file generated by our Uclid5 encoding. For each set of the worker schedules, we
set up a countP function that keeps track of the number of parallel tasks at a particular step in
the schedule. We then define a parallel metric variable as follows

parallel metric = countP(1)2 + countP(2)2 + ...+ countP(n)2.

In the SMT encoding, we set up an optimization objective, (maximize parallel metric), which
instructs the Z3 solver to find an optimal schedule assignment that maximizes parallel metric
variable.

5 Evaluation

We evaluate our quasi-static (QS) scheduler on multiple programs under the test folder in LF’s
Github repo, including ThreadedThreaded.lf, TimeLimit.lf, and ActionDelay.lf. All tests
are done on NERSC’s Cori supercomputer with one node only unless noted. The observed
performance is in line with the reasoning presented in Sec. 4: for programs that inherently do
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not exhibit structures amenable to parallelization, the performance does not seem to improve
with an increasing number of workers (in the case of ActionDelay.lf). On the other hand,
programs such as ThreadedThreaded.lf naturally present opportunities for parallelization. We
will focus the evaluation section on the ThreadedThreaded.lf program (shown in Fig. 10) as it is
an crucial pattern for exploiting the structural parallelism in LF. The program exhibits a scatter-
gather pattern, with the Source reactor sending signals driven by a timer with a period of 200
milliseconds. A bank of reactors named TakeTime receives the signals, processes them in parallel,
and forwards the outputs to the Destination.

Figure 10: The diagram of ThreadedThreaded.lf

In this section, we will also compare our quasi-static (QS) scheduler against the existing non-
preemptive (NP) scheduler.

5.1 Strong & Weak Scaling

We test the strong scaling and weak scaling performance on ThreadedThreaded.lf program. In
strong scaling, we keep the problem size in this case, constant but increase the size of threads. In
weak scaling , we increase the problem size, which is the bank size, proportionally to the number
of processors so the work/processor stays the same. The reason why we can replace problem size
with bank size is that based on tracing observation of ThreadedThreaded.lf, TakeTime accounts
for 99.59% of total process time, which is also the reason that we use ThreadedThreaded.lf

to evaluate our method. From the Fig. 11, not only taking longer time to finish this task, NP
scheduler also lacks a good strong scaling performance. From the line of QS scheduler, we can
find that from two workers to four workers, there is an obvious speedup on our our performance.
Since the banksize of our TakeTime reaction is four, even we add more workers, those extra workers
would still be idle. According to Fig. 12, we can see compared to NP scheduler, our QS scheduler
has a almost linear speedup with a more balanced and efficient work assignment.

Figure 11: The strong scaling diagram of ThreadedThreaded.lf
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Figure 12: The weak scaling diagram of ThreadedThreaded.lf

5.2 Reduced Data Movement

ThreadedThreaded.lf seems to support our hypothesis that the quasi-static scheduler can reduce
the amount of data movement during execution. When the bank of TakeTime reactors contain
four reactor instances, under the NP scheduler Fig. 13, a reaction (denoted by a colored rectangle)
can be randomly scattered across any of the four horizontal timelines, each of which represents a
worker. Under the QS scheduler, however, the same reaction will always be executed by the same
worker since the assignment follows a fixed static schedule. In Fig. 14, the colored rectangles are
perfectly lined up based on their colors. We obtained the following results on a macOS with 2.3
GHz 8-Core Intel Core i9.

Figure 13: The tracing data of the non-preemptive (NP) scheduler when executing
ThreadedThreaded.lf.

Figure 14: The tracing data of the quasi-static (QS) scheduler when executing
ThreadedThreaded.lf.

We conjecture that when reactions of the same reactor are executed by the same workers, as in
the case of using our QS scheduler, the state variables can preserve in the machine’s cache across
multiple reaction invocations. This style of execution avoids a type of context switching cost, as in
the cost of using the existing NP scheduler, in which the machine needs to flush its cache to load
state variables from another reactor. The cost of such data movements could be significant when
the computation is data-intensive.

5.3 Synchronization Cost

Below is the total time spent on synchronization. We collect the data by enabling JSON tracing file
generation, which is a part of LF’s profiling utility. From Fig. 15, we can see our wait time percent-

8



age is much smaller than NP scheduler, which means our method saves cost on synchronization,
leading to a shorter wait time.

Figure 15: the wait time / total time fraction between two schedulers

6 Limitations and Future Work

It should be noted that our implementation are limited in scope due to the amount of time we have.
Currently, our schedule generation algorithm can only detect branches in the reaction dependence
graph and treat them as the basic block for worker thread. This algorithm do not consider the
possible run time of the reactions, and it is likely to cause load unbalance as idle worker can
no longer steal works from other thread. Reducing number of threads in the current version is
impossible, but if we can have somehow precise runtime estimation, we can merge the basic blocks
and improve thread utilization. Also, this approach may produce very long basic block sequence,
and we can break them down for fine-grained parallelization in the future once we have runtime
estimation.

We do not have time to implement a distributed version of this algorithm despite LF support
federated mode. Our result shows that we can at least do as good as centralized scheduler on the
same machine, where communication time is negligible. But, this algorithm can really show its
benefit in a distributed environment and large numbers of reactions. Our algorithm removes the
serial bottleneck in the centralized scheduler and make every node progress on themselves without
communicating with other threads unless explicitly specified to do so (through the notify and wait
instructions). Notify and wait instructions are currently implemented on semaphores, and a future
distributed version will change them to remote message based.

Also, since we are using SMT solver to generate schedule, it takes a very long time to generate
a large schedule. SMT is an NP-complete problem, so the runtime will grow exponentially in
proportion to the problem size. We can explore other algorithm to partition the dependence graph
in the future to reduce the compilation time.

7 Conclusion

Lingua Franca is a great framework for discrete-time simulation with reasonable performance with
its existing scheduler. However, the current scheduler design doesn’t work well on distributed
environment due to serial bottleneck and constant communication. The quasi-static scheduler is
an efficient way to avoid communication and remove bottleneck in theory by providing a ”script”
for workers to follows without consulting the coordinator. Though, it is difficult to implement it in
practice due to various issues, and we are considering continuing our work on this project after the
end of class so that we can eventually create a practical scheduler for LF on large-scale distributed
system.
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