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ABSTRACT
This paper evaluates the capabilities and limitations of the Generative Pre-trained Transformer 
4 (GPT-4) in chemical research. Although GPT-4 exhibits remarkable proficiencies, it is evident 
that the quality of input data significantly affects its performance. We explore GPT-4’s potential 
in chemical tasks, such as foundational chemistry knowledge, cheminformatics, data analysis, 
problem prediction, and proposal abilities. While the language model partially outperformed 
traditional methods, such as black-box optimization, it fell short against specialized algorithms, 
highlighting the need for their combined use. The paper shares the prompts given to GPT-4 
and its responses, providing a resource for prompt engineering within the community, and 
concludes with a discussion on the future of chemical research using large language models.
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1. Introduction

The advent of artificial intelligence has led to remark
able capabilities in large language models (LLMs) such 
as GPT-4, which was published on March 2023 [1,2]. 
These models seem capable of applying a wide variety 
of knowledge to solve and plan complex problems [3– 
8], offering new possibilities in various fields, including 
chemical research. GPT-4, for example, possesses 
extensive knowledge in chemistry, which it can apply 
in diverse contexts. Its expertise spans from chemical 
bonding, theories of chemical reactions, and organic 
chemistry to physical chemistry [9–13]. Furthermore, 
GPT-4 is capable of deriving new chemical insights 
based on existing knowledge, predicting the possibili
ties of unknown compounds, and the outcomes of 
reactions [9,10].

One of the significant features of GPT-4 as artificial 
intelligence is its ability to a) possess a vast amount of 
knowledge data, including chemistry, b) exhibit a 

certain level of inferencing capability, and c) connect 
with external environments such as web search engines, 
calculation tools, and programming languages. This 
LLM has learned from vast text data from sources like 
Wikipedia and web sites where crawling is allowed [2]. 
While the specific datasets used for learning have not 
been disclosed, as mentioned in the main text, GPT-4 
has also learned about general chemistry knowledge [1]. 
This language model is tuned to provide the most 
probable answer to a given question, allowing it to 
respond appropriately.

GPT-4 is driven by a deep-learning algorithm called 
a transformer. The inferencing capability of the trans
former has been reported to be in an exponential rela
tionship with the dataset used for learning and the 
model’s size [14]. GPT-4 is among the largest transfor
mer models reported so far. When the model size of the 
transformer, or the amount of parameters determined 
at the time of learning, exceeds a particular scale, a 
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discontinuous improvement in inference capability has 
been reported (i.e. emergent ability) [15]. While there is 
room for debate regarding the discontinuity of emer
gence [16], transformers of this scale are known to 
acquire the ability for logical inference, including syllo
gism [2]. Therefore, it is possible to perform rational 
inference by building logical thought based on the 
knowledge that GPT-4 possesses and a small amount 
of data provided by the user [2]. This style of inferring 
from a few learning points is called few-shot learning, 
and it has been found that GPT-4 excels in this cap
ability [2].

Moreover, GPT-4 can think of and output the fol
lowing tasks to be performed independently. Suppose 
its output is used as a new prompt for input, GPT-4 
can function autonomously [3,4,6]. It can, for 
instance, play games like Minecraft without special 
training [17]. The model can also interact with the 
external world using various tools. It can gather cut
ting-edge information from websites, and as of 
May 2023, it can also utilize a mathematical computa
tion tool called Wolfram as a plugin for ChatGPT. 
Although GPT-4 has been considered to have chal
lenges with numerical recognition, it can compensate 
for this deficiency using dedicated tools. The language 
model can output code in programming languages like 
Python, thus gaining a means to operate in the digital 
space through its interface [18].

Considering the rapid pace of recent advance
ments in deep learning technologies, some may 
expect that more innovative models, such as GPT-5 
or GPT-6, will be reported quickly. However, the 
supercomputers used for GPT-4’s training seem 

almost at the world’s top-level performance, showing 
signs of their limits [19]. The rapid version upgrades 
seen in the predecessors of GPT-4, such as GPT-1, 2, 
3, and 3.5 May 2001not be guaranteed at a pace of 
every 1 to 2 years [19]. While innovations in hard
ware and algorithms are anticipated, there is no 
apparent reason that they will materialize. In light 
of these conditions, how to best use large language 
models at the level of GPT-4 could be a crucial issue 
over the next few years.

Benchmark tests evaluate the possibilities and lim
itations of GPT-4 [9,20]. These tests quantitatively 
evaluate specific capabilities, with various benchmarks 
already developed for abilities in conversation, infer
ence, mathematics, and science [20,21]. In contrast, 
potentials for actual chemical research are not fully 
understood [9,20,22]. While benchmarks exist to eval
uate GPT-4’s chemical knowledge and its application, 
they do not always cover extensive tasks in actual 
research projects.

This paper, therefore, sets out several simple tasks 
to evaluate GPT-4’s abilities and challenges in chem
istry, and discusses them based on these tasks. 
Specifically, we assessed foundational knowledge in 
chemistry, the handling of molecular data in infor
matics, data analysis skills, predictive abilities for che
mical problems, and proposal abilities. We will 
position the results by introducing known research 
while clarifying what contributions large language 
models can make to chemical research and what they 
still cannot do (Figure 1). Another aim of this paper is 
to share all prompts given to GPT-4 and its responses 
as Supporting Information, to share methods of 

Figure 1. Overview of the capabilities of GPT-4 for chemical research.
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prompt engineering for chemical tasks with the com
munity. At the end of the manuscript, based on the 
series of results, we discuss the challenges and pro
spects of chemical research using large language 
models.

2. Experimental

For the interactions with the large language model 
(LLM), we utilized the GPT-4 (ChatGPT May 24 
Version) unless otherwise noted. As an LLM, we 
employed GPT-4 under conditions that did not refer
ence external data through plugins, etc. Moreover, to 
prevent reference to past conversation logs, we carried 
out inference always in a new conversation unless 
otherwise stated. The response from GPT-4 slightly 
changed with each question. In this research, we asked 
the question only once and used that response. The 
entire conversation content is recorded in the 
Supplementary Information.

We clarify the limitations inherent in the current 
study. Our evaluation of GPT-4’s abilities within the 
realm of chemical research is based on a select set of 
prompts and responses. Thus, the results showcased in 
this paper might not fully encapsulate GPT-4’s overall 
performance when applied to chemical research.

This study was designed as a preliminary explora
tion, providing indicative insights rather than an 
exhaustive investigation. It seeks to offer potential 
use-cases and highlight certain limitations of applying 
large language models like GPT-4 to chemical 
research. Future research should aim to broaden the 
scope of evaluation prompts and investigate the per
formance of GPT-4 in diverse chemical research 
scenarios.

3. Knowledge problems

3.1. Knowledge of compounds

The likely first question a chemist would pose to 
a chatbot like GPT would be about basic knowledge 
concerning compounds. Indeed, GPT-4 knows the 
exact physical property values and chemical properties 
of common compounds like toluene (Figure 2, Prompt 
S 1). GPT-4 accurately explained properties like 

molecular weight, melting point, boiling point, scent, 
chemical stability, and reactivity, along with the 
response, ‘Toluene, also known as methylbenzene or 
phenylmethane, is an organic compound with the 
chemical formula C7H8. It is an aromatic hydrocarbon 
that is widely used as an industrial feedstock and as 
a solvent’. This knowledge is acquired by GPT-4 
through learning from general chemistry textbooks 
and data on websites.

Furthermore, it also understands professional-level 
knowledge that isn’t covered in textbooks, such as the 
redox potential of 2,2,6,6-tetramethylpiperidine 1-oxyl 
(TEMPO). TEMPO is a well-established and widely 
used reagent in the field of organic chemistry, parti
cularly recognized for its role, such as radical trapping 
agent, spin label, electrochemical catalyst, and elec
trode active material (Prompt S 2) [23–26]. Its ubi
quity and well-studied characteristics make it a basis 
for our verification of GPT-4. Even when asked using 
an abbreviation, such as ‘Tell me the redox potential of 
TEMPO’, GPT-4 informs us that the official name of 
the compound is 2,2,6,6-Tetramethylpiperidin-1-yl) 
oxyl. Then, it answers that the redox potential is 
about +0.5 V vs. the standard hydrogen electrode 
(SHE). This response is chemically correct [27]. As 
the potential of TEMPO is not listed on Wikipedia, it 
suggests that GPT-4 May have learned from profes
sional chemistry-related books.

On the other hand, it was not trained about the 
potential of 4-cyano TEMPO, a derivative of TEMPO, 
and couldn’t provide an answer regarding the possibi
lity (Prompt S 3). This suggests that GPT-4 has not 
read chemical articles. Possible reasons for this include 
constraints on computational amounts at the time of 
model training and copyright issues with academic 
papers. Publishers own the copyright of most of the 
articles reported in the past, and crawling or large- 
scale downloading is prohibited. Looking ahead to 
using LLM, chemists should contribute more actively 
to open-access papers and preprints.

3.2. Knowledge of physical chemistry

In physical chemistry, GPT-4 possesses knowledge at 
the university textbook level, such as the ideal gas law 

Figure 2. Asking the physical and chemical properties of toluene.
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and the Lorentz-Lorenz equation, which defines the 
refractive index of a substance. Moreover, it also 
understands the content that could be considered at 
the graduate school level, like the Vogel-Fulcher- 
Tammann (VFT) equation (Prompt S 4) [28]. The 
VFT equation describes the temperature dependence 
of the structural relaxation time or the viscosity of 
supercooled liquids approaching the glass transition. 
The viscosity is expressed as η ¼ η0exp B= T � T0ð Þð Þ, 
showing the dependence of viscosity η on the absolute 
temperature T. T0 is the Vogel temperature, an extra
polated temperature where the relaxation time or visc
osity would become infinite.

However, GPT-4 does not possess knowledge at the 
level of academic papers, such as the empirical rule 
Tg ¼ T0 þ 50, which can be valid between T0 and the 
glass transition temperature Tg in polymers [28]. GPT- 
4, which only knows until September 2021, returns an 
answer saying it cannot respond (Prompt S 5). 
However, this finding was reported in the 1980s [28]. 
Similarly, GPT-4 was unable to provide knowledge 
about the electrode reaction rate constant of TEMPO, 
the self-electron exchange reaction rate constant, or the 
oxidation-reduction potential for lithium (Prompt S 6). 
Also, it did not seem to have knowledge about the 
names of TEMPO derivative polymers. These are 
widely shared facts within the organic electrochemistry 
community [24,25,29–32]. Such incapabilities support 
that GPT-4 has not fully read or comprehended aca
demic papers in the field of chemistry.

3.3. Knowledge of organic chemistry

GPT-4 understands the content written in general 
organic chemistry textbooks. For example, it can accu
rately explain the synthesis route of acetaminophen 
(Scheme 1, Prompt S 7). In this scheme, phenol is used 
as a starting material, and the target compound is 

obtained by nitration, reduction by tin, and amidation 
by acetic anhydride.

However, GPT-4 does not provide the experimental 
procedures to synthesize acetaminophen (Prompt S 8). 
Even when asked, ‘How can I synthesize acetamino
phen? Please tell me the exact experimental steps’, it 
only returns an answer saying, ‘Sorry, but I can’t assist 
with that’. This is a restriction due to safety reasons, to 
prevent people unfamiliar with chemistry or with mal
icious intent from accessing chemical experiments, 
rather than an academic issue [1]. While many che
mists wish for an answer, including the experimental 
section, it might be necessary to consider social 
impacts when operating and making it public.

GPT-4 also failed to solve application problems of 
organic synthesis. For example, when asked about 
a method to synthesize TEMPO, it returned 
a chemically incorrect answer (Scheme 2, Prompt 
S 9). The proposal to use acetone and ammonia as 
raw materials was the same as the general synthesis 
scheme of TEMPO. However, it misunderstood the 
aldol condensation occurring under primary condi
tions in this process as an acid-catalyzed reaction. 
Furthermore, it asserts that 2,2,6,6-tetramethylpiperi
dine (TMP) is produced by an inadequately explained 
‘reduction process’. In reality, after promoting the 
aldol condensation further to generate 4-oxo-TMP, 
TMP is produced by reduction with hydrazine and 
elimination under KOH conditions [33]. GPT-4 May 
have omitted this series of processes.

The scheme after obtaining TMP was also chemi
cally inappropriate. Typically, TEMPO can be 
obtained by one-electron oxidation of TMP in the 
presence of a tungsten catalyst and H2O2. However, 
GPT-4 advocated the necessity of excessive oxidation 
reactions: the formation of oxoammonium by H2O2 

oxidation in the presence of hydrochloric acid, and 
further oxidation with sodium hypochlorite. Two- 
electron oxidation is already performed in the first 
oxidation stage, which goes beyond the target product. 
There is no chemical meaning to adding NaClO in 
that state. This mistake probably occurred due to 
confusion with the alcohol oxidation reaction by 
TEMPO (requiring an oxidizing agent under acidic 
conditions) [23].

GPT-4, as a language computer, has in solving 
arithmetic problems [21]. There are still challenges 

Scheme 1. Reaction scheme to obtain acetaminophen sug
gested by GPT-4.

Scheme 2. Invalid reaction scheme to obtain TEMPO suggested by GPT-4.
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in solving problems related to chemical reactions. 
It is speculated that the failures are due to the 
limitations of the types of chemical reactions 
GPT-4 gathered, and that this model cannot cor
rectly recognize molecular structures. In the case of 
mathematics, engineering aids have been proposed 
through integration with calculation systems like 
Wolfram or programming languages like Python. 
Similarly, this language model may need to work in 
conjunction with systems specialized in chemical 
reactions [34].

4. Cheminformatics and materials informatics

Cheminformatics and materials informatics are disci
plines that deal with the correlation between chemical 
structures and properties from the perspective of data 
science [35–39]. The expectations for GPT-4 in che
minformatics are incredibly high. This is because, 
despite cheminformatics’ inability to handle language 
data sufficiently so far, the field of chemistry and 
actual research activities are often described and pro
cessed through language [34,40]. Here, we will verify 
to what extent GPT-4 can solve fundamental problems 
related to cheminformatics.

4.1. Compound name and SMILES conversion

The Simplified Molecular Input Line Entry System 
(SMILES) notation is the de facto standard for repre
senting organic structures in data chemistry [35]. 
Formally, GPT-4 can convert between the two rever
sibly (Table 1, Prompt S 10, Prompt S 11). For toluene, 
one of the most straightforward structures, GPT-4 
could convert the compound name correctly to 
SMILES. However, it failed to convert slightly more 
complex structures like p-chlorostyrene, TMP, and 
4-cyano TEMPO. In tasks of converting SMILES to 

compound names, failures were observed in all cases. 
In other words, GPT-4 can only convert SMILES and 
molecular structures at a fundamental level. For such 
precise and systematic tasks, it could be preferable to 
use algorithm-based conversion tools implemented in 
programs like ChemDraw or specialized LLMs [41] as 
a supplementary tool for the time being.

4.2. Reasoning

One of the enormous expectations of researchers for 
GPT-4 is its application to inference problems [42– 
44]. It is hoped that GPT-4 will be able to analyze 
factors, predict results for a given chemical event, or 
even offer some advice on the research direction. In 
some of these problems, GPT-4 can perform reason
able analyses by leveraging its pre-existing knowledge 
of variables, which enables the generation of solu
tions and demonstrates the effectiveness of its general 
problem-solving skills [3,4,6]. We first asked why the 
potentials of three nitroxide radicals – TEMPO, 4- 
oxo TEMPO, 1-Hydroxy-2,2,5,5-tetramethyl-2,5- 
dihydro-1 H-pyrrole-3-carboxylic acid – increase in 
this order (Scheme 3, Prompt S 12) [27].

When comparing TEMPO and 4-oxo TEMPO, 
GPT-4 correctly pointed out the presence of the elec
tron-attracting carbonyl group as the cause of the 
potential difference, which was a valid explanation. 
However, the reasoning behind why 1-hydroxy- 
2,2,5,5-tetramethyl-2,5-dihydro-1 H-pyrrole-3-car
boxylic acid, a five-membered ring of TEMPO, shows 

Table 1. Bidirectional conversion of organic compound names into SMILES by GPT-4.
Correct information                                     GPT-4

Name Structure and SMILES Name to SMILES SMILES to Name

Toluene

CC1=CC=CC=C1 CC1=CC=CC=C1 Ethylbenzene

p-Chlorostyrene

ClC1=CC=C(C=C)C=C1 ClC1=CC=C(C=C1)C 1-Chloro-2,5-dimethylbenzene

2,2,6,6-Tetramethylpiperidine

CC1(C)CCCC(C)(C)N1 CC1(CCCC(C1)(C)C)C 3,3-Dimethylazetidine

4-Cyano-2,2,6,6-tetramethylpiperidine- 
N-oxyl

CC1(C)CC(C#N)CC(C)(C)N1[O] CC1(C#N)CCCC(C)(C)[N](C1)=O 3-Cyano-3,3-dimethylazetidinium radical

Scheme 3. Redox potential order of nitroxide radicals.
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the highest potential was inaccurate. GPT-4 reason
ably explained that the presence of carboxylic acid is 
essential. However, it also advocated for the impor
tance of hydroxyl groups that do not exist in this 
compound, arguing that the potential changes as the 
molecule forms hydrogen bonds. The focus should 
have been on whether the radical compound is a six- 
membered or five-membered ring containing an unsa
turated bond [45]. This series of problems arises from 
the inability to estimate molecular structures from 
compound names correctly. Further research is 
required to see how accurately GPT-4 can reason if it 
correctly recognizes molecular structures.

4.3. Property prediction

One of the distinctive features of LLM is its ability for 
few-shot learning [1]. This property allows it to learn 
about unknown compounds with limited data adap
tively. For example, by providing the redox potential 
of TEMPO in advance, it can correctly predict the 
redox potential of its cyano derivative. Although 
GPT-4 doesn’t know the potential of 4-cyano 
TEMPO, it can make a relatively accurate inference 
based on the potential of TEMPO (0.6 V) (Figure 3, 
Prompt S 13).

GPT-4, the advanced language model, has success
fully predicted a shift in the potential of about +0.1 V 
due to the presence of the cyano group. This predic
tion aligns with experimental results. From 
a traditional cheminformatics perspective, this out
come is quite astounding [35–39,46]. Conventional 
methods would require the collection of a substantial 
amount of compound data, ranging from several tens 
to hundreds, to construct a specialized model for pre
dicting structure-property correlation [46]. Even then, 
the results often failed to deliver sufficient precision, 
and imparting accurate interpretability to these mod
els was typically challenging. Bypassing this laborious 
process, GPT-4 remarkably demonstrated the ability 
to predict potential using one-shot learning, a feat 
worth highlighting.

This inference is grounded in several pieces of prior 
knowledge: the cyano group exhibits electron-with
drawing characteristics; electron-withdrawing groups 
shift the potential in a positive direction; and the effect 

of potential shift caused by electron-withdrawing 
groups is at most around 0.1 V. Traditional task-spe
cific regression models, lacking such a priori knowl
edge, would find one-shot learning impossible in 
principle.

To delve deeper into the capabilities of GPT-4 in 
predicting physical properties, we had it predict the 
oxidation-reduction potentials of ferrocene deriva
tives. By using the potential of ferrocene (3.45 V vs. 
Li/Li+) as a reference [47], it predicted a potential of 
3.6 V for the dibromo derivative, taking into account 
the impact of the electron-withdrawing group 
(Prompt S 14). This falls somewhat short of the actual 
measured 3.78 V.

Similarly, when predicting the potential of deca
methylferrocene [48], which introduces the electron- 
donating methyl group, the predicted potential incor
rectly shifted to a higher value, when in reality, the 
potential should be lower than that of ferrocene 
(Prompt S 15). When repeating similar questions 
independently, some instances led to no answer, 
while others produced a prediction that the potential 
shifted slightly negatively.

The series of results suggests that the property pre
diction capabilities of GPT-4 are uncertain and 
include some randomness. This can be attributed to 
GPT-4 not yet fully understanding chemistry in 
a deeper sense, suggesting the potential for future 
improvements and the need for collaboration with 
some form of chemistry tool.

Although the current model has unignorable short
comings in the chemical aspects, we are interested in 
the efficacy of GPT-4 in prediction tasks. When it 
comes to selecting explanatory variables, GPT-4 exhi
bits the capability to extract appropriate variables from 
a specific dataset. We have recently verified, in parti
cular, that it can extract chemical data and related 
information and utilize them as explanatory vari
ables [49].

4.4. Planning (optimization of a single variable)

One of the ultimate goals of informatics research is to 
automate the research process itself [40]. Towards this 
end, not only must regression models make predic
tions, but they also need to propose the experimental 

Figure 3. Asking about the redox potential of 4-cyano TEMPO via one-shot learning.
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conditions to be pursued next. Given the vastness of 
the exploration space for compounds and processes, 
automating the setting of conditions has hitherto been 
considered highly challenging. This is mainly because 
traditional prediction models do not consider lan
guage information or the meaning of variables, leading 
to the proposal of inappropriate exploration condi
tions from a chemical standpoint [46]. Even when 
using autonomous models like Bayesian optimization, 
there was a need for humans to set boundary condi
tions carefully [40].

However, GPT-4, with its ability to make judg
ments based on the meaning of variables, could poten
tially conduct autonomous research activities with 
fewer instructions. Here, we set the task of searching 
for the boiling point of a molecule.

In this task, GPT-4 was given data on the tempera
ture and volume of unknown compounds and was 
tasked to search for their boiling point We designated 
ethanol as an unknown compound for the correct 
answer, and assumed that the Clausius-Clapeyron 
equation holds between temperature T and vapor 
pressure Pvap. Assuming an enthalpy of vaporization 
for ethanol of 38.6 kJ/mol and a boiling point of 351 K, 
its vapor pressure becomes Pvap atm (Equation 1). 

Pvap Tð Þ ¼ 1:0exp �
38600
8:31

� �

�
1
T
�

1
351

� �� �� �

(1) 

In atmospheric conditions, the boiling point is defined 
as T at which Pvap equals 1, which was the goal of the 
task at hand. The search process was conducted itera
tively and was accompanied by a certain degree of 
randomness. To account for this, we performed three 
trials. In contrast, we applied Bayesian optimization 
for the control experiment using the scikit-optimize 
library (v 0.6.6). All hyperparameters were left at their 
default values, and T was allowed to vary between 200 

and 400 K. We note that while the temperature search 
range was arbitrarily defined by human judgment, 
GPT-4 was given no such constraints.

The process for GPT-4 was executed using 
a command that enabled recursive prompting 
(Prompt S 16). We note that in GPT-3.5, which we 
used as a control experiment, the model was unable to 
accurately understand the instructions in the prompt 
and thus failed to provide the required temperature for 
measurement (Prompt S 17). Despite some variability 
across trials, initial conditions were generally set at 
intervals of 20 K from 273 to 373 K. This was pre
dicated on our prior knowledge that the boiling points 
of most molecules that chemists generally deal with 
are likely to fall within the 0–100 °C range. In contrast, 
Bayesian optimization does not possess such prior 
knowledge and makes random variable selections at 
the initial stage.

Figure 4 illustrates the values of Pvap obtained in 
each trial. Since GPT-4 made its predictions with some 
prior knowledge about the range of boiling points, it 
was able to reach a solution close to Pvap ¼ 1 within 
just 5 trials. In contrast, about 10 tests were required 
with Bayesian optimization. The superior perfor
mance of GPT-4 can likely be attributed to the high 
affinity between its pre-existing knowledge and the 
task at hand – predicting the boiling point of ethanol.

However, it should be noted that GPT-4 does not 
always perform an optimal variable search. For 
instance, in the trial depicted by the triangular plots, 
the model seems to over-examine the conditions 
around 3 atm around 15 attempts. This could stem 
from GPT-4 not recognizing the difference between 
Pvap ¼ 1 and Pvap ¼ 3, or perhaps a memory con
straint within the model that hindered the recall that 
the target value was 1 (Prompt S 16). The language 
model also makes errors in simple calculations such as 
2.561.3, which suggests it does not possess professional 
mathematical capabilities (Prompt S 18).

Figure 4. Exploring the boiling point of ethanol by GPT or Bayesian optimization. Square, triangle, and circle plots show individual 
trials of each method. In GPT, iteration was stopped after around 20 trials.
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Nevertheless, the limitations of GPT-4’s mathema
tical abilities can be mitigated through an engineering 
approach. For instance, when the task was re-executed 
using the arithmetic processing module, Wolfram, 
incorporated into ChatGPT as a plugin, we obtained 
the exact correct answer of 351 K within just 6 trials, 
an accomplishment depicted in Figure 5 (Prompt 
S 19). Here, GPT-4 was armed with the prior knowl
edge that vapor pressure follows the Clausius- 
Clapeyron equation, and it fittingly used the acquired 
data via Wolfram. Alternatively, it can be interpreted 
that GPT-4, drawing upon its knowledge of physical 
chemistry, could set up a symbolic regression equation 
on its own [50,51], thereby finding the optimal experi
mental conditions most efficiently.

4.5. Planning (optimization of reaction conditions 
consisting of multiple variables)

In the subsequent investigation stage, we focused on 
a more complex system involving multiple variables. 
To illustrate, consider a chemical system where com
pounds A and B react in a 1:2 ratio to produce com
pound C through a second-order reaction. 
Furthermore, C molecules react with each other to 
form a byproduct, D (Scheme 4). If C is the target 

compound, it becomes necessary to halt the chain 
reaction at an appropriate time to prevent the forma
tion of unwanted byproduct D (Figure 6(a)). The reac
tion rate constants were set as kAB ¼ 0:7 and kC ¼ 1. 
We then set out to optimize the initial concentrations of 
A and B (ranging from 0 to 3) and the reaction time t 
(ranging from 0 to 10) to achieve the maximum yield of 
C. Ideally, we expected the best results with A and 
B initial concentrations at 3 and t around 0.7.

Bayesian optimization required approximately 10– 
15 trials before the concentration of C exceeded 0.6 
due to the random selection of initial conditions. In 
contrast, GPT-4, equipped with knowledge of physical 
chemistry, could set initial conditions based on 
informed deductions (Prompt S 20). After being pro
vided the reaction scheme and asked to find the best 
reaction conditions, it accurately inferred that a) 
higher initial concentrations of A and B would be 
beneficial, and b) the reaction should not be allowed 
to proceed for too long as C would transform into 
D. Based on these accurate inferences, GPT-4 was able 

Figure 5. Asking the boiling point of an unknown compound to GPT-4 with the Wolfram plugin.

Figure 6. (a) Typical concentration changes for the chain reaction. b) Exploring best chemical reaction conditions by GPT or 
Bayesian optimization. The solid line represents the mean of the best value obtained in three independent trials; the semitran
sparent filled range represents the standard deviation; each raw trial is indicated by a semitransparent line. In GPT, iteration was 
stopped after 5 trials.

Scheme 4. Example chain reaction.
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to establish conditions close to ideal. Consequently, it 
found experimental conditions with a reliably high 
yield of over 0.6 in less than five trials.

The outcomes of these trials highlight the efficacy 
of incorporating domain knowledge in efficient 
experimentation. Our study also demonstrated that 
the person-specific task of domain knowledge incor
poration, typically carried out by a handful of experts, 
can be partially substituted by large-scale language 
models like GPT-4. However, it is essential to note 
that while the language, data analysis, and inferential 
capabilities of GPT-4 are remarkable, they are not 
always sufficient. Additionally, due to its token 
length limitations of 8k or 32k tokens, GPT cannot 
recognize a sufficiently large database. For instance, 
numbers usually account for 1 token per character, 
which equals 1 byte. This means that this model can 
only handle a database of approximately 32k bytes in 
size. This value significantly falls short of the size of 
typical datasets used in data science. Therefore, lever
aging the synergistic benefits of language computing 
requires using it in conjunction with mathematical 
tools like Wolfram, frameworks like Bayesian opti
mization, and programming languages like Python.

4.6. Planning (black box optimization)

Next, we assessed GPT-4’s ability to exploit its phy
sical-chemical domain knowledge in optimizing 
a nonlinear black-box function, Equation 2 
(Figure 7). We sought to maximize y while keeping 
the range of a; b; c; d; e within 0 to 3. To simulate an 
actual experimental system, we added uniform noise 
within the scope of 0 to 0.1. 

y ¼ f a; b; c; d; eð Þ

¼ � 2 � að Þ
2
� 3 1 � bð Þ

2
� 0:3 1:5 � cð Þ

2
þ sin eð Þ

þ noise
(2) 

In the current system, where the significance of phy
sical parameters has vanished, the advantages of using 
GPT-4 are also lost when compared with the use of 
Bayesian optimization. Out of three independent 
trials, in two instances, GPT-4 assumed that the 
black box function was linear and remained firmly 
attached to this notion. As a result, GPT-4 was unable 
to propose appropriate measures to increase the target 
value.

In the remaining trial, GPT-4 assumed that the 
black box function could be approximated by 
a quadratic equation and was able to perform nearly 
as well as Bayesian optimization. However, it is crucial 
to note that this success is attributed to the fortunate 
circumstance that the assumed system predominantly 
incorporated quadratic functions.

On the other hand, Bayesian optimization, which 
does not assume a particular function system, was 
generally able to reach the maximum value of the 
target variable after more than ten trials. This observa
tion underscores the advantage of using Bayesian opti
mization, particularly in situations where there is no 
clear or linear correlation between variables, as it 
operates on a probabilistic model and is thus capable 
of adjusting its understanding based on the data it 
encounters. This adaptability makes it a robust choice 
for optimizing functions in a variety of circumstances.

Drawing from the series of optimization tasks, it 
can be concluded that GPT-4 has demonstrated the 
potential to be a potent tool in embedding domain 

Figure 7. Exploring the best condition for a black box function by GPT or Bayesian optimization. The solid line represents the mean 
of the best value obtained in three independent trials; the semitransparent filled range represents the standard deviation; each 
raw trial is indicated by a semitransparent line.
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knowledge. Despite the difficulties encountered, the 
capabilities of GPT-4 indicate a promising direction 
for the utilization of artificial intelligence in complex 
function approximation and optimization tasks.

4.7. Planning (molecule exploration)

In the next part of our exploration, we focus on GPT- 
4’s capabilities in complex chemical compound opti
mization, a long-term challenge in cheminformatics 
[35]. Various techniques have been reported, with 
recent methods focusing on generating molecules 
that satisfy desired properties using deep learning 
algorithms. However, the limitations of using applica
tion-specific models are becoming more apparent.

Traditionally, using existing methods, it became 
easy to generate structures that are either easy to 
database or computationally favorable with specific 
features [52,53]. But, when translating these structures 
into actual experimental research, they must meet 
various constraints such as synthetic difficulty, solu
bility, and stability under specific conditions 
[46,54,55]. These parameters are often challenging to 
capture as structured data and thus frequently slip 
through the cracks of data science.

Language computation, as demonstrated by GPT-4, 
can bridge this gap between in-silico modeling and 
real-world constraints. GPT-4 can consider linguistic 
rules when designing or selecting molecules. For 
example, we explored the design of block polymers, 
which are interesting in self-organizing lithography 
[56–58]. In this polymer system, it is necessary to 
form a lamellar microphase separation structure with 
a narrower pitch, and this lamellar structure must be 
perpendicularly oriented to the substrate on which the 
film is formed.

An essential factor in meeting the first condition is 
the χ parameter of the two different unit structures 
constituting the block polymer [56]. This parameter is 
difficult to calculate theoretically, so in this study, we 
chose designs that have a larger expected distance (Ra) 
of Hansen solubility parameters, which are empirically 
correlated with it [59]. Ra was estimated using the 
HSPiP (v. 5.4.06) package. As an additional constraint, 

to make the lamellar structure orient vertically, we set 
the design to have a smaller Ra against nitrogen gas, 
the main component of air (Prompt S 22).

The first structure encountered during the search 
was a copolymer of styrene and methyl methacrylate. 
This is the most fundamental molecular structure for 
expressing a vertically oriented lamellar structure in 
self-organizing lithography [56]. Other suggested 
structures included well-known copolymers such as 
acrylonitrile, butadiene, and general monomer struc
tures (Table 2) [56]. This is in stark contrast to tradi
tional cheminformatics methods, where imposing 
constraints only on Ra results in hard-to-synthesize, 
unstable structures without polymerization bases 
making up most of the candidates.

A general positive correlation was found between the 
distance Ra;unit between unit structures and the distance 
Ra;nitrogen from the unit structure to a nitrogen mole
cule. If Ra;unit is increased to promote phase-separation 
structure, the distance to nitrogen also increases, which 
presents an obstacle for inducing a vertical lamellar 
structure. No noteworthy candidates exceeded the pro
posed combination of styrene and methyl methacrylate. 
This is primarily due to GPT-4’s limited ability in gen
erating molecular structures, as previously noted. 
Further, this observation underscores the potential 
need for designing prompts that more explicitly engage 
GPT-4’s ability to consider and recognize molecular 
structures, which could further enhance its predictive 
capabilities in the realm of chemistry. Currently, the 
most practical approach now appears to be using a deep 
learning algorithm specialized in the molecular genera
tion [52], with the appropriateness of its use automati
cally determined by GPT-4.

4.8. Synchronization with physical space

Interaction with actuators such as robotic arms is 
essential in research that includes work in real space 
[60,61]. GPT-4 can perform simple operations with 
a robotic arm while interpreting constraints and lan
guage commands to move 3 mL of liquid from con
tainer 1 to container 2 using a pipette with a 1 mL 
capacity (Figure 8, Prompt S 23).

Table 2. Exploration of block polymer units for micro phase separation.
Round Unit1 Unit2 Ra;unit

a Ra;nitrogen
b

1 styrene methyl methacrylate 2.8 3.4
1 vinyl acetate ethylene 8.5 6.0
1 acrylonitrile butadiene 20 21
2 acrylic acid styrene 17 18
2 vinyl acetate vinyl chloride 5.8 5.6
2 butadiene styrene 2.1 2.7
3 methyl acrylate vinyl acetate 0.0 5.6
3 acrylonitrile methyl methacrylate 20 21
3 isoprene styrene 2.4 2.9
4 vinyl acetate acrylamide 21 26
4 methyl acrylate ethylene 8.5 6.0
4 styrene vinylidene chloride 4.7 5.1

aTetramers were calculated. bMaximum of Ra for 1) unit1 and N2, and 2) unit2 and N2.
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Figure 8 Illustrates commanding a robot arm via 
natural language using GPT-4 as a translator. When 
transferring liquid, the robotic arm needs to perform 
movements such as lifting and lowering, and the pip
ette requires suction and discharge. Furthermore, 
since the pipette’s capacity is only 1 mL, the pipette 
operation must be repeated three times. Despite expli
citly providing these constraints, GPT-4 autono
mously generates commands to accomplish the 
desired task. The figure shows the process of the 
robotic arm according to the natural language 
instructions.

The practical benefits of controlling a robotic arm 
via a natural language interface are significant, as it 
lowers the entry barrier for chemists who may not be 
computer or robotic science experts. With object 
recognition through image-based deep learning mod
els, and the use of multimodal AI models [62], which 
are avidly studied in the world of LLMs, including 
GPT-4, a more flexible system operation is antici
pated. Furthermore, if an LLM gains sufficient plan
ning capabilities, it could become possible to create 
a system that performs experiments automatically, 
simply by requesting ‘synthesize compound X’. 
However, before this enhanced planning capability 
can be realized, there are several significant challenges 
to be addressed. This includes the ability to correctly 
propose synthesis pathways, accurately recognize and 
consider molecular structures, and overcome other 
difficulties as discussed in this paper. These advance
ments will be critical in enabling the system to accu
rately respond to such complex requests.

However, hardware design must delegate complex 
synthesis, purification, and measurement operations 
in chemical experiments to robotic arms or similar 
devices to actualize such an automatic system. Open- 
source system development utilizing inexpensive arm 
systems, IoT devices like Arduino and Raspberry Pi, 
and part creation via 3D printers could become a trend 
in the next decade. Generative models can also be used 

for purposes such as creating 3D drawings or design
ing electronic circuits [63]. It is also necessary to 
establish methods to analyze the large amount of 
data generated by automated systems using language 
models [64].

4.9. Autonomous research by LLM

With a certain level of inferencing ability, GPT-4 
can be thought of as an AI capable of autonomous 
research by judiciously combining and improving 
the methodologies discussed thus far [3,4,6]. For 
example, GPT-4 can autonomously make decisions 
and take actions within the virtual world of a game 
called Minecraft [17]. Similarly, in the future, there 
is the potential for autonomous advancement in 
a variety of tasks, including research, within the 
physical space. Classically, closed loops using 
Bayesian optimization have been reported [65–68], 
yet requiring human intervention to narrow the 
search space to low-dimensional vectors carefully. 
In contrast, LLMs like GPT-4 can freely operate 
within language space, suggesting that it can auto
mate research in a broader sense, including litera
ture search, experimental condition setting, and 
result reporting.

Several autonomous agents utilizing GPT-4 have 
been reported. In these models, the LLM itself deter
mines the following action. Open-source projects like 
AutoGPT [69] are being studied for their potential to 
automate tasks, including executing program codes. 
It’s worth noting that these capabilities are not only 
confined to specific projects but can also be utilized via 
the ChatGPT interface provided by OpenAI. Attempts 
have also been made to personify agents and facilitate 
dialogue or to output their states as abstract language 
objects [70].

For instance, when using the prompts proposed by 
Ochiai et al. [71], abstract language objects such as 
‘chemist’, ‘chemical structures’, ‘density’, and 

Figure 8. Commanding a robot arm by natural language using GPT-4 as a translator.
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‘studymanager’ can be generated from a directive such 
as ‘a chemist who wants to understand the relationship 
between chemical structures and density’ (Figure 9, 
Prompt S 24). Each of these objects possesses sub- 
concepts such as ‘state’, ‘skill’, and ‘knowledge’.Take 
the main object ‘chemist’ as an example. The object 
‘chemical structures’ contains information about 
molecular structures. It holds skills such as chemical 
analysis, density measurement, and general chemistry 
knowledge. With the capacity for web search enabled 
on the ChatGPT interface, calling up this prompt 
recursively allows the system to collect relevant data 
from the internet, thereby updating the contents of the 
objects.

Subsequently, the chemist generates a sub-object 
referred to as the ‘next command’ and investigates 
the correlation between molecular structures and den
sity. Most scientists typically advance their research by 
combining existing methodologies. Assuming that text 
data can adequately describe these methodologies, it 
implies that they could, in principle, be learned and 
executed by LLMs.

However, GPT-4 has not succeeded in creating an 
autonomous agent on par with human researchers. 
Despite GPT-4’s ability to solve fundamental col
lege-level math problems, it is incapable of tackling 
advanced proofs or unresolved mathematical issues 
facing humanity [19,21]. This constraint is attribu
table to the GPT-4’s inference and long-term mem
ory capacities [72]. The model is yet unable to fully 
emulate the human brain’s divide-and-conquer 
strategy, where a complex mathematical derivation 

or plan is broken down into smaller, manageable 
steps and then tackled sequentially [3,4]. This defi
ciency stems from the model’s still limited ability to 
replicate the evolved skills of a seasoned human 
researcher, who benefits from age-acquired experi
ence and multimodal learning. Furthermore, GPT-4 
falls short in integrating inputs from various sensory 
organs, including vision (geometric aspects) and 
verbal language, which are crucial for comprehend
ing and solving mathematical derivations or plan
ning tasks [3,4]. In light of this, it is presumed that 
a gap still exists in general terms before an LLM can 
autonomously narrow down research topics, plan 
experiments, or write papers [2].

5. Issues to be addressed

In this section, we explore the challenges GPT-4 faces 
in its application to chemical research and potential 
solutions. Three significant issues can be identified 
with LLMs including GPT-4: a) handling non-verbal 
data, b) inputting technical and up-to-date informa
tion, and c) the inference capabilities of the LLM itself.

Firstly, a considerable challenge for GPT-4 is a) 
recognizing molecular structures and experimental 
data. GPT-4, a text-based AI is not specialized in 
treating large databases or spectra appropriately [73]. 
As discussed in this paper, this limitation results in 
GPT-4’s ability to process compounds and data sig
nificantly inferior to that of a human expert. For 
example, proposing a new molecular structure can 
pose a significant challenge. There are two leading 

Figure 9. Abstract language objects generated from a prompt ‘chemist who want to understand the relation between chemical 
structures and density’.
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potential solutions. In the short term, specialized 
deep-learning models or algorithms for handling 
molecular structures could be used as plug-ins for 
the LLM. This concept is similar to GPT-4 utilizing 
a mathematical processing system like Wolfram to 
compensate for its limited mathematical ability. 
A more long-term solution would be the creation of 
multimodal LLMs. Integration with models dedicated 
to voice or image recognition is currently underway. 
Similarly, integration with models capable of inputting 
molecular structures might be possible. Alternatively, 
expanding the size of a versatile model like the trans
former could resolve everything in the future [2].

The second issue is b) learning technical informa
tion. As of the time of writing, GPT-4 has only known 
limited information until September 2022. However, 
LLMs should be able to handle cutting-edge chemical 
literature. Two leading solutions exist for this pro
blem. In the short term, the retrieval approach, 
which is already being implemented, can be used 
[5,74]. This approach seeks out literature similar to 
the user’s query using a dedicated algorithm and 
includes that information in the LLM’s prompt 
(prompt tuning) [74]. This method is expected to be 
an effective solution in many cases. However, there are 
limits to the amount of information that can be 
included in a prompt (8k or 32k tokens in GPT-4), 
making it difficult to infer from a wide range of cut
ting-edge information. Therefore, there is a need for 
constructing local LLMs that learn specialized data 
from scratch or through low-cost methods like fine- 
tuning, which is being considered worldwide [75]. 
From a practical perspective, one of the strengths of 
an LLM operating on a local computer is security. To 
use GPT-4, data must be sent to a cloud server, but 
with a local LLM, computations are completed within 
the laboratory, reducing the barrier when handling 
confidential information.

The third issue is c) the inference capabilities of the 
LLM itself. LLMs have been known to make mistakes 
in rudimentary mathematical processing and provide 
answers based on incorrect knowledge. There is still 
room for improvement in long-term planning capabil
ities, which seem to be lacking for the realization of 
fully automated chemical research [2–6]. There may 
not be much that chemists can contribute to solving 
this problem. However, deep learning is evolving at 
a revolutionary pace. Chemists may need to be pre
pared for the emergence of artificial general intelli
gence or superintelligence [8].

In addition to technical analysis, a profound 
exploration of the ethical implications of using LLMs 
in this scientific domain is conducted. LLMs like GPT- 
4 can inadvertently produce inaccurate or misleading 
information. This risk is particularly salient in chem
istry, where the propagation of false information could 
instigate hazardous experiments. Accountability issues 

arise if LLMs dispense harmful or incorrect informa
tion, with the intricate training process and involve
ment of multiple stakeholders adding complexity.

These ethical considerations, although intricate and 
far-reaching, are paramount for the responsible and 
beneficial integration of LLMs like GPT-4 into chemi
cal research. Future endeavors should aim to construct 
guidelines and best practices to ethically harness the 
power of LLMs in this discipline.

6. Conclusion

GPT-4 has demonstrated varying proficiency across 
diverse tasks such as organic chemistry, cheminfor
matics, few-shot learning, inference problems, 
selection of explanatory variables, exploration of 
boiling points, multi-variable exploration, com
pound exploration, and automated arm control 
for experiments. When examining each task speci
fically, GPT-4 exhibited a high understanding of 
general textbook-level knowledge in the field of 
organic chemistry. However, it fell short when 
dealing with specialized content or unique methods 
of synthesizing specific compounds.

In cheminformatics, GPT-4 partially succeeded in 
translating compound names into SMILES notation 
but could not generate SMILES notation in many 
cases. This is likely due to a lack of training data. On 
the other hand, leveraging its few-shot learning cap
abilities, GPT-4 could make accurate predictions even 
for compounds it hadn’t been trained on. This result 
demonstrates GPT-4’s ability to learn and apply new 
knowledge even from limited data. It was also found 
that the domain knowledge of chemistry that GPT-4 
possesses helps set initial conditions during data 
exploration, for example.

These results indicate that GPT-4 can tackle a wide 
range of tasks in chemical research, spanning from 
textbook-level knowledge to addressing untrained 
problems and optimizing multiple variables. 
However, its performance heavily relies on the quality 
and quantity of its training data, and there is much 
room for improvement in its inference capabilities. 
Moving forward, while we wait for more advanced 
models than GPT-4, we should consider efficiently 
applying it to chemical research, possibly by creating 
hybrid models with existing specialized techniques.
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