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Real-world Issue

● To improve evacuation routes and disaster response 
in California, we must understand the underlying 
factors of human movement using mobility data.

Computational Problem

● Difficult to combine mobility datasets with different 
measured variables and find shared hidden factors in 
mobility data

Coupled Matrix-Tensor Factorization (CMTF)

● Data fusion and tensor decomposition algorithm that 
merges data and simultaneously decomposes data 
coupled in tensors and matrices
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FIG. 1. Coupled matrix-tensor factorization of tensor      and matrix Y coupled along 
the vertical axis a. The tensor      and matrix Y are approximated by a sum of 
outer-multiplied component vectors represented as factor matrices.

Alternating Least Squares Optimization

● Optimizes one factor matrix at a time while keeping 
other factor matrices constant

● TensorLy library in Python, Systems serology 
implementation
○ Fast decomposition, easy to implement

Gradient-based Optimization

● Finds minimum of loss function using gradients to 
optimize factor matrices

● CMTF Toolbox in MATLAB, S3CMTF in C++ using 
parallelized stochastic gradient descent
○ Takes longer to run, achieves better accuracy

Develop a CMTF software (CMTF-OPT1) using 
gradient-based optimization in Python

● Using synthetic data, quantify speed and accuracy of 
gradient-based CMTF model against TensorLy’s 
CMTF-ALS

Present an application of CMTF to study mobility in 
the Greater Los Angeles area

● Utilize Core Consistency Diagnostic (CORCONDIA) 
and Factor Match Score (FMS) to determine optimal 
CMTF decomposition rank (NP-hard problem)

● Interpret latent factors affecting human movement 
from factor matrices, using geographic maps and 
time series plots

Coupled Matrix-Tensor Factorization Software: CMTF-OPT1
CMTF Initialization
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CMTF Application: Mobility in the Greater Los Angeles area
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Mobility Data Stored in Tensor and Matrix Factor Matrices: Hidden Factors in Human Mobility

Determining Optimal Number of Components for CMTF Model

Interpreting Hidden Factors of Human Mobility Using Rank-4 CMTF Model
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CMTF-OPT1 Software Development

● Promising use of gradient-based optimization in 
Coupled Matrix-Tensor Factorization for accuracy

Mobility Data Analysis using CMTF

● Effective in identifying hidden factors in mobility data 
using spatial and temporal interpretation

● Streamlined workflow for identifying optimal rank and 
performing CMTF decomposition on mobility data

Future Directions

● Test alternative gradient-based optimization 
techniques in CMTF-OPT1 for faster speed

● Adapt TensorLy CMTF-ALS for sparse tensors and 
matrices to efficiently decompose real-world data

Future Application

● Cities can collect mobility data through different 
sources and utilize CMTF-OPT1 to uncover hidden 
factors in human mobility. This can be used to 
simulate human behavior in wildfire simulations for 
cities to identify the best evacuation routes.
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Factor 1: Natural Parks and 
Recreation Factor 2: Shopping Areas Factor 3: Housing Areas Factor 4: Housing Areas

CMTF-OPT1 TensorLy CMTF-ALS
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FIG. 2. CMTF-OPT1 takes in a tensor, matrix, and rank R as inputs, as well as other optimization parameters. Then, factor matrices A, B, C, and V are initialized using singular 
value decomposition (SVD) or random initialization. From there, nonlinear conjugate gradient optimization is used to improve the estimated factor matrices by minimizing the 
non-convex loss function using gradients. Finally, the optimized factor matrices A, B, C, and V are returned.
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Inputs

● After comparing CMTF-OPT1 to TensorLy CMTF-ALS, I decided to use TensorLy CMTF-ALS in Mobility Data Analysis 
because of its fast runtime in decomposing large tensors and matrices (see Results).

Setup

● CMTF decomposition of I x I x I tensor and I x I matrix using 
CMTF-OPT1 and TensorLy CMTF-ALS

● Ran 5 trials per rank = 3-30. Graphed average RMSE, runtime

Performance

● CMTF-OPT1 performs on par with TensorLy 
CMTF-ALS in terms of accuracy (measured by 
reconstruction error): Both had RMSE under 0.57

● CMTF-OPT1 has a much longer runtime than 
TensorLy CMTF-ALS

Diagnostics indicate Rank-4 CMTF model is best:
● Factor matrices are similar as determined by Factor Match 

Score (FMS) and low Sum of Squares Error (SSE)
● Core approximated tensor is similar to original tensor as 

shown in Core Element Plot
● Rank-4 model fits multilinear behavior as seen by sharp 

drop at 4 components in Core Consistency Plot
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