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Introduction

CERN, European Organization for Nuclear Research, is a high energy physics laboratory
where experiments are run to study the properties of the sub-atomic world. The LHC,
Large Hadron Collider, is the biggest particle accelerator in the world. It allowed CERN
to discover the Brout-Henglert-Higgs Boson in 2012.

Colossal amounts of data are recorded by the LHC experiments (O(petabytes)), and
analyzing this data is very computationally intensive: thousands of computing nodes are
required to filter and reconstruct the particle tracks. For this reason, optimized code that
takes full advantage of the hardware is critical and allows maximizing the physics that
can be computed with the infrastructure available.

This project focused on the profiling and optimization of a specific algorithm used in
the reconstruction of data recorded by the SciFi tracker planned for the LHCb upgrade.

The idea for optimizing the code that way is to write plain C or C++ in such a way
that the compiler is able to do all the low level optimizations, especially the vectorization.
Vectorization is a really important optimization because it allows to do upto eight times
the same operation on contiguous data for current processors, and even sixteen times on
some processors.

The study is split in three parts:

• The first step is to rewrite the actual algorithm with C++ optimizations and to
change the algorithm workflow in order to easily introduce high level transforma-
tions.

• The second step is the analysis of high level transformations and their performance
behavior. Especially, some transformations help the vectorization, some allow bet-
ter cache use.̇.

• The last step is the numerical stability analysis of a part of the algorithm. This
step allows to validate some transformations resulting in less accurate results.
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I Presentation

I.1 CERN

CERN, the European Organization for Nuclear Research, has been probing the funda-
mental structure of the universe for 61 years. Established in 1954 on Franco-Swiss border
and with 22 member states, CERN has become the largest particle physics laboratory
in the world. Now, about 10 000 physicists and engineers from the whole world work
together to study sub-atomic physics.

An interesting fact about CERN is that it gave birth to the Wold Wide Web in
the 90’s, thanks to a project based on the concept of hypertext. The first website was
activated in 1991 and on April 30th, CERN announced that the World Wide Web would
be free to anyone.
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Figure 1: Map of the CERN accelerator complex

I.1.a LHC

In order to study the fundamental particles, what the universe is made of, CERN has
created the most complex scientific instrument: the LHC. The LHC, the Large Hadron
Collider, is the biggest and the most powerful particle accelerator. Built between 1998
and 2008, it lies in a 27 kilometer long tunnel, as deep as 175 meters underground. It
allowed CERN to make majors discoveries in high energy physics, like the discovery of
the last part of the Standard Model in 2012: the Brout-Henglert-Higgs Boson. The LHC
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is split onto 4 main experiments: Alice (A Large Ion Collider Experiment), Atlas (A
Toroidal LHC Apparatus), CMS (Compact Muon Solenoid) and LHCb (LHC-Beauty).
Each experiment consists of a collision point between the two beams of the LHC, a
detector which detects the particles generated by the collisions, and a computer farm
(thousands of machines) to filter and analyze the output data from the detector.

I.1.b LHCb

LHCb is one of the 4 main experiments of the LHC and is designed to investigate the
difference between the matter and the anti-matter. It especially tries to answer the ques-
tion of the missing anti-matter in the universe by analyzing the fundamental properties
of the anti-matter.

Figure 2: LHCb detector

The detector consists of a big magnet and a bunch of sub-detectors:

VeLo: The Vertex Locator is a tiny but very accurate particle detector. It’s as near as
possible from the collision.

RICH1: The first Ring Imaging Cherenkov detector is just after the VeLo and used to
identify low-momentum particles

Tracker Turicensis: A tracker, ie a track detector before the magnet. It uses 2 stations.

Main Tracker: Another tracker with 3 stations just after the magnet. Composed with
a straw-tube based detector and a silicon strip detector in the center.

RICH2: The second Ring Imaging Cherenkov detector used to measure momemtum of
the high-momentum tracks.
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Calorimeters: The calorimeters are after the main Tracker and RICH2. It allows to
measure the energy of high-momentum tracks. It is also used as a trigger for high-
momentum particles.

Muon Chamber: The muon detector is used to trigger muon events.

The LHCb experiment detects 40 000 000 collisions per second. This produces tremen-
dous amount of data, and cannot be analyzed or even stored so fast. So just at the output
of the detector, there is the Low Level Trigger (LLT) composed of about 350 FPGAs.
Then, filtered data are forwarded to the High Level Trigger (HLT) composed of about
2000 servers distributed among 6 farms. The software of the HLT is split into two steps
(HLT1 and HLT2). The first step is about reconstructing particles tracks while the sec-
ond one is about merging together all the information in order to reconstruct the whole
event. The incoming data are stored in a buffer before being computed. So considering
the input event rate and the pauses between collisions batches, a single thread of the
HLT1 needs to perform its computation in about 30ms. These three triggers filter the
event and keep only interesting events according to physical criteria they have. This part
is called Online and is done in real time underground, close to the detector.

The data is then send to the surface where it is stored on magnetic tape and then
computed by the Grid: a global network of computing nodes which analyze events in
more detail. This part is called Offline.

The scientific code is written in C++, and an internal framework called Gaudi is used
to write algorithm.

Offline

Grid

Online

LLT

High Level Trigger

HLT1 HLT2
50KHz1MHz 10KHz40MHz

Figure 3: Current LHCb Dataflow

For the next run of the LHC, it is planned to upgrade the LHCb detector, especially
the main Tracker system. The new Tracker is called SciFi (for Scintillating Fiber Tracker).
The upgrade will also change the Online dataflow. Indeed, it is planned to remove the
electronic LLT, and only have the HLT. This imply that the first step of the HLT needs
to compute about 40 times more events per second. So the performance of this first part
is really crucial.
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I.2 Objectives

The main goal of the project is to improve the performance of the Tracking algorithm
for the SciFi tracker (HLT1). The idea is not so much to reduce the computation time of
one single event, but more to increase the number of events computed per seconds: get a
higher total throughput.

Thereby, some optimizations are less interesting here than in High Performance Com-
puting like multi-threading the code with OpenMP for example. Indeed, it is easy to run
several instances of the same program to compute different events with almost the same
improvement than with the multi-threaded version of the program.

However, this is not the case for the vectorization because it uses a parallelism we
cannot achieve otherwise. In fact, running a vectorized thread does not slow down the
other threads and processes running on the same machine. Moreover, vectorization allows
to get a high parallelism, thereby a much higher throughput. With a suitable algorithm,
we can envision to achieve a speed-up close to ×4 with SSE and even close to ×8 with
AVX. This is the reason why the project mainly considers the vectorization optimization.

The final goal of this project is not quite just improve the performance of this algo-
rithm but find a way to write simple code that can benefit from these improvements.
In other words: writing almost plain C or C++, and letting the compiler doing all the
optimizations for us, especially the vectorization. So taking the current code, making
the required high level transformations and letting the compiler do the low level opti-
mizations. High level transformations are transforms beyond the scope of an optimizing
compiler for better general purpose processor (GPP) effciency. To address intrinsic pro-
cessor parallelism (SIMD and multicore) and specificity (memory cache hierarchy).
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II Algorithm Transformations

The first part of my internship was to rewrite the implementation of the Gaudi algorithm
in order to identify the bottlenecks. It first appeared that the code spent a lot of time
with I/O. So I removed all the messages printing from the code. It then appeared that
the code spend a lot of time iterating and not computing the loops body.

After that, it was decided to write the algorithm so that the future modifications,
especially the high level transformations, would be much simpler to do. The main idea
was to split the nested loops in multiple almost flat loops, putting the intermediate
results in arrays. With this, it would be simpler for the compiler to vectorize loops as
they become straight-forward, and with inner-most computation.

This part could not be continued without analyzing high level transformations. That
is why I did not go further on rewriting the algorithm.

11



Performance optimization
for LHCb experiment software HIGH LEVEL TRANSFORMATIONS COMPARISON

III High level transformations comparison

The problem considered is the parabola solving algorithm using the Cramer’s rule (cf:
Listing 7, solveParabola function):

• input: 3 points from the plane (XZ) (6 numbers)

• output: 3 parabola parameters (a, b, c)

Beside it is not a big part of the tracking algorithm, it is simple (it is just calculus) and
is vectorization friendly.

In fact, the algorithm is not exactly a parabola solver but a cubic solver with an
already fixed parameter. The fixed parameter is the cubic term and is called dRatio. If
dRatio equals 0, we are in the parabolic case, but in this study, dRatio is a constant and
is not equal to zero.

This algorithm needs at least (cf: Listing 8, solveParabola function (no operation
duplication)):

• add/sub: 26
• multiplication: 36
• division: 1
• absolute value: 1
• comparison: 1
• branch: 1

• load: 6
• store: 3

We have an arithmetic intensity pretty high: AI = nb operations
nb loads+stores

= 7.22. With an AI
of 7.22, the problem may be memory bound. But it is still an arithmetic intensive
problem, so we can envision that the I/Os do not slow-down too much the computation.
Vectorization can thereby bring a really interesting point to our project.

This function is called on each element of an array of 3 points (input) and 3 parabolic
parameters (output). The input values are directly extracted from Gaudi in order to have
real data for the test. The input data are stored in one big array and not 3 little arrays
because the Gaudi algorithm already does this part and computes some search windows
in order to decrease the number of parabolas to create. So the big input array has less
elements than the array resulting from the Cartesian product of the 3 initial arrays.

Typically, the big array contains about 30 000 elements. It is pretty good because
it can be entirely stored in the Ł3 cache of the processor. Even if the computation is
straightforward, it is relevant to consider it because the data shall already be in cache
because they are computed just before.
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III.1 Measuring time

In order to have meaningful measures, it is important to have the distribution of the
time spent by the function. All the measurements have been done with the icc primitive
_rdtsc().

When looking at the performance distributions of our function, it is interesting to
notice that the distributions have not just one peak but several. Indeed, with N = 10 593,
we can see a big peak, and a little one further, for example. At this point, it is really
important to understand what happens.

We can see that the performance is almost constant in time, but a bit slower about ev-
ery 10 iterations (1.4% slower), and even slower about every 66 iterations (11.7% slower).
The reason is as simple as inconvenient: when an interruption occurs, it temporary freezes
the execution of our program, but still continues to increment the cycles counter of the
core. Thereby, every time an interruption occurs, even hardware interruptions, we lose
a high number of cycles. These interruptions can be, for example, the task scheduler,
the kernel timer, disk activity, network activity... In fact, the little peaks are spaced by
about 1 ms, which is exactly the kernel timer latency on a common x86-64 system.

The bigger the data is, the longer the execution is, and the more probable an inter-
ruption occurs during the execution of the function. Thereby, the slow-down is more
frequent, so, the second peak is higher. As the interruptions give constant penalties, the
bigger the data is, the more negligible the slow down is. Consequently, the second peak
goes closer to the first.

After a while, the first peak disappears and lets the place for the second which becomes
first. That is exactly what we can see on the previous distributions:

• between 51 093 and 75 717, the second peak becomes bigger than the first one: the
associated interruption occurs more than half time.

• between 92 175 and 112 210, the first peak disappears: the associated interruption
now occurs every time.

Another interesting point is that the bigger the data is, the thicker the peaks are.
So the deviance decreases when the data size increases because the stochastic events
occurring during the measurement and slowing down the function are almost constant,
so their impact is becoming negligible when the data is big: the time spent in the function
is divided by the data size.

At this point, the best way to measure would be to take the most probable value:
the maximum of the distribution. Doing like that allows to just ignore extra peaks and
just keep one: the biggest. However, this can behave badly when two or more peaks are
about the same size. Indeed, in such a situation, the measure may not be predictable
and may randomly oscillate between several values. This can be solved by taking the
maximum of the first peak. The measure is now reproducible and is still meaningful
because it corresponds on the most probable value if the probable slowing down event
does not occur.
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N = 10 593 N = 51 093

N = 15 698 N = 75 717

N = 23 264 N = 92 175

N = 34 477 N = 112 210

Chart 1: Performance distribution of solveParabola for SoA data layout depending on
data size

The main problem here is the time needed to construct a distribution accurate enough
to a maximum. For instance, every plot has been done executing 100 000 times the
function. Just to find accurately the maximum, we do not need 100 000 execution, but
we need far more than only few dozens.
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Chart 2: Performance of solveParabola depending on time (N = 10 593)

Consequently, we chose to take the minimum of all the executions because it is quick
to compute and it also ignores the extra peaks like the previous method, but requires
only few executions. For the rest of the study, we mainly do 32 executions which gives
very accurate results, especially for big enough data. In fact, the minimum converges
pretty quickly and with less than 10 executions, we are able to reach close results. But
the more, the safer.

The minimum gives good results especially because the deviance of the peaks is pretty
low. Moreover, this gives to us reliable and reproducible results. The mean and the me-
dian are not reliable values because they consider the extra peaks which are not dependent
on the studied function but only dependent on the machine and the operating system.
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Chart 3: Isolated Gaussian peak from the performance distribution (N = 10 593)

III.2 Memory Layouts definition

III.2..i Array of Structures (AoS)

The AoS layout is the simplest to implement in C. It is indeed the most natural way. This
memory layout has the advantage to only need one single pointer. It allows to reduce
systematic cache eviction (when try to caching addresses with the same last bits).

1 struct Hit { float x, z; };
2 struct Param { float a, b; };
3 typedef struct {
4 struct Hit hit;
5 struct Param param ;
6 } AOS[N];

Listing 1: example of AoS structure

x0 z0 a0 b0 x1 z1 a1 b1 x2 z2 a2 b2 x3 z3 a3 b3 . . .

Figure 4: AoS memory layout

III.2..ii Structure of Array (SoA)

The SoA layout consists in storing each attribute in a separate array. In fact, it is the
default memory layout in Fortran 77. It helps the vectorization because we can load a

16
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bunch of the same parameter in a contiguous way. It may sometimes decrease the number
of cache misses if the structure is heavy and not entirely used in loops (for example: a
structure with about 100 attributes, but only 3 are used in loop). However, this memory
layout usually increases systematic cache eviction.

1 typedef struct {
2 float x[N], z[N];
3 float a[N], b[N];
4 } SOA;

Listing 2: example of SoA structure

x: x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . . .
z: z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 . . .
a: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 . . .
b: b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 . . .

Figure 5: SoA memory layout

III.2..iii Array of Structures of Arrays (AoSoA)

The AoSoA layout is a hybrid between AoS and SoA: it stores the attributes in little
arrays and packs these arrays in a larger array. With this layout, we can load attributes
by pack, so if the size of the pack is correct, we can vectorize the code exactly as with
the SoA layout as explained in [6], even hiding the SIMD part from the programer with
subtile C++ [2] However, we keep the contiguous memory we have with the AoS. So like
AoS, this memory layout helps reducing systematic cache eviction, but not as well as
AoS. A good size for the little arrays is the size of the SIMD registers (4 in SSE, 8 in
AVX).

1 typedef struct {
2 float x[k], z[k];
3 float a[k], b[k];
4 } AOSOA[N/k];

Listing 3: example of AoSoA structure

x0 x1 x2 z0 z1 z2 a0 a1 a2 b0 b1 b2 x3 x4 x5 z3 z4 z5 a3 a4 a5 b3 b4 b5 . . .

Figure 6: AoSoA memory layout (k = 3)
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III.2..iv Structure of Arrays of Structures (SoAoS)

The idea is to have every structures of the main structure inside different arrays. It does
not really help the compiler to vectorize the code, but may have an impact on the cache
in the same way as SoA in a smaller way. This memory layout has been tried only to
have exhaustive memory layout set for the analysis.

1 struct Hit { float x, z; };
2 struct Param { float a, b; };
3 typedef struct {
4 struct Hit hit[N];
5 struct Param param [N];
6 } SOAOS;

Listing 4: example of SoAoS structure

hit: x0 z0 x1 z1 x2 z2 x3 z3 x4 z4 x5 z5 x6 z6 x7 z7 . . .
param: a0 b0 a1 b1 a2 b2 a3 b3 a4 b4 a5 b5 a6 b6 a7 b7 . . .

Figure 7: SoAoS memory layout

III.3 Memory Layouts comparison

III.3.a Fixed size Results

Scalar Vector Intrinsics
AoS SoAoS SoA AoSoA AoS SoAoS SoA AoSoA SoA
32.59 33.06 30.96 30.74 18.95 20.02 5.67 5.95 4.51

Table 1: Performance of solveParabola in cycles/element (N = 50 000)

Looking at the speed-ups table, we can see that there is almost no difference between
AoS and SoAoS and also between SoA and AoSoA. Even better, for the vectorized version,
we can see: the simpler, the better. We can also see that all the scalar versions are almost
as fast as the others. Thus, it is meaningful to compare our results to the AoS scalar
version of the algorithm.

About the vectorization speedup, we can see a 50% gain for AoS vectorized version
over the scalar one. This is pretty bad as we use AVX with its 8 float-wide registers, but
it is completely normal: the AoS memory layout prevents packed loads and stores. We
need thereby 8 times more of loads and stores which slows down the program. But the
other part of the computation is straightforward and easily vectorizable. This is why we
can observe a speedup despite the high number of memory access.
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Speed-ups Scalar Vector Intrinsics
AoS SoAoS SoA AoSoA AoS SoAoS SoA AoSoA SoA

Scalar

AoS 1 1.01 0.95 0.94 0.58 0.61 0.17 0.18 0.14
SoAoS 0.99 1 0.94 0.93 0.57 0.61 0.17 0.18 0.14
SoA 1.05 1.07 1 0.99 0.61 0.65 0.18 0.19 0.15
AoSoA 1.06 1.08 1.01 1 0.62 0.65 0.18 0.19 0.15

Vector

AoS 1.72 1.74 1.63 1.62 1 1.06 0.30 0.31 0.24
SoAoS 1.63 1.65 1.55 1.54 0.95 1 0.28 0.30 0.23
SoA 5.75 5.83 5.46 5.42 3.34 3.53 1 1.05 0.79
AoSoA 5.48 5.56 5.21 5.17 3.19 3.37 0.95 1 0.76

SIMD SoA 7.23 7.33 6.87 6.82 4.21 4.44 1.26 1.32 1

Table 2: Speed-ups for solveParabola (N = 50 000)

Regarding the SoA version, we can fully benefit from vectorization. However, while
we don’t have penalties with the loads and stores, we can see that we don’t reach the
expected speedup: with the intrinsics version, we have a speedup of 7.2 instead of having
a speedup of 8 (AVX has 8 float-wide registers).

There are two problems: we use too many registers and there are a lot of dependencies
between operations (cf: Chart 13, solveParabola dependency flow chart). Thus, the
computation of one iteration cannot be shorter because of the dependencies, and we
can’t unroll the loop in order to overlap iterations because we run out of registers. In
fact, we use so many registers that we can’t store every intermediate computation in
registers. We need to spill some variables: put some variables in memory instead of in
registers. The compiler chooses to spill the constants “variables”: it reduces the chance
to have a cache miss as they have constant address.

An important point has to be highlighted: there is speedup of 25% for the intrinsics
code over the auto-vectorized code (SoA version). After investigations, we can see 3
reasons:

• Branch management

• Slower division

• Variable Spilling

III.3.a.i Branch Management

The main difference in the branching between the intrinsics code and the auto-vectorized
code is the following.

The intrinsics code does not implement a branch, but just compute the value, and
mask the result assignment. This way to do is really fast if the branch is almost never
taken. And that is precisely the case with the given data.
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On the other hand, the auto-vectorized version implements a real branch. But the
branching in SIMD is quite tricky to do, so there is a quite important overhead doing
this branching mechanism. But this version is faster when the branch is always taken.

Branching Auto-vectorization intrinsics speed-up reciprocal speed-up
no branch 4.41 c/el 4.34 c/el 1.8% −1.8%
never taken 5.64 c/el 4.53 c/el 24.3% −19.5%
always taken 3.40 c/el 4.54 c/el −25.2% 33.6%

Table 3: Branching influence on solveParabola performance (N = 50 000)

III.3.a.ii Division

When I wrote my intrinsics version of the code, I firstly used the div function in order to
compute the reciprocal of det. When analyzing the auto-vectorized code produced by icc,
I saw that icc uses the rcp function (fast computes an approximation of the reciprocal).
I tried to use this function which gave me faster results, but with a greater Root Mean
Square error.

Surprisingly, the auto-vectorized version does not suffer of this great error: icc uses a
trick to compensate the error due to the fast computation. This trick allows to compute
the reciprocal with a good accuracy faster than with the instruction divps:

• divps: 21 cycles latency (1 division unit)

• rcpps: 7 cycles latency (1 division unit)

• corrected rcpps: 17 cycles latency (1 division unit, 1 addition unit, 1 multiplication
unit, 1 Fused Multiply-Add (FMA) unit)

1 __m256 reciprocal_ps ( __m256 x) { // 17 cycles
2 __m256 rcp_approx , one_comp , rcp_approx2 ;
3

4 // Computes the reciprocal approximation (7 cycles )
5 rcp_approx = _mm256_rcp_ps (x);
6

7 // computes the error in order to compensate it (5 cycles )
8 one_comp = _mm256_mul_ps (x, rcp_approx ); // 5c
9 rcp_approx2 = _mm256_add_ps ( rcp_approx , rcp_approx ); // 3c

10 // The addition and the multiplication are computed
11 // in parallel because there is no dependence between them
12

13 // Compensates the error (5 cycles )
14 return _mm256_fnmadd_ps (one_comp , rcp_approx , rcp_approx2 );
15 }

Listing 5: Fast and corrected reciprocal
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However, using this trick slows down the program: this is because it uses some addition
and multiplication units that we need for other computation we can do in parallel. Thus,
using the divps instruction allows to do more computation in parallel of the division
that masks quite well the division latency (not entirely because using only rcpps is still
faster).

III.3.a.iii Variable Spilling

The last difference I could see between the intrinsics version and the auto-vectorized one
is about variable spilling. Variable spilling consists in storing some register variables in
memory to free some registers and then load the variable from memory when needed.

When looking at the assembly (cf: Appendix D, solveParabola loop assembly dumps),
we can see that the auto-vectorized version spills more variables than the intrinsics one
and this mechanism takes time: load and store can be done in 4 cycles, which is slower
than already having the value in a register.

# Variables spilled Auto-Vectorization Intrinsics
Constants 7 5
Variables 8 1

Table 4: Number of spilled variables

However, this points seems to impact the performance by less than 3%.

III.3.b Size Dependency

III.3.b.i Register Size Influence

For small data, we can see a regular saw-tooth pattern. The period of the pattern is 8,
the size of the AVX registers. In fact, it is completely normal: when the size cannot be
divided by 8, you must compute the last elements in another way. The simplest way is
to have another non-vectorized loop after the main and vectorized loop. With this trick,
it is easy to compute the remaining elements.

It is the way chosen by icc to write the remainder loop. Thus, when we add one
element, it takes one more non-vectorized iteration. When we reach 8 non-vectorized
iterations, we can pack those into one vectorized iteration, and the time taken by one
element is thereby decreased.

However, it is not the only way to do it. What I’ve used to do the remainder “loop”
is to copy the vectorized loop body, but instead of storing a whole SIMD register, I store
only the extra values. It is pretty simple to do, thanks to the maskmovps instruction.
With this technique, we don’t have the overhead of a scalar loop, but we do have a much
smaller overhead due to the mask computation. The time does not increase if we add an
element and if there is enough place in the remaining loop iteration, and the time per
element decreases.
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Chart 4: Performance of solveParabola depending on data size
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Chart 5: Performance of solveParabola depending on data size (small data)

The bigger the data is, the lower the tooth are. This is because the overhead of the
remainder loop is amortized by the time the vectorized loop takes, that becomes much
more than the remainder. In other words, the main loop takes a linear time while the
remainder takes almost “constant” time.

III.3.b.ii Cache Influence

We can clearly see the point when the cache is not sufficient anymore. However, we can
also see there is no penalty to have data larger than the L1 or L2 cache size as long as the
data is smaller than L3 cache. This could be explained by the fact that the problem is
compute bound, we do many more operations than load and store. But it is not sufficient
to be masked when data does not fit within the L3 cache.

When the data is too big for L3 cache, we can see a drop in the speed by almost a
factor 2 on the SoA vectorized versions. But on the scalar version, the drop is hardly
noticeable because of the nature of this very problem (IA = 7.2). Thus, cache misses are
hidden by the computation.

III.3.b.iii Power of 2 Alignment

For the SoA versions of the code (both auto-vectorized and intrinsics), we can see a
strange but well known behavior: when the data size is a power of 2 (or a multiple of a
great power of 2), we can see performance drops.

The problem comes from the cache behavior. Indeed, the cache looks at the Least
Significant Bit (LSB) to store the value in the cache. But if two addresses have the same
LSB, there is a conflict and even if there is enough place in the cache, you can’t have the
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Chart 6: Performance of solveParabola depending on data size (power of 2)

2 values in the cache at the same time. Current caches can handle better those cases by
allowing to store for examples 16 values with the same LSB, but the problem remains if
we have a lot of values whose addresses have the same LSB.

When you have multiple arrays aligned with a great power of 2, the addresses will
have the same LSB pretty often. This is called systematic cache eviction. Thus, we will
have cache conflict often enough to have an impact on the performance.

With the SoA memory layout, we have several arrays, and when we allocate them,
the arrays may be following the others in memory. So if the data size is a great power
of 2, all arrays may have the same alignment on that power of 2, and cache conflicts may
occur between all the arrays.

An interesting point is that we don’t have the problem with the AoSoAmemory layout
because this memory layout have only one big array, so the addresses of the attributes
don’t share their LSB. So we can avoid cache conflict using different memory layout.
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III.4 Thread influence

III.4.a Fixed size results

N = 50 000 computation time (c/el) speed-up to ref speed-up to 1 core Per core
speed-up to 1 core

1 core 4 cores 8 threads 1 core best 4 cores 8 threads 4 cores 8 threads

Scalar

AoS 32.59 8.21 7.52 1 4.33 3.97 4.33 99.2% 108.3%
SoAoS 33.06 8.34 7.59 0.99 4.29 3.97 4.36 99.1% 108.9%
SoA 30.96 7.78 7.06 1.05 4.62 3.98 4.38 99.5% 109.6%
AoSoA 30.74 7.74 7.02 1.06 4.65 3.97 4.38 99.2% 109.5%

Vector

AoS 18.95 5.17 4.55 1.72 7.16 3.66 4.17 91.6% 104.2%
SoAoS 20.02 5.09 4.58 1.63 7.12 3.93 4.38 98.4% 109.4%
SoA 5.67 1.48 1.38 5.75 23.66 3.83 4.12 95.7% 102.9%
AoSoA 5.95 1.60 1.42 5.48 22.92 3.72 4.18 93.0% 104.5%

SIMD SoA 4.51 1.21 1.11 7.23 29.28 3.74 4.05 93.5% 101.3%

Table 5: Speed-ups for solveParabola with OpenMP (N = 50 000)

Looking at multi-threaded solveParabola speed-ups, we can see 2 important results.
The first one is the speedup to one core: it is almost always close to 4, especially for
scalar versions. It means that the threaded version is quite good because our machine
has exactly 4 cores. The vectorized versions seem to gain a bit less than the scalar ones,
but this can be easily explained by the higher bandwidth: indeed, these versions are very
fast, and it is mainly limited by the global bandwidth.

The other important result is about the hyper-threading. We can see an increase in
the performance about 10%. It is pretty low compared to some algorithms with which we
can reach a 50% improvement. This can be explain by both the limited bandwidth and
the lack of unused executive units. Indeed, the algorithm uses a lot of execution units,
so the hyper-threaded thread have not enough units to run fast.
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III.4.b Size dependency

Chart 7: Performance of solveParabola depending on data size (OpenMP)
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III.4.b.i OpenMP overhead

The main difference between the OpenMP version and the mono-threaded one is the
presence of a constant overhead due to OpenMP. This overhead is due to the thread
management including their creation, their feeding and their synchronization. As this
overhead is almost constant, it is non-negligible only for “small” data. For big data, the
increase in performance completely masks the overhead.

We can clearly see this at beginning of the previous chart: computation time is very
high for small data and quickly drops and reaches its nominal speed.

However, we can see that we do not really reach the nominal speed for several functions
like Vector SoA: the data does not fit in the L3 cache before. Indeed, the computation
time per element is still decreasing a bit before. We are close to it, but we don’t reach it.

Another relevant point is the following: OpenMP becomes interesting very late and
is really not interesting for small data. Indeed, the OpenMP is faster than the mono-
threaded version only for data bigger than 1000 elements. Before this point, the overhead
is too big.

III.4.b.ii Cache influence and power of 2 alignment

We can clearly see exactly the same behavior about the cache than in the mono-threaded
version. No surprise here.

However, what we can see is that for the fast codes, the speed when data is too big is
almost the same than in the mono-threaded version. That means we reach the memory
bandwidth between the L3 cache and the memory (RAM). Consequently, the slower
versions, even the scalar ones, are almost as fast as the fastest versions outside the L3
cache. Only the AoS versions, scalar and vector, are actually slower.
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III.5 float performance vs double performance

III.5.a Comparing best performances

c/el
Scalar Vector Intrinsics

AoS SoAoS SoA AoSoA AoS SoAoS SoA AoSoA SoA

1 core
float 31.81 33.33 30.52 29.66 14.44 13.61 5.75 6.17 5.33
double 35.80 36.79 34.19 32.80 23.63 20.84 13.75 14.06 11.92
ratio 1.13 1.10 1.12 1.11 1.64 1.53 2.39 2.28 2.24

OpenMP
float 2.32 2.38 2.20 2.18 1.04 0.98 0.43 0.46 0.40
double 2.56 2.67 2.45 2.45 1.73 1.91 1.02 1.08 0.87
ratio 1.11 1.12 1.11 1.12 1.67 1.94 2.40 2.36 2.18

Table 6: Speed-ups float computation vs double computation from best performances
for each one

When we compare the best performance difference between float computation and
double computation, we can see that float is obviously faster than double. In fact,
float is twice faster than double. This is simple: SIMD registers have a fixed size, and
doubles are twice bigger than floats. So, with one single vector instruction, we can
compute only half doubles than floats.

However, if we look closer, we can see that the speed-ups is not 2, but is actually
bigger about 2.4 in some cases. This can be explained by the fact that some instructions
have not the same latency in both cases. For example, the division suffers from this
phenomenon. Indeed, float division with 256-bit wide registers has a latency of 21 while
the double one has a latency of 20.

register size float double
128 bits 13 / 5 20 / 12
256 bits 21 / 13 35 / 25

Table 7: Latencies of the div instruction on Haswell (latency / reciprocal throughput
in cycles)
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III.5.b Comparing at same size

Chart 8: Performance of solveParabola using float and OpenMP

Chart 9: Performance of solveParabola using double and OpenMP
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However, this is not the only effect of using double instead of float. Indeed, on the
performance chart of float computation and double computation, we can clearly see that
with double, cache can only contains half data than in float (about 1 000 000 elements
in float and 500 000 elements in double). The explication is still simple: cache has a
fixed size, but doubles are twice bigger than floats. So we run out of cache twice faster
with double.

This implies a bigger problem that affects performance much more than previously
explained. Indeed, considering we want to compute about 1 000 000 elements with SoA
memory layout and OpenMP. Using floats, we have a performance about 0.41c/el. But
with doubles, the data does not fit within the cache L3, and we reach a performance about
4.5 c/el. So the float speed-up here is not ×2.40 as expected but raises to 4

0.4 = ×11. So
the double computation is here more than four times slower than previously expected.

This is the reason why it is advantageous to do the whole computation with floats
when this is possible. However, this is not always the case. Sometimes, float is not
precise enough to give good results.
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IV Numerical Stability

In scientific computation, we need to manipulate real numbers. However, it is impossible
for a computer to handle reals. So we need to approximate reals with a subset F of reals.
The idea is to approximates numbers by other numbers which can easily be stored and
manipulated by computers [3].

The idea is simple: we have F ⊂ R and #F is finite. We want to store x ∈ R. For
this purpose, we find an approximation x̂ ∈ F such as ∀ŷ ∈ F \ {x̂}, |x̂− ŷ| > |x− x̂|.
For every function f : R → R, we also define its approximation f̂ : F → F such as
∀â ∈ F, f̂(â) = f̂(â).

The problem with such an approximation is that we cannot assure f̂(x̂) = f̂(x). In
other words, we can assure that the approximate function gives the better result possible
for its entry, but only if the entry is fully accurate. Otherwise, we cannot assure the
output accuracy. All our problems come from this phenomenon.

Here comes the floating point representation normalized by IEEE 754. It normalizes
how to store and how to manipulate such numbers. The norm does not fit exactly the
previous rule because {−∞, +∞,NaN} ∈ F but it is not really a problem here.

Considering this, it is important to check the accuracy of the output. Indeed, if we
have a quantity about a meter and we need a precision about a micrometer, we need
an accuracy about 10−6. But if the computation gives an output with an accuracy of
10−3, we have not enough precision and the maximum precision we have is about one
millimeter instead of one micrometer as expected.

Precision Half Single Double Extended Quad
Usual C type float double long double

Precision (bits) 11 24 53 64 113
(digits) 3.3 7.2 15.9 19.3 34.0

Max Exponent (bits) 15 127 1023 16383 16383
(digits) 4.5 38.2 307.9 4931.7 4931.7

Table 8: Floating point precision

The problem is the following: the output accuracy depends on the input accuracy, but
also on the floating point representation. Indeed, the floating point representation can
only handle a finite and fixed precision depending on the floating point representation
used.

It is crucial to distinguish two quantities:

precision: Represents the number of bits in the mantissa of the binary floating point
representation

accuracy: Represents the number of correct bits in the mantissa.

For example, we want to compute f(x) using floats (24 bits precision). So we store x
into a float: we get an approximation x̂ of x. Considering the binary scientific notation,
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value scientific notation precision accuracy
x 1.0101001b · 10b

101b ∞ ∞
x̂ 1.0101b · 10b

101b 5 5
f(x) 1.1110101b · 10b

−11b ∞ ∞
f̂(x̂) 1.1011b · 10b

−11b 5 2

Table 9: Precision vs Accuracy: floating point example (5 bits)

we have the 23 firsts bits (binary digits) of both x and x̂ equal and the 24th bit of x̂ is
rounded (according to the current rounding mode). x̂ has no more bits in the mantissa.
So the precision is the number of bits used to represent x̂, the approximation of x (here
24).

Now, we compute f̂(x̂) an approximation of f(x). We compare f̂(x̂) and f(x): we
count the number of equal bits in the binary scientific notation until the first different
bit. This number is the accuracy of f̂(x̂).

If the chosen floating point representation cannot handle the requested precision plus
the error introduced by the computation, we need to chose a more precise floating point
representation. This can be a problem if we need to go fast because double computation
cannot be optimized as well as float computation. This is even worse with long double
or with other floating point representations because those cannot be vectorized as pro-
cessors are not conceived to vectorize them for now.

This also pose the problem of the reproducibility of the computation as exposed in [7]
and [4] So it is important to check the numerical options of the compiler. Indeed, current
compilers have several modes for numerical optimizations. If we want our program to be
fast, it can be interesting to relax the numerical constraint, sacrificing the reproducibility
and letting the compiler to do numerically unsafe transformations like reorganize the
operations order. For the whole project, the icc option -fp-model fast.

This is important to understand how the accuracy of the output behaves depending
on the operations done during the computation and on the floating point representation
chosen. The idea is to run a function with several floating point precisions and compare
results with the more precise floating point representation used. To do so, I used an
arbitrary precision library: MPFR. It implements a IEEE 754 compliant floating point
arithmetic except the exception support and can be expected to have the same behavior
than common floating point representation implemented in processors. Using MPFR, it
is pretty easy to change the precision of the floating point representation and it is easy
to compute the same function with different precision.

In what follows, results are compared with the results obtained with a 1024 bits precise
floating point representation and accuracy is computed with the same extremely precise
floating point representation. It is computed with the following formula:

accuracy = −log2

∣∣∣∣∣ x̂− x

x

∣∣∣∣∣ where x is the precise value
x̂ is the approximation
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With this formula, it is possible to get a negative accuracy or greater than the precision.
Getting an accuracy greater than the precision has no meaning. However, a negative
accuracy can be meaningful. Indeed, the negative part can be interpreted like the error
on the exponent.
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IV.1 Theoretical algorithms

IV.1..i Multiplicative Reduction

1 mpreal multiply ( mpreal * a, int n) {
2 int i;
3 mpreal s = 0;
4 for (i = 0; i < n; ++i) {
5 s *= a[i];
6 }
7 return s;
8 }

Listing 6: Multiplicative reduction

When analyzing the accuracy of a really simple algorithm like a multiplicative re-
duction (cf: Listing 6, Multiplicative reduction), it appears naturally that the accuracy
decreases when the number of multiplication increases. In fact, we can see that, for a
multiplicative reduction, the accuracy decreases logarithmically on the number of multi-
plication (cf: Chart 10, Floating point accuracy of a multiplicative reduction).

Chart 10: Floating point accuracy of a multiplicative reduction

Another interesting point is that the number of incorrect bits in the mantissa (ie: precision−
accuracy) is independent of the precision of the floating point representation used. This
result will be more visible on a real algorithm (cf: IV.2, Actual algorithm). It is surprising
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at the beginning, but when you think about it, it is quite logical. Indeed, when doing
a floating operation according to IEEE 754, for example a multiplication, every bits in
the mantissa is exact, except the last one which is rounded. So the error is propagating
from the last bit in the mantissa. The error increases when doing multiple operations
because for next operations, the input is not exact. During this process, the first bits in
the mantissa are not involved, so it does not depends on the number of bits in the whole
mantissa (except when the error reaches the first bit).

IV.1..ii Additive Reduction

However, the main source of numerical instability is not rounding errors in multiplication,
but loss of significance with addition and subtraction. Loss of significance occurs when
an addition or a subtraction cannot be computed without losing accurate bits. There
two cases of Loss of significance:

Absorption: When adding (or subtracting) a big number and a tiny one. Here is an
example with 5 digits numbers: 1234.5 + 0.12345 → 1234.6 instead of 1234.62345.
Absorption seems pretty inoffensive, but repeated, it can bring much bigger error.

Cancellation: When subtracting two near equal numbers. Here is an example with 5
digits numbers: 1234.6−1234.5→ 0.1. The result here is only accurate on the first
digit instead of 5 digits.
If the number 1234.6 is an approximation of 1234.5 + 0.12345 we get the following
result: ((1234.5+0.12345)−1234.5)→ 0.1 instead of 0.12345. When a cancellation
is important (a few bits remaining), it is called catastrophic cancellation.

However, it is possible to reduce the effect of Loss of significance with appropriate
algorithms. To demonstrate this point, I analyzed the accuracy of several summation
algorithms:

• The naive summation algorithm

• The naive summation algorithm with data sorted in descending order

• An accurate summation algorithm (always add the two smaller elements)
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input : A (Array to sum)
output: Sum of A
s← 0
for x ∈ A do

s← s + x
end
return s

Algorithm 1: Naive summation (C implementation in appendix)

input : A (Array to sum)
output: Sum of A
if A is empty then

return 0
end
while A has more than one element do

x← min(A)
remove x from A
y ← min(A)
remove y from A
put (x + y) into A

end
return the only element of A

Algorithm 2: Accurate summation (C implementation in appendix)
When executing these algorithms on 2048 random shuffled elements between 1 and

10, we can see that the accurate summation algorithm gives a full accuracy (accu-
racy greater than precision). But the naive algorithm gives not fully accurate results:
precision − accuracy ∈ [0.8, 2.5]. When data are sorted in descending order, the naive
algorithm is even worse: precision − accuracy ∈ [2.3, 3.4].

precision− accuracy 32 bits 64 bits 128 bits 256 bits
Naive summation 0.85 1.46 1.99 2.42

Anti-sorted naive summation 2.37 2.35 2.89 3.39
Accurate summation -1.46 -1.38 -1.66 -1.48

Table 10: Accuracy dependency on algorithm used (N = 2048)
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IV.2 Actual algorithm

fitParabola (cf: Listing 15, fitParabola function) consists of generating 3 by 3 sym-
metric matrix with some simple algebraic expressions and then solving the associated
system with the Cholesky decomposition upto three times (cf: Listing 16, Cholesky
solver). The end of the algorithm is just computing some quantities about the found
solution involving for example sums and maximums.

Chart 11: fitParabola variables accuracy (max error)

When looking the variables accuracy, something is clear: the number of incorrect bits
in the mantissa (precision − accuracy) seems to be constant. As explained before, it
is due to the fact that the error propagates from the last and least significant bits in
the mantissa. Consequently, if you need 3 accurate bits more on the result, you need
to do the computation with a floating point representation more precise by 3 bits too.
However, this is valid only if the accuracy is positive. Indeed, if is accuracy is negative,
our variables have not the right exponent and their values are completely meaningless.

Besides that, a lot of variables seems to have the expression precision − accuracy
constant even with negative accuracy. Only two variables have this expression dropping
for small precision (chi2Track and maxChi2). This behavior could be explained by full
absorption and full cancellation ((1 + 1e100)− 1e100→ 0 instead of 1). With more time,
it would be possible to analyze this hypothesis, but that was not possible.

About the algorithm on its own, we seem to have a pretty bad worst accuracy (ac-
curacy in the worst empirical case). Indeed, most variables have a number of incorrect
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Chart 12: fitParabola algorithms accuracy (max error, average on variables accuracy)

bits about 21 which is quite bad, especially in float: in this case, we have only 3 correct
bits, which means only one single decimal digit correct. The worst case is the variable
distanceSum which have a very high number of incorrect bits (between 45 and 50). This
means that the float computation of this variable is so erroneous that the value is mean-
ingless. With double computation, the accuracy is at least positive, but is about 4 bits:
a little better than one correct digit. However, it is important to remember that is the
maximum error and the average case is much more accurate.

As we saw earlier, it is sometimes possible to increase accuracy with other algorithms.
So I tried to use another solving algorithm because that is the less accurate part of
the algorithm (solving matrices is always a problem). When solving with the explicit
equations of the Cramer’s rule (cf: Listing 17, Cramer’s rule solver) instead of using the
Cholesky decomposition, it seems to have the same accuracy which is surprising. But
this is possibly due to the origin of the error. Indeed, when solving a matrix system,
it is important to know the condition number of the matrix and how it influences the
accuracy.

The condition number is the ratio between the greatest eigenvalue the smallest one.
So the condition number of a matrix represents how the matrix stretches dimensions
when multiply a vector. By solving a matrix system, the error on the result is typically
the error on the input multiplied by the condition number of the matrix. In other words:
accuracy(output) = accuracy(input)− log2(condition_number). Which means that the
main source of accuracy loss is the conditioning of matrices and not the algorithm used.
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Conclusion

Throughout this project, we have been able to better understand the way optimizing
compilers behave depending on the shape of the code and how change this shape in order
to let them taking full advantage of the hardware and fully optimizing the code, especially
vectorizing it.

First of all, we have seen that the time measurement is not simple and deserves its
own study. The small conclusion for this part is the following: in order to have reliable
measures, taking the minimum time of several executions is a good way to do it. It is
quite fast and reliable enough.

Then, the most important factor for optimizing the code is doing high level transfor-
mations. Indeed, that is precisely what a compiler is not authorized to do, so this task
remains to the human. The fact is, when suitable high level transformations have been
done, compilers are able to optimize the code very well without so much effort (mostly
add compiler directives like pragmas and restrict keyword).

Among these transformations, the most important one is about the memory layout.
Indeed, it is mainly the change of the memory layout which enables or not the vectoriza-
tion by the compiler. It is easy for them to vectorize SoA or AoSoA and the results are
near from the manual SIMD version. But AoSoA is quite difficult to implement, so the
best memory layout to use in general might be SoA. Besides this, AoSoA seems to have
a better cache behavior avoiding systematic cache eviction.

OpenMP does great about the performance speed-up. Indeed, the code actually needs
only a few changes and it gives a very high efficiency: speed-ups are about the number
of cores used by OpenMP. However, the OpenMP overhead can be problematic if data is
too small.

Then, using floats instead of doubles is really interesting concerning the perfor-
mances. Indeed, the performance ratio is greater than 2, and it is even more when
double data is too big to fits within the cache, but float data is small enough as it is
twice smaller.

However, using floats can bring numerical stability problems. Indeed, by its nature
itself, the floating point computation is not infinitely precise. And the accuracy of the
result strongly depends on the floating point precision. In some cases, floats are just
not suitable for the required calculation. In these cases, it is better to use doubles.

All these points would be studied in much more details and could have their own
study.
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A Haswell architecture used

The Haswell machine used embeds the following CPU:

• Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz

The code for this machine have been compiled for the AVX2 with FMA instructions set.

Cache level Size Latency Associativeness
L1 32 KB (per core) 4 cycles 8-way
L2 256 KB (per core) 11 cycles 8-way
L3 8192 KB (shared) 36 cycles 16-way

Table 11: Haswell cache properties

Port 0 1 2 3 4 5 6 7

int ALU ALU ALU ALU
shift LEA shift shift

SIMD int mul ALU ALU

SIMD float FMA FMA
divide divide

SIMD misc logic logic logicshift

Misc branch load load store data branch storestore store

Table 12: Haswell execution units

Operation Execution unit Latency Reciprocal Throughput
(per unit)

FMA/mul FMA 5 1
add/sub add 3 1

div divide 21 13
rcp (fast reciprocal) divide 7 1
logical operations logic 1 1

load load > 4 1
store store > 4 1

Table 13: Haswell floating point operations characteristics
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B solveParabola codes

1 void solve ( float zRef , float dRatio ,
2 float h1x , float h1z ,
3 float h2x , float h2z ,
4 float h3x , float h3z ,
5 float * restrict a, float * restrict b, float * restrict c
6 ) {
7 float z1 = h1z - zRef ;
8 float z2 = h2z - zRef ;
9 float z3 = h3z - zRef ;

10 float x1 = h1x;
11 float x2 = h2x;
12 float x3 = h3x;
13
14 float corrZ1 = ( float ) 1.0 + dRatio *z1;
15 float corrZ2 = ( float ) 1.0 + dRatio *z2;
16 float corrZ3 = ( float ) 1.0 + dRatio *z3;
17
18 float det = z1*z1* corrZ1 *z2 + z1*z3*z3* corrZ3 + z2*z2* corrZ2 *z3 -
19 z2*z3*z3* corrZ3 - z1*z2*z2* corrZ2 - z3*z1*z1* corrZ1 ;
20
21 if ( fabsf (det) < ( float ) 1e -8) {
22 *a = ( float ) 0.0;
23 *b = ( float ) 0.0;
24 *c = ( float ) 0.0;
25 return ;
26 }
27
28 float detA = (x1 )* z2 + z1 *( x3) + (x2 )* z3 - z2 *( x3) - z1 *( x2) - z3 *( x1 );
29
30 float detB = z1*z1* corrZ1 *x2 + x1*z3*z3* corrZ3 + z2*z2* corrZ2 *x3 -
31 x2*z3*z3* corrZ3 - x1*z2*z2* corrZ2 - x3*z1*z1* corrZ1 ;
32
33 float detC = z1*z1* corrZ1 *z2*x3 + z1*z3*z3* corrZ3 *x2 + z2*z2* corrZ2 *z3*x1 -
34 z2*z3*z3* corrZ3 *x1 - z1*z2*z2* corrZ2 *x3 - z3*z1*z1* corrZ1 *x2;
35
36 *a = detA / det;
37 *b = detB / det;
38 *c = detC / det;
39 }

Listing 7: solveParabola function
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B.1 No operation duplication

1 void solve ( float zRef , float dRatio ,
2 float h1x , float h1z ,
3 float h2x , float h2z ,
4 float h3x , float h3z ,
5 float * restrict a, float * restrict b, float * restrict c
6 ) {
7 float z1 = h1z - zRef ; // uses 1 add unit
8 float z2 = h2z - zRef ;
9 float z3 = h3z - zRef ;

10 float x1 = h1x; // no unit used (it is just an alias )
11 float x2 = h2x;
12 float x3 = h3x;
13
14 float corrZ1 = ( float ) 1.0 + dRatio *z1; // uses 1 FMA unit
15 float corrZ2 = ( float ) 1.0 + dRatio *z2;
16 float corrZ3 = ( float ) 1.0 + dRatio *z3;
17
18 float z1z1corrZ1 = z1*z1* corrZ1 ; // uses 2 FMA units
19 float z2z2corrZ2 = z2*z2* corrZ2 ;
20 float z3z3corrZ3 = z3*z3* corrZ3 ;
21
22 float det = z1z1corrZ1 *z2 + z1* z3z3corrZ3 + z2z2corrZ2 *z3 -
23 z2* z3z3corrZ3 - z1* z2z2corrZ2 - z3* z1z1corrZ1 ;
24
25 if ( fabsf (det) < ( float ) 1e -8) {
26 *a = ( float ) 0.0;
27 *b = ( float ) 0.0;
28 *c = ( float ) 0.0;
29 return ;
30 }
31
32 float x1z2 = x1*z2;
33 float x1z3 = x1*z3;
34 float x2z1 = x2*z1;
35 float x2z3 = x2*z3;
36 float x3z1 = x3*z1;
37 float x3z2 = x3*z2;
38
39 float detA = x1z2 + x3z1 + x2z3 - x3z2 - x2z1 - x1z3 ;
40
41 float detB = z1z1corrZ1 *x2 + x1* z3z3corrZ3 + z2z2corrZ2 *x3 -
42 x2* z3z3corrZ3 - x1* z2z2corrZ2 - x3* z1z1corrZ1 ;
43
44 float detC = z1z1corrZ1 * x3z2 + z3z3corrZ3 * x2z1 + z2z2corrZ2 * x1z3 -
45 z3z3corrZ3 * x1z2 - z2z2corrZ2 * x3z1 - z1z1corrZ1 * x2z3 ;
46
47 float oneOverDet = ( float ) 1.0 / det;
48
49 *a = detA * oneOverDet ;
50 *b = detB * oneOverDet ;
51 *c = detC * oneOverDet ;
52 }

Listing 8: solveParabola function (no operation duplication)
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B.2 Intrinsics version

1 void solveIntrinsics ( float zRef , float dRatio ,
2 __m256 x1 , __m256 z1 ,
3 __m256 x2 , __m256 z2 ,
4 __m256 x3 , __m256 z3 ,
5 __m256 *a, __m256 *b, __m256 *c
6 ) {
7 // Constants
8 __m256 zRefV = _mm256_set1_ps (( float ) zRef );
9 __m256 dRatioV = _mm256_set1_ps (( float ) dRatio );

10 __m256 oneV = _mm256_set1_ps (( float ) 1.0);
11
12 // Input
13 __m256 z1V = _mm256_sub_ps (z1 , zRefV );
14 __m256 z2V = _mm256_sub_ps (z2 , zRefV );
15 __m256 z3V = _mm256_sub_ps (z3 , zRefV );
16 __m256 x1V = x1;
17 __m256 x2V = x2;
18 __m256 x3V = x3;
19
20 // Intermediate computation
21 __m256 corrZ1 = _mm256_fmadd_ps (dRatioV , z1V , oneV );
22 __m256 corrZ2 = _mm256_fmadd_ps (dRatioV , z2V , oneV );
23 __m256 corrZ3 = _mm256_fmadd_ps (dRatioV , z3V , oneV );
24
25 __m256 z1_2 = _mm256_mul_ps (z1V , z1V );
26 __m256 z2_2 = _mm256_mul_ps (z2V , z2V );
27 __m256 z3_2 = _mm256_mul_ps (z3V , z3V );
28
29 __m256 z1z1corrZ1 = _mm256_mul_ps (z1_2 , corrZ1 );
30 __m256 z2z2corrZ2 = _mm256_mul_ps (z2_2 , corrZ2 );
31 __m256 z3z3corrZ3 = _mm256_mul_ps (z3_2 , corrZ3 );
32
33 // det
34 __m256 det = _mm256_add_ps ( _mm256_add_ps (
35 _mm256_fmadd_ps (z2V , z1z1corrZ1 , _mm256_mul_ps (z1V , z3z3corrZ3 )),
36 _mm256_fmsub_ps (z3V , z2z2corrZ2 , _mm256_mul_ps (z2V , z3z3corrZ3 ))) ,
37 _mm256_fnmsub_ps (z1V , z2z2corrZ2 , _mm256_mul_ps (z3V , z1z1corrZ1 ))
38 );
39 __m256 oneOverDet = _mm256_div_ps (oneV , det );
40
41 // detC
42 __m256 detC = _mm256_add_ps ( _mm256_add_ps (
43 _mm256_fmadd_ps (
44 _mm256_mul_ps (x3V , z2V), z1z1corrZ1 ,
45 _mm256_mul_ps ( _mm256_mul_ps (x2V , z1V), z3z3corrZ3 )),
46 _mm256_fmsub_ps (
47 _mm256_mul_ps (x1V , z3V), z2z2corrZ2 ,
48 _mm256_mul_ps ( _mm256_mul_ps (x1V , z2V), z3z3corrZ3 ))) ,
49 _mm256_fnmsub_ps (
50 _mm256_mul_ps (x3V , z1V), z2z2corrZ2 ,
51 _mm256_mul_ps ( _mm256_mul_ps (x2V , z3V), z1z1corrZ1 ))
52 );
53
54 // detB
55 __m256 detB = _mm256_add_ps ( _mm256_add_ps (
56 _mm256_fmadd_ps (x2V , z1z1corrZ1 , _mm256_mul_ps (x1V , z3z3corrZ3 )),
57 _mm256_fmsub_ps (x3V , z2z2corrZ2 , _mm256_mul_ps (x2V , z3z3corrZ3 ))) ,
58 _mm256_fnmsub_ps (x1V , z2z2corrZ2 , _mm256_mul_ps (x3V , z1z1corrZ1 ))
59 );
60
61 // detA
62 __m256 detA = _mm256_add_ps ( _mm256_add_ps (
63 _mm256_fmadd_ps (x1V , z2V , _mm256_mul_ps (x3V , z1V )),
64 _mm256_fmsub_ps (x2V , z3V , _mm256_mul_ps (x3V , z2V ))) ,
65 _mm256_fnmsub_ps (x2V , z1V , _mm256_mul_ps (x1V , z3V ))
66 );
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67 __m256 aV , bV , cV;
68 aV = _mm256_mul_ps (detA , oneOverDet );
69 bV = _mm256_mul_ps (detB , oneOverDet );
70 cV = _mm256_mul_ps (detC , oneOverDet );
71
72 // computes abs(det), then computes condition
73 __m256 sign_mask = _mm256_set1_ps (-0.0); // -0.0 = 1 << 31
74 __m256 abs = _mm256_andnot_ps ( sign_mask , det );
75 __m256 cond = _mm256_cmp_ps (abs , _mm256_set1_ps (( float ) 1e -8), _CMP_LT_OS );
76
77 aV = _mm256_andnot_ps (cond , aV );
78 bV = _mm256_andnot_ps (cond , bV );
79 cV = _mm256_andnot_ps (cond , cV );
80
81 *a = aV;
82 *b = bV;
83 *c = cV;
84
85 }

Listing 9: solveParabola function (intrinsics version)

C solveParabola dependency flow chart

Chart 13: solveParabola dependency flow chart
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D solveParabola loop assembly dumps

D.1 Scalar SoA

404 fec: c4 41 7a 10 1c 96 vmovss (%r14 ,%rdx ,4) ,% xmm11
404 ff2: c4 41 7a 10 14 94 vmovss (%r12 ,%rdx ,4) ,% xmm10
404 ff8: c5 7a 10 44 24 f8 vmovss -0x8 (% rsp ),% xmm8
404 ffe: c4 41 7a 10 0c 90 vmovss (%r8 ,%rdx ,4) ,% xmm9
405004: c4 41 22 5c d8 vsubss %xmm8 ,% xmm11 ,% xmm11
405009: c4 41 2a 5c d0 vsubss %xmm8 ,% xmm10 ,% xmm10
40500 e: c4 41 32 5c c8 vsubss %xmm8 ,% xmm9 ,% xmm9
405013: c4 c1 22 59 fb vmulss %xmm11 ,% xmm11 ,% xmm7
405018: c4 c1 2a 59 f2 vmulss %xmm10 ,% xmm10 ,% xmm6
40501 d: c4 c1 32 59 d9 vmulss %xmm9 ,% xmm9 ,% xmm3
405022: c5 fa 10 05 5a 8a 00 vmovss 0 x8a5a (% rip ),% xmm0
40502 a: c5 f8 28 e8 vmovaps %xmm0 ,% xmm5
40502 e: c5 f8 28 e0 vmovaps %xmm0 ,% xmm4
405032: c4 c2 71 b9 eb vfmadd231ss %xmm11 ,% xmm1 ,% xmm5
405037: c4 e2 29 b9 e1 vfmadd231ss %xmm1 ,% xmm10 ,% xmm4
40503 c: c4 e2 31 b9 c1 vfmadd231ss %xmm1 ,% xmm9 ,% xmm0
405041: c4 41 7a 10 24 97 vmovss (%r15 ,%rdx ,4) ,% xmm12
405047: c4 41 7a 10 6c 95 00 vmovss 0x0 (%r13 ,%rdx ,4) ,% xmm13
40504 e: c4 41 7a 10 34 91 vmovss (%r9 ,%rdx ,4) ,% xmm14
405054: c5 42 59 c5 vmulss %xmm5 ,% xmm7 ,% xmm8
405058: c5 ca 59 fc vmulss %xmm4 ,% xmm6 ,% xmm7
40505 c: c5 e2 59 e8 vmulss %xmm0 ,% xmm3 ,% xmm5
405060: c5 40 57 3d 08 8a 00 vxorps 0 x8a08 (% rip ),%xmm7 ,% xmm15
405068: c5 ba 5c f5 vsubss %xmm5 ,% xmm8 ,% xmm6
40506 c: c4 c1 52 58 df vaddss %xmm15 ,% xmm5 ,% xmm3
405071: c5 b8 57 15 f7 89 00 vxorps 0 x89f7 (% rip ),%xmm8 ,% xmm2
405079: c5 a2 59 c3 vmulss %xmm3 ,% xmm11 ,% xmm0
40507 d: c5 c2 58 e2 vaddss %xmm2 ,% xmm7 ,% xmm4
405081: c4 c2 59 b9 c1 vfmadd231ss %xmm9 ,% xmm4 ,% xmm0
405086: c5 fa 10 15 f2 89 00 vmovss 0 x89f2 (% rip ),% xmm2
40508 e: c4 c2 49 b9 c2 vfmadd231ss %xmm10 ,% xmm6 ,% xmm0
405093: c5 78 54 3d c5 89 00 vandps 0 x89c5 (% rip ),%xmm0 ,% xmm15
40509 b: c4 c1 78 2f d7 vcomiss %xmm15 ,% xmm2
4050 a0: 76 0f jbe 4050 b1 <solveParabolaSOA +0 x121 >
4050 a2: 89 04 96 mov %eax ,(% rsi ,%rdx ,4)
4050 a5: 89 44 95 00 mov %eax ,0 x0 (%rbp ,%rdx ,4)
4050 a9: 89 04 93 mov %eax ,(% rbx ,%rdx ,4)
4050 ac: e9 83 00 00 00 jmpq 405134 <solveParabolaSOA +0 x1a4 >
4050 b1: c5 7a 10 3d cb 89 00 vmovss 0 x89cb (% rip ),% xmm15
4050 b9: c4 c1 2a 5c d1 vsubss %xmm9 ,% xmm10 ,% xmm2
4050 be: c5 82 5e c0 vdivss %xmm0 ,% xmm15 ,% xmm0
4050 c2: c5 8a 59 e4 vmulss %xmm4 ,% xmm14 ,% xmm4
4050 c6: c4 41 22 5c f9 vsubss %xmm9 ,% xmm11 ,% xmm15
4050 cb: c4 c2 61 b9 e4 vfmadd231ss %xmm12 ,% xmm3 ,% xmm4
4050 d0: c4 41 02 59 fd vmulss %xmm13 ,% xmm15 ,% xmm15
4050 d5: c5 fa 59 de vmulss %xmm6 ,% xmm0 ,% xmm3
4050 d9: c4 c2 19 ab d7 vfmsub213ss %xmm15 ,% xmm12 ,% xmm2
4050 de: c4 41 22 5c fa vsubss %xmm10 ,% xmm11 ,% xmm15
4050 e3: c4 c1 62 59 f5 vmulss %xmm13 ,% xmm3 ,% xmm6
4050 e8: c4 62 09 a9 fa vfmadd213ss %xmm2 ,% xmm14 ,% xmm15
4050 ed: c4 e2 79 a9 e6 vfmadd213ss %xmm6 ,% xmm0 ,% xmm4
4050 f2: c5 fa 11 64 95 00 vmovss %xmm4 ,0 x0 (%rbp ,%rdx ,4)
4050 f8: c5 82 59 d0 vmulss %xmm0 ,% xmm15 ,% xmm2
4050 fc: c5 fa 11 14 96 vmovss %xmm2 ,(% rsi ,%rdx ,4)
405101: c5 a2 59 d7 vmulss %xmm7 ,% xmm11 ,% xmm2
405105: c5 22 59 dd vmulss %xmm5 ,% xmm11 ,% xmm11
405109: c5 aa 59 ed vmulss %xmm5 ,% xmm10 ,% xmm5
40510 d: c4 c2 39 bb d2 vfmsub231ss %xmm10 ,% xmm8 ,% xmm2
405112: c4 42 39 bd d9 vfnmadd231ss %xmm9 ,% xmm8 ,% xmm11
405117: c4 62 41 ab cd vfmsub213ss %xmm5 ,% xmm7 ,% xmm9
40511 c: c4 c1 32 59 fc vmulss %xmm12 ,% xmm9 ,% xmm7
405121: c4 62 11 a9 df vfmadd213ss %xmm7 ,% xmm13 ,% xmm11
405126: c4 c2 09 a9 d3 vfmadd213ss %xmm11 ,% xmm14 ,% xmm2
40512 b: c5 6a 59 c0 vmulss %xmm0 ,% xmm2 ,% xmm8
40512 f: c5 7a 11 04 93 vmovss %xmm8 ,(% rbx ,%rdx ,4)
405134: 48 ff c2 inc %rdx
405137: 48 3b d7 cmp %rdi ,% rdx
40513 a: 0f 8c ac fe ff ff jl 404 fec <solveParabolaSOA +0x5c >

Listing 10: solveParabola loop assembly (scalar SoA)
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D.2 Vector SoA

406838: c4 c1 7c 10 04 86 vmovups (%r14 ,%rax ,4) ,% ymm0
40683 e: c4 41 7c 10 24 87 vmovups (%r15 ,%rax ,4) ,% ymm12
406844: c5 fc 10 0c 83 vmovups (%rbx ,%rax ,4) ,% ymm1
406849: c5 fc 10 5c 24 20 vmovups 0x20 (% rsp ),% ymm3
40684 f: c5 7c 10 05 09 98 00 vmovups 0 x9809 (% rip ),% ymm8
406857: c5 7c 10 0c 24 vmovups (% rsp ),% ymm9
40685 c: c5 7c 11 a4 24 e0 00 vmovups %ymm12 ,0 xe0 (% rsp)
406865: c5 7c 10 1c 86 vmovups (%rsi ,%rax ,4) ,% ymm11
40686 a: c4 c1 7c 10 14 80 vmovups (%r8 ,%rax ,4) ,% ymm2
406870: c5 7c 10 2c 81 vmovups (%rcx ,%rax ,4) ,% ymm13
406875: c5 7c 5c d3 vsubps %ymm3 ,% ymm0 ,% ymm10
406879: c5 74 5c e3 vsubps %ymm3 ,% ymm1 ,% ymm12
40687 d: c5 ec 5c cb vsubps %ymm3 ,% ymm2 ,% ymm1
406881: c4 c1 2c 59 e2 vmulps %ymm10 ,% ymm10 ,% ymm4
406886: c4 c1 1c 59 f4 vmulps %ymm12 ,% ymm12 ,% ymm6
40688 b: c5 7c 11 9c 24 20 01 vmovups %ymm11 ,0 x120 (% rsp)
406894: c5 74 59 f1 vmulps %ymm1 ,% ymm1 ,% ymm14
406898: c5 7c 11 94 24 00 01 vmovups %ymm10 ,0 x100 (% rsp)
4068 a1: c4 c1 7c 28 e8 vmovaps %ymm8 ,% ymm5
4068 a6: c4 c1 7c 28 f8 vmovaps %ymm8 ,% ymm7
4068 ab: c4 c2 35 b8 ea vfmadd231ps %ymm10 ,% ymm9 ,% ymm5
4068 b0: c4 c2 35 b8 fc vfmadd231ps %ymm12 ,% ymm9 ,% ymm7
4068 b5: c4 62 35 b8 c1 vfmadd231ps %ymm1 ,% ymm9 ,% ymm8
4068 ba: c5 5c 59 dd vmulps %ymm5 ,% ymm4 ,% ymm11
4068 be: c5 cc 59 e7 vmulps %ymm7 ,% ymm6 ,% ymm4
4068 c2: c4 41 0c 59 f8 vmulps %ymm8 ,% ymm14 ,% ymm15
4068 c7: c5 f4 59 c4 vmulps %ymm4 ,% ymm1 ,% ymm0
4068 cb: c5 fc 11 a4 24 40 01 vmovups %ymm4 ,0 x140 (% rsp)
4068 d4: c5 7c 11 bc 24 c0 00 vmovups %ymm15 ,0 xc0 (% rsp)
4068 dd: c4 c2 25 b8 c4 vfmadd231ps %ymm12 ,% ymm11 ,% ymm0
4068 e2: c4 c2 05 b8 c2 vfmadd231ps %ymm10 ,% ymm15 ,% ymm0
4068 e7: c4 c2 05 bc c4 vfnmadd231ps %ymm12 ,% ymm15 ,% ymm0
4068 ec: c4 c2 5d bc c2 vfnmadd231ps %ymm10 ,% ymm4 ,% ymm0
4068 f1: c4 62 7d 18 15 ce 98 vbroadcastss 0 x98ce (% rip ),% ymm10
4068 fa: c4 e2 25 bc c1 vfnmadd231ps %ymm1 ,% ymm11 ,% ymm0
4068 ff: c4 c1 7c 54 d2 vandps %ymm10 ,% ymm0 ,% ymm2
406904: c5 ec c2 3d 73 97 00 vcmpltps 0 x9773 (% rip ),%ymm2 ,% ymm7
40690 d: c5 44 57 15 8b 97 00 vxorps 0 x978b (% rip ),%ymm7 ,% ymm10
406915: c4 41 3d 76 (bad)
406919: c0 c4 c1 rol $0xc1 ,% ah
40691 c: 44 55 rex.R push %rbp
40691 e: 1c 81 sbb $0x81 ,% al
406920: c4 c1 44 55 2c 84 vandnps (%r12 ,%rax ,4) ,% ymm7 ,% ymm5
406926: c4 c1 44 55 74 85 00 vandnps 0x0 (%r13 ,%rax ,4) ,% ymm7 ,% ymm6
40692 d: c5 fc 11 9c 24 a0 00 vmovups %ymm3 ,0 xa0 (% rsp)
406936: c5 fc 11 6c 24 60 vmovups %ymm5 ,0 x60 (% rsp)
40693 c: c5 fc 11 b4 24 80 00 vmovups %ymm6 ,0 x80 (% rsp)
406945: c4 42 7d 17 d0 vptest %ymm8 ,% ymm10
40694 a: 0f 84 af 02 00 00 je 406 bff
406950: c5 7c 53 f0 vrcpps %ymm0 ,% ymm14
406954: c5 fc 10 bc 24 20 01 vmovups 0 x120 (% rsp ),% ymm7
40695 d: c5 fc 10 ac 24 e0 00 vmovups 0xe0 (% rsp ),% ymm5
406966: c5 fc 28 d9 vmovaps %ymm1 ,% ymm3
40696 a: c5 fc 10 8c 24 00 01 vmovups 0 x100 (% rsp ),% ymm1
406973: c5 0c 59 c8 vmulps %ymm0 ,% ymm14 ,% ymm9
406977: c4 c1 1c 59 c5 vmulps %ymm13 ,% ymm12 ,% ymm0
40697 c: c5 9c 59 f7 vmulps %ymm7 ,% ymm12 ,% ymm6
406980: c5 64 59 c5 vmulps %ymm5 ,% ymm3 ,% ymm8
406984: c5 f4 59 d7 vmulps %ymm7 ,% ymm1 ,% ymm2
406988: c5 f4 59 e5 vmulps %ymm5 ,% ymm1 ,% ymm4
40698 c: c4 e2 1d ba c7 vfmsub231ps %ymm7 ,% ymm12 ,% ymm0
406991: c4 41 0c 58 fe vaddps %ymm14 ,% ymm14 ,% ymm15
406996: c4 c2 65 ba d5 vfmsub231ps %ymm13 ,% ymm3 ,% ymm2
40699 b: c4 62 15 aa e4 vfmsub213ps %ymm4 ,% ymm13 ,% ymm12
4069 a0: c4 42 0d ac cf vfnmadd213ps %ymm15 ,% ymm14 ,% ymm9
4069 a5: c5 14 5c f5 vsubps %ymm5 ,% ymm13 ,% ymm14
4069 a9: c5 44 5c fd vsubps %ymm5 ,% ymm7 ,% ymm15
4069 ad: c4 62 65 a8 f0 vfmadd213ps %ymm0 ,% ymm3 ,% ymm14
4069 b2: c5 fc 10 84 24 a0 00 vmovups 0xa0 (% rsp ),% ymm0
4069 bb: c4 42 75 aa fe vfmsub213ps %ymm14 ,% ymm1 ,% ymm15
4069 c0: c4 c1 04 59 c9 vmulps %ymm9 ,% ymm15 ,% ymm1
4069 c5: c4 63 7d 4a f1 a0 vblendvps %ymm10 ,% ymm1 ,% ymm0 ,% ymm14
4069 cb: c5 fc 10 8c 24 40 01 vmovups 0 x140 (% rsp ),% ymm1
4069 d4: c5 fc 10 84 24 c0 00 vmovups 0xc0 (% rsp ),% ymm0
4069 dd: c4 41 7c 11 34 81 vmovups %ymm14 ,(%r9 ,%rax ,4)
4069 e3: c5 74 59 ff vmulps %ymm7 ,% ymm1 ,% ymm15
4069 e7: c4 42 55 b8 fb vfmadd231ps %ymm11 ,% ymm5 ,% ymm15
4069 ec: c4 62 15 b8 f8 vfmadd231ps %ymm0 ,% ymm13 ,% ymm15
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4069 f1: c4 62 55 bc f8 vfnmadd231ps %ymm0 ,% ymm5 ,% ymm15
4069 f6: c5 fc 10 6c 24 60 vmovups 0x60 (% rsp ),% ymm5
4069 fc: c4 62 15 bc f9 vfnmadd231ps %ymm1 ,% ymm13 ,% ymm15
406 a01: c4 41 4c 59 eb vmulps %ymm11 ,% ymm6 ,% ymm13
406 a06: c4 42 45 bc fb vfnmadd231ps %ymm11 ,% ymm7 ,% ymm15
406 a0b: c4 42 7d aa e5 vfmsub213ps %ymm13 ,% ymm0 ,% ymm12
406 a10: c4 c1 34 59 ff vmulps %ymm15 ,% ymm9 ,% ymm7
406 a15: c4 c2 75 aa d4 vfmsub213ps %ymm12 ,% ymm1 ,% ymm2
406 a1a: c4 e3 55 4a ef a0 vblendvps %ymm10 ,% ymm7 ,% ymm5 ,% ymm5
406 a20: c4 62 3d ac da vfnmadd213ps %ymm2 ,% ymm8 ,% ymm11
406 a25: c4 c1 7c 11 2c 84 vmovups %ymm5 ,(% r12 ,%rax ,4)
406 a2b: c4 41 34 59 e3 vmulps %ymm11 ,% ymm9 ,% ymm12
406 a30: c5 7c 10 9c 24 80 00 vmovups 0x80 (% rsp ),% ymm11
406 a39: c4 43 25 4a d4 a0 vblendvps %ymm10 ,% ymm12 ,% ymm11 ,% ymm10
406 a3f: c4 41 7c 11 54 85 00 vmovups %ymm10 ,0 x0 (%r13 ,%rax ,4)
406 a46: 48 83 c0 08 add $0x8 ,% rax
406 a4a: 48 3b c7 cmp %rdi ,% rax
406 a4d: 0f 82 e5 fd ff ff jb 406838

Listing 11: solveParabola loop assembly (vectorized SoA)

50



Performance optimization
for LHCb experiment software APPENDIX

D.3 Intrinsics SoA

406 f44: c4 21 7c 10 3c be vmovups (%rsi ,%r15 ,4) ,% ymm15
406 f4a: c4 81 7c 10 0c b8 vmovups (%r8 ,%r15 ,4) ,% ymm1
406 f50: c5 fc 10 7c 24 20 vmovups 0x20 (% rsp ),% ymm7
406 f56: c5 fc 10 2d 62 91 00 vmovups 0 x9162 (% rip ),% ymm5
406 f5e: c5 fc 10 54 24 40 vmovups 0x40 (% rsp ),% ymm2
406 f64: c4 81 7c 10 1c b9 vmovups (%r9 ,%r15 ,4) ,% ymm3
406 f6a: c4 21 7c 10 34 ba vmovups (%rdx ,%r15 ,4) ,% ymm14
406 f70: c4 21 7c 10 2c bb vmovups (%rbx ,%r15 ,4) ,% ymm13
406 f76: c4 21 7c 10 24 b8 vmovups (%rax ,%r15 ,4) ,% ymm12
406 f7c: c5 04 5c df vsubps %ymm7 ,% ymm15 ,% ymm11
406 f80: c5 74 5c d7 vsubps %ymm7 ,% ymm1 ,% ymm10
406 f84: c5 64 5c c7 vsubps %ymm7 ,% ymm3 ,% ymm8
406 f88: c4 c1 24 59 f3 vmulps %ymm11 ,% ymm11 ,% ymm6
406 f8d: c4 c1 2c 59 e2 vmulps %ymm10 ,% ymm10 ,% ymm4
406 f92: c4 41 3c 59 f8 vmulps %ymm8 ,% ymm8 ,% ymm15
406 f97: c5 7c 28 cd vmovaps %ymm5 ,% ymm9
406 f9b: c5 fc 28 c5 vmovaps %ymm5 ,% ymm0
406 f9f: c4 62 25 b8 ca vfmadd231ps %ymm2 ,% ymm11 ,% ymm9
406 fa4: c4 e2 2d b8 c2 vfmadd231ps %ymm2 ,% ymm10 ,% ymm0
406 fa9: c4 c1 4c 59 f9 vmulps %ymm9 ,% ymm6 ,% ymm7
406 fae: c5 dc 59 f0 vmulps %ymm0 ,% ymm4 ,% ymm6
406 fb2: c4 c1 2c 59 c5 vmulps %ymm13 ,% ymm10 ,% ymm0
406 fb7: c5 bc 59 de vmulps %ymm6 ,% ymm8 ,% ymm3
406 fbb: c5 fc 28 cd vmovaps %ymm5 ,% ymm1
406 fbf: c4 e2 3d b8 ca vfmadd231ps %ymm2 ,% ymm8 ,% ymm1
406 fc4: c4 c1 2c 59 d1 vmulps %ymm9 ,% ymm10 ,% ymm2
406 fc9: c5 84 59 e1 vmulps %ymm1 ,% ymm15 ,% ymm4
406 fcd: c4 c1 24 59 ce vmulps %ymm14 ,% ymm11 ,% ymm1
406 fd2: c4 e2 25 a8 d4 vfmadd213ps %ymm4 ,% ymm11 ,% ymm2
406 fd7: c4 c2 5d ba da vfmsub231ps %ymm10 ,% ymm4 ,% ymm3
406 fdc: c4 c2 1d ba ca vfmsub231ps %ymm10 ,% ymm12 ,% ymm1
406 fe1: c4 e2 25 aa d3 vfmsub213ps %ymm3 ,% ymm11 ,% ymm2
406 fe6: c4 c2 45 ba d0 vfmsub231ps %ymm8 ,% ymm7 ,% ymm2
406 feb: c4 c2 4d be d3 vfnmsub231ps %ymm11 ,% ymm6 ,% ymm2
406 ff0: c5 d4 5e da vdivps %ymm2 ,% ymm5 ,% ymm3
406 ff4: c4 c1 3c 59 ee vmulps %ymm14 ,% ymm8 ,% ymm5
406 ff9: c5 fc 11 54 24 60 vmovups %ymm2 ,0 x60 (% rsp)
406 fff: c4 c1 24 59 d5 vmulps %ymm13 ,% ymm11 ,% ymm2
407004: c5 44 59 fd vmulps %ymm5 ,% ymm7 ,% ymm15
407008: c4 c1 7c 28 e8 vmovaps %ymm8 ,% ymm5
40700 d: c4 e2 1d aa ea vfmsub213ps %ymm2 ,% ymm12 ,% ymm5
407012: c4 62 7d ba ff vfmsub231ps %ymm7 ,% ymm0 ,% ymm15
407017: c4 c1 24 59 c1 vmulps %ymm9 ,% ymm11 ,% ymm0
40701 c: c4 41 4c 59 cd vmulps %ymm13 ,% ymm6 ,% ymm9
407021: c4 c2 4d a8 ef vfmadd213ps %ymm15 ,% ymm6 ,% ymm5
407026: c4 e2 25 aa c4 vfmsub213ps %ymm4 ,% ymm11 ,% ymm0
40702 b: c4 62 0d aa da vfmsub213ps %ymm2 ,% ymm14 ,% ymm11
407030: c4 e2 5d ac cd vfnmadd213ps %ymm5 ,% ymm4 ,% ymm1
407035: c4 c2 1d a8 e1 vfmadd213ps %ymm9 ,% ymm12 ,% ymm4
40703 a: c4 e2 0d a8 c4 vfmadd213ps %ymm4 ,% ymm14 ,% ymm0
40703 f: c4 e2 1d aa f0 vfmsub213ps %ymm0 ,% ymm12 ,% ymm6
407044: c5 e4 59 c1 vmulps %ymm1 ,% ymm3 ,% ymm0
407048: c4 e2 15 ae fe vfnmsub213ps %ymm6 ,% ymm13 ,% ymm7
40704 d: c4 41 14 5c ec vsubps %ymm12 ,% ymm13 ,% ymm13
407052: c4 41 0c 5c e4 vsubps %ymm12 ,% ymm14 ,% ymm12
407057: c5 64 59 f7 vmulps %ymm7 ,% ymm3 ,% ymm14
40705 b: c4 42 3d aa e3 vfmsub213ps %ymm11 ,% ymm8 ,% ymm12
407060: c5 7c 10 05 78 90 00 vmovups 0 x9078 (% rip ),% ymm8
407068: c4 42 2d ac ec vfnmadd213ps %ymm12 ,% ymm10 ,% ymm13
40706 d: c5 14 59 db vmulps %ymm3 ,% ymm13 ,% ymm11
407071: c5 3c 55 54 24 60 vandnps 0x60 (% rsp ),%ymm8 ,% ymm10
407077: c5 2c c2 05 80 90 00 vcmpltps 0 x9080 (% rip ),% ymm10 ,% ymm8
407080: c4 c1 3c 55 cb vandnps %ymm11 ,% ymm8 ,% ymm1
407085: c4 c1 3c 55 d6 vandnps %ymm14 ,% ymm8 ,% ymm2
40708 a: c5 bc 55 d8 vandnps %ymm0 ,% ymm8 ,% ymm3
40708 e: c4 81 7c 2b 0c ba vmovntps %ymm1 ,(% r10 ,%r15 ,4)
407094: c4 81 7c 2b 14 be vmovntps %ymm2 ,(% r14 ,%r15 ,4)
40709 a: c4 81 7c 2b 5c bd 00 vmovntps %ymm3 ,0 x0 (%r13 ,%r15 ,4)
4070 a1: 49 83 c7 08 add $0x8 ,% r15
4070 a5: 4d 3b fb cmp %r11 ,% r15
4070 a8: 0f 8c 96 fe ff ff jl 406 f44

Listing 12: solveParabola loop assembly (SIMD SoA)
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E Summation functions

E.1 Naive summation

1 mpreal add( mpreal * a, int n) {
2 int i;
3 mpreal s = 0;
4 for (i = 0; i < n; ++i) {
5 s += a[i];
6 }
7 return s;
8 }

Listing 13: Naive summation

E.2 Accurate summation

1 mpreal add2( mpreal * a, int n) {
2 int i, j;
3 mpreal temp;
4 for (i = 0; i < n-1; ++i) {
5 // find the smallest element
6 for (j = i+1; j < n; ++j) {
7 if (abs(a[j]) < abs(a[i])) {
8 // swap(a[i], a[j])
9 temp = a[j]; a[j] = a[i]; a[i] = temp;

10 }
11 }
12 // find the second smallest element
13 for (j = i+2; j < n; ++j) {
14 if (abs(a[j]) < abs(a[i+1])) {
15 // swap(a[i+1], a[j])
16 temp = a[j]; a[j] = a[i+1]; a[i+1] = temp;
17 }
18 }
19 // put the result in the array
20 a[i+1] += a[i];
21 }
22 return a[n-1];
23 }

Listing 14: Accurate summation
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F fitParabola code

1 void fitParabola (const TrackAOS * track , resultAOS * result ) {
2 mpreal mat[6], rhs[3], ay , by;
3 int loop , i;
4 result -> chi2Track = result -> maxChi2 = result -> maxDistance
5 = result -> absdistanceSum = result -> distanceSum
6 = result -> dRatio = result ->X0 = 0.0/0.0;
7

8 result -> dRatio = track -> dRatio ;
9 result ->ax = track ->ax;

10 result ->bx = track ->bx;
11 result ->cx = track ->cx;
12 ay = track ->ay;
13 by = track ->by;
14

15 if (track -> nbHits < global -> minXplanes ) return ;
16

17 for (loop = 0; loop < 3; ++ loop) {
18 mat[0] = 0;
19 mat[1] = 0; mat[2] = 0;
20 mat[3] = 0; mat[4] = 0; mat[5] = 0;
21 rhs[0] = 0; rhs[1] = 0; rhs[2] = 0;
22 for (i = 0; i < track -> nbHits ; ++i) {
23 mpreal w = track ->hits[i].w;
24 mpreal dz = track ->hits[i]. z0 - global ->zRef;
25 mpreal deta;
26 if (global -> useCubic ) {
27 deta = dz*dz *(1+result -> dRatio *dz );
28 } else {
29 deta = dz*dz;
30 }
31 mpreal dist = distance_Track (
32 track ->hits[i].x0 , track ->hits[i].z0 ,
33 track ->hits[i]. dxdy , track ->hits[i]. dzdy ,
34 result ->ax , result ->bx , result ->cx , ay , by ,
35 result ->dRatio , track ->zRef
36 );
37

38 mat[0] += w;
39 mat[1] += w*dz; mat[2] += w*dz*dz;
40 mat[3] += w*deta; mat[4] += w*dz*deta; mat[5] += w*deta*deta;
41 // right hand side
42 rhs[0] += w*dist;
43 rhs[1] += w*dist*dz;
44 rhs[2] += w*dist*deta;
45 }
46 if (! CholeskySolve (mat , rhs , 3)) {
47 return ;
48 }
49 if (abd(rhs[0]) > 1e4 || abs(rhs[1]) > 5. || abs(rhs[2]) > 1e -3) {
50 return ;
51 }
52 result ->ax += rhs[0];
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53 result ->bx += rhs[1];
54 result ->cx += rhs[2];
55

56 result -> dRatio = global -> dRatio [0]
57 + global -> dRatio [1]* rhs[0]
58 + global -> dRatio [2]* rhs[0]* rhs[0];
59 if (loop > 0 && abs(rhs[0]) < 5e -3 &&
60 abs(rhs[1]) < 5e -6 && abs(rhs[2]) < 5e -9) {
61 break;
62 }
63 }
64 // Fit is done
65 // track.assoc is set here
66

67 // Compute some values on the track
68 result -> chi2Track = 0.;
69 result -> maxChi2 = 0.;
70 result -> maxDistance = 0.;
71 result -> absdistanceSum = 0.;
72 result -> distanceSum =0.;
73 for (i = 0; i < track -> nbHits ; ++i) {
74 mpreal dist = distance_Track (
75 track ->hits[i].x0 , track ->hits[i].z0 ,
76 track ->hits[i]. dxdy , track ->hits[i]. dzdy ,
77 result ->ax , result ->bx , result ->cx , ay , by ,
78 result ->dRatio , track ->zRef
79 );
80 mpreal chi2_onHit = dist*dist * track ->hits[i].w;
81 result -> absdistanceSum += abs(dist );
82 result -> distanceSum += dist;
83 result -> maxDistance = max(result -> maxDistance , abs(dist ));
84 result -> chi2Track += chi2_onHit ;
85 result -> maxChi2 = max(result ->maxChi2 , chi2_onHit );
86 }
87 result -> distanceSum /= track -> nbHits ;
88 result -> absdistanceSum /= track -> nbHits ;
89 result ->X0 = result ->ax - result ->bx * global ->zRef +
90 result ->cx * global -> constC ;
91 }

Listing 15: fitParabola function
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G fitParabola accuracy with abacus

Chart 14: fitParabola variables accuracy with abacus (max error)
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H Linear system solvers used in fitParabola

H.1 Cholesky

1 // mat is stored in a triangular way (so mat(i, j) = mat[i*(i+1)/2+j])
2 int solveCholeskyN (const float* mat , float* rhs , int n) {
3 int i, j, k;
4 float s, *L = new float[n*n];
5

6 // decompose mat into L
7 for (i = 0; i < n; ++i) {
8 for (j = 0; j <= i; ++j) {
9 s = 0;

10 for (k = 0; k < j; ++k) {
11 s += L[i * n + k] * L[j * n + k];
12 }
13 if (i == j) {
14 L[i * n + j] = sqrt(mat[i*(i+1)/2+i] - s);
15 } else {
16 L[i * n + j] = (1.0 / L[j*n + j] * (mat[i*(i+1)/2+j] - s));
17 }
18 }
19 }
20

21 // Check results
22 for (i = 0; i < n; ++i) {
23 if (L[i*n + i] == 0) {
24 delete [] L;
25 return 0;
26 }
27 }
28

29 // solving LY = rhs
30 for (i = 0; i < n; ++i) {
31 s = rhs[i];
32 for (j = 0; j < i; ++j) {
33 s -= L[i*n + j] * rhs[j];
34 }
35 rhs[i] = s / L[i*n + i];
36 }
37 // solving Ltx = Y
38 for (i = n-1; i >= 0; --i) {
39 s = rhs[i];
40 for (j = n-1; j > i; --j) {
41 s -= L[j*n + i] * rhs[j];
42 }
43 rhs[i] = s / L[i*n + i];
44 }
45 delete [] L;
46 return 1;
47 }

Listing 16: Cholesky solver
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H.2 Cramer’s Rules

1 // mat is stored in a triangular way (so mat(i, j) = mat[i*(i+1)/2+j])
2 int solveCramer3 (const float* mat , float* rhs) {
3 float det , det0 , det1 , det2;
4

5 // Compute det(mat)
6 det = mat[0]* mat[2]* mat[5] + mat[3]* mat[1]* mat[4]
7 + mat[1]* mat[4]* mat[3] - mat[3]* mat[2]* mat[3]
8 - mat[0]* mat[4]* mat[4] - mat[1]* mat[1]* mat[5];
9

10 // Compute det(rhs|mat(1:2 ,:))
11 det0 = rhs[0]* mat[2]* mat[5] + rhs[2]* mat[1]* mat[4]
12 + rhs[1]* mat[4]* mat[3] - rhs[2]* mat[2]* mat[3]
13 - rhs[0]* mat[4]* mat[4] - rhs[1]* mat[1]* mat[5];
14

15 // Compute det(mat(1 ,:) rhs|mat(2 ,:))
16 det1 = mat[0]* rhs[1]* mat[5] + mat[3]* rhs[0]* mat[4]
17 + mat[1]* rhs[2]* mat[3] - mat[3]* rhs[1]* mat[3]
18 - mat[0]* rhs[2]* mat[4] - mat[1]* rhs[0]* mat[5];
19

20 // Compute det(mat(0:1 ,:)| rhs)
21 det2 = mat[0]* mat[2]* rhs[2] + mat[3]* mat[1]* rhs[1]
22 + mat[1]* mat[4]* rhs[0] - mat[3]* mat[2]* rhs[0]
23 - mat[0]* mat[4]* rhs[1] - mat[1]* mat[1]* rhs[2];
24

25 // Cramer ’s rules
26 rhs[0] = det0 / det;
27 rhs[1] = det1 / det;
28 rhs[2] = det2 / det;
29 return 1;
30 }

Listing 17: Cramer’s rule solver
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