
Literature Review: Video Frame Rate
Up-Conversion (FRUC)

Naim Govani Olly Larkin Lin Hao Lee Jialong Yu Navid Zandpour Zhiyuan Zhang
Intel Video Interpolation 3rd Year Group Project

Department of Electrical and Electronic Engineering, Imperial College London.
Email: {naim.govani17,olly.larkin17,lin.lee17,jialong.yu17,navid.zandpour19,zhiyuan.zhang17}@imperial.ac.uk

Abstract—Video Frame Rate Up-Conversion (FRUC) utilises
video frame interpolation to synthesize nonexistent frames in-
between the original frames, resulting in a video of higher
frame-rate. In this literature review, we discuss the conventional
MEMC (motion estimation and motion compensation) FRUC
model before moving on to more state-of-the-art methods. A focus
is put on the implementation of these algorithms on FPGAs.

Index Terms—video frame interpolation method, frame rate up
conversion, image and video synthesis, video signal processing,
object motion

I. INTRODUCTION

Currently, video FRUC research is both vast and deep,
however, very few resources exist collecting that information
into a single place and removing the high amount of overlap
between modern papers. The purpose of this review is to
collate what we have deemed to be the most relevant and
helpful research, specifically for an FPGA platform, so that in
the future a team planning to develop a FRUC IP will have a
solid foundation from which they can begin.

The earliest algorithms, explored further in Section II, are
computationally simple–they can be used in real-time systems
while maintaining a low resource footprint. Unfortunately, they
tend to produce low-fidelity frames with a variety of issues
such as very evident judder or blurred frames.

On the opposite end of the spectrum lies the more recently
developed algorithms (referred in this review as “advanced
algorithms”) which incorporate neural nets into the FRUC
systems [37], [46], [47], [50], [55], either as the entire system
or as a subcomponent for a larger structure. These algorithms
are able to interpolate very accurate frames. The issue, of
course, is training these neural nets which could take a long
time and once trained the sheer size of the networks makes
them very resource intensive. It is doubtful that these specific
algorithms will soon be adapted for FPGAs; however, their
inclusion in Section V-A of this review is more of a measure of
completeness to make sure that, if this problem is approached
at a point in time where implementing large neural nets is
tractable on FPGAs, this review would still be a helpful
resource.

The third and most extensively researched option is MEMC
FRUC. The core philosophy behind this approach is to mea-
sure the motion between two frames in a video and, from
that information, estimate what a frame in between said
frames would look like–a methodology also used by codecs

to compress videos. As shown in Fig 4a, MEMC FRUC can
be broken down into two steps, motion estimation (ME) and
motion compensated interpolation (MCI), both of which are
explored further in Section III and Section IV.

II. BASIC INTERPOLATION METHODS

In this section, we discuss basic interpolation methods that
are trivially implementable. To exemplify these methods, we
will use 24-to-60 fps FRUC.

A. Frame repetition

B

CC

DDD

B
B

A A
A

A

CC
CC
DD

C
D

DDD
D

C
C

Fig. 1: Frame repetition visualisation for 24-to-60 fps FRUC.

Frame repetition is one of the earliest methods applied in
FRUC. Commonly used, 3:2 pulldown is a frame repetition
implementation for 24-to-60 fps FRUC. To match the 60

24 = 2.5
ratio of up conversion, two repeats of the first frame and one
repeat of the second frame are added to the video and so on.
Fig. 1 shows a visualisation of frame repetition in this case.

This algorithm can be simply implemented on hardware
by repeating corresponding frames in sync with the reference
clock. However, the inconstant duration of each frame can
cause discontinuous motion in the video which is known as
motion judder [1].

B. Frame averaging

Frame averaging, also known as “oversampling”, is another
method of FRUC similar to frame repetition. For the common
24-to-60 fps case, instead of displaying the two adjacent
frames with a 3:2 ratio, each frame is displayed 2.5 times.
The middle frame is obtained by blending the two adjacent
frames. Fig. 2 shows a visualisation of frame averaging in
this case.

The output video of this method appears to be smoother
than the result of the frame repetition method. In addition,

B

CC

DDD

A

B
B

A
A

(A+B)/2

CC
CC
DD

(C+D)/2
D

DDD
D

C
C

Fig. 2: Frame averaging visualisation for 24-to-60 fps FRUC.
(A+B)/2 represents the blending of frames A and B.

the calculation of blending the frames is not computationally
intensive; therefore, it is feasible to be implemented on hard-
ware for real-time FRUC. Although the quality of the output
video is improved by using this method, the problem of motion
judder is not yet solved [1].

C. Linear interpolation

B

CC

DDD

A A
(1.5A+B)/2.5

(0.5A+2B)/2.5

CC
CC
DD

(C+D)/2
DD

C

C

(2B+0.5C)/2.5
(B+1.5C)/2.5

C

(1.5C+D)/2.5

(2D+0.5E)/2.5
(0.5C+2D)/2.5

(D+1.5E)/2.5

Fig. 3: Linear interpolation visualisation for 24-to-60 fps FRUC.

Linear interpolation is another FRUC method. This algo-
rithm creates interpolated frames by linearly blending the
video frames. The interpolated frames are blended depending
on the weights of frames which is linearly distributed. Fig. 3
shows a visualisation of linear interpolation in this case.

The problem of this method is that many blended frames,
which look blurry, are introduced to the output video. [1], [2].
Moreover, there is an edge case relating to the final frames to
be accounted for. Fig. 3 shows the last two frames darkening–
this is because frame E is not present (and is taken as an
empty black frame); however, this can be handled by simply
repeating the last frame as required.

III. MOTION ESTIMATION

This section describes different methods for ME, where the
main objective is to estimate motion of moving objects by
calculating motion vectors (MVs).

The trade-off between accuracy and speed of ME is a
common issue for MEMC FRUC, especially in real-time
applications. A variety of ME algorithms were proposed by
researchers in an attempt to address the problem of accurately
estimate motion at a low computational cost.

A. Block Matching Algorithms

Block matching algorithms (BMA) are widely used for
motion estimation in video coding due to its relatively low
complexity and its compatibility with hardware implementa-
tion [58]. The objective of these algorithms is to estimate MVs

by matching blocks from subsequent frames. Given a K ×K
block in the current frame, the goal is to find the best matching
K ×K block in a reference frame that minimises some cost
function. Sum of Absolute Differences (SAD) is commonly
used as a cost function due its low computational cost [32],
[36], [58]. Calculating the SAD between two K ×K blocks
requires 2K2 − 1 additions. The difference in spatial location
between the two matched blocks then represents the MV.

In theory, it is necessary to perform Full Search (FS) in
order to find the block that produce the global minimum of
the cost function. FS is a simple algorithm that compares the
K×K block from the current frame with all possible K×K
blocks in the reference frame. Finding the best matching
K × K block in a frame of size N × M based on SAD
therefore requires NM(2K2−1) additions. As described, the
FS algorithm requires a large number of computations and
therefore a variety of algorithms were proposed to reduce the
computational complexity of the search process.

1) Three Step Search Algorithm: The three step search
algorithm (TSS) is a simple algorithm with near optimal
performance and low computational cost [59]. TSS benefits
from an efficient search scheme which only requires 25
block comparisons, hence 25(2K2 − 1) additions, which is
a significant computational reduction compared to FS.

Further, modifications of TSS were proposed in order to
improve the performance by modifying the search pattern.
The New Three Step Search (NTSS) [63] employs a center-
biased checking point pattern and a halfway-stop technique
to reduce the computational cost. The Predictive three step
search presented in [60] reduces the number of searched blocks
by using information from neighbouring blocks. Chau et al.
[61] propose a modified search scheme that aims to solve the
problem of getting trapped in a local minimum, a problem of
TSS.

2) Diamond search: Diamond search (DS) is closely re-
lated to TSS. This algorithm was first presented in [62] and
consists of two diamond-shaped search patterns which are
applied recursively until the best matching block is found.
According to [62], the DS greatly outperforms the standard
TSS and works better than the NTSS in terms of computa-
tional complexity and matching accuracy. However, it should
be mentioned that DS does not provide a fixed number of
searching points, which is the case for TSS.

3) Hierarchical Block Motion Estimation: Hierarchical
Block Motion Estimation (HBME) consists of algorithms
where the block size, frame resolution and/or the search
pattern can change depending on the level of the hierarchy.
The idea is to start searching at the highest level and use a
small frame-to-block size ratio in order to prevent convergence
to local minima. This can be achieved by either increasing the
block size or down-sampling the frame. The motion vectors
from the higher level is used as a starting point for searching
blocks in the lower level. As the hierarchy level reduces,
the frame-to-block size ratio is increased in order to find
more accurate motion vectors [68]. Different search methods
were presented together with HBME algorithms, and in some

algorithms, methods change depending on the hierarchical
level. T. Lee and D.V. Anderson [73] propose a HBME
algorithm that uses a binary tree architecture with variable
block sizes. In [74], a three level HBME is proposed that
applies the FS at the highest level, a modified DS algorithm
in the second level and finally TSS in the first level to obtain
the final motion vectors.

IV. MOTION COMPENSATED INTERPOLATION

The approach taken during motion compensated interpo-
lation (MCI) largely depends on the type of ME used and
whether the resulting motion vectors are unidirectional or
bidirectional.

Unidirectional MCI is the conventional approach to motion
compensated interpolation [69]–[71]. Blocks in the interpo-
lated frame can be found by taking a block in the initial frame
and multiplying its motion vector (by 0.5 to get an interpolated
frame timed directly between the two input frames) to find its
location in the interpolated frame. This technique can result
in blocking artifacts (the final image appearing segmented by
blocks), overlapping blocks (when multiple motion vectors
point to the same location), and holes (when there is no motion
to the location or background is uncovered) in the interpolated
image.

To combat overlapping pixels, a depth approach [70] can
be used to determine which pixel should be used: the pixel
belonging to the object closer to the camera should remain
visible in the interpolated frame. This approach, however, can
be computationally expensive and therefore may have limited
application to hardware design.

Irregular-grid expanded-block weighted motion compensa-
tion [71] is an algorithm aiming to reduce both blocking
artifacts and resolve overlaps. It expands the size of the
interpolated blocks and applies a weighted filter to them before
normalising to generate pixel values for the interpolated frame.
The typical method of dealing with overlaps is to simply take
the pixel from the motion vector with the lowest corresponding
SAD score but this method can lead to rapid changes between
contiguous pixels as they switch between two or more motion
vectors [71]. This method shows obvious improvements over
the standard method in sample images with a reasonably low
complexity.

A typical method used to fill in holes is the application of a
median filter [70]. This method is preferred largely because of
its simplicity but because the filter is only applied over areas
with no pixel information, it is not as viable for hardware or
real time solutions. Block-wise directional hole interpolation
(BDHI) [71] is an algorithm to combat holes. It is more
complex than a simple median filter, but due to its block-wise
nature, it may be better suited to hardware implementations.
Additionally, it is able to interpolate features from surrounding
pixels, as apposed to averaging them. This leads to superior
results over median filters.

Another factor leading to poor interpolation of frames is
scene change. If there is a change in scene between two
frames, then interpolating those two frames using motion

estimation will not produce desirable results. Scene detection
can be used to determine when this occurs and then instead of
interpolating from the surrounding frames, the frame can be
constructed by extrapolating either the two previous frames
or the two following [72]. This design specifically may not
translate well to hardware, as more reference frames need
storing leading to high resource cost, but the algorithm may
be able to be adapted to be more appropriate.

V. ADVANCED METHODS

In this section, advanced FRUC methods, which refer to
modern and state-of-the-art algorithms, are studied. It is worth
noting that even though most of these algorithms are currently
not suited for real-time hardware applications, the algorithms
serve as a look into future possibilities as hardware improves.
Further, some methods involve a combination of previous
methods discussed in this review, hence demonstrating how
different and simpler methods can be combined to produce
better results.

A common theme in a number of modern and advanced
algorithms is the use of Machine Learning (ML), pioneered
by Long et al. [5]. More specifically, fast, scalable and end-to-
end trainable Convolutional Neural Networks (CNNs) [15] are
used. The motivation for using ML arises from the availability
of high frame-rate videos [3], [6]–[8], [57], [77]. These videos
can be down-converted to a lower frame-rate by dropping
frames or synthesising blurred frames to simulate motion-
blurred low frame-rate video [4], [8]. The resulting low frame-
rate video can then be used to train an ML model.

We outline advanced implementations of motion estimation
and motion compensated interpolation in sections V-A and V-B
respectively. In section V-C, we discuss novel FRUC methods,
some of which comprise parts of the former two sections.
Finally, section V-D delineates a quantitative performance
comparison amongst the best, state-of-the-art models at time
of writing.

A. Motion Estimation: Advanced implementations

1) Optical Flow: Optical flow as a motion estimation
method is heavily researched and have led to impressive
performance on challenging benchmarks [10]–[12]. Top-
performing classical methods usually adopt the energy min-
imisation developed by Horn et al. [13]. With the advancement
of CNNs, Dosovitskiy et al. [14] proposed FlowNetS and
FlowNetC, which, while performing below state-of-the-art,
demonstrates feasibility of directly estimating optical flow
from raw images using a U-Net CNN architecture [16].
Improving upon this, Ilg et al. [17] created FlowNet2, which
comprise stacked FlowNetS models. FlowNet2 runs faster and
performs on par with state-of-the-art models, but is prone to
over-fitting during training (as it is a large network) and is very
resource-intensive. SpyNet [18] solves the model size issue
by adopting coarse-to-fine estimation in the network design–
it residually updates the flow across the levels of a spatial
pyramid with individual trainable weights. While smaller
and faster, SpyNet performs below FlowNet2. LiteFlowNet

[20] and PWC-Net [19] further combine the coarse-to-fine
strategy with multiple ideas from both classical methods
and recent deep learning approaches. PWC-Net in particular
outperformed all published methods on the common public
benchmarks [11], [12], [21]. To alleviate the need for training
data with ground truth in a specific domain, unsupervised
[22]–[27], semi-supervised [28], [29] and self-supervised [30]
methods have also been developed. To improve these networks,
Hur et al. [31] proposed an iterative residual refinement (IRR)
scheme that can be combined with several backbone networks,
notably FlowNet and PWC-Net.

2) Multi-directional Motion Estimation: Traditionally, ME
is calculated in forwards direction in time, which from t to
t+ 1. It is also possible to assume the flow backwards which
estimates the motion from t+1 to t. Moreover, these two flows
can be combined to synthesise a more accurate target flow
[64]. Compare dto the unidirectional method, bidirectional ME
performs better when dealing with overlapped areas and holes
caused by occlusion [65].

3) Motion Vector Smoothing: The two other estimation
methods discussed prior to this method require large com-
putation power. Motion vector smoothing is a way with
reduced computational complexity. The basic idea is to have
a smoothing filter to eliminate wrong motion vectors and only
process the correct candidates [66]. The wrong motion vectors
are defined as the vectors that break the continuity in a certain
motion field. However, having smaller block sizes of filters
makes the method more vulnerable to noise. A corresponding
solution is proposed in [67].

B. Motion Compensated Interpolation: Advanced implemen-
tations

Compared to ME, MCI has fewer new methods proposed in
recent papers. Further study can mainly be divided into two
paths: the first one is changing the assumptions, which involves
taking more details into account, and the other one relates to
using neural networks. For the former, using more details can
generate a slightly better result at the expense of increasing
computational complexity. This increase is not suitable for
resource-constrained hardware. Methods involving neural nets
are usually coupled together with ME in an end-to-end model,
and they would be discussed further in section V-C.

1) High-order Model: In optical flow, object motion be-
tween two frames is assumed to have linear motion. If a motion
is non-linear (e.g. a curve), using a high-order polynomial
to model the motion yields more accurate estimations. For
example, estimating fast and large circular motions using a
linear model would give very inaccurate estimations [75]; this
would yield an estimation that looks as if the motion traces a
straight line and ends with a sudden change in direction.

2) Multiple Inter Frame Interpolation: When interpolating
more than one frame between two successive frames in con-
ventional methods, the weights of original frames are used to
calculate the ratios of each successive original frame required
in the interpolated frames. This is covered in section II-C.
Gracewell and John [76] proposed calculating the new frame in

the middle first and then repeating the algorithm using the new
frame and original frames to get the required frames, which
allows for advanced mathematical optimisations, reducing
computational complexity by 85%. Fig. 5 shows an illustration
of this method. A drawback of this method that it can only
be applied in cases where the number of interpolated frames
required between two original frames is 2n − 1 where n is a
positive integer; in other words, this method only works for
FRUC by a factor of 2.

1

2
Original
Frame 1 Left

interpolated
Frame

Middle
interpolated

frame

2

Right
interpolated

Frame

Original
Frame 2

Fig. 5: Multiple interpolated frame between two successive original
transmitted frames [76].

C. Novel FRUC implementations

In this section, we outline novel FRUC implementations
categorised into six categories. We highlight the novelty in
each approach, with–where present–its main drawback. Fig. 4
outlines components of different frameworks.

1) Novel MEMC-based methods (Fig. 4a): Conventional
MEMC-based FRUC methods produce visual artifacts due to
relative motions and occlusion between objects with different
depth, leading to flow vectors causing incorrect interpolation
results with hole regions [37]. Hence, advanced MEMC-based
methods include a post-processing step to minimise these
artifacts [32]–[36]. Kim et al. [36] utilise a hole interpolation
method to restore missing pixels, while Wang et al. [33]
propose a trilateral filtering method to fill holes and smooth
compensation errors. A drawback of the mentioned methods,
besides producing results that are below state-of-the-art, is that
the post-processing step proposed is not end-to-end trainable.

2) Phase-based methods (Fig. 4b): Leveraging develop-
ments in phase-based methods that represent motion in the
phase shift of individual pixels [38], [39], Meyer et al. [40]
developed a phase-based method which manipulates pixel-
phase information within a multi-scale pyramid for frame
interpolation. Improving upon this, PhaseNet [41], a learning-
based implementation, was proposed. However, phase-based
methods are less effective in handling large motion in compli-
cated scenarios, resulting in visual artifacts.

Motion	Estimation Motion	Compensated
Interpolation Post-processing†

It-1
It+1

ft→t-1

ft→t+1

ItI't

(a) MEMC-based

Motion	Estimation
Bilinear

Warping/Bidirectional
flow	estimation

Post-processing†
It-1
It+1

ft→t-1

ft→t+1

ItI't

(b) Flow-based

Pixel	Phase-Shift
Calculation Phase-Shift	Correction Phase	interpolation

It-1
It+1

P ItP'

(c) Phase-based

Kernel	Estimation Kernel	Convolution
It-1
It+1

ItKt-1
Kt+1

(d) Kernel-based

Image	Deblurring Interpolation	(any)
It-1
It+1

ItI't-1
I't+1

(e) Deblurring-based

†-marked components are optional

Fig. 4: Frameworks of different FRUC methods, taking in two consecutive images It−1 and It+1 to produce an interpolated frame It. I , f ,
P and K correspond to image, motion flow, phase-shift, and kernel respectively, while the subscripts denote the point in time.

3) Flow-based methods (Fig. 4c): Based on advancements
in optical flow estimation by deep CNNs detailed in section
V-A1, several methods based on end-to-end deep models have
been developed. These approaches either predict bidirectional
flow [42] or use bilinear warping operations to align input
frames based on linear motion models [43]–[45]. A common
technique utilised to synthesise output images is estimating an
occlusion mask to adaptively blend warped frames. As bilinear
warping blends neighbour pixels based on sub-pixel shifts,
when the input frames are not aligned enough, the flow-based
methods generate blurry artifacts [37].

4) Kernel-based methods (Fig. 4d): Frame interpolation can
be formulated as convolution operators over patches instead
of relying on optical flow, therefore ridding the disadvantages
of optical flow methods. Niklaus et al. [46], [47] developed
two models: (1) the AdaConv [46] model which estimates
spatially-adaptive convolutional kernels for each output pixel
and (2) the SepConv [47] model which is an improvement
upon the AdaConv model with lower memory requirements

and better interpolation results. Experimentally, Niklaus et al.
[47] were able to show that the formulation of video inter-
polation as a single convolution gracefully handles challenges
like occlusion, blur and abrupt brightness change. A drawback
of these models is that they cannot handle motion larger than
a pre-defined kernel size, therefore producing artifacts with
large motion [37].

5) Deblurring-based methods (Fig. 4e): In section V, meth-
ods for preparing low frame-rate were mentioned. One method
involved adding motion blur to the high frame-rate video
to better simulate low frame-rate video. The reverse of this
process–deblurring the video then interpolating the frames–
is a method of interpolation that accounts for the nature
of high shutter-speed in high frame-rate video. Proprietary
implementations of this interpolatioon technique exist in in-
dustry [49], [53], [54]. Further, Shen et al. [48] proposed
BIN (Blurry video frame INterplation) which is a model that
simultaneously reduces motion blur and up-converts the frame
rate. A disadvantage of this methodology is that the deblurring

TABLE I: Quantitative Performance Results of State-of-the-Art FRUC Models.

Benchmark
Method Vimeo90k [42] UCF101 [51] Middlebury [10] Efficiency

PSNR SSIM PSNR SSIM IE #Parameters (millions) Runtime (seconds)
SoftSplat - LLap [56] 36.10 0.970 35.39 0.952 4.22 - -

MEMC-Net* [37] 34.40 0.974 35.01 0.968 5.24 70.31 0.12
DAIN [50] 34.70 0.964 35.00 0.950 4.86 24.02 0.13
RRIN [55] 35.22 0.964 34.93 0.950 - 19.19 0.08

SepConv - L1 [47] 33.80 0.956 34.79 0.947 5.61 21.60 0.20
Where applicable, the efficiency of methods are outlined: the number of model parameters (millions) and runtime (seconds per 480 × 640 image)–reported

by [55]–are shown.

step produces images that are unnaturally and overly sharp.
6) Other methods: Methods outlined in this category either

do not fit into any of the above categories, or use a combination
of the former methods.

MEMC-Net [37] is a method combining MEMC-based,
flow-based, and kernel-based methods. It is a data-driven
end-to-end trainable model, which includes the artifact-fixing
post-processing step as part of the trainable model, therefore
solving the flow-based model problem of having a separate
post-processing step. With regard to the kernel-based large
motion artifacts problem, MEMC-Net proposes a fix by learn-
ing spatially-varying interpolation kernels for each pixel, thus
better accounting for occlusion and dis-occlusion.

DAIN (Depth-Aware video frame INterpolation) [50] is
another method exploiting advantages of various methods by
combining them. DAIN proposes a model comprising four
components: (1) a flow-based optical flow component, (2) a
depth estimation component, (3) a context extraction compo-
nent and (4) a kernel-based component. DAIN forward-warps
the optical flow then backward-warps the input images to the
target location according to the warped optical flow. Utilising
the depth component to detect occlusion for flow aggregation
rids the artifacts problem with optical flow. However, in
challenging cases, DAIN produces blurred results with unclear
boundaries.

RRIN (Residue Refinement video frame Interpolation Net-
work) [55] exploits residue learning [52] and adaptive weight
map for accurate video frame interpolation. Implementing sub-
modules of RRIN using U-Net [16] with less depths effectively
reduces the model size and computation complexity.

SoftSplat [56] utilises softmax splatting to estimate an
optimal flow, which is then used to forward-warp frames
and their feature pyramid representations. SoftSplat is end-
to-end trainable and enables optimising of feature pyramids
for image synthesis as well as fine-tuning of the optical
flow estimator. SoftSplat is similar to DAIN [50]; however,
SoftSplat is conceptually simpler due to not warping the flow
and not incorporating depth- or kernel-estimates. DAIN also
uses linear splatting in contrast to SoftSplat’s softmax splatting
which is translational invariant and yields better results.

D. Quantitative performance comparison of state-of-the-art
models

Table I gives a comparison of the quantitative performance
and efficiency results of state-of-the-art models on three video

frame interpolation benchmarks: Vimeo90k [42], UCF101 [51]
and Middlebury [10]. PSNR, SSIM and IE denote Peak Signal-
to-Noise Ratio (higher is better), Structural Similarity Index
(higher is better) and Interpolation Error (lower is better)
respectively. See section V-D1 for details on these metrics.

As some papers train more than one model to suit different
applications, where applicable, the model with highest mean
score across the benchmarks is chosen; this is the case for
SoftSplat - LLap [56], SepConv - L1 [47] and MEMC-Net*
[37]. Bolded numbers denote best scores in each section.

An overview of these performance results point to the fact
that models rely on multiple different methods and algorithms
to achieve top-performing results. In the five models, SepConv
[47], a kernel-based method and the only method relying on
one paradigm–detailed in section V-C4–was outperformed by
the other models which combine novel methods, detailed in
section V-C6. Moreover, the range of years in which the
mdoels were developed is 2017-2020, showing that there is
very active research and development in this field. As advanced
techniques (e.g. ML), computing power and datasets continue
to improve, there is much to expect in the future as paradigm-
shifting methods are introduced.

1) Definitions of IE, PSNR and SSIM: IE [10], also known
as mean squared error (MSE) is computed by:

IE =

∑
M,N [I1(m,n)− I2(m,n)]2

M ∗N
where I1 is the interpolated frame and I2 is the ground truth.
M and N are the number of rows and columns respectively
in the input images.

PSNR is developed from IE and expressed in decibels:

PSNR = 10log10(
max2i

IE
)

where maxi is the maximum range in the input image data
type. For example if the image uses 8 bits per sample, maxi
is 28 = 255.

With more work into quality assessment methods using
human visual system (HSV), Structural SIMilarity (SSIM)
Index was proposed [78]. To compute it, firstly, SSIM is
defined as:

SSIM(x, y) = [l(x, y)]α × [c(x, y)]β × [s(x, y)]γ

where l(x, y) is the luminance comparison between signal x
and signal y, c(x, y) is the contrast comparison and s(x, y)

stands for structural comparison. α, β and γ are the weights
of each comparison, normally defaulted to 1.

Luminance is computed by:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

where µ is the average intensity of the signal. C1 is a small
constant to prevent division by zero errors when µ2

x + µ2
y is

close to zero. (Similar constants C2 and C3 are also used in
the next two equations).

Contrast comparison is calculated as:

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

where σ is the standard deviation of a signal.
And lastly, the structural comparison is computed as:

s(x, y) =
σxy + C3

σxσy + C3

.
To simplify the equation, C3 is chose to be half of C2, and

this is the formula used in the implementation:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

ACKNOWLEDGMENT

We would like to thank Kieron Turkington (Intel Corpora-
tion), industrial supervisor of this group project, and Professor
George Constantinides (Imperial College London), academic
supervisor of this project.

REFERENCES

[1] N. Haasn, ”Interpolation techniques”, https://github.com/haasn/mpvhq-
old/wiki/Interpolation, 2015.

[2] K.T. Gribbon, D.G. Bailey,”A Novel Approach to Real-time Bilinear
Interpolation”, 2004.

[3] S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich and O. Wang,
”Deep Video Deblurring for Hand-Held Cameras,” 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, 2017, pp. 237-246.

[4] J. Telleen, A. Sullivan, J. Yee, O. Wang, P. Gunawardane, I. Collins, J.
Davis, ”Synthetic shutter speed imaging”, Comput. Graph. Forum, vol.
26, no. 3, pp. 591-598, 2007.

[5] G. Long, L. Kneip, J. M. Alvarez, H. Li, X. Zhang, and Q. Yu. Learning
image matching by simply watching video. In ECCV, 2016

[6] A. Mackin, F. Zhang and D. R. Bull, ”A Study of High Frame Rate
Video Formats,” in IEEE Transactions on Multimedia, vol. 21, no. 6,
pp. 1499-1512, June 2019.

[7] M. Emoto, Y. Kusakabe and M. Sugawara, ”High-Frame-Rate Motion
Picture Quality and Its Independence of Viewing Distance,” in Journal
of Display Technology, vol. 10, no. 8, pp. 635-641, Aug. 2014.

[8] A. Handa, R. Newcombe, A. Angeli and A. Davison, ”Real-Time
Camera Tracking: When is High Frame-Rate Best?” in Proc. of the
European Conference on Computer Vision(ECCV), Oct. 2020

[9] M. Ghanbari, ”Video Coding: An Introduction to Standard Codecs,”
Institution of Electrical Engineers, 1999.

[10] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski.
A database and evaluation methodology for optical flow. International
Journal of Computer Vision (IJCV), 2011.

[11] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic
open source movie for optical flow evaluation. In European Conference
on Computer Vision (ECCV), 2012.

[12] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? The KITTI vision benchmark suite. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

[13] B. Horn and B. Schunck. Determining optical flow. Artificial Intelli-
gence, 1981.

[14] A. Dosovitskiy, P. Fischery, E. Ilg, C. Hazirbas, V. Golkov, P. van der
Smagt, D. Cremers, T. Brox, et al. FlowNet: Learning optical flow with
convolutional networks. In IEEE International Conference on Computer
Vision (ICCV), 2015.

[15] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip
code recognition. Neural computation, 1989

[16] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks
for biomedical image segmentation. In International Conference on Med-
ical Image Computing and Computer Assisted Intervention (MICCAI),
2015.

[17] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox.
FlowNet 2.0: Evolution of optical flow estimation with deep networks. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[18] A. Ranjan and M. J. Black. Optical flow estimation using a spatial
pyramid network. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[19] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical
flow using pyramid, warping, and cost volume. In CVPR, pages 8934-
8943, 2018.

[20] T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight
convolutional neural network for optical flow estimation. In CVPR,
pages 8981-8989, 2018.

[21] M. Menze and A. Geiger. Object scene flow for autonomous vehicles.
In CVPR, pages 3061-3070, 2015.

[22] A. Ahmadi and I. Patras. Unsupervised convolutional neural networks
for motion estimation. In ICIP, pages 1629-1633, 2016.

[23] S. Meister, J. Hur, and S. Roth. UnFlow: Unsupervised learning of
optical flow with a bidirectional census loss. In AAAI, pages 7251-
7259, 2018.

[24] Z. Ren, J. Yan, B. Ni, B. Liu, X. Yang, and H. Zha. Unsupervised deep
learning for optical flow estimation. In AAAI, pages 1495-1501, 2017.

[25] Y. Wang, Y. Yang, Z. Yang, L. Zhao, and W. Xu. Occlusion aware
unsupervised learning of optical flow. In CVPR, pages 4884-4893, 2018.

[26] J. J. Yu, A. W. Harley, and K. G. Derpanis. Back to basics: Unsupervised
learning of optical flow via brightness constancy and motion smoothness.
In ECCV Workshops, volume 3, pages 3-10, 2016.

[27] Y. Zhu and S. Newsam. DenseNet for dense flow. In ICIP, pages 790-
794, 2017.

[28] Y. Zhu, Z. Lan, S. Newsam, and Alexander G. Hauptmann. Guided
optical flow learning. In CVPR 2017 Workshops, 2017.

[29] W.-S. Lai, J.-B. Huang, and M.-H. Yang. Semi-supervised learning for
optical flow with generative adversarial networks. In NIPS*2017, pages
354-364.

[30] P. Liu, M. Lyu, I. King and J. Xu, ”SelFlow: Self-Supervised Learning
of Optical Flow,” 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 4566-
4575.

[31] J. Hur and S. Roth, ”Iterative Residual Refinement for Joint Optical Flow
and Occlusion Estimation,” 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019,
pp. 5747-5756, doi: 10.1109/CVPR.2019.00590.

[32] B.-D. Choi, J.-W. Han, C.-S. Kim, and S.-J. Ko, “Motioncompensated
frame interpolation using bilateral motion estimation and adaptive over-
lapped block motion compensation,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 17, no. 4, pp. 407–416, 2007.

[33] C. Wang, L. Zhang, Y. He, and Y.-P. Tan, “Frame rate upconversion
using trilateral filtering,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 20, no. 6, pp. 886–893, 2010.

[34] M. Biswas and V. Namboodiri, “On handling of occlusion for frame
rate up-conversion using video in-painting,” in IEEE International Con-
ference on Image Processing. IEEE, 2010, pp. 785–788.

[35] W. H. Lee, K. Choi, and J. B. Ra, “Frame rate up conversion based on
variational image fusion,” IEEE Transactions on Image Processing, vol.
23, no. 1, pp. 399–412, 2014.

[36] U. S. Kim and M. H. Sunwoo, “New frame rate up-conversion al-
gorithms with low computational complexity,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 24, no. 3, pp. 384–
393, 2014.

[37] W. Bao, W. Lai, X. Zhang, Z. Gao and M. Yang, ”MEMC-Net: Mo-
tion Estimation and Motion Compensation Driven Neural Network for
Video Interpolation and Enhancement,” in IEEE Transactions on Pattern
Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2019.2941941.

[38] P. Didyk, P. Sitthi-amorn, W. T. Freeman, F. Durand, and W. Matusik.
Joint view expansion and filtering for automultiscopic 3D displays. ACM
Trans. Graph., 32(6):221, 2013.

[39] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman. Phase-based
video motion processing. ACM Trans. Graph., 32(4):80, 2013.

[40] S. Meyer, O. Wang, H. Zimmer, M. Grosse, and A. SorkineHornung,
“Phase-based frame interpolation for video,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2015.

[41] S. Meyer, A. Djelouah, B. McWilliams, A. Sorkine-Hornung, M. Gross
and C. Schroers, ”PhaseNet for Video Frame Interpolation,” 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, 2018, pp. 498-507, doi: 10.1109/CVPR.2018.00059.

[42] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video enhance-
ment with task-oriented flow,” arXiv preprint arXiv:1711.09078, 2017

[43] Z. Liu, R. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame
synthesis using deep voxel flow,” in IEEE International Conference on
Computer Vision, 2017.

[44] J. van Amersfoort, W. Shi, A. Acosta, F. Massa, J. Totz, Z. Wang, and
J. Caballero, “Frame interpolation with multi-scale deep loss functions
and generative adversarial networks,” arXiv preprint arXiv:1711.06045,
2017.

[45] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and J.
Kautz, “Super slomo: High quality estimation of multiple intermediate
frames for video interpolation,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

[46] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive
convolution,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[47] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive
separable convolution,” in IEEE International Conference on Computer
Vision, 2017

[48] W. Shen, W. Bao, G. Zhai, L. Chen, X. Min and Z. Gao, ”Blurry Video
Frame Interpolation,” in CVPR 2020.

[49] Sony.co.uk. 2020. What Is Motionflow XR And X-
Motion Clarity? — Sony UK. [online] Available at:
¡https://www.sony.co.uk/electronics/support/articles/00232431¿
[Accessed 5 May 2020].

[50] W. Bao, W. Lai, C. Ma, X. Zhang, Z. Gao and M. Yang, ”Depth-Aware
Video Frame Interpolation,” 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019,
pp. 3698-3707, doi: 10.1109/CVPR.2019.00382.

[51] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of 101 human
actions classes from videos in the wild. In CRCV-TR-12-01, 2012.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[53] Samsung Electronics America. 2020. Motion Smoothing And
The Soap Opera Effect On Samsung Tvs. [online] Available
at: ¡https://www.samsung.com/us/support/answer/ANS00080741/¿
[Accessed 5 May 2020].

[54] Trumotion Overview — LG Canada. [online] Lg.com. Avail-
able at: ¡https://www.lg.com/ca en/support/product-help/CT32004644-
1411521672907-others¿ [Accessed 5 May 2020].

[55] H. Li, Y. Yuan and Q. Wang, ”Video Frame Interpolation Via Residue
Refinement,” ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain,
2020, pp. 2613-2617, doi: 10.1109/ICASSP40776.2020.9053987.

[56] S. Niklaus and F. Liu (2020). Softmax Splatting for Video Frame
Interpolation.

[57] J. Janai, F. Guney, J. Wulff, M. Black, and ¨ A. Geiger. Slow Flow:
Exploiting High-Speed Cameras for Accurate and Diverse Optical Flow
Reference Data. In IEEE Conference on Computer Vision and Pattern
Recognition, 2017

[58] K. Laidi and M. Nibouche, ”On the Performance of FPGA Implemen-
tation of Block Matching Algorithms for Video Motion Estimation.,”
2018 International Conference on Electrical Sciences and Technologies
in Maghreb (CISTEM), Algiers, 2018, pp. 1-5, doi: 10.1109/CIS-
TEM.2018.8613430.

[59] H. Amirpour, A. Mousavinia and N. Shamsi, ”Predictive Three Step
Search (PTSS) algorithm for motion estimation,” 2013 8th Iranian
Conference on Machine Vision and Image Processing (MVIP), Zanjan,
2013, pp. 48-52, doi: 10.1109/IranianMVIP.2013.6779948.

[60] H. Amirpour, A. Mousavinia and N. Shamsi, ”Predictive Three Step
Search (PTSS) algorithm for motion estimation,” 2013 8th Iranian
Conference on Machine Vision and Image Processing (MVIP), Zanjan,
2013, pp. 48-52, doi: 10.1109/IranianMVIP.2013.6779948.

[61] Lap-Pui Chau and Xuan Jing, ”Efficient three-step search algorithm
for block motion estimation in video coding,” 2003 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 2003.
Proceedings. (ICASSP ’03)., Hong Kong, 2003, pp. III-421, doi:
10.1109/ICASSP.2003.1199501.

[62] Shan Zhu and Kai-Kuang Ma, ”A new diamond search algorithm for
fast block matching motion estimation,” Proceedings of ICICS, 1997
International Conference on Information, Communications and Signal
Processing. Theme: Trends in Information Systems Engineering and
Wireless Multimedia Communications (Cat., Singapore, 1997, pp. 292-
296 vol.1, doi: 10.1109/ICICS.1997.647106.

[63] Reoxiang Li, Bing Zeng and M. L. Liou, ”A new three-step search
algorithm for block motion estimation,” in IEEE Transactions on Circuits
and Systems for Video Technology, vol. 4, no. 4, pp. 438-442, Aug.
1994, doi: 10.1109/76.313138.

[64] X.Xu, L.Siyao, W.Sun, Q.Yin and M.Yang, ”Quadratic video interpola-
tion,” in arxiv.org/abs/1911.00627, 2019

[65] Songhyun Yu and Jechang Jeong, ”Multidirectional motion estimation
algorithm for frame rate up-conversion,” MATEC Web Conf. Volume
125, 2017, 21st International Conference on Circuits, Systems, Com-
munications and Computers (CSCC 2017)

[66] J.Zhai, K.Yu, J.Li, S.Li, ”A low complexity motion compensated frame
interpolation method,” in 2005 IEEE International Symposium on Cir-
cuits and Systems

[67] H.Yin, X.Fang, H.Yang, S.Yu, X.Yang, ”Motion Vector Smoothing for
True Motion Estimation,” in 2006 IEEE International Conference on
Acoustics Speech and Signal Processing Proceedings

[68] M. Bierling, ”Displacement Estimation By Hierarchical Blockmatching,”
Proc. SPIE 1001, Visual Communications and Image Processing ’88:
Third in a Series, (25 October 1988)

[69] C.-L. Huang and T.-T. Chai, ”Motion-compensated interpolation for scan
rate up-conversion”, Optical Engineering, vol. 35, no. 1, pp. 166-176,
Jan. 1996.

[70] J. Benois-Pineau and H. Nicolas, ”A new method for region-based
depth ordering in a video sequence: Application to frame interpolation”,
Journal of Visual Communication and Image Representation, vol. 13, pp.
363-385, 2002.

[71] D. Wang, A. Vincent, P. Blanchfield and R. Klepko, ”Motion-
Compensated Frame Rate Up-Conversion—Part II: New Algorithms for
Frame Interpolation,” in IEEE Transactions on Broadcasting, vol. 56,
no. 2, pp. 142-149, June 2010, doi: 10.1109/TBC.2010.2043895.

[72] D. Hui-Ping, Y. Li, X. Wei, H. Qing-Di and L. Rong, ”Adaptive Inter-
polation/Extrapolation and Motion Vector Processing Method for Frame
Rate Up Conversion,” 2009 Fifth International Conference on Image and
Graphics, Xi’an, Shanxi, 2009, pp. 18-22, doi: 10.1109/ICIG.2009.167.

[73] Teahyung Lee and D. V. Anderson, ”Architecture for Hierarchical Block
Motion Estimation Using Variable Block Sizes,” 2006 IEEE Interna-
tional Conference on Acoustics Speech and Signal Processing Proceed-
ings, Toulouse, 2006, pp. III-III, doi: 10.1109/ICASSP.2006.1660815.

[74] T. Sebastian and J. Anitha, ”Hybrid hierarchical search motion estima-
tion for Video Compression,” 2016 2nd International Conference on Ad-
vances in Electrical, Electronics, Information, Communication and Bio-
Informatics (AEEICB), Chennai, 2016, pp. 88-92, doi: 10.1109/AEE-
ICB.2016.7538403.

[75] W. Bao, X. Zhang, L.Chen, L.Ding, Z.Gao, ”High-Order Model and Dy-
namic Filtering for Frame Rate Up-Conversion,” in IEEE Transactions
on Image Processing (Volume: 27 , Issue: 8 , Aug. 2018)

[76] J. Gracewell, M. John, ”Motion Compensation based Multiple Inter
Frame Interpolation”, in 2016 International Conference on Signal Pro-
cessing and Communication (ICSC)

[77] A. Mercat, M. Viitanen, and J. Vanne, “UVG dataset: 50/120fps 4K
sequences for video codec analysis and development,” Accepted to ACM
Multimedia Syst. Conf., Istanbul, Turkey, June 2020.

[78] Z. Wang ; A.C. Bovik ; H.R. Sheikh ; E.P. Simoncelli, ”Image qual-
ity assessment: from error visibility to structural similarity,” in IEEE
Transactions on Image Processing (Volume: 13 , Issue: 4 , April 2004)

