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The libbitcoin-database database primitives are: 

• Array 

• Blob 

• Hashmap 

• Multimap 

The primary implementation is over a set of memory mapped files. These produce very rapid read/write 

response given sufficient available RAM. This is ideal for high performance applications that require peak 

performance. However for wallet scenarios it is not always ideal. Memory map fault recovery requires 

append-only writes and a snapshotting system. This results in greater storage utilization than logically 

necessary. Furthermore paging costs can be high on low memory systems. To bridge these differences we 

design the store with an interface that can support a replaceable back end. 

 

 



SQL Option 
The mmap tables do not map perfectly to a set of standard relational tables, as the design is optimized for 

domain-specific constant time queries, compact storage, in-memory offset navigation, and append-only write 

operations. However, the design is strictly relational. With a little care this will give us the ability to drop in an 

in-process relational database (such as SQLite, a public domain C library) behind the query interface. 

SQLite is a C-language library that implements a small, fast, self-contained, high-

reliability, full-featured, SQL database engine. SQLite is the most used database 

engine in the world. SQLite is built into all mobile phones and most computers and 

comes bundled inside countless other applications that people use every day. 

The primary advantage of SQLite is the opportunity to perform dynamic compression and pruning, while also 

providing good fault tolerance and relational query support. This is ideal for a wallet scenario, especially on 

limited resource devices (in which case the engine is likely to be preinstalled). The mmap store is highly-

optimized for mining and blockchain navigation servers, but requires explicit indexation for additional query 

support. General query is not at all required for mining, but can be very useful in wallet scenarios. The main 

disadvantage is the performance overhead. Concurrent read is supported, but concurrent writers are not. 

This only materially affects the bootstrap period(s). The snapshot operation requires write cessation, just as 

with the mmap design. 

With this in mind the following sections relate the mmap table design to implementation in a relational 

database. No tradeoffs have propagated to the mmap design, it is fully optimized for its own requirements. 

file:///C:/Users/Eric%20Voskuil/AppData/Roaming/Microsoft/Word/sqlite.org


Navigation (mmap and SQL) 

Keys 
Primary Key (PK) 

An arbitrary (database generated) unique row reference. 

Foreign Key (FK) 

A reference to the PK of another table. Foreign keys to record tables are exposed to public query iteration. 

Slab keys cannot be guarded, so parent FK or instance NK values are returned instead. 

Natural Key (NK) 

A value derived from the properties of a row, that unique identifies the row. The only natural keys exposed 

by the blockchain, and therefore the store, are block (header) hash and transaction hash, with input/output 

offset providing a public refinement of transaction hash to obtain the contained object by relative position. 

The coinbase transaction of a block is obtained from the first iterator element of a txs search. 

Search Key (SK) 

A value that is indexed for table search. A value is provided to the hashmap search function to retrieve 

elements with a matching SK. A hashmap returns 0..1 matching elements, while a multimap returns an 

iterator over 0..n matching elements. 

Composite Key (CK) 

A composite key is a search key that operates over more than one property of a row. 

Natural Point (NP) 

A natural point is a composite key (CK) consisting of a transaction hash (NK) and an input or output ordinal 

positional (index) within that transaction. This uniquely identifies an input or output. 

Foreign Point (FP) 

A foreign point is a composite key (CK) consisting of a transaction FK and an input or output ordinal positional 

(index) within that transaction. This is an efficient hybrid form of a NP. 

Joins 
Pointed arrows denote FK navigation. These do not pass through a search (hash) function and instead 

traverse links (converted to memory pointers) to the record or slab offset within a table. Unpointed arrows 

denote table navigation via SK, which transits a hash table header. Where these are of the form SK_table_FK 

both search of the key and link from it are available. A public search is entered by NK. Follow-on mmap 

navigation relies on either link navigation by FK or search by FK. SQL navigation relies on table joins between 

foreign and search keys, which requires storage of a PK value in associated tables. The mmap tables do not 

store their own PKs, relying instead on record and slab file offsets, though the hash tables pay a comparable 

cost in link storage. 



Objects In 
There are only two initial entry points to the store, Header and Transaction NK (hash) search, as these are the 

only natural keys exposed by the chain. Additionally, outputs may be reached through optional address 

indexing by script hash (the NK of any output), transactions may be reached by optional compact hash 

indexing, and following confirmation, a header may also be reached by confirmed height. 

There are also only two points at which FK search is required to navigate the archive, Header->Txs and 

Output->Input. This is a necessary condition of headers first processing of blocks (headers are archived 

before their transactions arrive) and of concurrent download and validation (outputs may be archived before 

their spending inputs). The append-only nature of the store combined with out-of-order arrival requires that 

these two associations be deferred, which requires search. 

Txs Table 
The Txs set for a given block is read as a single slab. This reduces the size of an otherwise multimap by 

eliminating link traversal for every transaction_FK in a block. Slab storage of this association does not 

increase the link size for the table over use of a multimap, but eliminates 699,300,000 4 byte links (one per 

block vs. one per transaction). 

Point Table 
In the wire serialization, input references to outputs contain the output’s transaction hash. This is collapsed 

into the Point table so that only one instance of the hash is retained for all spenders of the transaction’s 

outputs. With an average of two outputs per transaction, this reduces the instance of transaction hash 

storage by 1/3, a savings of ~17GB. Collapsing to a single storage is possible, but due to parallelism this 

introduces complexity to avoid at this point. The Point table is prunable along with the inputs and outputs, 

when a transaction is fully spent. 

If there is no entry in the table for a given transaction hash, no outputs of the transaction are yet spent. 

Otherwise the Input table is searched by FP for all spends of the output. There is an archival race between 

Point and Transaction/Input, so it’s possible that no spender may yet be located despite a point, which is ok. 

This optimization can be deferred, placing the point hash directly into the input and defining the input search 

key as a natural point (NP) as opposed to a foreign point (FP). 

Archival 
Header archival writes a single table row. Block and transaction archivals are performed independently, with 

header archival first. 

Transactions may be archived before or after an associating header (and may never become associated). 

Transaction commitment is ordered such that none of its data is reachable until fully populated. The final 

commit is the Hash table, which exposes the transaction to search by its NK. 

Block association of transactions always performed with the header and transactions already archived. Block 

association is a single row in the Txs table, atomically linked. Once it is linked the block is populated and fully 

reachable by its NK. 



 

In this diagram (only) arrows denote the derivation of FKs for archival (i.e. the reverse of navigation). 

Transaction Commit 
Ordered archival ensures that no object is archived until it is fully composed, allowing it to be navigated upon 

an atomic pointer swap in an index exposed to NK search. Headers and Txs are single rows, with Txs only 

committed the block header and all of its transactions. Transactions include circular references, as inputs and 

outputs contain their composing transaction’s FK for reverse navigation. This presents a complexity in their 

commit. 

The transaction is allocated, which produces its FK, but commit is deferred. Then its components are 

committed in reverse order, propagating FKs back to the transaction. Subsequently the transaction is written 

and committed. However, Input is searchable by its previous output FP. So by committing in order this would 

expose an untraversable link (to the uncommitted transaction). As the memory is allocated the link is safe, 

however the transaction must be serialized by the time the input is committed. So the order is as follows: 

• Allocate Transaction, obtain FK (non-navigable/searchable). 

• Write and commit Output table, using transaction_FK, and obtain FKs (non-navigable). 

• Write and commit Point (hash) as necessary, and obtain FK (can search Input, but not found). 

• Write Input table, using transaction_FK and prevout_FK, and obtain FKs (non-navigable/searchable). 

• Write and commit Puts table, using input and output FKs, obtain two FKs (non-navigable). 

• Write Transaction, using Puts FKs and their count (navigable/non-searchable). 

• Commit Inputs (searchable, with navigation to transaction). 

• Commit Transaction (searchable). 

By deferring commit of Transaction until after Input commit it is ensured that if a transaction exists its spends 

are navigable. Otherwise we could locate a spending transaction and not find its spends. This implies a simple 

two-phase commit capability be exposed by the hashmap implementation on a per element basis, which 

already exists. The write phase is internally isolated from the atomic swap (commit phase). 

https://en.wikipedia.org/wiki/Two-phase_commit_protocol


Objects Out 
Block and transaction store deserialization consists of straightforward navigation of FKs, with the sole 

exception of the Block=>Txs search on header_FK. This search returns 0..1 results, and provides the full and 

ordered set of transaction_FK values (4 bytes each) for follow-on FK navigation. There is no other archival 

data apart from what makes up a block. 

 

Deserialization of blockchain objects. 



Validation 
The validation chaser first queries for block invalidity at the given height in the candidate chain. Otherwise if 

the block is not accepted it checks all transactions for validated state. If an invalid transaction is found the 

block is invalidated. Otherwise unvalidated transactions are obtained from (1) memory cache, (2) disk cache 

(as shown), or deserialized. Each prevout that is not populated on the transaction (from cache) is then 

deserialized (see get_prevout subquery). Then a validation job is created for each transaction, with results 

collected by the validator. 

UTXO Cache vs. Index 
An unspent output cache is an index of unspent outputs, potentially reproducing their sizable payload. To 

recover an output requires a NP search (hash:index) identical in practice to searching for the output spent by 

an input, with the input indexed on its spend NP as opposed to the output indexed on its own NP. 

 

Validation chaser queries. 

 



Confirmation 
The confirmation chaser follows deorganization of any pending fork. It first queries for block invalidity at the 

given height in the candidate chain. Otherwise if the block is accepted and not yet valid (from a previous 

reorganization and subsequent organization), it checks all outputs for confirmability. 

 

Confirmation chaser queries. 

The process is straightforward, as forked blocks have been deconfirmed at this point. All previous outputs are 

checked for confirmed state and all spenders of the outputs are checked for non-confirmed state. As the 

result of static double spend checks, there is no checking outputs that are within the block. These are all to-

be-confirmed and are not double spent within the block. Height is preserved in the confirmation state, which 

provides for checking the confirmed-ness of coinbase prevouts (must be 100 blocks deep). 

The diagram above shows abbreviated navigation through optional mining optimization tables. These index 

previously-queried input->output (get_prevout) and output=>inputs (get_spenders) relations. If these are 

not active (or not implemented) the two natural queries are used instead. These two indexes constitute 

~50GB of storage at 700k blocks, but are optional. 

Spend Index (vs. get_prevout) 
During validation a transaction must at some point read the prevout for each of its inputs. These are 

populated upon transaction arrival, at which point the Spend index may be written. However in the case of 

block download (vs. pool) the prevout set may be incomplete. A partial set can be written, with others 

written as the prevouts arrive, until the final arrival results in transaction accept invocation. If the prevout 

never arrives this is trapped as invalidity by the validation chaser. So the Spend index is guaranteed by 

confirmation chaser arrival, for all transactions in each candidate block. However it’s not obvious that the 

Spend index will actually be a net improvement in performance of the natural query, as it trades one NK 

search for a write and a FK search. 



Spender Index (vs. get_spenders) 
Double spenders are never obtained during validation, so there is no point in which the information 

necessary to populate the Spenders index would be at hand. If the information was available, it would be 

sufficiently accumulated by the arrival of the validation chaser, but it may be over-accumulated by higher 

candidate blocks, so spender height would need to be cached with each record. The trade would replace one 

NK and one FP search with an index write and FK search, so also not an obvious win. 

 

The get_prevout subquery 

This query is simpler in the mmap model than it appears above. There is no composite key join on the output 

object. This merely shows the data relations clearly. The spender uses its point_FK to obtain the prevout 

transaction by NK query, then navigates to the index of the intended previous output, and finally to the 

output. This is straightforward link navigation coupled with one NK search. 

 

 

The get_spenders subquery 

To obtain spenders of the output, the point table is queried with the transaction hash of the output. A FP is 

then constructed from the point_FK and the output’s index, and Inputs is then searched for all spenders of 

the output represented by the FP. 



Organization 
Organization and reorganization of blocks is straightforward. States are merely set or unset (hidden) on the 

block and transaction objects. 

 

Confirmation and deconfirmation of blocks and transactions. 

The first and last associations in each path are never searched. Changing confirmation states requires only a 

write, no read, as the previous entry is just hidden. Though writing an entry does require the hash function 

and offset computation, it avoids navigation of the conflict list. The second search could be avoided in each 

by storing the Txs FK in the confirmed height array, and by rewriting the candidate height with Txs FK values 

once they are populated (height indexes are mutable). 



Other Optionals 
Other tables provide optional features (Address indexation, Utreexo proofs, Neutrino filters) and 

performance optimizations. The performance optimizations are bootstrap acceleration with DoS protection, 

compact block validation acceleration, and tx buffering to reduce RAM consumption during concurrent block 

validation. Input and output to transaction indexes are also optional optimizations (see Confirmation). 



Table Data Structures (mmap) 
The following data structures are applied to a memory map using a set of simple templates, called primitives. 

These consist of a hash table template, hash table header template, record, multimap, and slab manager 

templates, and list, list element and list iterator templates. 

List templates implement the hash conflict stack (as a singly-linked list), managers implement link-to-pointer 

mapping, the header implements hash buckets, and the table combines the various templates with one or 

two file objects. The managers control atomic memory swaps for element insertion and provide 

reader/writer byte streams for callers. 

All writes with the exception of the two height indexes and hash table headers are append only. By isolating 

all headers and these indexes to index (.idx) files, and retaining all bodies in independent files, we can 

provide fault recovery (with store writes acquiesced) by copying the rather small set of index files (3% to 4% 

of body storage depending on configuration). We perform an swap of previous snapshots with an atomic file 

system rename operation. 

These are variations of code used in the previous two releases of libbitcoin, so we have quite a bit of 

experience with their operation over mmap. They are simple and well-tested, though some minor 

modifications are required to implement pure append-only as intended. 



Array Table 
The array is the simplest table. The header is a position value, indicating the write point, which is also the 

logical body size. The array is the only not inherently append only table, though it is also used in that manner. 

 

In the current state of the table: 

• get[3].value = beer 

These are used for height indexing, and the block at any given height may change through reorganization. 

These are very small bodies, smaller than other headers. So we simply snapshot the entire table for recovery, 

storing both header and body in the same file and memory map. Despite the presentation limits, value sizes 

are not multiples of links sizes and can be any byte-delimited size. The table is resized to the corresponding 

byte offset before the file is closed. 



Blob Table 
A blob is similar to an array, but must be externally indexed. As value fields are not length prefixed, an empty 

value is not storable. The header is a position value, indicating the write point, which is also the logical body 

size. 

 

In the current state of the table: 

• get[88].value = eggplant 

As value fields are not length prefixed, an empty value is not storable, typically varint is used to determine 

size. Despite the presentation limits, value sizes are not multiples of links sizes and can be any byte-delimited 

size. The table is resized to the corresponding byte offset before  the file is closed. 



Record Hashmap 
The hashmap is a basic hash table with fixed-size values. We use the name hashmap to avoid conflict with the 

term “table”, which is used to refer to all header/data pairings. 

 

In the example we have a poor hash function. It ignores the first character of the search key (key). The key 

size is a constant byte length, in this case four bytes. Because of the hash function, any two keys with the 

same last three characters are hash collisions. However, if they have all same characters the treatment is the 

same as far as the header is concerned. 

The previous “head” link (from the bucket) is assigned to the new element's “next” link. If the bucket is 

empty then this is the sentinel value. Then the position (link) of the new element is written to the bucket. 

This results in a linked list that forms a stack, with the top position retained in the bucket. A preallocated 

record is assigned to the writer and then the pair of links is swapped, making the record searchable. 

  



In the current state of the table: 

• get[1].value = candy 

• get[link(baad)].value = eggplant 

• search(abcd).value = veggies 

• search(good).value = beer 

• key(5) = abcd 

• link(abcd) = 5 

• link(key(5)) = 5 

• key(link(abcd)) = abcd 

Note that the key (SK) and link (FK) are exposed as properties of the record. A call to get[FK] bypasses the 

hash search and is mapped directly to the element. So the table operates as a key-link bimap, in addition to 

retaining values associated with either. 

Despite the presentation limits, value sizes are not multiples of links sizes and cany be any byte-delimited 

size. 



Record Multimap 
The multimap is a record hashmap with a logical stack of values per key. The stack is implemented using the 

same list iterator as the deconfliction stack. A multimap doesn't support logical delete, as values cannot be 

removed from the middle of a value stack. They could be logically popped, although that is not an envisioned 

use of the multimap. 

 

In the example we have the same poor hash function. 

Instead of the table iterating the deconfliction list, an iterator over the deconfliction list is returned to the 

caller. This iterator simply skips over non-matching elements, returning the value for each matched key. 

Apart from conflicts the number of table entries does not affect search cost. The only distinction from a 

hashmap is return of multiple possible matches vs. only the first. 

  



In the current state of the table: 

• get[1].values = candy 

• get[7] = fruit, veggies, candy (conflict stack) 

• get[link(baad)].values = eggplant 

• search(abcd).values = veggies, candy (value stack) 

• search(good).values = beer 

• key(5) = abcd 

• link(abcd) = 5 

• link(key(5)) = 5 

• key(link(abcd)) = abcd 

Notice that element 1 is searchable, while in the hashmap it was hidden. Also notice that search(abcd) 

bypasses “bbcd” as a hash conflict. The search list can be also entered and iterated from any FK position, such 

as get[7], though all conflicts are iterated. 

Despite the presentation limits, value sizes are not multiples of links sizes and cany be any byte-delimited 

size. 



Slab Hashmap 
The slab hashmap is nearly identical to the record hashmap, with the exception that values are variably-sized. 

As a consequence, all links are byte offsets, vs. record offsets. This causes the link domain to be consumed 

much faster, causing FKs to be larger. This is an impact on other tables that retain the keys. So records are 

preferrable where possible. The only slabs in archive data are scripts/witnesses and txs association. 

 

In the example we have the same poor hash function. 

  



In the current state of the table: 

• get[28].value = candy 

• get[link(dood)].value = milk 

• search(good).value = beer 

• search(dood).value = milk 

• search(abcd).value = veggies 

• key(184) = abcd 

• link(abcd) = 184 

• link(key(184)) = 184 

• key(link(abcd)) = abcd 

As value fields are not length prefixed, an empty value is not storable, typically varint is used to determine 

size. Despite the presentation limits, value sizes are not multiples of links sizes and cany be any byte-

delimited size. The table is resized to the corresponding byte offset before  the file is closed. 



Files 

Header Files (.idx) 
• archive_header.idx 

• archive_input.idx 

• archive_output.idx 

• archive_point.idx 

• archive_puts.idx 

• archive_transaction.idx 

• archive_txs.idx 

•  

• candidate_height.idx 

• confirmed_block.idx 

• confirmed_height.idx 

• confirmed_tx.idx 

•  

• option_address.idx 

• option_bootstrap.idx 

• option_buffer.idx 

• option_compact.idx 

• option_neutrino.idx 

• option_spend.idx 

• option_spenders.idx 

• option_utreexo.idx 

•  

• validated_block.idx 

• validated_tx.idx 

Body Files (.dat) 
• archive_header.dat 

• archive_input.dat 

• archive_output.dat 

• archive_point.dat 

• archive_puts.dat 

• archive_transaction.dat 

• archive_txs.dat 

•  

• confirmed_block.dat 

• confirmed_tx.dat 

•  

• option_address.dat 

• option_bootstrap.dat 

• option_buffer.dat 

• option_compact.dat 

• option_neutrino.dat 

• option_spend.dat 

• option_spenders.dat 

• option_utreexo.dat 

•  

• validated_block.dat 

• validated_tx.dat 

 



Notes 
These MS Access table mock-ups can be populated with blockchain data, and defined queries against the 

tables can emit SQL statements for single table and joined queries. Following a detailed definition of each 

required query we can ensure that the design is complete and supported by SQLite. We may want to develop 

this support concurrently with the mmap design, and also investigate the requirements of an NVRAM store. 

https://en.wikipedia.org/wiki/Non-volatile_random-access_memory
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