
Simple Directmedia Layer 3.1.2 Reference Manual

The SDL Developers

May 5, 2024

ii

Chapter 1

SDL Functions

1

2 CHAPTER 1. SDL FUNCTIONS

SDL acos

Compute the arc cosine of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_acos(double x);

Function Parameters

x floating point value

Return Value

Returns arc cosine of x, in radians

Remarks

The definition of y = acos(x) is x = cos(y).
Domain: -1 <= x <= 1

Range: 0 <= y <= Pi

This function operates on double-precision floating point values, use SDL acosf
for single-precision floats.

This function may use a different approximation across different versions,
platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Code Examples

/* acos(x) = Pi/2 - asin(x) */

SDL_Log("acos(0):\t\t%f", SDL_acos(0.));

SDL_Log("Pi/2 - asin(0):\t%f", SDL_PI_D / 2 - SDL_asin(0));

/* acos(-x) = Pi - acos(x) */

SDL_Log("acos(-(-1)):\t%f", SDL_acos(-(-1)));

SDL_Log("Pi - acos(-1):\t%f", SDL_PI_D - SDL_acos(-1));

Thread Safety

It is safe to call this function from any thread.

SDL ACOS 3

Version

This function is available since SDL 3.0.0.

See Also

� SDL acosf

� SDL asin

� SDL cos

4 CHAPTER 1. SDL FUNCTIONS

SDL acosf

Compute the arc cosine of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_acosf(float x);

Function Parameters

x floating point value.

Return Value

Returns arc cosine of x, in radians

Remarks

The definition of y = acos(x) is x = cos(y).
Domain: -1 <= x <= 1

Range: 0 <= y <= Pi

This function operates on single-precision floating point values, use SDL acos
for double-precision floats.

This function may use a different approximation across different versions,
platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL acos

� SDL asinf

� SDL cosf

SDL ACQUIRECAMERAFRAME 5

SDL AcquireCameraFrame

Acquire a frame.

Header File

Defined in SDL3/SDL camera.h

Syntax

SDL_Surface * SDL_AcquireCameraFrame(SDL_Camera *camera, Uint64

*timestampNS);

Function Parameters

camera opened camera device
timestampNS a pointer filled in with the frame’s timestamp, or 0 on error.

Can be NULL.

Return Value

Returns A new frame of video on success, NULL if none is currently available.

Remarks

The frame is a memory pointer to the image data, whose size and format are
given by the spec requested when opening the device.

This is a non blocking API. If there is a frame available, a non-NULL surface
is returned, and timestampNS will be filled with a non-zero value.

Note that an error case can also return NULL, but a NULL by itself is
normal and just signifies that a new frame is not yet available. Note that even
if a camera device fails outright (a USB camera is unplugged while in use, etc),
SDL will send an event separately to notify the app, but continue to provide
blank frames at ongoing intervals until SDL CloseCamera() is called, so real
failure here is almost always an out of memory condition.

After use, the frame should be released with SDL ReleaseCameraFrame().
If you don’t do this, the system may stop providing more video!

Do not call SDL FreeSurface() on the returned surface! It must be given
back to the camera subsystem with SDL ReleaseCameraFrame!

If the system is waiting for the user to approve access to the camera, as some
platforms require, this will return NULL (no frames available); you should either
wait for an SDL EVENT CAMERA DEVICE APPROVED (or SDL EVENT CAMERA DEVICE DENIED)
event, or poll SDL IsCameraApproved() occasionally until it returns non-zero.

6 CHAPTER 1. SDL FUNCTIONS

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ReleaseCameraFrame

SDL ADDEVENTWATCH 7

SDL AddEventWatch

Add a callback to be triggered when an event is added to the event queue.

Header File

Defined in SDL3/SDL events.h

Syntax

int SDL_AddEventWatch(SDL_EventFilter filter, void *userdata);

Function Parameters

filter an SDL EventFilter function to call when an event happens.
userdata a pointer that is passed to filter

Return Value

Returns 0 on success, or a negative error code on failure; call SDL GetError()
for more information.

Remarks

filter will be called when an event happens, and its return value is ignored.
WARNING: Be very careful of what you do in the event filter function, as it
may run in a different thread!

If the quit event is generated by a signal (e.g. SIGINT), it will bypass the
internal queue and be delivered to the watch callback immediately, and arrive
at the next event poll.

Note: the callback is called for events posted by the user through SDL PushEvent(),
but not for disabled events, nor for events by a filter callback set with SDL SetEventFilter(),
nor for events posted by the user through SDL PeepEvents().

Version

This function is available since SDL 3.0.0.

See Also

� SDL DelEventWatch

� SDL SetEventFilter

8 CHAPTER 1. SDL FUNCTIONS

SDL AddGamepadMapping

Add support for gamepads that SDL is unaware of or change the binding of an
existing gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_AddGamepadMapping(const char *mapping);

Function Parameters

mapping the mapping string

Return Value

Returns 1 if a new mapping is added, 0 if an existing mapping is updated, -1
on error; call SDL GetError() for more information.

Remarks

The mapping string has the format ”GUID,name,mapping”, where GUID is the
string value from SDL GetJoystickGUIDString(), name is the human readable
string for the device and mappings are gamepad mappings to joystick ones.
Under Windows there is a reserved GUID of ”xinput” that covers all XInput
devices. The mapping format for joystick is:

� bX: a joystick button, index X

� hX.Y: hat X with value Y

� aX: axis X of the joystick

Buttons can be used as a gamepad axes and vice versa.
This string shows an example of a valid mapping for a gamepad:

"341a3608000000000000504944564944,Afterglow PS3

Controller,a:b1,b:b2,y:b3,x:b0,start:b9,guide:b12,back:b8,dpup:h0.1,dpleft:h0.8,dpdown:h0.4,dpright:h0.2,leftshoulder:b4,rightshoulder:b5,leftstick:b10,rightstick:b11,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:b6,righttrigger:b7"

Version

This function is available since SDL 3.0.0.

SDL ADDGAMEPADMAPPING 9

See Also

� SDL GetGamepadMapping

� SDL GetGamepadMappingForGUID

10 CHAPTER 1. SDL FUNCTIONS

SDL AddGamepadMappingsFromFile

Load a set of gamepad mappings from a file.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_AddGamepadMappingsFromFile(const char *file);

Function Parameters

file the mappings file to load

Return Value

Returns the number of mappings added or -1 on error; call SDL GetError() for
more information.

Remarks

You can call this function several times, if needed, to load different database
files.

If a new mapping is loaded for an already known gamepad GUID, the later
version will overwrite the one currently loaded.

Mappings not belonging to the current platform or with no platform field
specified will be ignored (i.e. mappings for Linux will be ignored in Windows,
etc).

Version

This function is available since SDL 3.0.0.

See Also

� SDL AddGamepadMapping

� SDL AddGamepadMappingsFromIO

� SDL GetGamepadMapping

� SDL GetGamepadMappingForGUID

SDL ADDGAMEPADMAPPINGSFROMIO 11

SDL AddGamepadMappingsFromIO

Load a set of gamepad mappings from an SDL IOStream.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_AddGamepadMappingsFromIO(SDL_IOStream *src, SDL_bool closeio);

Function Parameters

src the data stream for the mappings to be added
closeio if SDL TRUE, calls SDL CloseIO() on src before returning,

even in the case of an error

Return Value

Returns the number of mappings added or -1 on error; call SDL GetError() for
more information.

Remarks

You can call this function several times, if needed, to load different database
files.

If a new mapping is loaded for an already known gamepad GUID, the later
version will overwrite the one currently loaded.

Mappings not belonging to the current platform or with no platform field
specified will be ignored (i.e. mappings for Linux will be ignored in Windows,
etc).

This function will load the text database entirely in memory before pro-
cessing it, so take this into consideration if you are in a memory constrained
environment.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AddGamepadMapping

� SDL AddGamepadMappingsFromFile

12 CHAPTER 1. SDL FUNCTIONS

� SDL GetGamepadMapping

� SDL GetGamepadMappingForGUID

SDL ADDHINTCALLBACK 13

SDL AddHintCallback

Add a function to watch a particular hint.

Header File

Defined in SDL3/SDL hints.h

Syntax

int SDL_AddHintCallback(const char *name,

SDL_HintCallback callback,

void *userdata);

Function Parameters

name the hint to watch
callback An SDL HintCallback function that will be called when the

hint value changes
userdata a pointer to pass to the callback function

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL DelHintCallback

14 CHAPTER 1. SDL FUNCTIONS

SDL AddTimer

Call a callback function at a future time.

Header File

Defined in SDL3/SDL timer.h

Syntax

SDL_TimerID SDL_AddTimer(Uint32 interval,

SDL_TimerCallback callback,

void *param);

Function Parameters

interval the timer delay, in milliseconds, passed to callback

callback the SDL TimerCallback function to call when the specified
interval elapses

param a pointer that is passed to callback

Return Value

Returns a timer ID or 0 if an error occurs; call SDL GetError() for more infor-
mation.

Remarks

If you use this function, you must pass SDL INIT TIMER to SDL Init().
The callback function is passed the current timer interval and the user sup-

plied parameter from the SDL AddTimer() call and should return the next timer
interval. If the value returned from the callback is 0, the timer is canceled.

The callback is run on a separate thread.
Timers take into account the amount of time it took to execute the callback.

For example, if the callback took 250 ms to execute and returned 1000 (ms),
the timer would only wait another 750 ms before its next iteration.

Timing may be inexact due to OS scheduling. Be sure to note the current
time with SDL GetTicksNS() or SDL GetPerformanceCounter() in case your
callback needs to adjust for variances.

Code Examples

Uint32 my_callbackfunc_1(Uint32 interval, void *param) {

SDL_Event event;

SDL_UserEvent userevent;

SDL ADDTIMER 15

/* In this example, our callback pushes an SDL_EVENT_USER event

into the queue, and causes our callback to be called again at the

same interval: */

userevent.type = SDL_EVENT_USER;

userevent.code = 0;

userevent.data1 = NULL;

userevent.data2 = NULL;

event.type = SDL_EVENT_USER;

event.user = userevent;

SDL_PushEvent(&event);

return interval;

}

int my_callback_param;

/* Start the timer; the callback below will be executed after the delay

*/

Uint32 delay = ((33 + 5) / 10) * 10; /* To round it down to the nearest

10 ms */

SDL_TimerID my_timer_id = SDL_AddTimer(delay, my_callbackfunc_1,

&my_callback_param);

/* ... */

Note that it is possible to avoid the multithreading problems with SDL timers
by giving to userevent.data1 the address of a function you want to be executed
and to userevent.data2 its params, and then deal with it in the event loop.

void my_function(void *);

/* with the same code as before: */

Uint32 my_callbackfunc_2(Uint32 interval, void *param) {

SDL_Event event;

SDL_UserEvent userevent;

/* In this example, our callback pushes a function

into the queue, and causes our callback to be called again at the

same interval: */

userevent.type = SDL_EVENT_USER;

userevent.code = 0;

userevent.data1 = &my_function;

userevent.data2 = param;

event.type = SDL_EVENT_USER;

16 CHAPTER 1. SDL FUNCTIONS

event.user = userevent;

SDL_PushEvent(&event);

return(interval);

}

/* Now the event loop */

SDL_Event event;

while (SDL_PollEvent (&event))

{

switch(event.type)

{

case SDL_EVENT_USER: {

/* and now we can call the function we wanted to call in the

timer but couldn’t because of the multithreading

problems */

void (*p) (void*) = event.user.data1;

p(event.user.data2);

break;

}

/* ... */

}

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL RemoveTimer

SDL ADDVULKANRENDERSEMAPHORES 17

SDL AddVulkanRenderSemaphores

Add a set of synchronization semaphores for the current frame.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_AddVulkanRenderSemaphores(SDL_Renderer *renderer, Uint32

wait_stage_mask, Sint64 wait_semaphore, Sint64 signal_semaphore);

Function Parameters

renderer the rendering context
wait stage mask the VkPipelineStageFlags for the wait
wait semaphore a VkSempahore to wait on before rendering the current

frame, or 0 if not needed
signal semaphore a VkSempahore that SDL will signal when rendering for the

current frame is complete, or 0 if not needed

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The Vulkan renderer will wait for wait semaphore before submitting rendering
commands and signal signal semaphore after rendering commands are com-
plete for this frame.

This should be called each frame that you want semaphore synchronization.
The Vulkan renderer may have multiple frames in flight on the GPU, so you
should have multiple semaphores that are used for synchronization. Querying
SDL PROP RENDERER VULKAN SWAPCHAIN IMAGE COUNT NUMBER
will give you the maximum number of semaphores you’ll need.

Version

This function is available since SDL 3.0.0.

18 CHAPTER 1. SDL FUNCTIONS

SDL aligned alloc

Allocate memory aligned to a specific value.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

SDL_MALLOC void* SDL_aligned_alloc(size_t alignment, size_t size);

Function Parameters

alignment the alignment requested
size the size to allocate

Return Value

Returns a pointer to the aligned memory

Remarks

If alignment is less than the size of void *, then it will be increased to match
that.

The returned memory address will be a multiple of the alignment value, and
the amount of memory allocated will be a multiple of the alignment value.

The memory returned by this function must be freed with SDL aligned free()

Version

This function is available since SDL 3.0.0.

See Also

� SDL aligned free

SDL ALIGNED FREE 19

SDL aligned free

Free memory allocated by SDL aligned alloc().

Header File

Defined in SDL3/SDL stdinc.h

Syntax

void SDL_aligned_free(void *mem);

Version

This function is available since SDL 3.0.0.

See Also

� SDL aligned alloc

20 CHAPTER 1. SDL FUNCTIONS

SDL AllocateEventMemory

Allocate dynamic memory for an SDL event.

Header File

Defined in SDL3/SDL events.h

Syntax

void * SDL_AllocateEventMemory(size_t size);

Function Parameters

size the amount of memory to allocate

Return Value

Returns a pointer to the memory allocated or NULL on failure; call SDL GetError()
for more information.

Remarks

You can use this to allocate memory for user events that will be automatically
freed after the event is processed.

Version

This function is available since SDL 3.0.0.

SDL ANDROIDBACKBUTTON 21

SDL AndroidBackButton

Trigger the Android system back button behavior.

Header File

Defined in SDL3/SDL system.h

Syntax

void SDL_AndroidBackButton(void);

Version

This function is available since SDL 3.0.0.

22 CHAPTER 1. SDL FUNCTIONS

SDL AndroidGetActivity

Retrieve the Java instance of the Android activity class.

Header File

Defined in SDL3/SDL system.h

Syntax

void * SDL_AndroidGetActivity(void);

Return Value

Returns the jobject representing the instance of the Activity class of the Android
application, or NULL on error.

Remarks

The prototype of the function in SDL’s code actually declares a void* return
type, even if the implementation returns a jobject. The rationale being that the
SDL headers can avoid including jni.h.

The jobject returned by the function is a local reference and must be released
by the caller. See the PushLocalFrame() and PopLocalFrame() or DeleteLocal-
Ref() functions of the Java native interface:

https://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/functions.html

Code Examples

#include <SDL3/SDL.h>

#include <jni.h>

// This example requires C++ and a custom Java method named "void

showHome()"

// Calls the void showHome() method of the Java instance of the activity.

void showHome(void)

{

// retrieve the JNI environment.

JNIEnv* env = (JNIEnv*)SDL_AndroidGetJNIEnv();

// retrieve the Java instance of the SDLActivity

jobject activity = (jobject)SDL_AndroidGetActivity();

SDL ANDROIDGETACTIVITY 23

// find the Java class of the activity. It should be SDLActivity or

a subclass of it.

jclass clazz(env->GetObjectClass(activity));

// find the identifier of the method to call

jmethodID method_id = env->GetMethodID(clazz, "showHome", "()V");

// effectively call the Java method

env->CallVoidMethod(activity, method_id);

// clean up the local references.

env->DeleteLocalRef(activity);

env->DeleteLocalRef(clazz);

// Warning (and discussion of implementation details of SDL for

Android):

// Local references are automatically deleted if a native function

called

// from Java side returns. For SDL this native function is main()

itself.

// Therefore references need to be manually deleted because

otherwise the

// references will first be cleaned if main() returns (application

exit).

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL AndroidGetJNIEnv

24 CHAPTER 1. SDL FUNCTIONS

SDL AndroidGetExternalStoragePath

Get the path used for external storage for this application.

Header File

Defined in SDL3/SDL system.h

Syntax

const char * SDL_AndroidGetExternalStoragePath(void);

Return Value

Returns the path used for external storage for this application on success or
NULL on failure; call SDL GetError() for more information.

Remarks

This path is unique to your application, but is public and can be written to by
other applications.

Your external storage path is typically: /storage/sdcard0/Android/data/your.app.package/files.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AndroidGetExternalStorageState

SDL ANDROIDGETEXTERNALSTORAGESTATE 25

SDL AndroidGetExternalStorageState

Get the current state of external storage.

Header File

Defined in SDL3/SDL system.h

Syntax

int SDL_AndroidGetExternalStorageState(Uint32 *state);

Function Parameters

state filled with the current state of external storage. 0 if external
storage is currently unavailable.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The current state of external storage, a bitmask of these values: SDL ANDROID EXTERNAL STORAGE READ,
SDL ANDROID EXTERNAL STORAGE WRITE.

If external storage is currently unavailable, this will return 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AndroidGetExternalStoragePath

26 CHAPTER 1. SDL FUNCTIONS

SDL AndroidGetInternalStoragePath

Get the path used for internal storage for this application.

Header File

Defined in SDL3/SDL system.h

Syntax

const char * SDL_AndroidGetInternalStoragePath(void);

Return Value

Returns the path used for internal storage or NULL on failure; call SDL GetError()
for more information.

Remarks

This path is unique to your application and cannot be written to by other
applications.

Your internal storage path is typically: /data/data/your.app.package/files.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AndroidGetExternalStorageState

SDL ANDROIDGETJNIENV 27

SDL AndroidGetJNIEnv

Get the Android Java Native Interface Environment of the current thread.

Header File

Defined in SDL3/SDL system.h

Syntax

void * SDL_AndroidGetJNIEnv(void);

Return Value

Returns a pointer to Java native interface object (JNIEnv) to which the current
thread is attached, or 0 on error.

Remarks

This is the JNIEnv one needs to access the Java virtual machine from native
code, and is needed for many Android APIs to be usable from C.

The prototype of the function in SDL’s code actually declare a void* return
type, even if the implementation returns a pointer to a JNIEnv. The rationale
being that the SDL headers can avoid including jni.h.

Code Examples

#include <SDL3/SDL.h>

#include <jni.h>

// This example requires C++ and a custom Java method named "void

showHome()"

// Calls the void showHome() method of the Java instance of the activity.

void showHome(void)

{

// retrieve the JNI environment.

JNIEnv* env = (JNIEnv*)SDL_AndroidGetJNIEnv();

// retrieve the Java instance of the SDLActivity

jobject activity = (jobject)SDL_AndroidGetActivity();

// find the Java class of the activity. It should be SDLActivity or

a subclass of it.

jclass clazz(env->GetObjectClass(activity));

28 CHAPTER 1. SDL FUNCTIONS

// find the identifier of the method to call

jmethodID method_id = env->GetMethodID(clazz, "showHome", "()V");

// effectively call the Java method

env->CallVoidMethod(activity, method_id);

// clean up the local references.

env->DeleteLocalRef(activity);

env->DeleteLocalRef(clazz);

// Warning (and discussion of implementation details of SDL for

Android):

// Local references are automatically deleted if a native function

called

// from Java side returns. For SDL this native function is main()

itself.

// Therefore references need to be manually deleted because

otherwise the

// references will first be cleaned if main() returns (application

exit).

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL AndroidGetActivity

SDL ANDROIDREQUESTPERMISSION 29

SDL AndroidRequestPermission

Request permissions at runtime, asynchronously.

Header File

Defined in SDL3/SDL system.h

Syntax

int SDL_AndroidRequestPermission(const char *permission,

SDL_AndroidRequestPermissionCallback cb, void *userdata);

Function Parameters

permission The permission to request.
cb The callback to trigger when the request has a response.
userdata An app-controlled pointer that is passed to the callback.

Return Value

Returns zero if the request was submitted, -1 if there was an error submitting.
The result of the request is only ever reported through the callback, not this
return value.

Remarks

You do not need to call this for built-in functionality of SDL; recording from a
microphone or reading images from a camera, using standard SDL APIs, will
manage permission requests for you.

This function never blocks. Instead, the app-supplied callback will be called
when a decision has been made. This callback may happen on a different thread,
and possibly much later, as it might wait on a user to respond to a system dialog.
If permission has already been granted for a specific entitlement, the callback
will still fire, probably on the current thread and before this function returns.

If the request submission fails, this function returns -1 and the callback will
NOT be called, but this should only happen in catastrophic conditions, like
memory running out. Normally there will be a yes or no to the request through
the callback.

Version

This function is available since SDL 3.0.0.

30 CHAPTER 1. SDL FUNCTIONS

SDL AndroidSendMessage

Send a user command to SDLActivity.

Header File

Defined in SDL3/SDL system.h

Syntax

int SDL_AndroidSendMessage(Uint32 command, int param);

Function Parameters

command user command that must be greater or equal to 0x8000
param user parameter

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Override ”boolean onUnhandledMessage(Message msg)” to handle the message.

Version

This function is available since SDL 3.0.0.

SDL ANDROIDSHOWTOAST 31

SDL AndroidShowToast

Shows an Android toast notification.

Header File

Defined in SDL3/SDL system.h

Syntax

int SDL_AndroidShowToast(const char* message, int duration, int gravity,

int xoffset, int yoffset);

Function Parameters

message text message to be shown
duration 0=short, 1=long
gravity where the notification should appear on the screen.
xoffset set this parameter only when gravity ¿=0
yoffset set this parameter only when gravity ¿=0

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Toasts are a sort of lightweight notification that are unique to Android.
https://developer.android.com/guide/topics/ui/notifiers/toasts
Shows toast in UI thread.
For the gravity parameter, choose a value from here, or -1 if you don’t have

a preference:
https://developer.android.com/reference/android/view/Gravity

Version

This function is available since SDL 3.0.0.

32 CHAPTER 1. SDL FUNCTIONS

SDL AppEvent

App-implemented event entry point for SDL MAIN USE CALLBACKS apps.

Header File

Defined in SDL3/SDL main.h

Syntax

int SDL_AppEvent(void *appstate, const SDL_Event *event);

Function Parameters

appstate an optional pointer, provided by the app in SDL AppInit.
event the new event for the app to examine.

Return Value

Returns -1 to terminate with an error, 1 to terminate with success, 0 to continue.

Remarks

Apps implement this function when using SDL MAIN USE CALLBACKS. If
using a standard ”main” function, you should not supply this.

This function is called as needed by SDL after SDL AppInit returns 0; It is
called once for each new event.

There is (currently) no guarantee about what thread this will be called
from; whatever thread pushes an event onto SDL’s queue will trigger this func-
tion. SDL is responsible for pumping the event queue between each call to
SDL AppIterate, so in normal operation one should only get events in a serial
fashion, but be careful if you have a thread that explicitly calls SDL PushEvent.

Events sent to this function are not owned by the app; if you need to save
the data, you should copy it.

You do not need to free event data (such as the file string in SDL EVENT DROP FILE),
as SDL will free it once this function returns. Note that this is different than
one might expect when using a standard ”main” function!

This function should not go into an infinite mainloop; it should handle the
provided event appropriately and return.

The appstate parameter is an optional pointer provided by the app during
SDL AppInit(). If the app never provided a pointer, this will be NULL.

If this function returns 0, the app will continue normal operation, receiving
repeated calls to SDL AppIterate and SDL AppEvent for the life of the program.
If this function returns ¡ 0, SDL will call SDL AppQuit and terminate the process
with an exit code that reports an error to the platform. If it returns ¿ 0, the

SDL APPEVENT 33

SDL calls SDL AppQuit and terminates with an exit code that reports success
to the platform.

Thread Safety

This function is not thread safe.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AppInit

� SDL AppIterate

34 CHAPTER 1. SDL FUNCTIONS

SDL AppInit

App-implemented initial entry point for SDL MAIN USE CALLBACKS apps.

Header File

Defined in SDL3/SDL main.h

Syntax

int SDL_AppInit(void **appstate, int argc, char *argv[]);

Function Parameters

appstate a place where the app can optionally store a pointer for
future use.

argc The standard ANSI C main’s argc; number of elements in
argv

argv The standard ANSI C main’s argv; array of command line
arguments.

Return Value

Returns -1 to terminate with an error, 1 to terminate with success, 0 to continue.

Remarks

Apps implement this function when using SDL MAIN USE CALLBACKS. If
using a standard ”main” function, you should not supply this.

This function is called by SDL once, at startup. The function should initial-
ize whatever is necessary, possibly create windows and open audio devices, etc.
The argc and argv parameters work like they would with a standard ”main”
function.

This function should not go into an infinite mainloop; it should do any one-
time setup it requires and then return.

The app may optionally assign a pointer to *appstate. This pointer will
be provided on every future call to the other entry points, to allow application
state to be preserved between functions without the app needing to use a global
variable. If this isn’t set, the pointer will be NULL in future entry points.

If this function returns 0, the app will proceed to normal operation, and will
begin receiving repeated calls to SDL AppIterate and SDL AppEvent for the
life of the program. If this function returns ¡ 0, SDL will call SDL AppQuit and
terminate the process with an exit code that reports an error to the platform.
If it returns ¿ 0, the SDL calls SDL AppQuit and terminates with an exit code
that reports success to the platform.

SDL APPINIT 35

Thread Safety

This function is not thread safe.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AppIterate

� SDL AppEvent

� SDL AppQuit

36 CHAPTER 1. SDL FUNCTIONS

SDL AppIterate

App-implemented iteration entry point for SDL MAIN USE CALLBACKS apps.

Header File

Defined in SDL3/SDL main.h

Syntax

int SDL_AppIterate(void *appstate);

Function Parameters

appstate an optional pointer, provided by the app in SDL AppInit.

Return Value

Returns -1 to terminate with an error, 1 to terminate with success, 0 to continue.

Remarks

Apps implement this function when using SDL MAIN USE CALLBACKS. If
using a standard ”main” function, you should not supply this.

This function is called repeatedly by SDL after SDL AppInit returns 0. The
function should operate as a single iteration the program’s primary loop; it
should update whatever state it needs and draw a new frame of video, usually.

On some platforms, this function will be called at the refresh rate of the
display (which might change during the life of your app!). There are no promises
made about what frequency this function might run at. You should use SDL’s
timer functions if you need to see how much time has passed since the last
iteration.

There is no need to process the SDL event queue during this function; SDL
will send events as they arrive in SDL AppEvent, and in most cases the event
queue will be empty when this function runs anyhow.

This function should not go into an infinite mainloop; it should do one
iteration of whatever the program does and return.

The appstate parameter is an optional pointer provided by the app during
SDL AppInit(). If the app never provided a pointer, this will be NULL.

If this function returns 0, the app will continue normal operation, receiving
repeated calls to SDL AppIterate and SDL AppEvent for the life of the program.
If this function returns ¡ 0, SDL will call SDL AppQuit and terminate the process
with an exit code that reports an error to the platform. If it returns ¿ 0, the
SDL calls SDL AppQuit and terminates with an exit code that reports success
to the platform.

SDL APPITERATE 37

Thread Safety

This function is not thread safe.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AppInit

� SDL AppEvent

38 CHAPTER 1. SDL FUNCTIONS

SDL AppQuit

App-implemented deinit entry point for SDL MAIN USE CALLBACKS apps.

Header File

Defined in SDL3/SDL main.h

Syntax

void SDL_AppQuit(void *appstate);

Function Parameters

appstate an optional pointer, provided by the app in SDL AppInit.

Remarks

Apps implement this function when using SDL MAIN USE CALLBACKS. If
using a standard ”main” function, you should not supply this.

This function is called once by SDL before terminating the program.
This function will be called no matter what, even if SDL AppInit requests

termination.
This function should not go into an infinite mainloop; it should deinitialize

any resources necessary, perform whatever shutdown activities, and return.
You do not need to call SDL Quit() in this function, as SDL will call it after

this function returns and before the process terminates, but it is safe to do so.
The appstate parameter is an optional pointer provided by the app during

SDL AppInit(). If the app never provided a pointer, this will be NULL. This
function call is the last time this pointer will be provided, so any resources to
it should be cleaned up here.

Thread Safety

This function is not thread safe.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AppInit

SDL ASIN 39

SDL asin

Compute the arc sine of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_asin(double x);

Function Parameters

x floating point value.

Return Value

Returns arc sine of x, in radians.

Remarks

The definition of y = asin(x) is x = sin(y).
Domain: -1 <= x <= 1

Range: -Pi/2 <= y <= Pi/2

This function operates on double-precision floating point values, use SDL asinf
for single-precision floats.

This function may use a different approximation across different versions,
platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL asinf

� SDL acos

� SDL sin

40 CHAPTER 1. SDL FUNCTIONS

SDL asinf

Compute the arc sine of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_asinf(float x);

Function Parameters

x floating point value.

Return Value

Returns arc sine of x, in radians.

Remarks

The definition of y = asin(x) is x = sin(y).
Domain: -1 <= x <= 1

Range: -Pi/2 <= y <= Pi/2

This function operates on single-precision floating point values, use SDL asin
for double-precision floats.

This function may use a different approximation across different versions,
platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL asin

� SDL acosf

� SDL sinf

SDL ATAN 41

SDL atan

Compute the arc tangent of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_atan(double x);

Function Parameters

x floating point value.

Return Value

Returns arc tangent of of x in radians, or 0 if x = 0.

Remarks

The definition of y = atan(x) is x = tan(y).
Domain: -INF <= x <= INF

Range: -Pi/2 <= y <= Pi/2

This function operates on double-precision floating point values, use SDL atanf
for single-precision floats.

To calculate the arc tangent of y / x, use SDL atan2.
This function may use a different approximation across different versions,

platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL atanf

� SDL atan2

� SDL tan

42 CHAPTER 1. SDL FUNCTIONS

SDL atan2

Compute the arc tangent of y / x, using the signs of x and y to adjust the
result’s quadrant.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_atan2(double y, double x);

Function Parameters

x floating point value of the denominator (x coordinate).
y floating point value of the numerator (y coordinate)

Return Value

Returns arc tangent of of y / x in radians, or, if x = 0, either -Pi/2, 0, or
Pi/2, depending on the value of y.

Remarks

The definition of z = atan2(x, y) is y = x tan(z), where the quadrant of z
is determined based on the signs of x and y.

Domain: -INF <= x <= INF, -INF <= y <= INF

Range: -Pi/2 <= y <= Pi/2

This function operates on double-precision floating point values, use SDL atan2f
for single-precision floats.

To calculate the arc tangent of a single value, use SDL atan.
This function may use a different approximation across different versions,

platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL atan2f

� SDL atan

SDL ATAN2 43

� SDL tan

44 CHAPTER 1. SDL FUNCTIONS

SDL atan2f

Compute the arc tangent of y / x, using the signs of x and y to adjust the
result’s quadrant.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_atan2f(float y, float x);

Function Parameters

x floating point value of the denominator (x coordinate).
y floating point value of the numerator (y coordinate)

Return Value

Returns arc tangent of of y / x in radians, or, if x = 0, either -Pi/2, 0, or
Pi/2, depending on the value of y.

Remarks

The definition of z = atan2(x, y) is y = x tan(z), where the quadrant of z
is determined based on the signs of x and y.

Domain: -INF <= x <= INF, -INF <= y <= INF

Range: -Pi/2 <= y <= Pi/2

This function operates on single-precision floating point values, use SDL atan2
for double-precision floats.

To calculate the arc tangent of a single value, use SDL atanf.
This function may use a different approximation across different versions,

platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL atan2f

� SDL atan

SDL ATAN2F 45

� SDL tan

46 CHAPTER 1. SDL FUNCTIONS

SDL atanf

Compute the arc tangent of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_atanf(float x);

Function Parameters

x floating point value.

Return Value

Returns arc tangent of of x in radians, or 0 if x = 0

Remarks

The definition of y = atan(x) is x = tan(y).
Domain: -INF <= x <= INF

Range: -Pi/2 <= y <= Pi/2

This function operates on single-precision floating point values, use SDL atan
for dboule-precision floats.

To calculate the arc tangent of y / x, use SDL atan2f.
This function may use a different approximation across different versions,

platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL atan

� SDL atan2f

� SDL tanf

SDL ATOMICADD 47

SDL AtomicAdd

Add to an atomic variable.

Header File

Defined in SDL3/SDL atomic.h

Syntax

int SDL_AtomicAdd(SDL_AtomicInt *a, int v);

Function Parameters

a a pointer to an SDL AtomicInt variable to be modified
v the desired value to add

Return Value

Returns the previous value of the atomic variable.

Remarks

This function also acts as a full memory barrier. Note: If you don’t know
what this function is for, you shouldn’t use it!

Version

This function is available since SDL 3.0.0.

See Also

� SDL AtomicDecRef

� SDL AtomicIncRef

48 CHAPTER 1. SDL FUNCTIONS

SDL AtomicCompareAndSwap

Set an atomic variable to a new value if it is currently an old value.

Header File

Defined in SDL3/SDL atomic.h

Syntax

SDL_bool SDL_AtomicCompareAndSwap(SDL_AtomicInt *a, int oldval, int

newval);

Function Parameters

a a pointer to an SDL AtomicInt variable to be modified
oldval the old value
newval the new value

Return Value

Returns SDL TRUE if the atomic variable was set, SDL FALSE otherwise.

Remarks

Note: If you don’t know what this function is for, you shouldn’t use
it!

Version

This function is available since SDL 3.0.0.

See Also

� SDL AtomicCompareAndSwapPointer

SDL ATOMICCOMPAREANDSWAPPOINTER 49

SDL AtomicCompareAndSwapPointer

Set a pointer to a new value if it is currently an old value.

Header File

Defined in SDL3/SDL atomic.h

Syntax

SDL_bool SDL_AtomicCompareAndSwapPointer(void **a, void *oldval, void

*newval);

Function Parameters

a a pointer to a pointer
oldval the old pointer value
newval the new pointer value

Return Value

Returns SDL TRUE if the pointer was set, SDL FALSE otherwise.

Remarks

Note: If you don’t know what this function is for, you shouldn’t use
it!

Version

This function is available since SDL 3.0.0.

See Also

� SDL AtomicCompareAndSwap

� SDL AtomicGetPtr

� SDL AtomicSetPtr

50 CHAPTER 1. SDL FUNCTIONS

SDL AtomicGet

Get the value of an atomic variable.

Header File

Defined in SDL3/SDL atomic.h

Syntax

int SDL_AtomicGet(SDL_AtomicInt *a);

Function Parameters

a a pointer to an SDL AtomicInt variable

Return Value

Returns the current value of an atomic variable.

Remarks

Note: If you don’t know what this function is for, you shouldn’t use
it!

Version

This function is available since SDL 3.0.0.

See Also

� SDL AtomicSet

SDL ATOMICGETPTR 51

SDL AtomicGetPtr

Get the value of a pointer atomically.

Header File

Defined in SDL3/SDL atomic.h

Syntax

void* SDL_AtomicGetPtr(void **a);

Function Parameters

a a pointer to a pointer

Return Value

Returns the current value of a pointer.

Remarks

Note: If you don’t know what this function is for, you shouldn’t use
it!

Version

This function is available since SDL 3.0.0.

See Also

� SDL AtomicCompareAndSwapPointer

� SDL AtomicSetPtr

52 CHAPTER 1. SDL FUNCTIONS

SDL AtomicSet

Set an atomic variable to a value.

Header File

Defined in SDL3/SDL atomic.h

Syntax

int SDL_AtomicSet(SDL_AtomicInt *a, int v);

Function Parameters

a a pointer to an SDL AtomicInt variable to be modified
v the desired value

Return Value

Returns the previous value of the atomic variable.

Remarks

This function also acts as a full memory barrier. Note: If you don’t know
what this function is for, you shouldn’t use it!

Version

This function is available since SDL 3.0.0.

See Also

� SDL AtomicGet

SDL ATOMICSETPTR 53

SDL AtomicSetPtr

Set a pointer to a value atomically.

Header File

Defined in SDL3/SDL atomic.h

Syntax

void* SDL_AtomicSetPtr(void **a, void* v);

Function Parameters

a a pointer to a pointer
v the desired pointer value

Return Value

Returns the previous value of the pointer.

Remarks

Note: If you don’t know what this function is for, you shouldn’t use
it!

Version

This function is available since SDL 3.0.0.

See Also

� SDL AtomicCompareAndSwapPointer

� SDL AtomicGetPtr

54 CHAPTER 1. SDL FUNCTIONS

SDL AttachVirtualJoystick

Attach a new virtual joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_JoystickID SDL_AttachVirtualJoystick(SDL_JoystickType type,

int naxes,

int nbuttons,

int nhats);

Function Parameters

type type of joystick
naxes number of axes
nbuttons number of buttons
nhats number of hats

Return Value

Returns the joystick instance ID, or 0 if an error occurred; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AttachVirtualJoystickEx

� SDL DetachVirtualJoystick

SDL ATTACHVIRTUALJOYSTICKEX 55

SDL AttachVirtualJoystickEx

Attach a new virtual joystick with extended properties.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_JoystickID SDL_AttachVirtualJoystickEx(const SDL_VirtualJoystickDesc

*desc);

Function Parameters

desc Joystick description

Return Value

Returns the joystick instance ID, or 0 if an error occurred; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AttachVirtualJoystick

� SDL DetachVirtualJoystick

56 CHAPTER 1. SDL FUNCTIONS

SDL AudioDevicePaused

Use this function to query if an audio device is paused.

Header File

Defined in SDL3/SDL audio.h

Syntax

SDL_bool SDL_AudioDevicePaused(SDL_AudioDeviceID dev);

Function Parameters

dev a device opened by SDL OpenAudioDevice()

Return Value

Returns SDL TRUE if device is valid and paused, SDL FALSE otherwise.

Remarks

Unlike in SDL2, audio devices start in an unpaused state, since an app has to
bind a stream before any audio will flow.

Physical devices can not be paused or unpaused, only logical devices created
through SDL OpenAudioDevice() can be. Physical and invalid device IDs will
report themselves as unpaused here.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL PauseAudioDevice

� SDL ResumeAudioDevice

SDL BINDAUDIOSTREAM 57

SDL BindAudioStream

Bind a single audio stream to an audio device.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_BindAudioStream(SDL_AudioDeviceID devid, SDL_AudioStream

*stream);

Function Parameters

devid an audio device to bind a stream to.
stream an audio stream to bind to a device.

Return Value

Returns 0 on success, -1 on error; call SDL GetError() for more information.

Remarks

This is a convenience function, equivalent to calling SDL BindAudioStreams(devid,

&stream, 1).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL BindAudioStreams

� SDL UnbindAudioStream

� SDL GetAudioStreamDevice

58 CHAPTER 1. SDL FUNCTIONS

SDL BindAudioStreams

Bind a list of audio streams to an audio device.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_BindAudioStreams(SDL_AudioDeviceID devid, SDL_AudioStream

**streams, int num_streams);

Function Parameters

devid an audio device to bind a stream to.
streams an array of audio streams to unbind.
num streams Number streams listed in the streams array.

Return Value

Returns 0 on success, -1 on error; call SDL GetError() for more information.

Remarks

Audio data will flow through any bound streams. For an output device, data for
all bound streams will be mixed together and fed to the device. For a capture
device, a copy of recorded data will be provided to each bound stream.

Audio streams can only be bound to an open device. This operation is
atomic–all streams bound in the same call will start processing at the same
time, so they can stay in sync. Also: either all streams will be bound or none
of them will be.

It is an error to bind an already-bound stream; it must be explicitly unbound
first.

Binding a stream to a device will set its output format for output devices,
and its input format for capture devices, so they match the device’s settings.
The caller is welcome to change the other end of the stream’s format at any
time.

Thread Safety

It is safe to call this function from any thread.

SDL BINDAUDIOSTREAMS 59

Version

This function is available since SDL 3.0.0.

See Also

� SDL BindAudioStreams

� SDL UnbindAudioStream

� SDL GetAudioStreamDevice

60 CHAPTER 1. SDL FUNCTIONS

SDL BlitSurface

Performs a fast blit from the source surface to the destination surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_BlitSurface(SDL_Surface *src, const SDL_Rect *srcrect,

SDL_Surface *dst, SDL_Rect *dstrect);

Function Parameters

src the SDL Surface structure to be copied from
srcrect the SDL Rect structure representing the rectangle to be

copied, or NULL to copy the entire surface
dst the SDL Surface structure that is the blit target
dstrect the SDL Rect structure representing the x and y position in

the destination surface. On input the width and height are
ignored (taken from srcrect), and on output this is filled in
with the actual rectangle used after clipping.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This assumes that the source and destination rectangles are the same size. If
either srcrect or dstrect are NULL, the entire surface (src or dst) is copied.
The final blit rectangles are saved in srcrect and dstrect after all clipping is
performed.

The blit function should not be called on a locked surface.
The blit semantics for surfaces with and without blending and colorkey are

defined as follows:

RGBA->RGB:

Source surface blend mode set to SDL_BLENDMODE_BLEND:

alpha-blend (using the source alpha-channel and per-surface alpha)

SDL_SRCCOLORKEY ignored.

Source surface blend mode set to SDL_BLENDMODE_NONE:

copy RGB.

SDL BLITSURFACE 61

if SDL_SRCCOLORKEY set, only copy the pixels matching the

RGB values of the source color key, ignoring alpha in the

comparison.

RGB->RGBA:

Source surface blend mode set to SDL_BLENDMODE_BLEND:

alpha-blend (using the source per-surface alpha)

Source surface blend mode set to SDL_BLENDMODE_NONE:

copy RGB, set destination alpha to source per-surface alpha value.

both:

if SDL_SRCCOLORKEY set, only copy the pixels matching the

source color key.

RGBA->RGBA:

Source surface blend mode set to SDL_BLENDMODE_BLEND:

alpha-blend (using the source alpha-channel and per-surface alpha)

SDL_SRCCOLORKEY ignored.

Source surface blend mode set to SDL_BLENDMODE_NONE:

copy all of RGBA to the destination.

if SDL_SRCCOLORKEY set, only copy the pixels matching the

RGB values of the source color key, ignoring alpha in the

comparison.

RGB->RGB:

Source surface blend mode set to SDL_BLENDMODE_BLEND:

alpha-blend (using the source per-surface alpha)

Source surface blend mode set to SDL_BLENDMODE_NONE:

copy RGB.

both:

if SDL_SRCCOLORKEY set, only copy the pixels matching the

source color key.

Code Examples

SDL_Surface *surface;

SDL_Rect source_rect;

SDL_Surface *temp_surface;

SDL_BlitSurface(surface, &source_rect, temp_surface, NULL);

Version

This function is available since SDL 3.0.0.

62 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL BlitSurfaceScaled

SDL BLITSURFACESCALED 63

SDL BlitSurfaceScaled

Perform a scaled blit to a destination surface, which may be of a different format.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_BlitSurfaceScaled(SDL_Surface *src, const SDL_Rect *srcrect,

SDL_Surface *dst, SDL_Rect *dstrect, SDL_ScaleMode scaleMode);

Function Parameters

src the SDL Surface structure to be copied from
srcrect the SDL Rect structure representing the rectangle to be

copied
dst the SDL Surface structure that is the blit target
dstrect the SDL Rect structure representing the target rectangle in

the destination surface, filled with the actual rectangle used
after clipping

scaleMode the SDL ScaleMode to be used

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL BlitSurface

64 CHAPTER 1. SDL FUNCTIONS

SDL BlitSurfaceUnchecked

Perform low-level surface blitting only.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_BlitSurfaceUnchecked(SDL_Surface *src, const SDL_Rect *srcrect,

SDL_Surface *dst, const SDL_Rect *dstrect);

Function Parameters

src the SDL Surface structure to be copied from
srcrect the SDL Rect structure representing the rectangle to be

copied, or NULL to copy the entire surface
dst the SDL Surface structure that is the blit target
dstrect the SDL Rect structure representing the target rectangle in

the destination surface

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This is a semi-private blit function and it performs low-level surface blitting,
assuming the input rectangles have already been clipped.

Version

This function is available since SDL 3.0.0.

See Also

� SDL BlitSurface

SDL BLITSURFACEUNCHECKEDSCALED 65

SDL BlitSurfaceUncheckedScaled

Perform low-level surface scaled blitting only.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_BlitSurfaceUncheckedScaled(SDL_Surface *src, const SDL_Rect

*srcrect, SDL_Surface *dst, const SDL_Rect *dstrect, SDL_ScaleMode

scaleMode);

Function Parameters

src the SDL Surface structure to be copied from
srcrect the SDL Rect structure representing the rectangle to be

copied
dst the SDL Surface structure that is the blit target
dstrect the SDL Rect structure representing the target rectangle in

the destination surface
scaleMode scale algorithm to be used

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This is a semi-private function and it performs low-level surface blitting, assum-
ing the input rectangles have already been clipped.

Version

This function is available since SDL 3.0.0.

See Also

� SDL BlitSurfaceScaled

66 CHAPTER 1. SDL FUNCTIONS

SDL BroadcastCondition

Restart all threads that are waiting on the condition variable.

Header File

Defined in SDL3/SDL mutex.h

Syntax

int SDL_BroadcastCondition(SDL_Condition *cond);

Function Parameters

cond the condition variable to signal

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Code Examples

// BEWARE: This code example was migrated from the SDL2 Wiki, by only

updating the names.

SDL_bool condition = SDL_FALSE;

SDL_Mutex *lock;

SDL_Condition *cond;

lock = SDL_CreateMutex();

cond = SDL_CreateCondition();

Thread_A:

SDL_LockMutex(lock);

while (!condition) {

SDL_WaitCondition(cond, lock);

}

SDL_UnlockMutex(lock);

Thread_B:

SDL_LockMutex(lock);

while (!condition) {

SDL_WaitCondition(cond, lock);

}

SDL_UnlockMutex(lock);

Thread_C:

SDL_LockMutex(lock);

SDL BROADCASTCONDITION 67

/* ... */

condition = SDL_TRUE;

/* ... */

SDL_BroadcastCondition(cond);

SDL_UnlockMutex(lock);

SDL_DestroyCondition(cond);

SDL_DestroyMutex(lock);

Version

This function is available since SDL 3.0.0.

See Also

� SDL SignalCondition

� SDL WaitCondition

� SDL WaitConditionTimeout

68 CHAPTER 1. SDL FUNCTIONS

SDL CaptureMouse

Capture the mouse and to track input outside an SDL window.

Header File

Defined in SDL3/SDL mouse.h

Syntax

int SDL_CaptureMouse(SDL_bool enabled);

Function Parameters

enabled SDL TRUE to enable capturing, SDL FALSE to disable.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Capturing enables your app to obtain mouse events globally, instead of just
within your window. Not all video targets support this function. When captur-
ing is enabled, the current window will get all mouse events, but unlike relative
mode, no change is made to the cursor and it is not restrained to your window.

This function may also deny mouse input to other windows–both those in
your application and others on the system–so you should use this function spar-
ingly, and in small bursts. For example, you might want to track the mouse
while the user is dragging something, until the user releases a mouse button.
It is not recommended that you capture the mouse for long periods of time,
such as the entire time your app is running. For that, you should probably use
SDL SetRelativeMouseMode() or SDL SetWindowMouseGrab(), depending on
your goals.

While captured, mouse events still report coordinates relative to the cur-
rent (foreground) window, but those coordinates may be outside the bounds
of the window (including negative values). Capturing is only allowed for the
foreground window. If the window loses focus while capturing, the capture will
be disabled automatically.

While capturing is enabled, the current window will have the SDL WINDOW MOUSE CAPTURE

flag set.
Please note that SDL will attempt to ”auto capture” the mouse while the

user is pressing a button; this is to try and make mouse behavior more consistent
between platforms, and deal with the common case of a user dragging the mouse

SDL CAPTUREMOUSE 69

outside of the window. This means that if you are calling SDL CaptureMouse()
only to deal with this situation, you do not have to (although it is safe to do so).
If this causes problems for your app, you can disable auto capture by setting
the SDL HINT MOUSE AUTO CAPTURE hint to zero.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGlobalMouseState

70 CHAPTER 1. SDL FUNCTIONS

SDL ceil

Compute the ceiling of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_ceil(double x);

Function Parameters

x floating point value

Return Value

Returns the ceiling of x

Remarks

The ceiling of x is the smallest integer y such that y > x, i.e x rounded up to
the nearest integer.

Domain: -INF <= x <= INF

Range: -INF <= y <= INF, y integer
This function operates on double-precision floating point values, use SDL ceilf

for single-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ceilf

� SDL floor

� SDL trunc

� SDL round

� SDL lround

SDL CEILF 71

SDL ceilf

Compute the ceiling of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_ceilf(float x);

Function Parameters

x floating point value

Return Value

Returns the ceiling of x

Remarks

The ceiling of x is the smallest integer y such that y > x, i.e x rounded up to
the nearest integer.

Domain: -INF <= x <= INF

Range: -INF <= y <= INF, y integer
This function operates on single-precision floating point values, use SDL ceil

for double-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ceil

� SDL floorf

� SDL truncf

� SDL roundf

� SDL lroundf

72 CHAPTER 1. SDL FUNCTIONS

SDL CleanupTLS

Cleanup all TLS data for this thread.

Header File

Defined in SDL3/SDL thread.h

Syntax

void SDL_CleanupTLS(void);

Version

This function is available since SDL 3.0.0.

SDL CLEARAUDIOSTREAM 73

SDL ClearAudioStream

Clear any pending data in the stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_ClearAudioStream(SDL_AudioStream *stream);

Function Parameters

stream The audio stream to clear

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This drops any queued data, so there will be nothing to read from the stream
until more is added.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetAudioStreamAvailable

� SDL GetAudioStreamData

� SDL GetAudioStreamQueued

� SDL PutAudioStreamData

74 CHAPTER 1. SDL FUNCTIONS

SDL ClearClipboardData

Clear the clipboard data.

Header File

Defined in SDL3/SDL clipboard.h

Syntax

int SDL_ClearClipboardData(void);

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetClipboardData

SDL CLEARCOMPOSITION 75

SDL ClearComposition

Dismiss the composition window/IME without disabling the subsystem.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

void SDL_ClearComposition(void);

Version

This function is available since SDL 3.0.0.

See Also

� SDL StartTextInput

� SDL StopTextInput

76 CHAPTER 1. SDL FUNCTIONS

SDL ClearError

Clear any previous error message for this thread.

Header File

Defined in SDL3/SDL error.h

Syntax

void SDL_ClearError(void);

Code Examples

const char *error = SDL_GetError();

if (*error) {

SDL_Log("SDL error: %s", error);

SDL_ClearError();

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetError

� SDL SetError

SDL CLEARPROPERTY 77

SDL ClearProperty

Clear a property on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

int SDL_ClearProperty(SDL_PropertiesID props, const char *name);

Function Parameters

props the properties to modify
name the name of the property to clear

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

78 CHAPTER 1. SDL FUNCTIONS

SDL CloseAudioDevice

Close a previously-opened audio device.

Header File

Defined in SDL3/SDL audio.h

Syntax

void SDL_CloseAudioDevice(SDL_AudioDeviceID devid);

Function Parameters

devid an audio device id previously returned by
SDL OpenAudioDevice()

Remarks

The application should close open audio devices once they are no longer needed.

This function may block briefly while pending audio data is played by the
hardware, so that applications don’t drop the last buffer of data they supplied
if terminating immediately afterwards.

Code Examples

extern SDL_AudioSpec want;

SDL_AudioDeviceID devid =

SDL_OpenAudioDevice(SDL_AUDIO_DEVICE_DEFAULT_OUTPUT, &want);

if (devid != 0) {

SDL_ResumeAudioDevice(devid);

SDL_Delay(5000); // let device play for 5 seconds

SDL_CloseAudioDevice(devid);

}

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL CLOSEAUDIODEVICE 79

See Also

� SDL OpenAudioDevice

80 CHAPTER 1. SDL FUNCTIONS

SDL CloseCamera

Use this function to shut down camera processing and close the camera device.

Header File

Defined in SDL3/SDL camera.h

Syntax

void SDL_CloseCamera(SDL_Camera *camera);

Function Parameters

camera opened camera device

Thread Safety

It is safe to call this function from any thread, but no thread may reference
device once this function is called.

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenCameraWithSpec

� SDL OpenCamera

SDL CLOSEGAMEPAD 81

SDL CloseGamepad

Close a gamepad previously opened with SDL OpenGamepad().

Header File

Defined in SDL3/SDL gamepad.h

Syntax

void SDL_CloseGamepad(SDL_Gamepad *gamepad);

Function Parameters

gamepad a gamepad identifier previously returned by
SDL OpenGamepad()

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenGamepad

82 CHAPTER 1. SDL FUNCTIONS

SDL CloseHaptic

Close a haptic device previously opened with SDL OpenHaptic().

Header File

Defined in SDL3/SDL haptic.h

Syntax

void SDL_CloseHaptic(SDL_Haptic *haptic);

Function Parameters

haptic the SDL Haptic device to close

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenHaptic

SDL CLOSEIO 83

SDL CloseIO

Close and free an allocated SDL IOStream structure.

Header File

Defined in SDL3/SDL iostream.h

Syntax

int SDL_CloseIO(SDL_IOStream *context);

Function Parameters

context SDL IOStream structure to close

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

SDL CloseIO() closes and cleans up the SDL IOStream stream. It releases any
resources used by the stream and frees the SDL IOStream itself. This returns
0 on success, or -1 if the stream failed to flush to its output (e.g. to disk).

Note that if this fails to flush the stream to disk, this function reports an
error, but the SDL IOStream is still invalid once this function returns.

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenIO

84 CHAPTER 1. SDL FUNCTIONS

SDL CloseJoystick

Close a joystick previously opened with SDL OpenJoystick().

Header File

Defined in SDL3/SDL joystick.h

Syntax

void SDL_CloseJoystick(SDL_Joystick *joystick);

Function Parameters

joystick The joystick device to close

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenJoystick

SDL CLOSESENSOR 85

SDL CloseSensor

Close a sensor previously opened with SDL OpenSensor().

Header File

Defined in SDL3/SDL sensor.h

Syntax

void SDL_CloseSensor(SDL_Sensor *sensor);

Function Parameters

sensor The SDL Sensor object to close

Version

This function is available since SDL 3.0.0.

86 CHAPTER 1. SDL FUNCTIONS

SDL CloseStorage

Closes and frees a storage container.

Header File

Defined in SDL3/SDL storage.h

Syntax

int SDL_CloseStorage(SDL_Storage *storage);

Function Parameters

storage a storage container to close

Return Value

Returns 0 if the container was freed with no errors, a negative value otherwise;
call SDL GetError() for more information. Even if the function returns an error,
the container data will be freed; the error is only for informational purposes.

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenFileStorage

� SDL OpenStorage

� SDL OpenTitleStorage

� SDL OpenUserStorage

SDL COMPOSECUSTOMBLENDMODE 87

SDL ComposeCustomBlendMode

Compose a custom blend mode for renderers.

Header File

Defined in SDL3/SDL blendmode.h

Syntax

SDL_BlendMode SDL_ComposeCustomBlendMode(SDL_BlendFactor srcColorFactor,

SDL_BlendFactor dstColorFactor,

SDL_BlendOperation colorOperation,

SDL_BlendFactor srcAlphaFactor,

SDL_BlendFactor dstAlphaFactor,

SDL_BlendOperation alphaOperation);

Function Parameters

srcColorFactor the SDL BlendFactor applied to the red, green, and blue
components of the source pixels

dstColorFactor the SDL BlendFactor applied to the red, green, and blue
components of the destination pixels

colorOperation the SDL BlendOperation used to combine the red, green,
and blue components of the source and destination pixels

srcAlphaFactor the SDL BlendFactor applied to the alpha component of the
source pixels

dstAlphaFactor the SDL BlendFactor applied to the alpha component of the
destination pixels

alphaOperation the SDL BlendOperation used to combine the alpha com-
ponent of the source and destination pixels

Return Value

Returns an SDL BlendMode that represents the chosen factors and operations.

Remarks

The functions SDL SetRenderDrawBlendMode and SDL SetTextureBlendMode
accept the SDL BlendMode returned by this function if the renderer supports
it.

A blend mode controls how the pixels from a drawing operation (source)
get combined with the pixels from the render target (destination). First, the
components of the source and destination pixels get multiplied with their blend

88 CHAPTER 1. SDL FUNCTIONS

factors. Then, the blend operation takes the two products and calculates the
result that will get stored in the render target.

Expressed in pseudocode, it would look like this:

dstRGB = colorOperation(srcRGB * srcColorFactor, dstRGB *

dstColorFactor);

dstA = alphaOperation(srcA * srcAlphaFactor, dstA * dstAlphaFactor);

Where the functions colorOperation(src, dst) and alphaOperation(src,
dst) can return one of the following:

� src + dst

� src - dst

� dst - src

� min(src, dst)

� max(src, dst)

The red, green, and blue components are always multiplied with the first,
second, and third components of the SDL BlendFactor, respectively. The fourth
component is not used.

The alpha component is always multiplied with the fourth component of the
SDL BlendFactor. The other components are not used in the alpha calculation.

Support for these blend modes varies for each renderer. To check if a
specific SDL BlendMode is supported, create a renderer and pass it to either
SDL SetRenderDrawBlendMode or SDL SetTextureBlendMode. They will re-
turn with an error if the blend mode is not supported.

This list describes the support of custom blend modes for each renderer. All
renderers support the four blend modes listed in the SDL BlendMode enumer-
ation.

� direct3d: Supports all operations with all factors. However, some fac-
tors produce unexpected results with SDL BLENDOPERATION MINIMUM and
SDL BLENDOPERATION MAXIMUM.

� direct3d11: Same as Direct3D 9.

� opengl: Supports the SDL BLENDOPERATION ADD operation with all fac-
tors. OpenGL versions 1.1, 1.2, and 1.3 do not work correctly here.

� opengles2: Supports the SDL BLENDOPERATION ADD, SDL BLENDOPERATION SUBTRACT,
SDL BLENDOPERATION REV SUBTRACT operations with all factors.

� psp: No custom blend mode support.

� software: No custom blend mode support.

Some renderers do not provide an alpha component for the default render tar-
get. The SDL BLENDFACTOR DST ALPHA and SDL BLENDFACTOR ONE MINUS DST ALPHA

factors do not have an effect in this case.

SDL COMPOSECUSTOMBLENDMODE 89

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetRenderDrawBlendMode

� SDL GetRenderDrawBlendMode

� SDL SetTextureBlendMode

� SDL GetTextureBlendMode

90 CHAPTER 1. SDL FUNCTIONS

SDL ConvertAudioSamples

Convert some audio data of one format to another format.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_ConvertAudioSamples(const SDL_AudioSpec *src_spec,

const Uint8 *src_data,

int src_len,

const SDL_AudioSpec *dst_spec,

Uint8 **dst_data,

int *dst_len);

Function Parameters

src spec The format details of the input audio
src data The audio data to be converted
src len The len of src data
dst spec The format details of the output audio
dst data Will be filled with a pointer to converted audio data, which

should be freed with SDL free(). On error, it will be NULL.
dst len Will be filled with the len of dst data

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Please note that this function is for convenience, but should not be used to
resample audio in blocks, as it will introduce audio artifacts on the bound-
aries. You should only use this function if you are converting audio data in
its entirety in one call. If you want to convert audio in smaller chunks, use an
SDL AudioStream, which is designed for this situation.

Internally, this function creates and destroys an SDL AudioStream on each
use, so it’s also less efficient than using one directly, if you need to convert
multiple times.

Thread Safety

It is safe to call this function from any thread.

SDL CONVERTAUDIOSAMPLES 91

Version

This function is available since SDL 3.0.0.

92 CHAPTER 1. SDL FUNCTIONS

SDL ConvertEventToRenderCoordinates

Convert the coordinates in an event to render coordinates.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_ConvertEventToRenderCoordinates(SDL_Renderer *renderer,

SDL_Event *event);

Function Parameters

renderer the rendering context
event the event to modify

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Touch coordinates are converted from normalized coordinates in the window to
non-normalized rendering coordinates.

Once converted, the coordinates may be outside the rendering area.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderCoordinatesFromWindowCoordinates

SDL CONVERTPIXELS 93

SDL ConvertPixels

Copy a block of pixels of one format to another format.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_ConvertPixels(int width, int height, SDL_PixelFormatEnum

src_format, const void *src, int src_pitch, SDL_PixelFormatEnum

dst_format, void *dst, int dst_pitch);

Function Parameters

width the width of the block to copy, in pixels
height the height of the block to copy, in pixels
src format an SDL PixelFormatEnum value of the src pixels format
src a pointer to the source pixels
src pitch the pitch of the source pixels, in bytes
dst format an SDL PixelFormatEnum value of the dst pixels format
dst a pointer to be filled in with new pixel data
dst pitch the pitch of the destination pixels, in bytes

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ConvertPixelsAndColorspace

94 CHAPTER 1. SDL FUNCTIONS

SDL ConvertPixelsAndColorspace

Copy a block of pixels of one format and colorspace to another format and
colorspace.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_ConvertPixelsAndColorspace(int width, int height,

SDL_PixelFormatEnum src_format, SDL_Colorspace src_colorspace,

SDL_PropertiesID src_properties, const void *src, int src_pitch,

SDL_PixelFormatEnum dst_format, SDL_Colorspace dst_colorspace,

SDL_PropertiesID dst_properties, void *dst, int dst_pitch);

Function Parameters

width the width of the block to copy, in pixels
height the height of the block to copy, in pixels
src format an SDL PixelFormatEnum value of the src pixels format
src colorspace an SDL ColorSpace value describing the colorspace of the

src pixels
src properties an SDL PropertiesID with additional source color proper-

ties, or 0
src a pointer to the source pixels
src pitch the pitch of the source pixels, in bytes
dst format an SDL PixelFormatEnum value of the dst pixels format
dst colorspace an SDL ColorSpace value describing the colorspace of the

dst pixels
dst properties an SDL PropertiesID with additional destination color

properties, or 0
dst a pointer to be filled in with new pixel data
dst pitch the pitch of the destination pixels, in bytes

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL CONVERTPIXELSANDCOLORSPACE 95

See Also

� SDL ConvertPixels

96 CHAPTER 1. SDL FUNCTIONS

SDL ConvertSurface

Copy an existing surface to a new surface of the specified format.

Header File

Defined in SDL3/SDL surface.h

Syntax

SDL_Surface* SDL_ConvertSurface(SDL_Surface *surface, const

SDL_PixelFormat *format);

Function Parameters

surface the existing SDL Surface structure to convert
format the SDL PixelFormat structure that the new surface is op-

timized for

Return Value

Returns the new SDL Surface structure that is created or NULL if it fails; call
SDL GetError() for more information.

Remarks

This function is used to optimize images for faster repeat blitting. This is
accomplished by converting the original and storing the result as a new surface.
The new, optimized surface can then be used as the source for future blits,
making them faster.

Code Examples

SDL_Surface *input;

SDL_PixelFormat *format = SDL_CreatePixelFormat(SDL_PIXELFORMAT_RGBA32);

SDL_Surface *output = SDL_ConvertSurface(input, format);

SDL_DestroyPixelFormat(format);

Version

This function is available since SDL 3.0.0.

SDL CONVERTSURFACE 97

See Also

� SDL ConvertSurfaceFormat

� SDL ConvertSurfaceFormatAndColorspace

� SDL CreatePixelFormat

� SDL DestroySurface

98 CHAPTER 1. SDL FUNCTIONS

SDL ConvertSurfaceFormat

Copy an existing surface to a new surface of the specified format.

Header File

Defined in SDL3/SDL surface.h

Syntax

SDL_Surface* SDL_ConvertSurfaceFormat(SDL_Surface *surface,

SDL_PixelFormatEnum pixel_format);

Function Parameters

surface the existing SDL Surface structure to convert
pixel format the new pixel format

Return Value

Returns the new SDL Surface structure that is created or NULL if it fails; call
SDL GetError() for more information.

Remarks

This function operates just like SDL ConvertSurface(), but accepts an SDL PixelFormatEnum
value instead of an SDL PixelFormat structure. As such, it might be easier to
call but it doesn’t have access to palette information for the destination surface,
in case that would be important.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ConvertSurface

� SDL ConvertSurfaceFormatAndColorspace

� SDL DestroySurface

SDL CONVERTSURFACEFORMATANDCOLORSPACE 99

SDL ConvertSurfaceFormatAndColorspace

Copy an existing surface to a new surface of the specified format and colorspace.

Header File

Defined in SDL3/SDL surface.h

Syntax

SDL_Surface* SDL_ConvertSurfaceFormatAndColorspace(SDL_Surface *surface,

SDL_PixelFormatEnum pixel_format, SDL_Colorspace colorspace,

SDL_PropertiesID props);

Function Parameters

surface the existing SDL Surface structure to convert
pixel format the new pixel format
colorspace the new colorspace
props an SDL PropertiesID with additional color properties, or 0

Return Value

Returns the new SDL Surface structure that is created or NULL if it fails; call
SDL GetError() for more information.

Remarks

This function converts an existing surface to a new format and colorspace and
returns the new surface. This will perform any pixel format and colorspace
conversion needed.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ConvertSurface

� SDL ConvertSurfaceFormat

� SDL DestroySurface

100 CHAPTER 1. SDL FUNCTIONS

SDL CopyProperties

Copy a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

int SDL_CopyProperties(SDL_PropertiesID src, SDL_PropertiesID dst);

Function Parameters

src the properties to copy
dst the destination properties

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Copy all the properties from one set of properties to another, with the excep-
tion of properties requiring cleanup (set using SDL SetPropertyWithCleanup()),
which will not be copied. Any property that already exists on dst will be over-
written.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL COPYSIGN 101

SDL copysign

Copy the sign of one floating-point value to another.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_copysign(double x, double y);

Function Parameters

x floating point value to use as the magnitude
y floating point value to use as the sign

Return Value

Returns the floating point value with the sign of y and the magnitude of x

Remarks

The definition of copysign is that copysign(x, y) = abs(x) * sign(y) .
Domain: -INF <= x <= INF, -INF ¡= y ¡= f
Range: -INF <= z <= INF

This function operates on double-precision floating point values, use SDL copysignf
for single-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL copysignf

� SDL fabs

102 CHAPTER 1. SDL FUNCTIONS

SDL copysignf

Copy the sign of one floating-point value to another.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_copysignf(float x, float y);

Function Parameters

x floating point value to use as the magnitude
y floating point value to use as the sign

Return Value

Returns the floating point value with the sign of y and the magnitude of x

Remarks

The definition of copysign is that copysign(x, y) = abs(x) * sign(y) .
Domain: -INF <= x <= INF, -INF ¡= y ¡= f
Range: -INF <= z <= INF

This function operates on single-precision floating point values, use SDL copysign
for double-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL copysignf

� SDL fabsf

SDL COS 103

SDL cos

Compute the cosine of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_cos(double x);

Function Parameters

x floating point value, in radians

Return Value

Returns cosine of x

Remarks

Domain: -INF <= x <= INF

Range: -1 <= y <= 1

This function operates on double-precision floating point values, use SDL cosf
for single-precision floats.

This function may use a different approximation across different versions,
platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL cosf

� SDL acos

� SDL sin

104 CHAPTER 1. SDL FUNCTIONS

SDL cosf

Compute the cosine of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_cosf(float x);

Function Parameters

x floating point value, in radians

Return Value

Returns cosine of x

Remarks

Domain: -INF <= x <= INF

Range: -1 <= y <= 1

This function operates on single-precision floating point values, use SDL cos
for double-precision floats.

This function may use a different approximation across different versions,
platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL cos

� SDL acosf

� SDL sinf

SDL CREATEAUDIOSTREAM 105

SDL CreateAudioStream

Create a new audio stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

SDL_AudioStream* SDL_CreateAudioStream(const SDL_AudioSpec *src_spec,

const SDL_AudioSpec *dst_spec);

Function Parameters

src spec The format details of the input audio
dst spec The format details of the output audio

Return Value

Returns a new audio stream on success, or NULL on failure.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL PutAudioStreamData

� SDL GetAudioStreamData

� SDL GetAudioStreamAvailable

� SDL FlushAudioStream

� SDL ClearAudioStream

� SDL ChangeAudioStreamOutput

� SDL DestroyAudioStream

106 CHAPTER 1. SDL FUNCTIONS

SDL CreateColorCursor

Create a color cursor.

Header File

Defined in SDL3/SDL mouse.h

Syntax

SDL_Cursor* SDL_CreateColorCursor(SDL_Surface *surface,

int hot_x,

int hot_y);

Function Parameters

surface an SDL Surface structure representing the cursor image
hot x the x position of the cursor hot spot
hot y the y position of the cursor hot spot

Return Value

Returns the new cursor on success or NULL on failure; call SDL GetError() for
more information.

Code Examples

#include <SDL3/SDL.h>

int

main(int argc, char *argv[])

{

SDL_Window *window = NULL;

SDL_Renderer *renderer = NULL;

SDL_Surface *surface = NULL;

SDL_Cursor *cursor = NULL;

SDL_bool error = SDL_TRUE;

if (SDL_Init(SDL_INIT_VIDEO) < 0) {

goto exit;

}

if (SDL_CreateWindowAndRenderer("Hello SDL", 640, 480, 0, &window,

&renderer) < 0) {

goto exit;

}

surface = SDL_LoadBMP((1 < argc) ? argv[1] : "cursor.bmp");

SDL CREATECOLORCURSOR 107

if (!surface) {

goto exit;

}

cursor = SDL_CreateColorCursor(surface, 0, 0);

if (!cursor) {

goto exit;

}

SDL_SetCursor(cursor);

SDL_SetRenderDrawColor(renderer, 255, 0, 0, 255);

while (SDL_TRUE) {

SDL_Event event;

while (SDL_PollEvent(&event)) {

switch (event.type) {

case SDL_EVENT_MOUSE_BUTTON_UP:

case SDL_EVENT_QUIT:

error = SDL_FALSE;

goto exit;

}

}

SDL_RenderClear(renderer);

SDL_RenderPresent(renderer);

}

exit:

if (error) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "%s", SDL_GetError());

}

if (cursor) {

SDL_DestroyCursor(cursor);

}

if (surface) {

SDL_DestroySurface(surface);

}

if (renderer) {

SDL_DestroyRenderer(renderer);

}

if (window) {

SDL_DestroyWindow(window);

}

SDL_Quit();

return error;

}

Version

This function is available since SDL 3.0.0.

108 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL CreateCursor

� SDL CreateSystemCursor

� SDL DestroyCursor

� SDL SetCursor

SDL CREATECONDITION 109

SDL CreateCondition

Create a condition variable.

Header File

Defined in SDL3/SDL mutex.h

Syntax

SDL_Condition* SDL_CreateCondition(void);

Return Value

Returns a new condition variable or NULL on failure; call SDL GetError() for
more information.

Code Examples

Typical use of condition variables:

// BEWARE: This code example was migrated from the SDL2 Wiki, by only

updating the names.

SDL_bool condition = SDL_FALSE;

SDL_Mutex *lock;

SDL_Condition *cond;

lock = SDL_CreateMutex();

cond = SDL_CreateCondition();

Thread_A:

SDL_LockMutex(lock);

while (!condition) {

SDL_WaitCondition(cond, lock);

}

SDL_UnlockMutex(lock);

Thread_B:

SDL_LockMutex(lock);

/* ... */

condition = SDL_TRUE;

/* ... */

SDL_SignalCondition(cond);

SDL_UnlockMutex(lock);

SDL_DestroyCondition(cond);

SDL_DestroyMutex(lock);

110 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

See Also

� SDL BroadcastCondition

� SDL SignalCondition

� SDL WaitCondition

� SDL WaitConditionTimeout

� SDL DestroyCondition

SDL CREATECURSOR 111

SDL CreateCursor

Create a cursor using the specified bitmap data and mask (in MSB format).

Header File

Defined in SDL3/SDL mouse.h

Syntax

SDL_Cursor* SDL_CreateCursor(const Uint8 * data,

const Uint8 * mask,

int w, int h, int hot_x,

int hot_y);

Function Parameters

data the color value for each pixel of the cursor
mask the mask value for each pixel of the cursor
w the width of the cursor
h the height of the cursor
hot x the X-axis location of the upper left corner of the cursor

relative to the actual mouse position
hot y the Y-axis location of the upper left corner of the cursor

relative to the actual mouse position

Return Value

Returns a new cursor with the specified parameters on success or NULL on
failure; call SDL GetError() for more information.

Remarks

mask has to be in MSB (Most Significant Bit) format.

The cursor width (w) must be a multiple of 8 bits.

The cursor is created in black and white according to the following:

� data=0, mask=1: white

� data=1, mask=1: black

� data=0, mask=0: transparent

� data=1, mask=0: inverted color if possible, black if not.

112 CHAPTER 1. SDL FUNCTIONS

Cursors created with this function must be freed with SDL DestroyCursor().

If you want to have a color cursor, or create your cursor from an SDL Surface,
you should use SDL CreateColorCursor(). Alternately, you can hide the cursor
and draw your own as part of your game’s rendering, but it will be bound to
the framerate.

Also, SDL CreateSystemCursor() is available, which provides several readily-
available system cursors to pick from.

Code Examples

/* Stolen from the mailing list */

/* Creates a new mouse cursor from an XPM */

/* XPM */

static const char *arrow[] = {

/* width height num_colors chars_per_pixel */

" 32 32 3 1",

/* colors */

"X c #000000",

". c #ffffff",

" c None",

/* pixels */

"X ",

"XX ",

"X.X ",

"X..X ",

"X...X ",

"X....X ",

"X.....X ",

"X......X ",

"X.......X ",

"X........X ",

"X.....XXXXX ",

"X..X..X ",

"X.X X..X ",

"XX X..X ",

"X X..X ",

" X..X ",

" X..X ",

" X..X ",

" XX ",

" ",

" ",

" ",

" ",

" ",

" ",

SDL CREATECURSOR 113

" ",

" ",

" ",

" ",

" ",

" ",

" ",

"0,0"

};

SDL_Cursor *init_system_cursor(const char *image[])

{

int i, row, col;

Uint8 data[4*32];

Uint8 mask[4*32];

int hot_x, hot_y;

i = -1;

for (row=0; row<32; ++row) {

for (col=0; col<32; ++col) {

if (col % 8) {

data[i] <<= 1;

mask[i] <<= 1;

} else {

++i;

data[i] = mask[i] = 0;

}

switch (image[4+row][col]) {

case ’X’:

data[i] |= 0x01;

mask[i] |= 0x01;

break;

case ’.’:

mask[i] |= 0x01;

break;

case ’ ’:

break;

}

}

}

sscanf(image[4+row], "%d,%d", &hot_x, &hot_y);

return SDL_CreateCursor(data, mask, 32, 32, hot_x, hot_y);

}

Version

This function is available since SDL 3.0.0.

114 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL CreateColorCursor

� SDL CreateSystemCursor

� SDL DestroyCursor

� SDL SetCursor

SDL CREATEDIRECTORY 115

SDL CreateDirectory

Create a directory.

Header File

Defined in SDL3/SDL filesystem.h

Syntax

int SDL_CreateDirectory(const char *path);

Function Parameters

path the path of the directory to create

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

116 CHAPTER 1. SDL FUNCTIONS

SDL CreateHapticEffect

Create a new haptic effect on a specified device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_CreateHapticEffect(SDL_Haptic *haptic, const SDL_HapticEffect

*effect);

Function Parameters

haptic an SDL Haptic device to create the effect on
effect an SDL HapticEffect structure containing the properties of

the effect to create

Return Value

Returns the ID of the effect on success or a negative error code on failure; call
SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL DestroyHapticEffect

� SDL RunHapticEffect

� SDL UpdateHapticEffect

SDL CREATEMUTEX 117

SDL CreateMutex

Create a new mutex.

Header File

Defined in SDL3/SDL mutex.h

Syntax

SDL_Mutex* SDL_CreateMutex(void);

Return Value

Returns the initialized and unlocked mutex or NULL on failure; call SDL GetError()
for more information.

Remarks

All newly-created mutexes begin in the unlocked state.
Calls to SDL LockMutex() will not return while the mutex is locked by

another thread. See SDL TryLockMutex() to attempt to lock without blocking.
SDL mutexes are reentrant.

Code Examples

¡!– # Begin Mutex Example –¿

SDL_Mutex *mutex;

mutex = SDL_CreateMutex();

if (!mutex) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn’t create mutex\n");

return 1;

}

if (SDL_TryLockMutex(mutex) == 0) {

/* Do stuff while mutex is locked */

SDL_UnlockMutex(mutex);

} else {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn’t lock mutex\n");

}

SDL_DestroyMutex(mutex);

¡!– # End Mutex Example –¿

118 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

See Also

� SDL DestroyMutex

� SDL LockMutex

� SDL TryLockMutex

� SDL UnlockMutex

SDL CREATEPALETTE 119

SDL CreatePalette

Create a palette structure with the specified number of color entries.

Header File

Defined in SDL3/SDL pixels.h

Syntax

SDL_Palette* SDL_CreatePalette(int ncolors);

Function Parameters

ncolors represents the number of color entries in the color palette

Return Value

Returns a new SDL Palette structure on success or NULL on failure (e.g. if
there wasn’t enough memory); call SDL GetError() for more information.

Remarks

The palette entries are initialized to white.

Version

This function is available since SDL 3.0.0.

See Also

� SDL DestroyPalette

� SDL SetPaletteColors

� SDL SetPixelFormatPalette

120 CHAPTER 1. SDL FUNCTIONS

SDL CreatePixelFormat

Create an SDL PixelFormat structure corresponding to a pixel format.

Header File

Defined in SDL3/SDL pixels.h

Syntax

SDL_PixelFormat * SDL_CreatePixelFormat(SDL_PixelFormatEnum

pixel_format);

Function Parameters

pixel format one of the SDL PixelFormatEnum values

Return Value

Returns the new SDL PixelFormat structure or NULL on failure; call SDL GetError()
for more information.

Remarks

Returned structure may come from a shared global cache (i.e. not newly allo-
cated), and hence should not be modified, especially the palette. Weird errors
such as Blit combination not supported may occur.

Version

This function is available since SDL 3.0.0.

See Also

� SDL DestroyPixelFormat

� SDL SetPixelFormatPalette

SDL CREATEPOPUPWINDOW 121

SDL CreatePopupWindow

Create a child popup window of the specified parent window.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_Window* SDL_CreatePopupWindow(SDL_Window *parent, int offset_x, int

offset_y, int w, int h, SDL_WindowFlags flags);

Function Parameters

parent the parent of the window, must not be NULL
offset x the x position of the popup window relative to the origin of

the parent
offset y the y position of the popup window relative to the origin of

the parent window
w the width of the window
h the height of the window
flags SDL WINDOW TOOLTIP or

SDL WINDOW POPUP MENU, and zero or more
additional SDL WindowFlags OR’d together.

Return Value

Returns the window that was created or NULL on failure; call SDL GetError()
for more information.

Remarks

’flags’must contain exactly one of the following: - ’SDL WINDOW TOOLTIP’:
The popup window is a tooltip and will not pass any input events. - ’SDL WINDOW POPUP MENU’:
The popup window is a popup menu. The topmost popup menu will implicitly
gain the keyboard focus.

The following flags are not relevant to popup window creation and will be
ignored:

� ’SDL WINDOW MINIMIZED’

� ’SDL WINDOW MAXIMIZED’

� ’SDL WINDOW FULLSCREEN’

122 CHAPTER 1. SDL FUNCTIONS

� ’SDL WINDOW BORDERLESS’

The parent parameter must be non-null and a valid window. The parent
of a popup window can be either a regular, toplevel window, or another popup
window.

Popup windows cannot be minimized, maximized, made fullscreen, raised,
flash, be made a modal window, be the parent of a modal window, or grab the
mouse and/or keyboard. Attempts to do so will fail.

Popup windows implicitly do not have a border/decorations and do not
appear on the taskbar/dock or in lists of windows such as alt-tab menus.

If a parent window is hidden, any child popup windows will be recursively
hidden as well. Child popup windows not explicitly hidden will be restored
when the parent is shown.

If the parent window is destroyed, any child popup windows will be recur-
sively destroyed as well.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateWindow

� SDL CreateWindowWithProperties

� SDL DestroyWindow

� SDL GetWindowParent

SDL CREATEPROPERTIES 123

SDL CreateProperties

Create a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

SDL_PropertiesID SDL_CreateProperties(void);

Return Value

Returns an ID for a new set of properties, or 0 on failure; call SDL GetError()
for more information.

Remarks

All properties are automatically destroyed when SDL Quit() is called.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL DestroyProperties

124 CHAPTER 1. SDL FUNCTIONS

SDL CreateRenderer

Create a 2D rendering context for a window.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_Renderer * SDL_CreateRenderer(SDL_Window *window, const char *name,

Uint32 flags);

Function Parameters

window the window where rendering is displayed
name the name of the rendering driver to initialize, or NULL to

initialize the first one supporting the requested flags
flags 0, or one or more SDL RendererFlags OR’d together

Return Value

Returns a valid rendering context or NULL if there was an error; call SDL GetError()
for more information.

Remarks

If you want a specific renderer, you can specify its name here. A list of available
renderers can be obtained by calling SDL GetRenderDriver multiple times, with
indices from 0 to SDL GetNumRenderDrivers()-1. If you don’t need a specific
renderer, specify NULL and SDL will attempt to choose the best option for you,
based on what is available on the user’s system.

By default the rendering size matches the window size in pixels, but you can
call SDL SetRenderLogicalPresentation() to change the content size and scaling
options.

Code Examples

#include <SDL3/SDL.h>

#include <SDL3/SDL_main.h>

int main(int argc, char *argv[])

{

SDL_Window *win = NULL;

SDL_Renderer *renderer = NULL;

SDL CREATERENDERER 125

SDL_Texture *bitmapTex = NULL;

SDL_Surface *bitmapSurface = NULL;

int width = 320, height = 240;

SDL_bool loopShouldStop = SDL_FALSE;

SDL_Init(SDL_INIT_VIDEO);

win = SDL_CreateWindow("Hello World", width, height, 0);

renderer = SDL_CreateRenderer(win, NULL, 0);

bitmapSurface = SDL_LoadBMP("img/hello.bmp");

bitmapTex = SDL_CreateTextureFromSurface(renderer, bitmapSurface);

SDL_DestroySurface(bitmapSurface);

while (!loopShouldStop)

{

SDL_Event event;

while (SDL_PollEvent(&event))

{

switch (event.type)

{

case SDL_EVENT_QUIT:

loopShouldStop = SDL_TRUE;

break;

}

}

SDL_RenderClear(renderer);

SDL_RenderTexture(renderer, bitmapTex, NULL, NULL);

SDL_RenderPresent(renderer);

}

SDL_DestroyTexture(bitmapTex);

SDL_DestroyRenderer(renderer);

SDL_DestroyWindow(win);

SDL_Quit();

return 0;

}

Version

This function is available since SDL 3.0.0.

126 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL CreateRendererWithProperties

� SDL CreateSoftwareRenderer

� SDL DestroyRenderer

� SDL GetNumRenderDrivers

� SDL GetRenderDriver

� SDL GetRendererInfo

SDL CREATERENDERERWITHPROPERTIES 127

SDL CreateRendererWithProperties

Create a 2D rendering context for a window, with the specified properties.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_Renderer * SDL_CreateRendererWithProperties(SDL_PropertiesID props);

Function Parameters

props the properties to use

Return Value

Returns a valid rendering context or NULL if there was an error; call SDL GetError()
for more information.

Remarks

These are the supported properties:

� SDL PROP RENDERER CREATE NAME STRING: the name of the rendering driver
to use, if a specific one is desired

� SDL PROP RENDERER CREATE WINDOW POINTER: the window where render-
ing is displayed, required if this isn’t a software renderer using a surface

� SDL PROP RENDERER CREATE SURFACE POINTER: the surface where render-
ing is displayed, if you want a software renderer without a window

� SDL PROP RENDERER CREATE OUTPUT COLORSPACE NUMBER: an SDL ColorSpace
value describing the colorspace for output to the display, defaults to SDL COLORSPACE SRGB.
The direct3d11, direct3d12, and metal renderers support SDL COLORSPACE SRGB LINEAR,
which is a linear color space and supports HDR output. If you select
SDL COLORSPACE SRGB LINEAR, drawing still uses the sRGB col-
orspace, but values can go beyond 1.0 and float (linear) format textures
can be used for HDR content.

� SDL PROP RENDERER CREATE PRESENT VSYNC BOOLEAN: true if you want present
synchronized with the refresh rate

With the vulkan renderer:

128 CHAPTER 1. SDL FUNCTIONS

� SDL PROP RENDERER CREATE VULKAN INSTANCE POINTER: the VkInstance to
use with the renderer, optional.

� SDL PROP RENDERER CREATE VULKAN SURFACE NUMBER: the VkSurfaceKHR
to use with the renderer, optional.

� SDL PROP RENDERER CREATE VULKAN PHYSICAL DEVICE POINTER: the Vk-
PhysicalDevice to use with the renderer, optional.

� SDL PROP RENDERER CREATE VULKAN DEVICE POINTER: the VkDevice to use
with the renderer, optional.

� SDL PROP RENDERER CREATE VULKAN GRAPHICS QUEUE FAMILY INDEX NUMBER:
the queue family index used for rendering.

� SDL PROP RENDERER CREATE VULKAN PRESENT QUEUE FAMILY INDEX NUMBER:
the queue family index used for presentation.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateProperties

� SDL CreateRenderer

� SDL CreateSoftwareRenderer

� SDL DestroyRenderer

� SDL GetRendererInfo

SDL CREATERWLOCK 129

SDL CreateRWLock

Create a new read/write lock.

Header File

Defined in SDL3/SDL mutex.h

Syntax

SDL_RWLock* SDL_CreateRWLock(void);

Return Value

Returns the initialized and unlocked read/write lock or NULL on failure; call
SDL GetError() for more information.

Remarks

A read/write lock is useful for situations where you have multiple threads trying
to access a resource that is rarely updated. All threads requesting a read-only
lock will be allowed to run in parallel; if a thread requests a write lock, it will
be provided exclusive access. This makes it safe for multiple threads to use a
resource at the same time if they promise not to change it, and when it has to
be changed, the rwlock will serve as a gateway to make sure those changes can
be made safely.

In the right situation, a rwlock can be more efficient than a mutex, which
only lets a single thread proceed at a time, even if it won’t be modifying the
data.

All newly-created read/write locks begin in the unlocked state.

Calls to SDL LockRWLockForReading() and SDL LockRWLockForWriting
will not return while the rwlock is locked for writing by another thread. See
SDL TryLockRWLockForReading() and SDL TryLockRWLockForWriting() to
attempt to lock without blocking.

SDL read/write locks are only recursive for read-only locks! They are not
guaranteed to be fair, or provide access in a FIFO manner! They are not
guaranteed to favor writers. You may not lock a rwlock for both read-only and
write access at the same time from the same thread (so you can’t promote your
read-only lock to a write lock without unlocking first).

Version

This function is available since SDL 3.0.0.

130 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL DestroyRWLock

� SDL LockRWLockForReading

� SDL LockRWLockForWriting

� SDL TryLockRWLockForReading

� SDL TryLockRWLockForWriting

� SDL UnlockRWLock

SDL CREATESEMAPHORE 131

SDL CreateSemaphore

Create a semaphore.

Header File

Defined in SDL3/SDL mutex.h

Syntax

SDL_Semaphore* SDL_CreateSemaphore(Uint32 initial_value);

Function Parameters

initial value the starting value of the semaphore

Return Value

Returns a new semaphore or NULL on failure; call SDL GetError() for more
information.

Remarks

This function creates a new semaphore and initializes it with the value initial value.
Each wait operation on the semaphore will atomically decrement the semaphore
value and potentially block if the semaphore value is 0. Each post operation
will atomically increment the semaphore value and wake waiting threads and
allow them to retry the wait operation.

Code Examples

¡!– # Begin Semaphore Example –¿ Typical use of semaphores:

void add_data_to_queue(void);

void get_data_to_queue(void);

void get_data_from_queue(void);

int data_available(void);

void wait_for_threads(void);

SDL_AtomicInt done;

SDL_Semaphore *sem;

SDL_AtomicSet(&done, 0);

sem = SDL_CreateSemaphore(0);

132 CHAPTER 1. SDL FUNCTIONS

Thread_A:

while (!SDL_AtomicGet(&done)) {

add_data_to_queue();

SDL_PostSemaphore(sem);

}

Thread_B:

while (!SDL_AtomicGet(&done)) {

SDL_WaitSemaphore(sem);

if (data_available()) {

get_data_from_queue();

}

}

SDL_AtomicSet(&done, 1);

SDL_PostSemaphore(sem);

wait_for_threads();

SDL_DestroySemaphore(sem);

¡!– # End Semaphore Example –¿

Version

This function is available since SDL 3.0.0.

See Also

� SDL DestroySemaphore

� SDL PostSemaphore

� SDL TryWaitSemaphore

� SDL GetSemaphoreValue

� SDL WaitSemaphore

� SDL WaitSemaphoreTimeout

SDL CREATESOFTWARERENDERER 133

SDL CreateSoftwareRenderer

Create a 2D software rendering context for a surface.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_Renderer* SDL_CreateSoftwareRenderer(SDL_Surface *surface);

Function Parameters

surface the SDL Surface structure representing the surface where
rendering is done

Return Value

Returns a valid rendering context or NULL if there was an error; call SDL GetError()
for more information.

Remarks

Two other API which can be used to create SDL Renderer: SDL CreateRenderer()
and SDL CreateWindowAndRenderer(). These can also create a software ren-
derer, but they are intended to be used with an SDL Window as the final des-
tination and not an SDL Surface.

Code Examples

#include <SDL3/SDL.h>

#include <SDL3/SDL_main.h>

SDL_Window *window;

SDL_Renderer *renderer;

int done;

void DrawChessBoard(SDL_Renderer *renderer)

{

int row = 0, column = 0, x = 0;

SDL_FRect rect;

SDL_Rect darea;

/* Get the Size of drawing surface */

SDL_GetRenderViewport(renderer, &darea);

134 CHAPTER 1. SDL FUNCTIONS

SDL_SetRenderDrawColor(renderer, 0xFF, 0xFF, 0xFF, 0xFF);

SDL_RenderClear(renderer);

for (; row < 8; row++) {

column = row % 2;

x = column;

for (; column < 4 + (row % 2); column++) {

SDL_SetRenderDrawColor(renderer, 0, 0, 0, 0xFF);

rect.w = (float)darea.w / 8;

rect.h = (float)darea.h / 8;

rect.x = x * rect.w;

rect.y = row * rect.h;

x = x + 2;

SDL_RenderFillRect(renderer, &rect);

}

}

SDL_RenderPresent(renderer);

}

void loop()

{

SDL_Event e;

while (SDL_PollEvent(&e)) {

if (e.type == SDL_EVENT_QUIT) {

done = 1;

return;

}

if ((e.type == SDL_EVENT_KEY_DOWN) && (e.key.keysym.sym ==

SDLK_ESCAPE)) {

done = 1;

return;

}

}

DrawChessBoard(renderer);

/* Got everything on rendering surface,

now Update the drawing image on window screen */

SDL_UpdateWindowSurface(window);

}

int main(int argc, char *argv[])

{

SDL_Surface *surface;

/* Enable standard application logging */

SDL CREATESOFTWARERENDERER 135

SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION,

SDL_LOG_PRIORITY_INFO);

/* Initialize SDL */

if (SDL_Init(SDL_INIT_VIDEO) != 0) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "SDL_Init fail :

%s\n", SDL_GetError());

return 1;

}

/* Create window and renderer for given surface */

window = SDL_CreateWindow("Chess Board", 640, 480, 0);

if (!window) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Window creation fail

: %s\n", SDL_GetError());

return 1;

}

surface = SDL_GetWindowSurface(window);

renderer = SDL_CreateSoftwareRenderer(surface);

if (!renderer) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Render creation for

surface fail : %s\n", SDL_GetError());

return 1;

}

/* Draw the Image on rendering surface */

done = 0;

while (!done) {

loop();

}

SDL_Quit();

return 0;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL DestroyRenderer

136 CHAPTER 1. SDL FUNCTIONS

SDL CreateStorageDirectory

Create a directory in a writable storage container.

Header File

Defined in SDL3/SDL storage.h

Syntax

int SDL_CreateStorageDirectory(SDL_Storage *storage, const char *path);

Function Parameters

storage a storage container
path the path of the directory to create

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL StorageReady

SDL CREATESURFACE 137

SDL CreateSurface

Allocate a new RGB surface with a specific pixel format.

Header File

Defined in SDL3/SDL surface.h

Syntax

SDL_Surface* SDL_CreateSurface(int width, int height,

SDL_PixelFormatEnum format);

Function Parameters

width the width of the surface
height the height of the surface
format the SDL PixelFormatEnum for the new surface’s pixel for-

mat.

Return Value

Returns the new SDL Surface structure that is created or NULL if it fails; call
SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateSurfaceFrom

� SDL DestroySurface

138 CHAPTER 1. SDL FUNCTIONS

SDL CreateSurfaceFrom

Allocate a new RGB surface with a specific pixel format and existing pixel data.

Header File

Defined in SDL3/SDL surface.h

Syntax

SDL_Surface* SDL_CreateSurfaceFrom(void *pixels, int width, int height,

int pitch, SDL_PixelFormatEnum format);

Function Parameters

pixels a pointer to existing pixel data
width the width of the surface
height the height of the surface
pitch the number of bytes between each row, including padding
format the SDL PixelFormatEnum for the new surface’s pixel for-

mat.

Return Value

Returns the new SDL Surface structure that is created or NULL if it fails; call
SDL GetError() for more information.

Remarks

No copy is made of the pixel data. Pixel data is not managed automatically;
you must free the surface before you free the pixel data.

Pitch is the offset in bytes from one row of pixels to the next, e.g. width*4
for SDL PIXELFORMAT RGBA8888.

You may pass NULL for pixels and 0 for pitch to create a surface that you
will fill in with valid values later.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateSurface

� SDL DestroySurface

SDL CREATESYSTEMCURSOR 139

SDL CreateSystemCursor

Create a system cursor.

Header File

Defined in SDL3/SDL mouse.h

Syntax

SDL_Cursor* SDL_CreateSystemCursor(SDL_SystemCursor id);

Function Parameters

id an SDL SystemCursor enum value

Return Value

Returns a cursor on success or NULL on failure; call SDL GetError() for more
information.

Code Examples

SDL_Cursor* cursor;

cursor = SDL_CreateSystemCursor(SDL_SYSTEM_CURSOR_HAND);

SDL_SetCursor(cursor);

Version

This function is available since SDL 3.0.0.

See Also

� SDL DestroyCursor

140 CHAPTER 1. SDL FUNCTIONS

SDL CreateTexture

Create a texture for a rendering context.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_Texture* SDL_CreateTexture(SDL_Renderer *renderer,

SDL_PixelFormatEnum format, int access, int w, int h);

Function Parameters

renderer the rendering context
format one of the enumerated values in SDL PixelFormatEnum
access one of the enumerated values in SDL TextureAccess
w the width of the texture in pixels
h the height of the texture in pixels

Return Value

Returns a pointer to the created texture or NULL if no rendering context was
active, the format was unsupported, or the width or height were out of range;
call SDL GetError() for more information.

Code Examples

#include <SDL3/SDL.h>

#include <stdlib.h>

/* Moving Rectangle */

int main(int argc, char *argv[])

{

SDL_Window *window;

SDL_Renderer *renderer;

SDL_Texture *texture;

SDL_Event event;

SDL_FRect r;

if (SDL_Init(SDL_INIT_VIDEO) < 0) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn’t

initialize SDL: %s", SDL_GetError());

return 3;

SDL CREATETEXTURE 141

}

window = SDL_CreateWindow("SDL_CreateTexture",

1024, 768,

SDL_WINDOW_RESIZABLE);

r.w = 100;

r.h = 50;

renderer = SDL_CreateRenderer(window, NULL, 0);

texture = SDL_CreateTexture(renderer, SDL_PIXELFORMAT_RGBA8888,

SDL_TEXTUREACCESS_TARGET, 1024, 768);

while (1) {

SDL_PollEvent(&event);

if(event.type == SDL_EVENT_QUIT)

break;

r.x=rand()%500;

r.y=rand()%500;

SDL_SetRenderTarget(renderer, texture);

SDL_SetRenderDrawColor(renderer, 0x00, 0x00, 0x00, 0x00);

SDL_RenderClear(renderer);

SDL_RenderRect(renderer,&r);

SDL_SetRenderDrawColor(renderer, 0xFF, 0x00, 0x00, 0x00);

SDL_RenderFillRect(renderer, &r);

SDL_SetRenderTarget(renderer, NULL);

SDL_RenderTexture(renderer, texture, NULL, NULL);

SDL_RenderPresent(renderer);

}

SDL_DestroyRenderer(renderer);

SDL_Quit();

return 0;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateTextureFromSurface

� SDL CreateTextureWithProperties

� SDL DestroyTexture

� SDL QueryTexture

142 CHAPTER 1. SDL FUNCTIONS

� SDL UpdateTexture

SDL CREATETEXTUREFROMSURFACE 143

SDL CreateTextureFromSurface

Create a texture from an existing surface.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_Texture* SDL_CreateTextureFromSurface(SDL_Renderer *renderer,

SDL_Surface *surface);

Function Parameters

renderer the rendering context
surface the SDL Surface structure containing pixel data used to fill

the texture

Return Value

Returns the created texture or NULL on failure; call SDL GetError() for more
information.

Remarks

The surface is not modified or freed by this function.
The SDL TextureAccess hint for the created texture is SDL TEXTUREACCESS STATIC.
The pixel format of the created texture may be different from the pixel

format of the surface. Use SDL QueryTexture() to query the pixel format of
the texture.

Code Examples

SDL_Renderer *renderer;

SDL_Surface *surface = SDL_CreateSurface(640, 480,

SDL_PIXELFORMAT_RGBA8888);

if (surface == NULL) {

fprintf(stderr, "CreateRGBSurface failed: %s\n", SDL_GetError());

exit(1);

}

SDL_Texture *texture = SDL_CreateTextureFromSurface(renderer, surface);

144 CHAPTER 1. SDL FUNCTIONS

if (texture == NULL) {

fprintf(stderr, "CreateTextureFromSurface failed: %s\n",

SDL_GetError());

exit(1);

}

SDL_DestroySurface(surface);

surface = NULL;

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateTexture

� SDL CreateTextureWithProperties

� SDL DestroyTexture

� SDL QueryTexture

SDL CREATETEXTUREWITHPROPERTIES 145

SDL CreateTextureWithProperties

Create a texture for a rendering context with the specified properties.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_Texture* SDL_CreateTextureWithProperties(SDL_Renderer *renderer,

SDL_PropertiesID props);

Function Parameters

renderer the rendering context
props the properties to use

Return Value

Returns a pointer to the created texture or NULL if no rendering context was
active, the format was unsupported, or the width or height were out of range;
call SDL GetError() for more information.

Remarks

These are the supported properties:

� SDL PROP TEXTURE CREATE COLORSPACE NUMBER: an SDL ColorSpace value
describing the texture colorspace, defaults to SDL COLORSPACE SRGB LINEAR
for floating point textures, SDL COLORSPACE HDR10 for 10-bit tex-
tures, SDL COLORSPACE SRGB for other RGB textures and SDL COLORSPACE JPEG
for YUV textures.

� SDL PROP TEXTURE CREATE FORMAT NUMBER: one of the enumerated values
in SDL PixelFormatEnum, defaults to the best RGBA format for the ren-
derer

� SDL PROP TEXTURE CREATE ACCESS NUMBER: one of the enumerated values
in SDL TextureAccess, defaults to SDL TEXTUREACCESS STATIC

� SDL PROP TEXTURE CREATE WIDTH NUMBER: the width of the texture in pix-
els, required

� SDL PROP TEXTURE CREATE HEIGHT NUMBER: the height of the texture in
pixels, required

146 CHAPTER 1. SDL FUNCTIONS

� SDL PROP TEXTURE CREATE SDR WHITE POINT FLOAT: for HDR10 and float-
ing point textures, this defines the value of 100diffuse white, with higher
values being displayed in the High Dynamic Range headroom. This de-
faults to 100 for HDR10 textures and 1.0 for floating point textures.

� SDL PROP TEXTURE CREATE HDR HEADROOM FLOAT: for HDR10 and floating
point textures, this defines the maximum dynamic range used by the con-
tent, in terms of the SDR white point. This would be equivalent to max-
CLL / SDL PROP TEXTURE CREATE SDR WHITE POINT FLOAT
for HDR10 content. If this is defined, any values outside the range sup-
ported by the display will be scaled into the available HDR headroom,
otherwise they are clipped.

With the direct3d11 renderer:

� SDL PROP TEXTURE CREATE D3D11 TEXTURE POINTER: the ID3D11Texture2D
associated with the texture, if you want to wrap an existing texture.

� SDL PROP TEXTURE CREATE D3D11 TEXTURE U POINTER: the ID3D11Texture2D
associated with the U plane of a YUV texture, if you want to wrap an
existing texture.

� SDL PROP TEXTURE CREATE D3D11 TEXTURE V POINTER: the ID3D11Texture2D
associated with the V plane of a YUV texture, if you want to wrap an
existing texture.

With the direct3d12 renderer:

� SDL PROP TEXTURE CREATE D3D12 TEXTURE POINTER: the ID3D12Resource
associated with the texture, if you want to wrap an existing texture.

� SDL PROP TEXTURE CREATE D3D12 TEXTURE U POINTER: the ID3D12Resource
associated with the U plane of a YUV texture, if you want to wrap an
existing texture.

� SDL PROP TEXTURE CREATE D3D12 TEXTURE V POINTER: the ID3D12Resource
associated with the V plane of a YUV texture, if you want to wrap an
existing texture.

With the metal renderer:

� SDL PROP TEXTURE CREATE METAL PIXELBUFFER POINTER: the CVPixelBuf-
ferRef associated with the texture, if you want to create a texture from
an existing pixel buffer.

With the opengl renderer:

� SDL PROP TEXTURE CREATE OPENGL TEXTURE NUMBER: the GLuint texture
associated with the texture, if you want to wrap an existing texture.

SDL CREATETEXTUREWITHPROPERTIES 147

� SDL PROP TEXTURE CREATE OPENGL TEXTURE UV NUMBER: the GLuint tex-
ture associated with the UV plane of an NV12 texture, if you want to
wrap an existing texture.

� SDL PROP TEXTURE CREATE OPENGL TEXTURE U NUMBER: the GLuint texture
associated with the U plane of a YUV texture, if you want to wrap an
existing texture.

� SDL PROP TEXTURE CREATE OPENGL TEXTURE V NUMBER: the GLuint texture
associated with the V plane of a YUV texture, if you want to wrap an
existing texture.

With the opengles2 renderer:

� SDL PROP TEXTURE CREATE OPENGLES2 TEXTURE NUMBER: the GLuint tex-
ture associated with the texture, if you want to wrap an existing texture.

� SDL PROP TEXTURE CREATE OPENGLES2 TEXTURE NUMBER: the GLuint tex-
ture associated with the texture, if you want to wrap an existing texture.

� SDL PROP TEXTURE CREATE OPENGLES2 TEXTURE UV NUMBER: the GLuint tex-
ture associated with the UV plane of an NV12 texture, if you want to wrap
an existing texture.

� SDL PROP TEXTURE CREATE OPENGLES2 TEXTURE U NUMBER: the GLuint tex-
ture associated with the U plane of a YUV texture, if you want to wrap
an existing texture.

� SDL PROP TEXTURE CREATE OPENGLES2 TEXTURE V NUMBER: the GLuint tex-
ture associated with the V plane of a YUV texture, if you want to wrap
an existing texture.

With the vulkan renderer:

� SDL PROP TEXTURE CREATE VULKAN TEXTURE NUMBER: the VkImage with lay-
out VK IMAGE LAYOUT SHADER READ ONLY OPTIMAL associated
with the texture, if you want to wrap an existing texture.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateProperties

� SDL CreateTexture

� SDL CreateTextureFromSurface

148 CHAPTER 1. SDL FUNCTIONS

� SDL DestroyTexture

� SDL QueryTexture

� SDL UpdateTexture

SDL CREATETHREAD 149

SDL CreateThread

Create a new thread with a default stack size.

Header File

Defined in SDL3/SDL thread.h

Syntax

SDL_Thread * SDL_CreateThread(SDL_ThreadFunction fn, const char *name,

void *data);

Function Parameters

fn the SDL ThreadFunction function to call in the new thread
name the name of the thread
data a pointer that is passed to fn

Return Value

Returns an opaque pointer to the new thread object on success, NULL if the
new thread could not be created; call SDL GetError() for more information.

Remarks

This is equivalent to calling:

SDL_CreateThreadWithStackSize(fn, name, 0, data);

Code Examples

#include <SDL3/SDL.h>

/* Very simple thread - counts 0 to 9 delaying 50ms between increments */

static int TestThread(void *ptr)

{

int cnt;

for (cnt = 0; cnt < 10; ++cnt) {

SDL_Log("Thread counter: %d\n", cnt);

SDL_Delay(50);

}

return cnt;

150 CHAPTER 1. SDL FUNCTIONS

}

int main(int argc, char *argv[])

{

SDL_Thread *thread;

int threadReturnValue;

SDL_Log("Simple SDL_CreateThread test:\n");

/* Simply create a thread */

thread = SDL_CreateThread(TestThread, "TestThread", (void *)NULL);

if (NULL == thread) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "SDL_CreateThread

failed: %s\n", SDL_GetError());

} else {

SDL_WaitThread(thread, &threadReturnValue);

SDL_Log("Thread returned value: %d\n", threadReturnValue);

}

return 0;

}

Output:

Simple SDL_CreateThread test:

Thread counter: 0

Thread counter: 1

Thread counter: 2

Thread counter: 3

Thread counter: 4

Thread counter: 5

Thread counter: 6

Thread counter: 7

Thread counter: 8

Thread counter: 9

Thread returned value: 10

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateThreadWithStackSize

� SDL WaitThread

SDL CREATETHREADWITHSTACKSIZE 151

SDL CreateThreadWithStackSize

Create a new thread with a specific stack size.

Header File

Defined in SDL3/SDL thread.h

Syntax

SDL_Thread * SDL_CreateThreadWithStackSize(SDL_ThreadFunction fn, const

char *name, const size_t stacksize, void *data);

Function Parameters

fn the SDL ThreadFunction function to call in the new thread
name the name of the thread
stacksize the size, in bytes, to allocate for the new thread stack.
data a pointer that is passed to fn

Return Value

Returns an opaque pointer to the new thread object on success, NULL if the
new thread could not be created; call SDL GetError() for more information.

Remarks

SDL makes an attempt to report name to the system, so that debuggers can
display it. Not all platforms support this.

Thread naming is a little complicated: Most systems have very small limits
for the string length (Haiku has 32 bytes, Linux currently has 16, Visual C++
6.0 has nine !), and possibly other arbitrary rules. You’ll have to see what
happens with your system’s debugger. The name should be UTF-8 (but using
the naming limits of C identifiers is a better bet). There are no requirements
for thread naming conventions, so long as the string is null-terminated UTF-8,
but these guidelines are helpful in choosing a name:

https://stackoverflow.com/questions/149932/naming-conventions-for-threads
If a system imposes requirements, SDL will try to munge the string for it

(truncate, etc), but the original string contents will be available from SDL GetThreadName().
The size (in bytes) of the new stack can be specified. Zero means ”use

the system default” which might be wildly different between platforms. x86
Linux generally defaults to eight megabytes, an embedded device might be a
few kilobytes instead. You generally need to specify a stack that is a multiple of
the system’s page size (in many cases, this is 4 kilobytes, but check your system
documentation).

152 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateThread

� SDL WaitThread

SDL CREATETLS 153

SDL CreateTLS

Create a piece of thread-local storage.

Header File

Defined in SDL3/SDL thread.h

Syntax

SDL_TLSID SDL_CreateTLS(void);

Return Value

Returns the newly created thread local storage identifier or 0 on error.

Remarks

This creates an identifier that is globally visible to all threads but refers to data
that is thread-specific.

Code Examples

// BEWARE: This code example was migrated from the SDL2 Wiki, by only

updating the names.

static SDL_SpinLock tls_lock;

static SDL_TLSID thread_local_storage;

void SetMyThreadData(void *value)

{

if (!thread_local_storage) {

SDL_LockSpinlock(&tls_lock);

if (!thread_local_storage) {

thread_local_storage = SDL_CreateTLS();

}

SDL_UnlockSpinlock(&tls_lock);

}

SDL_SetTLS(thread_local_storage, value, 0);

}

void *GetMyThreadData(void)

{

return SDL_GetTLS(thread_local_storage);

}

154 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetTLS

� SDL SetTLS

SDL CREATEWINDOW 155

SDL CreateWindow

Create a window with the specified dimensions and flags.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_Window* SDL_CreateWindow(const char *title, int w, int h,

SDL_WindowFlags flags);

Function Parameters

title the title of the window, in UTF-8 encoding
w the width of the window
h the height of the window
flags 0, or one or more SDL WindowFlags OR’d together

Return Value

Returns the window that was created or NULL on failure; call SDL GetError()
for more information.

Remarks

flags may be any of the following OR’d together:

� SDL WINDOW FULLSCREEN: fullscreen window at desktop resolution

� SDL WINDOW OPENGL: window usable with an OpenGL context

� SDL WINDOW VULKAN: window usable with a Vulkan instance

� SDL WINDOW METAL: window usable with a Metal instance

� SDL WINDOW HIDDEN: window is not visible

� SDL WINDOW BORDERLESS: no window decoration

� SDL WINDOW RESIZABLE: window can be resized

� SDL WINDOW MINIMIZED: window is minimized

� SDL WINDOW MAXIMIZED: window is maximized

� SDL WINDOW MOUSE GRABBED: window has grabbed mouse focus

156 CHAPTER 1. SDL FUNCTIONS

The SDL Window is implicitly shown if SDL WINDOW HIDDEN is not set.

On Apple’s macOS, you must set the NSHighResolutionCapable Info.plist
property to YES, otherwise you will not receive a High-DPI OpenGL canvas.

The window pixel size may differ from its window coordinate size if the
window is on a high pixel density display. Use SDL GetWindowSize() to query
the client area’s size in window coordinates, and SDL GetWindowSizeInPixels()
or SDL GetRenderOutputSize() to query the drawable size in pixels. Note that
the drawable size can vary after the window is created and should be queried
again if you get an SDL EVENT WINDOW PIXEL SIZE CHANGED event.

If the window is created with any of the SDL WINDOW OPENGL or SDL WINDOW VULKAN
flags, then the corresponding LoadLibrary function (SDL GL LoadLibrary or
SDL Vulkan LoadLibrary) is called and the corresponding UnloadLibrary func-
tion is called by SDL DestroyWindow().

If SDL WINDOW VULKAN is specified and there isn’t a working Vulkan
driver, SDL CreateWindow() will fail because SDL Vulkan LoadLibrary() will
fail.

If SDL WINDOW METAL is specified on an OS that does not support
Metal, SDL CreateWindow() will fail.

On non-Apple devices, SDL requires you to either not link to the Vulkan
loader or link to a dynamic library version. This limitation may be removed in
a future version of SDL.

Code Examples

// Example program:

// Using SDL3 to create an application window

#include <SDL3/SDL.h>

int main(int argc, char* argv[]) {

SDL_Window *window; // Declare a pointer

SDL_Init(SDL_INIT_VIDEO); // Initialize SDL2

// Create an application window with the following settings:

window = SDL_CreateWindow(

"An SDL3 window", // window title

640, // width, in pixels

480, // height, in pixels

SDL_WINDOW_OPENGL // flags - see below

);

// Check that the window was successfully created

if (window == NULL) {

// In the case that the window could not be made...

SDL CREATEWINDOW 157

SDL_LogError(SDL_LOG_CATEGORY_ERROR, "Could not create window:

%s\n", SDL_GetError());

return 1;

}

// The window is open: could enter program loop here (see

SDL_PollEvent())

SDL_Delay(3000); // Pause execution for 3000 milliseconds, for

example

// Close and destroy the window

SDL_DestroyWindow(window);

// Clean up

SDL_Quit();

return 0;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreatePopupWindow

� SDL CreateWindowWithProperties

� SDL DestroyWindow

158 CHAPTER 1. SDL FUNCTIONS

SDL CreateWindowAndRenderer

Create a window and default renderer.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_CreateWindowAndRenderer(const char *title, int width, int

height, SDL_WindowFlags window_flags, SDL_Window **window,

SDL_Renderer **renderer);

Function Parameters

title the title of the window, in UTF-8 encoding
width the width of the window
height the height of the window
window flags the flags used to create the window (see

SDL CreateWindow())
window a pointer filled with the window, or NULL on error
renderer a pointer filled with the renderer, or NULL on error

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Code Examples

#include <SDL3/SDL.h>

int main(int argc, char *argv[])

{

SDL_Window *window;

SDL_Renderer *renderer;

SDL_Surface *surface;

SDL_Texture *texture;

SDL_Event event;

if (SDL_Init(SDL_INIT_VIDEO) < 0) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn’t initialize

SDL: %s", SDL_GetError());

SDL CREATEWINDOWANDRENDERER 159

return 3;

}

if (SDL_CreateWindowAndRenderer("Hello SDL", 320, 240,

SDL_WINDOW_RESIZABLE, &window, &renderer)) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn’t create

window and renderer: %s", SDL_GetError());

return 3;

}

surface = SDL_LoadBMP("sample.bmp");

if (!surface) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn’t create

surface from image: %s", SDL_GetError());

return 3;

}

texture = SDL_CreateTextureFromSurface(renderer, surface);

if (!texture) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn’t create

texture from surface: %s", SDL_GetError());

return 3;

}

SDL_DestroySurface(surface);

while (1) {

SDL_PollEvent(&event);

if (event.type == SDL_EVENT_QUIT) {

break;

}

SDL_SetRenderDrawColor(renderer, 0x00, 0x00, 0x00, 0x00);

SDL_RenderClear(renderer);

SDL_RenderTexture(renderer, texture, NULL, NULL);

SDL_RenderPresent(renderer);

}

SDL_DestroyTexture(texture);

SDL_DestroyRenderer(renderer);

SDL_DestroyWindow(window);

SDL_Quit();

return 0;

}

Version

This function is available since SDL 3.0.0.

160 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL CreateRenderer

� SDL CreateWindow

SDL CREATEWINDOWWITHPROPERTIES 161

SDL CreateWindowWithProperties

Create a window with the specified properties.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_Window* SDL_CreateWindowWithProperties(SDL_PropertiesID props);

Function Parameters

props the properties to use

Return Value

Returns the window that was created or NULL on failure; call SDL GetError()
for more information.

Remarks

These are the supported properties:

� SDL PROP WINDOW CREATE ALWAYS ON TOP BOOLEAN: true if the window should
be always on top

� SDL PROP WINDOW CREATE BORDERLESS BOOLEAN: true if the window has
no window decoration

� SDL PROP WINDOW CREATE EXTERNAL GRAPHICS CONTEXT BOOLEAN: true if
the window will be used with an externally managed graphics context.

� SDL PROP WINDOW CREATE FOCUSABLE BOOLEAN: true if the window should
accept keyboard input (defaults true)

� SDL PROP WINDOW CREATE FULLSCREEN BOOLEAN: true if the window should
start in fullscreen mode at desktop resolution

� SDL PROP WINDOW CREATE HEIGHT NUMBER: the height of the window

� SDL PROP WINDOW CREATE HIDDEN BOOLEAN: true if the window should start
hidden

� SDL PROP WINDOW CREATE HIGH PIXEL DENSITY BOOLEAN: true if the win-
dow uses a high pixel density buffer if possible

162 CHAPTER 1. SDL FUNCTIONS

� SDL PROP WINDOW CREATE MAXIMIZED BOOLEAN: true if the window should
start maximized

� SDL PROP WINDOW CREATE MENU BOOLEAN: true if the window is a popup
menu

� SDL PROP WINDOW CREATE METAL BOOLEAN: true if the window will be used
with Metal rendering

� SDL PROP WINDOW CREATE MINIMIZED BOOLEAN: true if the window should
start minimized

� SDL PROP WINDOW CREATE MODAL BOOLEAN: true if the window is modal to
its parent

� SDL PROP WINDOW CREATE MOUSE GRABBED BOOLEAN: true if the window starts
with grabbed mouse focus

� SDL PROP WINDOW CREATE OPENGL BOOLEAN: true if the window will be used
with OpenGL rendering

� SDL PROP WINDOW CREATE PARENT POINTER: an SDL Window that will be
the parent of this window, required for windows with the ”toolip”, ”menu”,
and ”modal” properties

� SDL PROP WINDOW CREATE RESIZABLE BOOLEAN: true if the window should
be resizable

� SDL PROP WINDOW CREATE TITLE STRING: the title of the window, in UTF-
8 encoding

� SDL PROP WINDOW CREATE TRANSPARENT BOOLEAN: true if the window show
transparent in the areas with alpha of 0

� SDL PROP WINDOW CREATE TOOLTIP BOOLEAN: true if the window is a tooltip

� SDL PROP WINDOW CREATE UTILITY BOOLEAN: true if the window is a utility
window, not showing in the task bar and window list

� SDL PROP WINDOW CREATE VULKAN BOOLEAN: true if the window will be used
with Vulkan rendering

� SDL PROP WINDOW CREATE WIDTH NUMBER: the width of the window

� SDL PROP WINDOW CREATE X NUMBER: the x position of the window, or SDL WINDOWPOS CENTERED,
defaults to SDL WINDOWPOS UNDEFINED. This is relative to the parent for
windows with the ”parent” property set.

� SDL PROP WINDOW CREATE Y NUMBER: the y position of the window, or SDL WINDOWPOS CENTERED,
defaults to SDL WINDOWPOS UNDEFINED. This is relative to the parent for
windows with the ”parent” property set.

SDL CREATEWINDOWWITHPROPERTIES 163

These are additional supported properties on macOS:

� SDL PROP WINDOW CREATE COCOA WINDOW POINTER: the (unsafe unretained)

NSWindow associated with the window, if you want to wrap an existing
window.

� SDL PROP WINDOW CREATE COCOA VIEW POINTER: the (unsafe unretained)

NSView associated with the window, defaults to [window contentView]

These are additional supported properties on Wayland:

� SDL PROP WINDOW CREATE WAYLAND SCALE TO DISPLAY BOOLEAN - true if
the window should use forced scaling designed to produce 1:1 pixel map-
ping if not flagged as being DPI-aware. This is intended to allow legacy
applications to be displayed without desktop scaling being applied, and
has issues with certain display configurations, as this forces the window
to behave in a way that Wayland desktops were not designed to accom-
modate. Potential issues include, but are not limited to: rounding errors
can result when odd window sizes/scales are used, the window may be
unusably small, the window may jump in visible size at times, the window
may appear to be larger than the desktop space, and possible loss of cur-
sor precision can occur. New applications should be designed with proper
DPI awareness and handling instead of enabling this.

� SDL PROP WINDOW CREATE WAYLAND SURFACE ROLE CUSTOM BOOLEAN - true
if the application wants to use the Wayland surface for a custom role
and does not want it attached to an XDG toplevel window. See [READ-
ME/wayland](README/wayland) for more information on using custom
surfaces.

� SDL PROP WINDOW CREATE WAYLAND CREATE EGL WINDOW BOOLEAN - true if
the application wants an associated wl egl window object to be created,
even if the window does not have the OpenGL property or flag set.

� SDL PROP WINDOW CREATE WAYLAND WL SURFACE POINTER - the wl surface
associated with the window, if you want to wrap an existing window. See
README/wayland for more information.

These are additional supported properties on Windows:

� SDL PROP WINDOW CREATE WIN32 HWND POINTER: the HWND associated with
the window, if you want to wrap an existing window.

� SDL PROP WINDOW CREATE WIN32 PIXEL FORMAT HWND POINTER: optional, an-
other window to share pixel format with, useful for OpenGL windows

These are additional supported properties with X11:

� SDL PROP WINDOW CREATE X11 WINDOW NUMBER: the X11 Window associ-
ated with the window, if you want to wrap an existing window.

164 CHAPTER 1. SDL FUNCTIONS

The window is implicitly shown if the ”hidden” property is not set.
Windows with the ”tooltip” and ”menu” properties are popup windows and

have the behaviors and guidelines outlined in SDL CreatePopupWindow().

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateProperties

� SDL CreateWindow

� SDL DestroyWindow

SDL CURSORVISIBLE 165

SDL CursorVisible

Return whether the cursor is currently being shown.

Header File

Defined in SDL3/SDL mouse.h

Syntax

SDL_bool SDL_CursorVisible(void);

Return Value

Returns SDL TRUE if the cursor is being shown, or SDL FALSE if the cursor is
hidden.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HideCursor

� SDL ShowCursor

166 CHAPTER 1. SDL FUNCTIONS

SDL DateTimeToTime

Converts a calendar time to an SDL Time in nanoseconds since the epoch.

Header File

Defined in SDL3/SDL time.h

Syntax

int SDL_DateTimeToTime(const SDL_DateTime *dt, SDL_Time *ticks);

Function Parameters

dt the source SDL DateTime
ticks the resulting SDL Time

Return Value

Returns 0 on success or -1 on error; call SDL GetError() for more information.

Remarks

This function ignores the day of week member of the SDL DateTime struct, so
it may remain unset.

Version

This function is available since SDL 3.0.0.

SDL DELAY 167

SDL Delay

Wait a specified number of milliseconds before returning.

Header File

Defined in SDL3/SDL timer.h

Syntax

void SDL_Delay(Uint32 ms);

Function Parameters

ms the number of milliseconds to delay

Remarks

This function waits a specified number of milliseconds before returning. It waits
at least the specified time, but possibly longer due to OS scheduling.

Version

This function is available since SDL 3.0.0.

168 CHAPTER 1. SDL FUNCTIONS

SDL DelayNS

Wait a specified number of nanoseconds before returning.

Header File

Defined in SDL3/SDL timer.h

Syntax

void SDL_DelayNS(Uint64 ns);

Function Parameters

ns the number of nanoseconds to delay

Remarks

This function waits a specified number of nanoseconds before returning. It waits
at least the specified time, but possibly longer due to OS scheduling.

Version

This function is available since SDL 3.0.0.

SDL DELEVENTWATCH 169

SDL DelEventWatch

Remove an event watch callback added with SDL AddEventWatch().

Header File

Defined in SDL3/SDL events.h

Syntax

void SDL_DelEventWatch(SDL_EventFilter filter, void *userdata);

Function Parameters

filter the function originally passed to SDL AddEventWatch()
userdata the pointer originally passed to SDL AddEventWatch()

Remarks

This function takes the same input as SDL AddEventWatch() to identify and
delete the corresponding callback.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AddEventWatch

170 CHAPTER 1. SDL FUNCTIONS

SDL DelHintCallback

Remove a function watching a particular hint.

Header File

Defined in SDL3/SDL hints.h

Syntax

void SDL_DelHintCallback(const char *name,

SDL_HintCallback callback,

void *userdata);

Function Parameters

name the hint being watched
callback An SDL HintCallback function that will be called when the

hint value changes
userdata a pointer being passed to the callback function

Version

This function is available since SDL 3.0.0.

See Also

� SDL AddHintCallback

SDL DESTROYAUDIOSTREAM 171

SDL DestroyAudioStream

Free an audio stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

void SDL_DestroyAudioStream(SDL_AudioStream *stream);

Function Parameters

stream The audio stream to destroy.

Remarks

This will release all allocated data, including any audio that is still queued. You
do not need to manually clear the stream first.

If this stream was bound to an audio device, it is unbound during this call.
If this stream was created with SDL OpenAudioDeviceStream, the audio device
that was opened alongside this stream’s creation will be closed, too.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateAudioStream

172 CHAPTER 1. SDL FUNCTIONS

SDL DestroyCondition

Destroy a condition variable.

Header File

Defined in SDL3/SDL mutex.h

Syntax

void SDL_DestroyCondition(SDL_Condition *cond);

Function Parameters

cond the condition variable to destroy

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateCondition

SDL DESTROYCURSOR 173

SDL DestroyCursor

Free a previously-created cursor.

Header File

Defined in SDL3/SDL mouse.h

Syntax

void SDL_DestroyCursor(SDL_Cursor * cursor);

Function Parameters

cursor the cursor to free

Remarks

Use this function to free cursor resources created with SDL CreateCursor(),
SDL CreateColorCursor() or SDL CreateSystemCursor().

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateColorCursor

� SDL CreateCursor

� SDL CreateSystemCursor

174 CHAPTER 1. SDL FUNCTIONS

SDL DestroyHapticEffect

Destroy a haptic effect on the device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

void SDL_DestroyHapticEffect(SDL_Haptic *haptic, int effect);

Function Parameters

haptic the SDL Haptic device to destroy the effect on
effect the ID of the haptic effect to destroy

Remarks

This will stop the effect if it’s running. Effects are automatically destroyed when
the device is closed.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateHapticEffect

SDL DESTROYMUTEX 175

SDL DestroyMutex

Destroy a mutex created with SDL CreateMutex().

Header File

Defined in SDL3/SDL mutex.h

Syntax

void SDL_DestroyMutex(SDL_Mutex *mutex);

Function Parameters

mutex the mutex to destroy

Remarks

This function must be called on any mutex that is no longer needed. Failure to
destroy a mutex will result in a system memory or resource leak. While it is
safe to destroy a mutex that is unlocked , it is not safe to attempt to destroy a
locked mutex, and may result in undefined behavior depending on the platform.

Code Examples

¡¡Include(SDL CreateMutex, , , from=”## Begin Mutex Example”, to=”##
End Mutex Example”)¿¿

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateMutex

176 CHAPTER 1. SDL FUNCTIONS

SDL DestroyPalette

Free a palette created with SDL CreatePalette().

Header File

Defined in SDL3/SDL pixels.h

Syntax

void SDL_DestroyPalette(SDL_Palette * palette);

Function Parameters

palette the SDL Palette structure to be freed

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreatePalette

SDL DESTROYPIXELFORMAT 177

SDL DestroyPixelFormat

Free an SDL PixelFormat structure allocated by SDL CreatePixelFormat().

Header File

Defined in SDL3/SDL pixels.h

Syntax

void SDL_DestroyPixelFormat(SDL_PixelFormat *format);

Function Parameters

format the SDL PixelFormat structure to free

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreatePixelFormat

178 CHAPTER 1. SDL FUNCTIONS

SDL DestroyProperties

Destroy a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

void SDL_DestroyProperties(SDL_PropertiesID props);

Function Parameters

props the properties to destroy

Remarks

All properties are deleted and their cleanup functions will be called, if any.

Thread Safety

This function should not be called while these properties are locked or other
threads might be setting or getting values from these properties.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateProperties

SDL DESTROYRENDERER 179

SDL DestroyRenderer

Destroy the rendering context for a window and free associated textures.

Header File

Defined in SDL3/SDL render.h

Syntax

void SDL_DestroyRenderer(SDL_Renderer *renderer);

Function Parameters

renderer the rendering context

Remarks

If renderer is NULL, this function will return immediately after setting the
SDL error message to ”Invalid renderer”. See SDL GetError().

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateRenderer

180 CHAPTER 1. SDL FUNCTIONS

SDL DestroyRWLock

Destroy a read/write lock created with SDL CreateRWLock().

Header File

Defined in SDL3/SDL mutex.h

Syntax

void SDL_DestroyRWLock(SDL_RWLock *rwlock);

Function Parameters

rwlock the rwlock to destroy

Remarks

This function must be called on any read/write lock that is no longer needed.
Failure to destroy a rwlock will result in a system memory or resource leak.
While it is safe to destroy a rwlock that is unlocked , it is not safe to attempt
to destroy a locked rwlock, and may result in undefined behavior depending on
the platform.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateRWLock

SDL DESTROYSEMAPHORE 181

SDL DestroySemaphore

Destroy a semaphore.

Header File

Defined in SDL3/SDL mutex.h

Syntax

void SDL_DestroySemaphore(SDL_Semaphore *sem);

Function Parameters

sem the semaphore to destroy

Remarks

It is not safe to destroy a semaphore if there are threads currently waiting on
it.

Code Examples

¡¡Include(SDL CreateSemaphore, , , from=”## Begin Semaphore Example”,
to=”## End Semaphore Example”)¿¿

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateSemaphore

182 CHAPTER 1. SDL FUNCTIONS

SDL DestroySurface

Free an RGB surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

void SDL_DestroySurface(SDL_Surface *surface);

Function Parameters

surface the SDL Surface to free.

Remarks

It is safe to pass NULL to this function.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateSurface

� SDL CreateSurfaceFrom

SDL DESTROYTEXTURE 183

SDL DestroyTexture

Destroy the specified texture.

Header File

Defined in SDL3/SDL render.h

Syntax

void SDL_DestroyTexture(SDL_Texture *texture);

Function Parameters

texture the texture to destroy

Remarks

Passing NULL or an otherwise invalid texture will set the SDL error message
to ”Invalid texture”.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateTexture

� SDL CreateTextureFromSurface

184 CHAPTER 1. SDL FUNCTIONS

SDL DestroyWindow

Destroy a window.

Header File

Defined in SDL3/SDL video.h

Syntax

void SDL_DestroyWindow(SDL_Window *window);

Function Parameters

window the window to destroy

Remarks

Any popups or modal windows owned by the window will be recursively de-
stroyed as well.

If window is NULL, this function will return immediately after setting the
SDL error message to ”Invalid window”. See SDL GetError().

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreatePopupWindow

� SDL CreateWindow

� SDL CreateWindowWithProperties

SDL DESTROYWINDOWSURFACE 185

SDL DestroyWindowSurface

Destroy the surface associated with the window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_DestroyWindowSurface(SDL_Window *window);

Function Parameters

window the window to update

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowSurface

� SDL WindowHasSurface

186 CHAPTER 1. SDL FUNCTIONS

SDL DetachThread

Let a thread clean up on exit without intervention.

Header File

Defined in SDL3/SDL thread.h

Syntax

void SDL_DetachThread(SDL_Thread * thread);

Function Parameters

thread the SDL Thread pointer that was returned from the
SDL CreateThread() call that started this thread

Remarks

A thread may be ”detached” to signify that it should not remain until another
thread has called SDL WaitThread() on it. Detaching a thread is useful for
long-running threads that nothing needs to synchronize with or further manage.
When a detached thread is done, it simply goes away.

There is no way to recover the return code of a detached thread. If you need
this, don’t detach the thread and instead use SDL WaitThread().

Once a thread is detached, you should usually assume the SDL Thread isn’t
safe to reference again, as it will become invalid immediately upon the detached
thread’s exit, instead of remaining until someone has called SDL WaitThread()
to finally clean it up. As such, don’t detach the same thread more than once.

If a thread has already exited when passed to SDL DetachThread(), it will
stop waiting for a call to SDL WaitThread() and clean up immediately. It is
not safe to detach a thread that might be used with SDL WaitThread().

You may not call SDL WaitThread() on a thread that has been detached.
Use either that function or this one, but not both, or behavior is undefined.

It is safe to pass NULL to this function; it is a no-op.

Code Examples

extern int TestThread(void *ptr);

SDL_Thread *thread = SDL_CreateThread(TestThread, "TestThread", (void

*)NULL);

SDL_DetachThread(thread); /* will go away on its own upon completion. */

SDL DETACHTHREAD 187

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateThread

� SDL WaitThread

188 CHAPTER 1. SDL FUNCTIONS

SDL DetachVirtualJoystick

Detach a virtual joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_DetachVirtualJoystick(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID, previously returned from
SDL AttachVirtualJoystick()

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AttachVirtualJoystick

� SDL AttachVirtualJoystickEx

SDL DIRECT3D9GETADAPTERINDEX 189

SDL Direct3D9GetAdapterIndex

Get the D3D9 adapter index that matches the specified display.

Header File

Defined in SDL3/SDL system.h

Syntax

int SDL_Direct3D9GetAdapterIndex(SDL_DisplayID displayID);

Function Parameters

displayID the instance of the display to query

Return Value

Returns the D3D9 adapter index on success or a negative error code on failure;
call SDL GetError() for more information.

Remarks

The returned adapter index can be passed to IDirect3D9::CreateDevice and
controls on which monitor a full screen application will appear.

Version

This function is available since SDL 3.0.0.

190 CHAPTER 1. SDL FUNCTIONS

SDL DisableScreenSaver

Prevent the screen from being blanked by a screen saver.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_DisableScreenSaver(void);

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

If you disable the screensaver, it is automatically re-enabled when SDL quits.
The screensaver is disabled by default, but this may by changed by SDL HINT VIDEO ALLOW SCREENSAVER.

Version

This function is available since SDL 3.0.0.

See Also

� SDL EnableScreenSaver

� SDL ScreenSaverEnabled

SDL DUPLICATESURFACE 191

SDL DuplicateSurface

Creates a new surface identical to the existing surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

SDL_Surface* SDL_DuplicateSurface(SDL_Surface *surface);

Function Parameters

surface the surface to duplicate.

Return Value

Returns a copy of the surface, or NULL on failure; call SDL GetError() for more
information.

Remarks

The returned surface should be freed with SDL DestroySurface().

Version

This function is available since SDL 3.0.0.

See Also

� SDL DestroySurface

192 CHAPTER 1. SDL FUNCTIONS

SDL DXGIGetOutputInfo

Get the DXGI Adapter and Output indices for the specified display.

Header File

Defined in SDL3/SDL system.h

Syntax

SDL_bool SDL_DXGIGetOutputInfo(SDL_DisplayID displayID, int

*adapterIndex, int *outputIndex);

Function Parameters

displayID the instance of the display to query
adapterIndex a pointer to be filled in with the adapter index
outputIndex a pointer to be filled in with the output index

Return Value

Returns SDL TRUE on success or SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

The DXGI Adapter and Output indices can be passed to EnumAdapters and
EnumOutputs respectively to get the objects required to create a DX10 or DX11
device and swap chain.

Version

This function is available since SDL 3.0.0.

SDL EGL GETCURRENTEGLCONFIG 193

SDL EGL GetCurrentEGLConfig

Get the currently active EGL config.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_EGLConfig SDL_EGL_GetCurrentEGLConfig(void);

Return Value

Returns the currently active EGL config or NULL on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

194 CHAPTER 1. SDL FUNCTIONS

SDL EGL GetCurrentEGLDisplay

Get the currently active EGL display.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_EGLDisplay SDL_EGL_GetCurrentEGLDisplay(void);

Return Value

Returns the currently active EGL display or NULL on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL EGL GETPROCADDRESS 195

SDL EGL GetProcAddress

Get an EGL library function by name.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_FunctionPointer SDL_EGL_GetProcAddress(const char *proc);

Function Parameters

proc the name of an EGL function

Return Value

Returns a pointer to the named EGL function. The returned pointer should be
cast to the appropriate function signature.

Remarks

If an EGL library is loaded, this function allows applications to get entry points
for EGL functions. This is useful to provide to an EGL API and extension
loader.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL GetCurrentEGLDisplay

196 CHAPTER 1. SDL FUNCTIONS

SDL EGL GetWindowEGLSurface

Get the EGL surface associated with the window.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_EGLSurface SDL_EGL_GetWindowEGLSurface(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns the EGLSurface pointer associated with the window, or NULL on fail-
ure.

Version

This function is available since SDL 3.0.0.

SDL EGL SETEGLATTRIBUTECALLBACKS 197

SDL EGL SetEGLAttributeCallbacks

Sets the callbacks for defining custom EGLAttrib arrays for EGL initialization.

Header File

Defined in SDL3/SDL video.h

Syntax

void SDL_EGL_SetEGLAttributeCallbacks(SDL_EGLAttribArrayCallback

platformAttribCallback,

SDL_EGLIntArrayCallback

surfaceAttribCallback,

SDL_EGLIntArrayCallback

contextAttribCallback);

Function Parameters

platformAttribCallback Callback for attributes to pass to eglGetPlatformDisplay.
surfaceAttribCallback Callback for attributes to pass to eglCreateSurface.
contextAttribCallback Callback for attributes to pass to eglCreateContext.

Remarks

Each callback should return a pointer to an EGL attribute array terminated with
EGL NONE. Callbacks may return NULL pointers to signal an error, which will
cause the SDL CreateWindow process to fail gracefully.

The arrays returned by each callback will be appended to the existing at-
tribute arrays defined by SDL.

NOTE: These callback pointers will be reset after SDL GL ResetAttributes.

Version

This function is available since SDL 3.0.0.

198 CHAPTER 1. SDL FUNCTIONS

SDL EnableScreenSaver

Allow the screen to be blanked by a screen saver.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_EnableScreenSaver(void);

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL DisableScreenSaver

� SDL ScreenSaverEnabled

SDL ENTERAPPMAINCALLBACKS 199

SDL EnterAppMainCallbacks

An entry point for SDL’s use in SDL MAIN USE CALLBACKS.

Header File

Defined in SDL3/SDL main.h

Syntax

int SDL_EnterAppMainCallbacks(int argc, char* argv[], SDL_AppInit_func

appinit, SDL_AppIterate_func appiter, SDL_AppEvent_func appevent,

SDL_AppQuit_func appquit);

Function Parameters

argc standard Unix main argc
argv standard Unix main argv
appinit The application’s SDL AppInit function
appiter The application’s SDL AppIterate function
appevent The application’s SDL AppEvent function
appquit The application’s SDL AppQuit function

Return Value

Returns standard Unix main return value

Remarks

Generally, you should not call this function directly. This only exists to hand
off work into SDL as soon as possible, where it has a lot more control and
functionality available, and make the inline code in SDL main.h as small as
possible.

Not all platforms use this, it’s actual use is hidden in a magic header-only
library, and you should not call this directly unless you really know what
you’re doing.

Thread Safety

It is not safe to call this anywhere except as the only function call in SDL main.

Version

This function is available since SDL 3.0.0.

200 CHAPTER 1. SDL FUNCTIONS

SDL EnumerateDirectory

Enumerate a directory through a callback function.

Header File

Defined in SDL3/SDL filesystem.h

Syntax

int SDL_EnumerateDirectory(const char *path,

SDL_EnumerateDirectoryCallback callback, void *userdata);

Function Parameters

path the path of the directory to enumerate
callback a function that is called for each entry in the directory
userdata a pointer that is passed to callback

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function provides every directory entry through an app-provided callback,
called once for each directory entry, until all results have been provided or the
callback returns ¡= 0.

Version

This function is available since SDL 3.0.0.

SDL ENUMERATEPROPERTIES 201

SDL EnumerateProperties

Enumerate the properties on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

int SDL_EnumerateProperties(SDL_PropertiesID props,

SDL_EnumeratePropertiesCallback callback, void *userdata);

Function Parameters

props the properties to query
callback the function to call for each property
userdata a pointer that is passed to callback

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The callback function is called for each property on the set of properties. The
properties are locked during enumeration.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

202 CHAPTER 1. SDL FUNCTIONS

SDL EnumerateStorageDirectory

Enumerate a directory in a storage container through a callback function.

Header File

Defined in SDL3/SDL storage.h

Syntax

int SDL_EnumerateStorageDirectory(SDL_Storage *storage, const char

*path, SDL_EnumerateDirectoryCallback callback, void *userdata);

Function Parameters

storage a storage container
path the path of the directory to enumerate
callback a function that is called for each entry in the directory
userdata a pointer that is passed to callback

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function provides every directory entry through an app-provided callback,
called once for each directory entry, until all results have been provided or the
callback returns ¡= 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL StorageReady

SDL ERROR 203

SDL Error

Set an SDL error from a list of error codes.

Header File

Defined in SDL3/SDL error.h

Syntax

int SDL_Error(SDL_errorcode code);

Function Parameters

code Error code

Return Value

Returns unconditionally -1.

Version

This function is available since SDL 3.0.0.

204 CHAPTER 1. SDL FUNCTIONS

SDL EventEnabled

Query the state of processing events by type.

Header File

Defined in SDL3/SDL events.h

Syntax

SDL_bool SDL_EventEnabled(Uint32 type);

Function Parameters

type the type of event; see SDL EventType for details

Return Value

Returns SDL TRUE if the event is being processed, SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetEventEnabled

SDL EXP 205

SDL exp

Compute the exponential of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_exp(double x);

Function Parameters

x floating point value

Return Value

Returns value of ex̂

Remarks

The definition of y = exp(x) is y = ex̂, where e is the base of the natural
logarithm. The inverse is the natural logarithm, SDL log.

Domain: -INF <= x <= INF

Range: 0 <= y <= INF

The output will overflow if exp(x) is too large to be represented.
This function operates on double-precision floating point values, use SDL expf

for single-precision floats.
This function may use a different approximation across different versions,

platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL expf

� SDL log

206 CHAPTER 1. SDL FUNCTIONS

SDL expf

Compute the exponential of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_expf(float x);

Function Parameters

x floating point value

Return Value

Returns value of ex̂

Remarks

The definition of y = exp(x) is y = ex̂, where e is the base of the natural
logarithm. The inverse is the natural logarithm, SDL logf.

Domain: -INF <= x <= INF

Range: 0 <= y <= INF

The output will overflow if exp(x) is too large to be represented.
This function operates on single-precision floating point values, use SDL exp

for double-precision floats.
This function may use a different approximation across different versions,

platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL exp

� SDL logf

SDL FABS 207

SDL fabs

Compute the absolute value of x

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_fabs(double x);

Function Parameters

x floating point value to use as the magnitude

Return Value

Returns the absolute value of x

Remarks

Domain: -INF <= x <= INF

Range: 0 <= y <= INF

This function operates on double-precision floating point values, use SDL copysignf
for single-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL fabsf

208 CHAPTER 1. SDL FUNCTIONS

SDL fabsf

Compute the absolute value of x

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_fabsf(float x);

Function Parameters

x floating point value to use as the magnitude

Return Value

Returns the absolute value of x

Remarks

Domain: -INF <= x <= INF

Range: 0 <= y <= INF

This function operates on single-precision floating point values, use SDL copysignf
for double-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL fabs

SDL FILLSURFACERECT 209

SDL FillSurfaceRect

Perform a fast fill of a rectangle with a specific color.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_FillSurfaceRect(SDL_Surface *dst, const SDL_Rect *rect, Uint32

color);

Function Parameters

dst the SDL Surface structure that is the drawing target
rect the SDL Rect structure representing the rectangle to fill, or

NULL to fill the entire surface
color the color to fill with

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

color should be a pixel of the format used by the surface, and can be generated
by SDL MapRGB() or SDL MapRGBA(). If the color value contains an alpha
component then the destination is simply filled with that alpha information, no
blending takes place.

If there is a clip rectangle set on the destination (set via SDL SetSurfaceClipRect()),
then this function will fill based on the intersection of the clip rectangle and
rect.

Version

This function is available since SDL 3.0.0.

See Also

� SDL FillSurfaceRects

210 CHAPTER 1. SDL FUNCTIONS

SDL FillSurfaceRects

Perform a fast fill of a set of rectangles with a specific color.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_FillSurfaceRects(SDL_Surface *dst, const SDL_Rect *rects, int

count, Uint32 color);

Function Parameters

dst the SDL Surface structure that is the drawing target
rects an array of SDL Rects representing the rectangles to fill.
count the number of rectangles in the array
color the color to fill with

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

color should be a pixel of the format used by the surface, and can be generated
by SDL MapRGB() or SDL MapRGBA(). If the color value contains an alpha
component then the destination is simply filled with that alpha information, no
blending takes place.

If there is a clip rectangle set on the destination (set via SDL SetSurfaceClipRect()),
then this function will fill based on the intersection of the clip rectangle and
rect.

Version

This function is available since SDL 3.0.0.

See Also

� SDL FillSurfaceRect

SDL FILTEREVENTS 211

SDL FilterEvents

Run a specific filter function on the current event queue, removing any events
for which the filter returns 0.

Header File

Defined in SDL3/SDL events.h

Syntax

void SDL_FilterEvents(SDL_EventFilter filter, void *userdata);

Function Parameters

filter the SDL EventFilter function to call when an event happens
userdata a pointer that is passed to filter

Remarks

See SDL SetEventFilter() for more information. Unlike SDL SetEventFilter(),
this function does not change the filter permanently, it only uses the supplied
filter until this function returns.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetEventFilter

� SDL SetEventFilter

212 CHAPTER 1. SDL FUNCTIONS

SDL FlashWindow

Request a window to demand attention from the user.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_FlashWindow(SDL_Window *window, SDL_FlashOperation operation);

Function Parameters

window the window to be flashed
operation the flash operation

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL FLIPSURFACE 213

SDL FlipSurface

Flip a surface vertically or horizontally.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_FlipSurface(SDL_Surface *surface, SDL_FlipMode flip);

Function Parameters

surface the surface to flip
flip the direction to flip

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

214 CHAPTER 1. SDL FUNCTIONS

SDL floor

Compute the floor of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_floor(double x);

Function Parameters

x floating point value

Return Value

Returns the floor of x

Remarks

The floor of x is the largest integer y such that y > x, i.e x rounded down to
the nearest integer.

Domain: -INF <= x <= INF

Range: -INF <= y <= INF, y integer
This function operates on double-precision floating point values, use SDL floorf

for single-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL floorf

� SDL ceil

� SDL trunc

� SDL round

� SDL lround

SDL FLOORF 215

SDL floorf

Compute the floor of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_floorf(float x);

Function Parameters

x floating point value

Return Value

Returns the floor of x

Remarks

The floor of x is the largest integer y such that y > x, i.e x rounded down to
the nearest integer.

Domain: -INF <= x <= INF

Range: -INF <= y <= INF, y integer
This function operates on single-precision floating point values, use SDL floorf

for double-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL floor

� SDL ceilf

� SDL truncf

� SDL roundf

� SDL lroundf

216 CHAPTER 1. SDL FUNCTIONS

SDL FlushAudioStream

Tell the stream that you’re done sending data, and anything being buffered
should be converted/resampled and made available immediately.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_FlushAudioStream(SDL_AudioStream *stream);

Function Parameters

stream The audio stream to flush

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

It is legal to add more data to a stream after flushing, but there may be audio
gaps in the output. Generally this is intended to signal the end of input, so the
complete output becomes available.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL PutAudioStreamData

SDL FLUSHEVENT 217

SDL FlushEvent

Clear events of a specific type from the event queue.

Header File

Defined in SDL3/SDL events.h

Syntax

void SDL_FlushEvent(Uint32 type);

Function Parameters

type the type of event to be cleared; see SDL EventType for de-
tails

Remarks

This will unconditionally remove any events from the queue that match type.
If you need to remove a range of event types, use SDL FlushEvents() instead.

It’s also normal to just ignore events you don’t care about in your event loop
without calling this function.

This function only affects currently queued events. If you want to make sure
that all pending OS events are flushed, you can call SDL PumpEvents() on the
main thread immediately before the flush call.

If you have user events with custom data that needs to be freed, you should
use SDL PeepEvents() to remove and clean up those events before calling this
function.

Version

This function is available since SDL 3.0.0.

See Also

� SDL FlushEvents

218 CHAPTER 1. SDL FUNCTIONS

SDL FlushEvents

Clear events of a range of types from the event queue.

Header File

Defined in SDL3/SDL events.h

Syntax

void SDL_FlushEvents(Uint32 minType, Uint32 maxType);

Function Parameters

minType the low end of event type to be cleared, inclusive; see
SDL EventType for details

maxType the high end of event type to be cleared, inclusive; see
SDL EventType for details

Remarks

This will unconditionally remove any events from the queue that are in the
range of minType to maxType, inclusive. If you need to remove a single event
type, use SDL FlushEvent() instead.

It’s also normal to just ignore events you don’t care about in your event loop
without calling this function.

This function only affects currently queued events. If you want to make sure
that all pending OS events are flushed, you can call SDL PumpEvents() on the
main thread immediately before the flush call.

Version

This function is available since SDL 3.0.0.

See Also

� SDL FlushEvent

SDL FLUSHRENDERER 219

SDL FlushRenderer

Force the rendering context to flush any pending commands and state.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_FlushRenderer(SDL_Renderer *renderer);

Function Parameters

renderer the rendering context

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

You do not need to (and in fact, shouldn’t) call this function unless you are
planning to call into OpenGL/Direct3D/Metal/whatever directly, in addition
to using an SDL Renderer.

This is for a very-specific case: if you are using SDL’s render API, and you
plan to make OpenGL/D3D/whatever calls in addition to SDL render API calls.
If this applies, you should call this function between calls to SDL’s render API
and the low-level API you’re using in cooperation.

In all other cases, you can ignore this function.
This call makes SDL flush any pending rendering work it was queueing up

to do later in a single batch, and marks any internal cached state as invalid, so
it’ll prepare all its state again later, from scratch.

This means you do not need to save state in your rendering code to protect
the SDL renderer. However, there lots of arbitrary pieces of Direct3D and
OpenGL state that can confuse things; you should use your best judgement and
be prepared to make changes if specific state needs to be protected.

Version

This function is available since SDL 3.0.0.

220 CHAPTER 1. SDL FUNCTIONS

SDL fmod

Return the floating-point remainder of x / y

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_fmod(double x, double y);

Function Parameters

x the numerator
y the denominator. Must not be 0.

Return Value

Returns the remainder of x / y

Remarks

Divides x by y, and returns the remainder.
Domain: -INF <= x <= INF, -INF <= y <= INF, y != 0

Range: -y <= z <= y

This function operates on double-precision floating point values, use SDL fmodf
for single-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL fmodf

� SDL modf

� SDL trunc

� SDL ceil

� SDL floor

� SDL round

� SDL lround

SDL FMODF 221

SDL fmodf

Return the floating-point remainder of x / y

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_fmodf(float x, float y);

Function Parameters

x the numerator
y the denominator. Must not be 0.

Return Value

Returns the remainder of x / y

Remarks

Divides x by y, and returns the remainder.
Domain: -INF <= x <= INF, -INF <= y <= INF, y != 0

Range: -y <= z <= y

This function operates on single-precision floating point values, use SDL fmod
for single-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL fmod

� SDL truncf

� SDL modff

� SDL ceilf

� SDL floorf

� SDL roundf

� SDL lroundf

222 CHAPTER 1. SDL FUNCTIONS

SDL GamepadConnected

Check if a gamepad has been opened and is currently connected.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_bool SDL_GamepadConnected(SDL_Gamepad *gamepad);

Function Parameters

gamepad a gamepad identifier previously returned by
SDL OpenGamepad()

Return Value

Returns SDL TRUE if the gamepad has been opened and is currently connected,
or SDL FALSE if not.

Version

This function is available since SDL 3.0.0.

SDL GAMEPADEVENTSENABLED 223

SDL GamepadEventsEnabled

Query the state of gamepad event processing.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_bool SDL_GamepadEventsEnabled(void);

Return Value

Returns SDL TRUE if gamepad events are being processed, SDL FALSE oth-
erwise.

Remarks

If gamepad events are disabled, you must call SDL UpdateGamepads() yourself
and check the state of the gamepad when you want gamepad information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetGamepadEventsEnabled

224 CHAPTER 1. SDL FUNCTIONS

SDL GamepadHasAxis

Query whether a gamepad has a given axis.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_bool SDL_GamepadHasAxis(SDL_Gamepad *gamepad, SDL_GamepadAxis axis);

Function Parameters

gamepad a gamepad
axis an axis enum value (an SDL GamepadAxis value)

Return Value

Returns SDL TRUE if the gamepad has this axis, SDL FALSE otherwise.

Remarks

This merely reports whether the gamepad’s mapping defined this axis, as that
is all the information SDL has about the physical device.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GamepadHasButton

� SDL GetGamepadAxis

SDL GAMEPADHASBUTTON 225

SDL GamepadHasButton

Query whether a gamepad has a given button.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_bool SDL_GamepadHasButton(SDL_Gamepad *gamepad, SDL_GamepadButton

button);

Function Parameters

gamepad a gamepad
button a button enum value (an SDL GamepadButton value)

Return Value

Returns SDL TRUE if the gamepad has this button, SDL FALSE otherwise.

Remarks

This merely reports whether the gamepad’s mapping defined this button, as
that is all the information SDL has about the physical device.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GamepadHasAxis

226 CHAPTER 1. SDL FUNCTIONS

SDL GamepadHasSensor

Return whether a gamepad has a particular sensor.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_bool SDL_GamepadHasSensor(SDL_Gamepad *gamepad, SDL_SensorType type);

Function Parameters

gamepad The gamepad to query
type The type of sensor to query

Return Value

Returns SDL TRUE if the sensor exists, SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadSensorData

� SDL GetGamepadSensorDataRate

� SDL SetGamepadSensorEnabled

SDL GAMEPADSENSORENABLED 227

SDL GamepadSensorEnabled

Query whether sensor data reporting is enabled for a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_bool SDL_GamepadSensorEnabled(SDL_Gamepad *gamepad, SDL_SensorType

type);

Function Parameters

gamepad The gamepad to query
type The type of sensor to query

Return Value

Returns SDL TRUE if the sensor is enabled, SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetGamepadSensorEnabled

228 CHAPTER 1. SDL FUNCTIONS

SDL GDKGetDefaultUser

Gets a reference to the default user handle for GDK.

Header File

Defined in SDL3/SDL system.h

Syntax

int SDL_GDKGetDefaultUser(XUserHandle * outUserHandle);

Function Parameters

outUserHandle a pointer to be filled in with the default user handle.

Return Value

Returns 0 if success, -1 if any error occurs.

Remarks

This is effectively a synchronous version of XUserAddAsync, which always
prefers the default user and allows a sign-in UI.

Version

This function is available since SDL 3.0.0.

SDL GDKGETTASKQUEUE 229

SDL GDKGetTaskQueue

Gets a reference to the global async task queue handle for GDK, initializing if
needed.

Header File

Defined in SDL3/SDL system.h

Syntax

int SDL_GDKGetTaskQueue(XTaskQueueHandle * outTaskQueue);

Function Parameters

outTaskQueue a pointer to be filled in with task queue handle.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Once you are done with the task queue, you should call XTaskQueueCloseHandle
to reduce the reference count to avoid a resource leak.

Version

This function is available since SDL 3.0.0.

230 CHAPTER 1. SDL FUNCTIONS

SDL GDKSuspendComplete

Callback from the application to let the suspend continue.

Header File

Defined in SDL3/SDL main.h

Syntax

void SDL_GDKSuspendComplete(void);

Version

This function is available since SDL 3.0.0.

SDL GETANDROIDSDKVERSION 231

SDL GetAndroidSDKVersion

Query Android API level of the current device.

Header File

Defined in SDL3/SDL system.h

Syntax

int SDL_GetAndroidSDKVersion(void);

Return Value

Returns the Android API level.

Remarks

� API level 34: Android 14 (UPSIDE DOWN CAKE)

� API level 33: Android 13 (TIRAMISU)

� API level 32: Android 12L (S V2)

� API level 31: Android 12 (S)

� API level 30: Android 11 (R)

� API level 29: Android 10 (Q)

� API level 28: Android 9 (P)

� API level 27: Android 8.1 (O MR1)

� API level 26: Android 8.0 (O)

� API level 25: Android 7.1 (N MR1)

� API level 24: Android 7.0 (N)

� API level 23: Android 6.0 (M)

� API level 22: Android 5.1 (LOLLIPOP MR1)

� API level 21: Android 5.0 (LOLLIPOP, L)

� API level 20: Android 4.4W (KITKAT WATCH)

� API level 19: Android 4.4 (KITKAT)

232 CHAPTER 1. SDL FUNCTIONS

� API level 18: Android 4.3 (JELLY BEAN MR2)

� API level 17: Android 4.2 (JELLY BEAN MR1)

� API level 16: Android 4.1 (JELLY BEAN)

� API level 15: Android 4.0.3 (ICE CREAM SANDWICH MR1)

� API level 14: Android 4.0 (ICE CREAM SANDWICH)

� API level 13: Android 3.2 (HONEYCOMB MR2)

� API level 12: Android 3.1 (HONEYCOMB MR1)

� API level 11: Android 3.0 (HONEYCOMB)

� API level 10: Android 2.3.3 (GINGERBREAD MR1)

Version

This function is available since SDL 3.0.0.

SDL GETASSERTIONHANDLER 233

SDL GetAssertionHandler

Get the current assertion handler.

Header File

Defined in SDL3/SDL assert.h

Syntax

SDL_AssertionHandler SDL_GetAssertionHandler(void **puserdata);

Function Parameters

puserdata pointer which is filled with the ”userdata” pointer that was
passed to SDL SetAssertionHandler()

Return Value

Returns the SDL AssertionHandler that is called when an assert triggers.

Remarks

This returns the function pointer that is called when an assertion is triggered.
This is either the value last passed to SDL SetAssertionHandler(), or if no
application-specified function is set, is equivalent to calling SDL GetDefaultAssertionHandler().

The parameter puserdata is a pointer to a void*, which will store the ”user-
data” pointer that was passed to SDL SetAssertionHandler(). This value will
always be NULL for the default handler. If you don’t care about this data, it
is safe to pass a NULL pointer to this function to ignore it.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetAssertionHandler

234 CHAPTER 1. SDL FUNCTIONS

SDL GetAssertionReport

Get a list of all assertion failures.

Header File

Defined in SDL3/SDL assert.h

Syntax

const SDL_AssertData * SDL_GetAssertionReport(void);

Return Value

Returns a list of all failed assertions or NULL if the list is empty. This memory
should not be modified or freed by the application.

Remarks

This function gets all assertions triggered since the last call to SDL ResetAssertionReport(),
or the start of the program.

The proper way to examine this data looks something like this:

const SDL_AssertData *item = SDL_GetAssertionReport();

while (item) {

printf("’%s’, %s (%s:%d), triggered %u times, always ignore: %s.\\n",

item->condition, item->function, item->filename,

item->linenum, item->trigger_count,

item->always_ignore ? "yes" : "no");

item = item->next;

}

Code Examples

The proper way to examine this data looks something like this:

const SDL_AssertData *item = SDL_GetAssertionReport();

while (item) {

printf("’%s’, %s (%s:%d), triggered %u times, always ignore: %s.\n",

item->condition, item->function, item->filename,

item->linenum, item->trigger_count,

item->always_ignore ? "yes" : "no");

item = item->next;

}

SDL GETASSERTIONREPORT 235

Version

This function is available since SDL 3.0.0.

See Also

� SDL ResetAssertionReport

236 CHAPTER 1. SDL FUNCTIONS

SDL GetAudioCaptureDevices

Get a list of currently-connected audio capture devices.

Header File

Defined in SDL3/SDL audio.h

Syntax

SDL_AudioDeviceID* SDL_GetAudioCaptureDevices(int *count);

Function Parameters

count a pointer filled in with the number of devices returned

Return Value

Returns a 0 terminated array of device instance IDs which should be freed with
SDL free(), or NULL on error; call SDL GetError() for more details.

Remarks

This returns of list of available devices that record audio, like a microphone
(”capture” devices). If you want devices that play sound, perhaps to speakers
or headphones (”output” devices), use SDL GetAudioOutputDevices() instead.

This only returns a list of physical devices; it will not have any device IDs
returned by SDL OpenAudioDevice().

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenAudioDevice

� SDL GetAudioOutputDevices

SDL GETAUDIODEVICEFORMAT 237

SDL GetAudioDeviceFormat

Get the current audio format of a specific audio device.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_GetAudioDeviceFormat(SDL_AudioDeviceID devid, SDL_AudioSpec

*spec, int *sample_frames);

Function Parameters

devid the instance ID of the device to query.
spec On return, will be filled with device details.
sample frames Pointer to store device buffer size, in sample frames. Can

be NULL.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

For an opened device, this will report the format the device is currently using.
If the device isn’t yet opened, this will report the device’s preferred format (or
a reasonable default if this can’t be determined).

You may also specify SDL AUDIO DEVICE DEFAULT OUTPUT or SDL AUDIO DEVICE DEFAULT CAPTURE
here, which is useful for getting a reasonable recommendation before opening
the system-recommended default device.

You can also use this to request the current device buffer size. This is
specified in sample frames and represents the amount of data SDL will feed to
the physical hardware in each chunk. This can be converted to milliseconds
of audio with the following equation: ms = (int) ((((Sint64) frames) *

1000) / spec.freq);

Buffer size is only important if you need low-level control over the audio
playback timing. Most apps do not need this.

Thread Safety

It is safe to call this function from any thread.

238 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

SDL GETAUDIODEVICENAME 239

SDL GetAudioDeviceName

Get the human-readable name of a specific audio device.

Header File

Defined in SDL3/SDL audio.h

Syntax

char* SDL_GetAudioDeviceName(SDL_AudioDeviceID devid);

Function Parameters

devid the instance ID of the device to query.

Return Value

Returns the name of the audio device, or NULL on error.

Remarks

The string returned by this function is UTF-8 encoded. The caller should call
SDL free on the return value when done with it.

Code Examples

int count;

SDL_AudioDeviceID *devices;

devices = SDL_GetAudioOutputDevices(&count);

for (int i = 0; i < count; ++i) {

SDL_Log("Audio device %d: %s", i,

SDL_GetAudioDeviceName(devices[i]));

}

SDL_free(devices);

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

240 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL GetAudioOutputDevices

� SDL GetAudioCaptureDevices

� SDL GetDefaultAudioInfo

SDL GETAUDIODRIVER 241

SDL GetAudioDriver

Use this function to get the name of a built in audio driver.

Header File

Defined in SDL3/SDL audio.h

Syntax

const char* SDL_GetAudioDriver(int index);

Function Parameters

index the index of the audio driver; the value ranges from 0 to
SDL GetNumAudioDrivers() - 1

Return Value

Returns the name of the audio driver at the requested index, or NULL if an
invalid index was specified.

Remarks

The list of audio drivers is given in the order that they are normally initialized
by default; the drivers that seem more reasonable to choose first (as far as the
SDL developers believe) are earlier in the list.

The names of drivers are all simple, low-ASCII identifiers, like ”alsa”, ”core-
audio” or ”xaudio2”. These never have Unicode characters, and are not meant
to be proper names.

Code Examples

int i;

for (i = 0; i < SDL_GetNumAudioDrivers(); ++i) {

printf("Audio driver %d: %s\n", i, SDL_GetAudioDriver(i));

}

Thread Safety

It is safe to call this function from any thread.

242 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetNumAudioDrivers

SDL GETAUDIOOUTPUTDEVICES 243

SDL GetAudioOutputDevices

Get a list of currently-connected audio output devices.

Header File

Defined in SDL3/SDL audio.h

Syntax

SDL_AudioDeviceID* SDL_GetAudioOutputDevices(int *count);

Function Parameters

count a pointer filled in with the number of devices returned

Return Value

Returns a 0 terminated array of device instance IDs which should be freed with
SDL free(), or NULL on error; call SDL GetError() for more details.

Remarks

This returns of list of available devices that play sound, perhaps to speakers or
headphones (”output” devices). If you want devices that record audio, like a
microphone (”capture” devices), use SDL GetAudioCaptureDevices() instead.

This only returns a list of physical devices; it will not have any device IDs
returned by SDL OpenAudioDevice().

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenAudioDevice

� SDL GetAudioCaptureDevices

244 CHAPTER 1. SDL FUNCTIONS

SDL GetAudioStreamAvailable

Get the number of converted/resampled bytes available.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_GetAudioStreamAvailable(SDL_AudioStream *stream);

Function Parameters

stream The audio stream to query

Return Value

Returns the number of converted/resampled bytes available.

Remarks

The stream may be buffering data behind the scenes until it has enough to
resample correctly, so this number might be lower than what you expect, or
even be zero. Add more data or flush the stream if you need the data now.

If the stream has so much data that it would overflow an int, the re-
turn value is clamped to a maximum value, but no queued data is lost; if
there are gigabytes of data queued, the app might need to read some of it
with SDL GetAudioStreamData before this function’s return value is no longer
clamped.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetAudioStreamData

� SDL PutAudioStreamData

SDL GETAUDIOSTREAMDATA 245

SDL GetAudioStreamData

Get converted/resampled data from the stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_GetAudioStreamData(SDL_AudioStream *stream, void *buf, int len);

Function Parameters

stream The stream the audio is being requested from
buf A buffer to fill with audio data
len The maximum number of bytes to fill

Return Value

Returns the number of bytes read from the stream, or -1 on error

Remarks

The input/output data format/channels/samplerate is specified when creating
the stream, and can be changed after creation by calling SDL SetAudioStreamFormat.

Note that any conversion and resampling necessary is done during this call,
and SDL PutAudioStreamData simply queues unconverted data for later. This
is different than SDL2, where that work was done while inputting new data to
the stream and requesting the output just copied the converted data.

Thread Safety

It is safe to call this function from any thread, but if the stream has a callback
set, the caller might need to manage extra locking.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ClearAudioStream

� SDL GetAudioStreamAvailable

246 CHAPTER 1. SDL FUNCTIONS

� SDL PutAudioStreamData

SDL GETAUDIOSTREAMDEVICE 247

SDL GetAudioStreamDevice

Query an audio stream for its currently-bound device.

Header File

Defined in SDL3/SDL audio.h

Syntax

SDL_AudioDeviceID SDL_GetAudioStreamDevice(SDL_AudioStream *stream);

Function Parameters

stream the audio stream to query.

Return Value

Returns The bound audio device, or 0 if not bound or invalid.

Remarks

This reports the audio device that an audio stream is currently bound to.
If not bound, or invalid, this returns zero, which is not a valid device ID.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL BindAudioStream

� SDL BindAudioStreams

248 CHAPTER 1. SDL FUNCTIONS

SDL GetAudioStreamFormat

Query the current format of an audio stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_GetAudioStreamFormat(SDL_AudioStream *stream,

SDL_AudioSpec *src_spec,

SDL_AudioSpec *dst_spec);

Function Parameters

stream the SDL AudioStream to query.
src spec Where to store the input audio format; ignored if NULL.
dst spec Where to store the output audio format; ignored if NULL.

Return Value

Returns 0 on success, or -1 on error.

Thread Safety

It is safe to call this function from any thread, as it holds a stream-specific
mutex while running.

Version

This function is available since SDL 3.0.0.

SDL GETAUDIOSTREAMFREQUENCYRATIO 249

SDL GetAudioStreamFrequencyRatio

Get the frequency ratio of an audio stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

float SDL_GetAudioStreamFrequencyRatio(SDL_AudioStream *stream);

Function Parameters

stream the SDL AudioStream to query.

Return Value

Returns the frequency ratio of the stream, or 0.0 on error

Thread Safety

It is safe to call this function from any thread, as it holds a stream-specific
mutex while running.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetAudioStreamFrequencyRatio

250 CHAPTER 1. SDL FUNCTIONS

SDL GetAudioStreamProperties

Get the properties associated with an audio stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

SDL_PropertiesID SDL_GetAudioStreamProperties(SDL_AudioStream *stream);

Function Parameters

stream the SDL AudioStream to query

Return Value

Returns a valid property ID on success or 0 on failure; call SDL GetError() for
more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetProperty

� SDL SetProperty

SDL GETAUDIOSTREAMQUEUED 251

SDL GetAudioStreamQueued

Get the number of bytes currently queued.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_GetAudioStreamQueued(SDL_AudioStream *stream);

Function Parameters

stream The audio stream to query

Return Value

Returns the number of bytes queued.

Remarks

Note that audio streams can change their input format at any time, even if there
is still data queued in a different format, so the returned byte count will not
necessarily match the number of sample frames available. Users of this API
should be aware of format changes they make when feeding a stream and plan
accordingly.

Queued data is not converted until it is consumed by SDL GetAudioStreamData,
so this value should be representative of the exact data that was put into the
stream.

If the stream has so much data that it would overflow an int, the re-
turn value is clamped to a maximum value, but no queued data is lost; if
there are gigabytes of data queued, the app might need to read some of it
with SDL GetAudioStreamData before this function’s return value is no longer
clamped.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

252 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL PutAudioStreamData

� SDL ClearAudioStream

SDL GETBASEPATH 253

SDL GetBasePath

Get the directory where the application was run from.

Header File

Defined in SDL3/SDL filesystem.h

Syntax

char* SDL_GetBasePath(void);

Return Value

Returns an absolute path in UTF-8 encoding to the application data directory.
NULL will be returned on error or when the platform doesn’t implement this
functionality, call SDL GetError() for more information.

Remarks

This is not necessarily a fast call, so you should call this once near startup and
save the string if you need it. macOS and iOS Specific Functionality: If the
application is in a ”.app” bundle, this function returns the Resource directory
(e.g. MyApp.app/Contents/Resources/). This behaviour can be overridden by
adding a property to the Info.plist file. Adding a string key with the name
SDL FILESYSTEM BASE DIR TYPE with a supported value will change the
behaviour.

Supported values for the SDL FILESYSTEM BASE DIR TYPE property
(Given an application in /Applications/SDLApp/MyApp.app):

� resource: bundle resource directory (the default). For example: /Applications/SDLApp/MyApp.app/Contents/Resources

� bundle: the Bundle directory. For example: /Applications/SDLApp/MyApp.app/

� parent: the containing directory of the bundle. For example: /Applications/SDLApp/
Nintendo 3DS Specific Functionality: This function returns ”romfs”
directory of the application as it is uncommon to store resources outside
the executable. As such it is not a writable directory.

The returned path is guaranteed to end with a path separator (’
’ on Windows, ’/’ on most other platforms).

The pointer returned is owned by the caller. Please call SDL free() on the
pointer when done with it.

254 CHAPTER 1. SDL FUNCTIONS

Code Examples

char *data_path = NULL;

void InitializeDataPath(void) {

char *base_path = SDL_GetBasePath();

if (base_path) {

data_path = base_path;

} else {

data_path = SDL_strdup("./");

}

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetPrefPath

SDL GETBOOLEANPROPERTY 255

SDL GetBooleanProperty

Get a boolean property on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

SDL_bool SDL_GetBooleanProperty(SDL_PropertiesID props, const char

*name, SDL_bool default_value);

Function Parameters

props the properties to query
name the name of the property to query
default value the default value of the property

Return Value

Returns the value of the property, or default value if it is not set or not a
float property.

Remarks

You can use SDL GetPropertyType() to query whether the property exists and
is a boolean property.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetPropertyType

� SDL HasProperty

� SDL SetBooleanProperty

256 CHAPTER 1. SDL FUNCTIONS

SDL GetCameraDeviceName

Get human-readable device name for a camera.

Header File

Defined in SDL3/SDL camera.h

Syntax

char * SDL_GetCameraDeviceName(SDL_CameraDeviceID instance_id);

Function Parameters

instance id the camera device instance ID

Return Value

Returns Human-readable device name, or NULL on error; call SDL GetError()
for more information.

Remarks

The returned string is owned by the caller; please release it with SDL free()
when done with it.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetCameraDevices

SDL GETCAMERADEVICEPOSITION 257

SDL GetCameraDevicePosition

Get the position of the camera in relation to the system.

Header File

Defined in SDL3/SDL camera.h

Syntax

SDL_CameraPosition SDL_GetCameraDevicePosition(SDL_CameraDeviceID

instance_id);

Function Parameters

instance id the camera device instance ID

Return Value

Returns The position of the camera on the system hardware.

Remarks

Most platforms will report UNKNOWN, but mobile devices, like phones, can
often make a distiction between cameras on the front of the device (that points
towards the user, for taking ”selfies”) and cameras on the back (for filming in
the direction the user is facing).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetCameraDevices

258 CHAPTER 1. SDL FUNCTIONS

SDL GetCameraDevices

Get a list of currently connected camera devices.

Header File

Defined in SDL3/SDL camera.h

Syntax

SDL_CameraDeviceID* SDL_GetCameraDevices(int *count);

Function Parameters

count a pointer filled in with the number of camera devices. Can
be NULL.

Return Value

Returns a 0 terminated array of camera instance IDs which should be freed with
SDL free(), or NULL on error; call SDL GetError() for more details.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenCamera

SDL GETCAMERADEVICESUPPORTEDFORMATS 259

SDL GetCameraDeviceSupportedFormats

Get the list of native formats/sizes a camera supports.

Header File

Defined in SDL3/SDL camera.h

Syntax

SDL_CameraSpec* SDL_GetCameraDeviceSupportedFormats(SDL_CameraDeviceID

devid, int *count);

Function Parameters

devid the camera device instance ID to query.
count a pointer filled in with the number of elements in the list.

Can be NULL.

Return Value

Returns a 0 terminated array of SDL CameraSpecs, which should be freed with
SDL free(), or NULL on error; call SDL GetError() for more details.

Remarks

This returns a list of all formats and frame sizes that a specific camera can offer.
This is useful if your app can accept a variety of image formats and sizes and
so want to find the optimal spec that doesn’t require conversion.

This function isn’t strictly required; if you call SDL OpenCameraDevice
with a NULL spec, SDL will choose a native format for you, and if you instead
specify a desired format, it will transparently convert to the requested format
on your behalf.

If count is not NULL, it will be filled with the number of elements in the
returned array. Additionally, the last element of the array has all fields set to
zero (this element is not included in count).

The returned list is owned by the caller, and should be released with SDL free()
when no longer needed.

Note that it’s legal for a camera to supply a list with only the zeroed final
element and *count set to zero; this is what will happen on Emscripten builds,
since that platform won’t tell anything about available cameras until you’ve
opened one, and won’t even tell if there is a camera until the user has given
you permission to check through a scary warning popup.

260 CHAPTER 1. SDL FUNCTIONS

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetCameraDevices

� SDL OpenCameraDevice

SDL GETCAMERADRIVER 261

SDL GetCameraDriver

Use this function to get the name of a built in camera driver.

Header File

Defined in SDL3/SDL camera.h

Syntax

const char* SDL_GetCameraDriver(int index);

Function Parameters

index the index of the camera driver; the value ranges from 0 to
SDL GetNumCameraDrivers() - 1

Return Value

Returns the name of the camera driver at the requested index, or NULL if an
invalid index was specified.

Remarks

The list of camera drivers is given in the order that they are normally initialized
by default; the drivers that seem more reasonable to choose first (as far as the
SDL developers believe) are earlier in the list.

The names of drivers are all simple, low-ASCII identifiers, like ”v4l2”, ”core-
media” or ”android”. These never have Unicode characters, and are not meant
to be proper names.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetNumCameraDrivers

262 CHAPTER 1. SDL FUNCTIONS

SDL GetCameraFormat

Get the spec that a camera is using when generating images.

Header File

Defined in SDL3/SDL camera.h

Syntax

int SDL_GetCameraFormat(SDL_Camera *camera, SDL_CameraSpec *spec);

Function Parameters

camera opened camera device
spec The SDL CameraSpec to be initialized by this function.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Note that this might not be the native format of the hardware, as SDL might
be converting to this format behind the scenes.

If the system is waiting for the user to approve access to the camera, as some
platforms require, this will return -1, but this isn’t necessarily a fatal error; you
should either wait for an SDL EVENT CAMERA DEVICE APPROVED (or
SDL EVENT CAMERA DEVICE DENIED) event, or poll SDL IsCameraApproved()
occasionally until it returns non-zero.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenCameraDevice

SDL GETCAMERAINSTANCEID 263

SDL GetCameraInstanceID

Get the instance ID of an opened camera.

Header File

Defined in SDL3/SDL camera.h

Syntax

SDL_CameraDeviceID SDL_GetCameraInstanceID(SDL_Camera *camera);

Function Parameters

camera an SDL Camera to query

Return Value

Returns the instance ID of the specified camera on success or 0 on failure; call
SDL GetError() for more information.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenCameraDevice

264 CHAPTER 1. SDL FUNCTIONS

SDL GetCameraPermissionState

Query if camera access has been approved by the user.

Header File

Defined in SDL3/SDL camera.h

Syntax

int SDL_GetCameraPermissionState(SDL_Camera *camera);

Function Parameters

camera the opened camera device to query

Return Value

Returns -1 if user denied access to the camera, 1 if user approved access, 0 if no
decision has been made yet.

Remarks

Cameras will not function between when the device is opened by the app and
when the user permits access to the hardware. On some platforms, this presents
as a popup dialog where the user has to explicitly approve access; on others the
approval might be implicit and not alert the user at all.

This function can be used to check the status of that approval. It will return
0 if still waiting for user response, 1 if the camera is approved for use, and -1 if
the user denied access.

Instead of polling with this function, you can wait for a SDL EVENT CAMERA DEVICE APPROVED
(or SDL EVENT CAMERA DEVICE DENIED) event in the standard SDL
event loop, which is guaranteed to be sent once when permission to use the
camera is decided.

If a camera is declined, there’s nothing to be done but call SDL CloseCamera()
to dispose of it.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL GETCAMERAPERMISSIONSTATE 265

See Also

� SDL OpenCameraDevice

� SDL CloseCamera

266 CHAPTER 1. SDL FUNCTIONS

SDL GetCameraProperties

Get the properties associated with an opened camera.

Header File

Defined in SDL3/SDL camera.h

Syntax

SDL_PropertiesID SDL_GetCameraProperties(SDL_Camera *camera);

Function Parameters

camera the SDL Camera obtained from SDL OpenCameraDevice()

Return Value

Returns a valid property ID on success or 0 on failure; call SDL GetError() for
more information.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetProperty

� SDL SetProperty

SDL GETCLIPBOARDDATA 267

SDL GetClipboardData

Get the data from clipboard for a given mime type.

Header File

Defined in SDL3/SDL clipboard.h

Syntax

void* SDL_GetClipboardData(const char *mime_type, size_t *size);

Function Parameters

mime type The mime type to read from the clipboard
size A pointer filled in with the length of the returned data

Return Value

Returns the retrieved data buffer or NULL on failure; call SDL GetError() for
more information. Caller must call SDL free() on the returned pointer when
done with it.

Remarks

The size of text data does not include the terminator, but the text is guaranteed
to be null terminated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasClipboardData

� SDL SetClipboardData

268 CHAPTER 1. SDL FUNCTIONS

SDL GetClipboardText

Get UTF-8 text from the clipboard, which must be freed with SDL free().

Header File

Defined in SDL3/SDL clipboard.h

Syntax

char * SDL_GetClipboardText(void);

Return Value

Returns the clipboard text on success or an empty string on failure; call SDL GetError()
for more information. Caller must call SDL free() on the returned pointer when
done with it (even if there was an error).

Remarks

This functions returns empty string if there was not enough memory left for a
copy of the clipboard’s content.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasClipboardText

� SDL SetClipboardText

SDL GETCLOSESTFULLSCREENDISPLAYMODE 269

SDL GetClosestFullscreenDisplayMode

Get the closest match to the requested display mode.

Header File

Defined in SDL3/SDL video.h

Syntax

const SDL_DisplayMode* SDL_GetClosestFullscreenDisplayMode(SDL_DisplayID

displayID, int w, int h, float refresh_rate, SDL_bool

include_high_density_modes);

Function Parameters

displayID the instance ID of the display to query
w the width in pixels of the desired display mode
h the height in pixels of the desired display mode
refresh rate the refresh rate of the desired display mode, or 0.0f for the

desktop refresh rate
include high density modes Boolean to include high density modes in the search

Return Value

Returns a pointer to the closest display mode equal to or larger than the desired
mode, or NULL on error; call SDL GetError() for more information.

Remarks

The available display modes are scanned and closest is filled in with the closest
mode matching the requested mode and returned. The mode format and refresh
rate default to the desktop mode if they are set to 0. The modes are scanned
with size being first priority, format being second priority, and finally checking
the refresh rate. If all the available modes are too small, then NULL is returned.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDisplays

� SDL GetFullscreenDisplayModes

270 CHAPTER 1. SDL FUNCTIONS

SDL GetCPUCacheLineSize

Determine the L1 cache line size of the CPU.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

int SDL_GetCPUCacheLineSize(void);

Return Value

Returns the L1 cache line size of the CPU, in bytes.

Remarks

This is useful for determining multi-threaded structure padding or SIMD prefetch
sizes.

Version

This function is available since SDL 3.0.0.

SDL GETCPUCOUNT 271

SDL GetCPUCount

Get the number of CPU cores available.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

int SDL_GetCPUCount(void);

Return Value

Returns the total number of logical CPU cores. On CPUs that include tech-
nologies such as hyperthreading, the number of logical cores may be more than
the number of physical cores.

Code Examples

SDL_Log("Number of logical CPU cores: %d", SDL_GetCPUCount());

Version

This function is available since SDL 3.0.0.

272 CHAPTER 1. SDL FUNCTIONS

SDL GetCurrentAudioDriver

Get the name of the current audio driver.

Header File

Defined in SDL3/SDL audio.h

Syntax

const char* SDL_GetCurrentAudioDriver(void);

Return Value

Returns the name of the current audio driver or NULL if no driver has been
initialized.

Remarks

The returned string points to internal static memory and thus never becomes
invalid, even if you quit the audio subsystem and initialize a new driver (al-
though such a case would return a different static string from another call to
this function, of course). As such, you should not modify or free the returned
string.

Code Examples

const char* driver_name = SDL_GetCurrentAudioDriver();

if (driver_name) {

printf("Audio subsystem initialized; driver = %s.\n", driver_name);

} else {

printf("Audio subsystem not initialized.\n");

}

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL GETCURRENTCAMERADRIVER 273

SDL GetCurrentCameraDriver

Get the name of the current camera driver.

Header File

Defined in SDL3/SDL camera.h

Syntax

const char* SDL_GetCurrentCameraDriver(void);

Return Value

Returns the name of the current camera driver or NULL if no driver has been
initialized.

Remarks

The returned string points to internal static memory and thus never becomes
invalid, even if you quit the camera subsystem and initialize a new driver (al-
though such a case would return a different static string from another call to
this function, of course). As such, you should not modify or free the returned
string.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

274 CHAPTER 1. SDL FUNCTIONS

SDL GetCurrentDisplayMode

Get information about the current display mode.

Header File

Defined in SDL3/SDL video.h

Syntax

const SDL_DisplayMode* SDL_GetCurrentDisplayMode(SDL_DisplayID

displayID);

Function Parameters

displayID the instance ID of the display to query

Return Value

Returns a pointer to the desktop display mode or NULL on error; call SDL GetError()
for more information.

Remarks

There’s a difference between this function and SDL GetDesktopDisplayMode()
when SDL runs fullscreen and has changed the resolution. In that case this func-
tion will return the current display mode, and not the previous native display
mode.

Code Examples

// Using SDL2’s SDL_GetCurrentDisplayMode()

#include <SDL3/SDL.h>

int main(int argc, char* argv[])

{

int i;

// Declare display mode structure to be filled in.

SDL_DisplayMode current;

SDL_Init(SDL_INIT_VIDEO);

int count_displays;

SDL GETCURRENTDISPLAYMODE 275

SDL_DisplayID *displays = SDL_GetDisplays(&count_displays);

// Get current display mode of all displays.

for(i = 0; i < count_displays; i++){

const SDL_DisplayMode *display_mode =

SDL_GetCurrentDisplayMode(displays[i]);

if (display_mode== NULL) {

// In case of error...

SDL_Log("Could not get display mode for video display #%d: %s", i,

SDL_GetError());

} else {

// On success, print the current display mode.

SDL_Log("Display #%d: current display mode is %dx%dpx @ %dhz.", i,

display_mode->w, display_mode->h, display_mode->refresh_rate);

}

}

// Clean up and exit the program.

SDL_free(displays);

SDL_Quit();

return 0;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDesktopDisplayMode

� SDL GetDisplays

276 CHAPTER 1. SDL FUNCTIONS

SDL GetCurrentDisplayOrientation

Get the orientation of a display.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_DisplayOrientation SDL_GetCurrentDisplayOrientation(SDL_DisplayID

displayID);

Function Parameters

displayID the instance ID of the display to query

Return Value

Returns The SDL DisplayOrientation enum value of the display, or SDL ORIENTATION UNKNOWN

if it isn’t available.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDisplays

SDL GETCURRENTRENDEROUTPUTSIZE 277

SDL GetCurrentRenderOutputSize

Get the current output size in pixels of a rendering context.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetCurrentRenderOutputSize(SDL_Renderer *renderer, int *w, int

*h);

Function Parameters

renderer the rendering context
w a pointer filled in with the current width
h a pointer filled in with the current height

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

If a rendering target is active, this will return the size of the rendering target in
pixels, otherwise if a logical size is set, it will return the logical size, otherwise
it will return the value of SDL GetRenderOutputSize().

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderOutputSize

278 CHAPTER 1. SDL FUNCTIONS

SDL GetCurrentThreadID

Get the thread identifier for the current thread.

Header File

Defined in SDL3/SDL thread.h

Syntax

SDL_ThreadID SDL_GetCurrentThreadID(void);

Return Value

Returns the ID of the current thread.

Remarks

This thread identifier is as reported by the underlying operating system. If SDL
is running on a platform that does not support threads the return value will
always be zero.

This function also returns a valid thread ID when called from the main
thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetThreadID

SDL GETCURRENTTIME 279

SDL GetCurrentTime

Gets the current value of the system realtime clock in nanoseconds since Jan 1,
1970 in Universal Coordinated Time (UTC).

Header File

Defined in SDL3/SDL time.h

Syntax

int SDL_GetCurrentTime(SDL_Time *ticks);

Function Parameters

ticks the SDL Time to hold the returned tick count

Return Value

Returns 0 on success or -1 on error; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

280 CHAPTER 1. SDL FUNCTIONS

SDL GetCurrentVideoDriver

Get the name of the currently initialized video driver.

Header File

Defined in SDL3/SDL video.h

Syntax

const char* SDL_GetCurrentVideoDriver(void);

Return Value

Returns the name of the current video driver or NULL if no driver has been
initialized.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetNumVideoDrivers

� SDL GetVideoDriver

SDL GETCURSOR 281

SDL GetCursor

Get the active cursor.

Header File

Defined in SDL3/SDL mouse.h

Syntax

SDL_Cursor* SDL_GetCursor(void);

Return Value

Returns the active cursor or NULL if there is no mouse.

Remarks

This function returns a pointer to the current cursor which is owned by the
library. It is not necessary to free the cursor with SDL DestroyCursor().

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetCursor

282 CHAPTER 1. SDL FUNCTIONS

SDL GetDayOfWeek

Get the day of week for a calendar date.

Header File

Defined in SDL3/SDL time.h

Syntax

int SDL_GetDayOfWeek(int year, int month, int day);

Function Parameters

year the year component of the date
month the month component of the date
day the day component of the date

Return Value

Returns a value between 0 and 6 (0 being Sunday) if the date is valid, otherwise
-1; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

SDL GETDAYOFYEAR 283

SDL GetDayOfYear

Get the day of year for a calendar date.

Header File

Defined in SDL3/SDL time.h

Syntax

int SDL_GetDayOfYear(int year, int month, int day);

Function Parameters

year the year component of the date
month the month component of the date
day the day component of the date

Return Value

Returns the day of year [0-365] if the date is valid, otherwise -1; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

284 CHAPTER 1. SDL FUNCTIONS

SDL GetDaysInMonth

Get the number of days in a month for a given year.

Header File

Defined in SDL3/SDL time.h

Syntax

int SDL_GetDaysInMonth(int year, int month);

Function Parameters

year the year
month the month [1-12]

Return Value

Returns the number of days in the requested month, otherwise -1; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL GETDEFAULTASSERTIONHANDLER 285

SDL GetDefaultAssertionHandler

Get the default assertion handler.

Header File

Defined in SDL3/SDL assert.h

Syntax

SDL_AssertionHandler SDL_GetDefaultAssertionHandler(void);

Return Value

Returns the default SDL AssertionHandler that is called when an assert triggers.

Remarks

This returns the function pointer that is called by default when an assertion is
triggered. This is an internal function provided by SDL, that is used for asser-
tions when SDL SetAssertionHandler() hasn’t been used to provide a different
function.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetAssertionHandler

286 CHAPTER 1. SDL FUNCTIONS

SDL GetDefaultCursor

Get the default cursor.

Header File

Defined in SDL3/SDL mouse.h

Syntax

SDL_Cursor* SDL_GetDefaultCursor(void);

Return Value

Returns the default cursor on success or NULL on failure.

Remarks

You do not have to call SDL DestroyCursor() on the return value, but it is safe
to do so.

Version

This function is available since SDL 3.0.0.

SDL GETDESKTOPDISPLAYMODE 287

SDL GetDesktopDisplayMode

Get information about the desktop’s display mode.

Header File

Defined in SDL3/SDL video.h

Syntax

const SDL_DisplayMode* SDL_GetDesktopDisplayMode(SDL_DisplayID

displayID);

Function Parameters

displayID the instance ID of the display to query

Return Value

Returns a pointer to the desktop display mode or NULL on error; call SDL GetError()
for more information.

Remarks

There’s a difference between this function and SDL GetCurrentDisplayMode()
when SDL runs fullscreen and has changed the resolution. In that case this func-
tion will return the previous native display mode, and not the current display
mode.

Code Examples

SDL_DisplayID display_id = SDL_GetPrimaryDisplay();

const SDL_DisplayMode *display_mode =

SDL_GetDesktopDisplayMode(display_id);

if (display_mode == NULL) {

SDL_Log("SDL_GetDesktopDisplayMode failed: %s", SDL_GetError());

return 1;

}

Version

This function is available since SDL 3.0.0.

288 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL GetCurrentDisplayMode

� SDL GetDisplays

SDL GETDISPLAYBOUNDS 289

SDL GetDisplayBounds

Get the desktop area represented by a display.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GetDisplayBounds(SDL_DisplayID displayID, SDL_Rect *rect);

Function Parameters

displayID the instance ID of the display to query
rect the SDL Rect structure filled in with the display bounds

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The primary display is always located at (0,0).

Code Examples

SDL_Rect r;

if (SDL_GetDisplayBounds(0, &r) != 0) {

SDL_Log("SDL_GetDisplayBounds failed: %s", SDL_GetError());

return 1;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDisplayUsableBounds

� SDL GetDisplays

290 CHAPTER 1. SDL FUNCTIONS

SDL GetDisplayContentScale

Get the content scale of a display.

Header File

Defined in SDL3/SDL video.h

Syntax

float SDL_GetDisplayContentScale(SDL_DisplayID displayID);

Function Parameters

displayID the instance ID of the display to query

Return Value

Returns The content scale of the display, or 0.0f on error; call SDL GetError()
for more details.

Remarks

The content scale is the expected scale for content based on the DPI settings of
the display. For example, a 4K display might have a 2.0 (200display scale, which
means that the user expects UI elements to be twice as big on this display, to
aid in readability.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDisplays

SDL GETDISPLAYFORPOINT 291

SDL GetDisplayForPoint

Get the display containing a point.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_DisplayID SDL_GetDisplayForPoint(const SDL_Point *point);

Function Parameters

point the point to query

Return Value

Returns the instance ID of the display containing the point or 0 on failure; call
SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDisplayBounds

� SDL GetDisplays

292 CHAPTER 1. SDL FUNCTIONS

SDL GetDisplayForRect

Get the display primarily containing a rect.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_DisplayID SDL_GetDisplayForRect(const SDL_Rect *rect);

Function Parameters

rect the rect to query

Return Value

Returns the instance ID of the display entirely containing the rect or closest to
the center of the rect on success or 0 on failure; call SDL GetError() for more
information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDisplayBounds

� SDL GetDisplays

SDL GETDISPLAYFORWINDOW 293

SDL GetDisplayForWindow

Get the display associated with a window.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_DisplayID SDL_GetDisplayForWindow(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns the instance ID of the display containing the center of the window on
success or 0 on failure; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDisplayBounds

� SDL GetDisplays

294 CHAPTER 1. SDL FUNCTIONS

SDL GetDisplayName

Get the name of a display in UTF-8 encoding.

Header File

Defined in SDL3/SDL video.h

Syntax

const char* SDL_GetDisplayName(SDL_DisplayID displayID);

Function Parameters

displayID the instance ID of the display to query

Return Value

Returns the name of a display or NULL on failure; call SDL GetError() for
more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDisplays

SDL GETDISPLAYPROPERTIES 295

SDL GetDisplayProperties

Get the properties associated with a display.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_PropertiesID SDL_GetDisplayProperties(SDL_DisplayID displayID);

Function Parameters

displayID the instance ID of the display to query

Return Value

Returns a valid property ID on success or 0 on failure; call SDL GetError() for
more information.

Remarks

The following read-only properties are provided by SDL:

� SDL PROP DISPLAY HDR ENABLED BOOLEAN: true if the display has HDR
headroom above the SDR white point. This property can change dynam-
ically when SDL EVENT DISPLAY HDR STATE CHANGED is sent.

� SDL PROP DISPLAY SDR WHITE POINT FLOAT: the value of SDR white in
the SDL COLORSPACE SRGB LINEAR colorspace. On Windows this
corresponds to the SDR white level in scRGB colorspace, and on Apple
platforms this is always 1.0 for EDR content. This property can change
dynamically when SDL EVENT DISPLAY HDR STATE CHANGED is
sent.

� SDL PROP DISPLAY HDR HEADROOM FLOAT: the additional high dynamic range
that can be displayed, in terms of the SDR white point. When HDR is
not enabled, this will be 1.0. This property can change dynamically when
SDL EVENT DISPLAY HDR STATE CHANGED is sent.

Version

This function is available since SDL 3.0.0.

296 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL GetProperty

� SDL SetProperty

SDL GETDISPLAYS 297

SDL GetDisplays

Get a list of currently connected displays.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_DisplayID* SDL_GetDisplays(int *count);

Function Parameters

count a pointer filled in with the number of displays returned

Return Value

Returns a 0 terminated array of display instance IDs which should be freed with
SDL free(), or NULL on error; call SDL GetError() for more details.

Version

This function is available since SDL 3.0.0.

298 CHAPTER 1. SDL FUNCTIONS

SDL GetDisplayUsableBounds

Get the usable desktop area represented by a display, in screen coordinates.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GetDisplayUsableBounds(SDL_DisplayID displayID, SDL_Rect *rect);

Function Parameters

displayID the instance ID of the display to query
rect the SDL Rect structure filled in with the display bounds

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This is the same area as SDL GetDisplayBounds() reports, but with portions
reserved by the system removed. For example, on Apple’s macOS, this subtracts
the area occupied by the menu bar and dock.

Setting a window to be fullscreen generally bypasses these unusable areas, so
these are good guidelines for the maximum space available to a non-fullscreen
window.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDisplayBounds

� SDL GetDisplays

SDL GETERROR 299

SDL GetError

Retrieve a message about the last error that occurred on the current thread.

Header File

Defined in SDL3/SDL error.h

Syntax

const char* SDL_GetError(void);

Return Value

Returns a message with information about the specific error that occurred, or
an empty string if there hasn’t been an error message set since the last call to
SDL ClearError(). The message is only applicable when an SDL function has
signaled an error. You must check the return values of SDL function calls to
determine when to appropriately call SDL GetError().

Remarks

It is possible for multiple errors to occur before calling SDL GetError(). Only
the last error is returned.

The message is only applicable when an SDL function has signaled an er-
ror. You must check the return values of SDL function calls to determine
when to appropriately call SDL GetError(). You should not use the results
of SDL GetError() to decide if an error has occurred! Sometimes SDL will set
an error string even when reporting success.

SDL will not clear the error string for successful API calls. You must check
return values for failure cases before you can assume the error string applies.

Error strings are set per-thread, so an error set in a different thread will not
interfere with the current thread’s operation.

The returned string is internally allocated and must not be freed by the
application.

Code Examples

if (SDL_Init(SDL_INIT_VIDEO) < 0) {

// Unrecoverable error, exit here.

printf("SDL_Init failed: %s\n", SDL_GetError());

}

300 CHAPTER 1. SDL FUNCTIONS

Note: Although this example uses SDL Init(), SDL GetError() provides an error
message for any failed SDL operation which supports error reporting, see the
wiki page for each particular SDL function.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ClearError

� SDL SetError

SDL GETEVENTFILTER 301

SDL GetEventFilter

Query the current event filter.

Header File

Defined in SDL3/SDL events.h

Syntax

SDL_bool SDL_GetEventFilter(SDL_EventFilter *filter, void **userdata);

Function Parameters

filter the current callback function will be stored here
userdata the pointer that is passed to the current event filter will be

stored here

Return Value

Returns SDL TRUE on success or SDL FALSE if there is no event filter set.

Remarks

This function can be used to ”chain” filters, by saving the existing filter before
replacing it with a function that will call that saved filter.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetEventFilter

302 CHAPTER 1. SDL FUNCTIONS

SDL GetFloatProperty

Get a floating point property on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

float SDL_GetFloatProperty(SDL_PropertiesID props, const char *name,

float default_value);

Function Parameters

props the properties to query
name the name of the property to query
default value the default value of the property

Return Value

Returns the value of the property, or default value if it is not set or not a
float property.

Remarks

You can use SDL GetPropertyType() to query whether the property exists and
is a floating point property.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetPropertyType

� SDL HasProperty

� SDL SetFloatProperty

SDL GETFULLSCREENDISPLAYMODES 303

SDL GetFullscreenDisplayModes

Get a list of fullscreen display modes available on a display.

Header File

Defined in SDL3/SDL video.h

Syntax

extern DECLSPEC const SDL_DisplayMode **SDLCALL

SDL_GetFullscreenDisplayModes(SDL_DisplayID displayID, int *count);

Function Parameters

displayID the instance ID of the display to query
count a pointer filled in with the number of display modes returned

Return Value

Returns a NULL terminated array of display mode pointers which should be
freed with SDL free(), or NULL on error; call SDL GetError() for more details.

Remarks

The display modes are sorted in this priority:

� w -¿ largest to smallest

� h -¿ largest to smallest

� bits per pixel -¿ more colors to fewer colors

� packed pixel layout -¿ largest to smallest

� refresh rate -¿ highest to lowest

� pixel density -¿ lowest to highest

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDisplays

304 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadAppleSFSymbolsNameForAxis

Return the sfSymbolsName for a given axis on a gamepad on Apple platforms.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

const char* SDL_GetGamepadAppleSFSymbolsNameForAxis(SDL_Gamepad

*gamepad, SDL_GamepadAxis axis);

Function Parameters

gamepad the gamepad to query
axis an axis on the gamepad

Return Value

Returns the sfSymbolsName or NULL if the name can’t be found

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadAppleSFSymbolsNameForButton

SDL GETGAMEPADAPPLESFSYMBOLSNAMEFORBUTTON 305

SDL GetGamepadAppleSFSymbolsNameForButton

Return the sfSymbolsName for a given button on a gamepad on Apple platforms.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

const char* SDL_GetGamepadAppleSFSymbolsNameForButton(SDL_Gamepad

*gamepad, SDL_GamepadButton button);

Function Parameters

gamepad the gamepad to query
button a button on the gamepad

Return Value

Returns the sfSymbolsName or NULL if the name can’t be found

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadAppleSFSymbolsNameForAxis

306 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadAxis

Get the current state of an axis control on a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

Sint16 SDL_GetGamepadAxis(SDL_Gamepad *gamepad, SDL_GamepadAxis axis);

Function Parameters

gamepad a gamepad
axis an axis index (one of the SDL GamepadAxis values)

Return Value

Returns axis state (including 0) on success or 0 (also) on failure; call SDL GetError()
for more information.

Remarks

The axis indices start at index 0.
For thumbsticks, the state is a value ranging from -32768 (up/left) to 32767

(down/right).
Triggers range from 0 when released to 32767 when fully pressed, and never

return a negative value. Note that this differs from the value reported by the
lower-level SDL GetJoystickAxis(), which normally uses the full range.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GamepadHasAxis

� SDL GetGamepadButton

SDL GETGAMEPADAXISFROMSTRING 307

SDL GetGamepadAxisFromString

Convert a string into SDL GamepadAxis enum.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_GamepadAxis SDL_GetGamepadAxisFromString(const char *str);

Function Parameters

str string representing a SDL Gamepad axis

Return Value

Returns the SDL GamepadAxis enum corresponding to the input string, or
SDL GAMEPAD AXIS INVALID if no match was found.

Remarks

This function is called internally to translate SDL Gamepad mapping strings for
the underlying joystick device into the consistent SDL Gamepad mapping. You
do not normally need to call this function unless you are parsing SDL Gamepad
mappings in your own code.

Note specially that ”righttrigger” and ”lefttrigger” map to SDL GAMEPAD AXIS RIGHT TRIGGER

and SDL GAMEPAD AXIS LEFT TRIGGER, respectively.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadStringForAxis

308 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadBindings

Get the SDL joystick layer bindings for a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

extern DECLSPEC SDL_GamepadBinding **SDLCALL

SDL_GetGamepadBindings(SDL_Gamepad *gamepad, int *count);

Function Parameters

gamepad a gamepad
count a pointer filled in with the number of bindings returned

Return Value

Returns a NULL terminated array of pointers to bindings which should be freed
with SDL free(), or NULL on error; call SDL GetError() for more details.

Version

This function is available since SDL 3.0.0.

SDL GETGAMEPADBUTTON 309

SDL GetGamepadButton

Get the current state of a button on a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

Uint8 SDL_GetGamepadButton(SDL_Gamepad *gamepad, SDL_GamepadButton

button);

Function Parameters

gamepad a gamepad
button a button index (one of the SDL GamepadButton values)

Return Value

Returns 1 for pressed state or 0 for not pressed state or error; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GamepadHasButton

� SDL GetGamepadAxis

310 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadButtonFromString

Convert a string into an SDL GamepadButton enum.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_GamepadButton SDL_GetGamepadButtonFromString(const char *str);

Function Parameters

str string representing a SDL Gamepad axis

Return Value

Returns the SDL GamepadButton enum corresponding to the input string, or
SDL GAMEPAD BUTTON INVALID if no match was found.

Remarks

This function is called internally to translate SDL Gamepad mapping strings for
the underlying joystick device into the consistent SDL Gamepad mapping. You
do not normally need to call this function unless you are parsing SDL Gamepad
mappings in your own code.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadStringForButton

SDL GETGAMEPADBUTTONLABEL 311

SDL GetGamepadButtonLabel

Get the label of a button on a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_GamepadButtonLabel SDL_GetGamepadButtonLabel(SDL_Gamepad *gamepad,

SDL_GamepadButton button);

Function Parameters

gamepad a gamepad
button a button index (one of the SDL GamepadButton values)

Return Value

Returns the SDL GamepadButtonLabel enum corresponding to the button label

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadButtonLabelForType

312 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadButtonLabelForType

Get the label of a button on a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_GamepadButtonLabel SDL_GetGamepadButtonLabelForType(SDL_GamepadType

type, SDL_GamepadButton button);

Function Parameters

type the type of gamepad to check
button a button index (one of the SDL GamepadButton values)

Return Value

Returns the SDL GamepadButtonLabel enum corresponding to the button label

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadButtonLabel

SDL GETGAMEPADCONNECTIONSTATE 313

SDL GetGamepadConnectionState

Get the connection state of a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_JoystickConnectionState SDL_GetGamepadConnectionState(SDL_Gamepad

*gamepad);

Function Parameters

gamepad the gamepad object to query.

Return Value

Returns the connection state on success or SDL JOYSTICK CONNECTION INVALID

on failure; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

314 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadFirmwareVersion

Get the firmware version of an opened gamepad, if available.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

Uint16 SDL_GetGamepadFirmwareVersion(SDL_Gamepad *gamepad);

Function Parameters

gamepad the gamepad object to query.

Return Value

Returns the gamepad firmware version, or zero if unavailable.

Remarks

If the firmware version isn’t available this function returns 0.

Version

This function is available since SDL 3.0.0.

SDL GETGAMEPADFROMINSTANCEID 315

SDL GetGamepadFromInstanceID

Get the SDL Gamepad associated with a joystick instance ID, if it has been
opened.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_Gamepad* SDL_GetGamepadFromInstanceID(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID of the gamepad

Return Value

Returns an SDL Gamepad on success or NULL on failure or if it hasn’t been
opened yet; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

316 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadFromPlayerIndex

Get the SDL Gamepad associated with a player index.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_Gamepad* SDL_GetGamepadFromPlayerIndex(int player_index);

Function Parameters

player index the player index, which different from the instance ID

Return Value

Returns the SDL Gamepad associated with a player index.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadPlayerIndex

� SDL SetGamepadPlayerIndex

SDL GETGAMEPADINSTANCEGUID 317

SDL GetGamepadInstanceGUID

Get the implementation-dependent GUID of a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_JoystickGUID SDL_GetGamepadInstanceGUID(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the GUID of the selected gamepad. If called on an invalid index, this
function returns a zero GUID

Remarks

This can be called before any gamepads are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadGUID

� SDL GetGamepadGUIDString

� SDL GetGamepads

318 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadInstanceID

Get the instance ID of an opened gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_JoystickID SDL_GetGamepadInstanceID(SDL_Gamepad *gamepad);

Function Parameters

gamepad a gamepad identifier previously returned by
SDL OpenGamepad()

Return Value

Returns the instance ID of the specified gamepad on success or 0 on failure; call
SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

SDL GETGAMEPADINSTANCEMAPPING 319

SDL GetGamepadInstanceMapping

Get the mapping of a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

char* SDL_GetGamepadInstanceMapping(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the mapping string. Must be freed with SDL free(). Returns NULL if
no mapping is available.

Remarks

This can be called before any gamepads are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepads

� SDL GetGamepadMapping

320 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadInstanceName

Get the implementation dependent name of a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

const char* SDL_GetGamepadInstanceName(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the name of the selected gamepad. If no name can be found, this
function returns NULL; call SDL GetError() for more information.

Remarks

This can be called before any gamepads are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadName

� SDL GetGamepads

SDL GETGAMEPADINSTANCEPATH 321

SDL GetGamepadInstancePath

Get the implementation dependent path of a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

const char* SDL_GetGamepadInstancePath(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the path of the selected gamepad. If no path can be found, this function
returns NULL; call SDL GetError() for more information.

Remarks

This can be called before any gamepads are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadPath

� SDL GetGamepads

322 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadInstancePlayerIndex

Get the player index of a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_GetGamepadInstancePlayerIndex(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the player index of a gamepad, or -1 if it’s not available

Remarks

This can be called before any gamepads are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadPlayerIndex

� SDL GetGamepads

SDL GETGAMEPADINSTANCEPRODUCT 323

SDL GetGamepadInstanceProduct

Get the USB product ID of a gamepad, if available.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

Uint16 SDL_GetGamepadInstanceProduct(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the USB product ID of the selected gamepad. If called on an invalid
index, this function returns zero

Remarks

This can be called before any gamepads are opened. If the product ID isn’t
available this function returns 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadProduct

� SDL GetGamepads

324 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadInstanceProductVersion

Get the product version of a gamepad, if available.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

Uint16 SDL_GetGamepadInstanceProductVersion(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the product version of the selected gamepad. If called on an invalid
index, this function returns zero

Remarks

This can be called before any gamepads are opened. If the product version isn’t
available this function returns 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadProductVersion

� SDL GetGamepads

SDL GETGAMEPADINSTANCETYPE 325

SDL GetGamepadInstanceType

Get the type of a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_GamepadType SDL_GetGamepadInstanceType(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the gamepad type.

Remarks

This can be called before any gamepads are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadType

� SDL GetGamepads

� SDL GetRealGamepadInstanceType

326 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadInstanceVendor

Get the USB vendor ID of a gamepad, if available.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

Uint16 SDL_GetGamepadInstanceVendor(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the USB vendor ID of the selected gamepad. If called on an invalid
index, this function returns zero

Remarks

This can be called before any gamepads are opened. If the vendor ID isn’t
available this function returns 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadVendor

� SDL GetGamepads

SDL GETGAMEPADJOYSTICK 327

SDL GetGamepadJoystick

Get the underlying joystick from a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_Joystick* SDL_GetGamepadJoystick(SDL_Gamepad *gamepad);

Function Parameters

gamepad the gamepad object that you want to get a joystick from

Return Value

Returns an SDL Joystick object; call SDL GetError() for more information.

Remarks

This function will give you a SDL Joystick object, which allows you to use the
SDL Joystick functions with a SDL Gamepad object. This would be useful for
getting a joystick’s position at any given time, even if it hasn’t moved (moving
it would produce an event, which would have the axis’ value).

The pointer returned is owned by the SDL Gamepad. You should not call
SDL CloseJoystick() on it, for example, since doing so will likely cause SDL to
crash.

Version

This function is available since SDL 3.0.0.

328 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadMapping

Get the current mapping of a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

char * SDL_GetGamepadMapping(SDL_Gamepad *gamepad);

Function Parameters

gamepad the gamepad you want to get the current mapping for

Return Value

Returns a string that has the gamepad’s mapping or NULL if no mapping is
available; call SDL GetError() for more information.

Remarks

The returned string must be freed with SDL free().
Details about mappings are discussed with SDL AddGamepadMapping().

Version

This function is available since SDL 3.0.0.

See Also

� SDL AddGamepadMapping

� SDL GetGamepadInstanceMapping

� SDL GetGamepadMappingForGUID

� SDL SetGamepadMapping

SDL GETGAMEPADMAPPINGFORGUID 329

SDL GetGamepadMappingForGUID

Get the gamepad mapping string for a given GUID.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

char * SDL_GetGamepadMappingForGUID(SDL_JoystickGUID guid);

Function Parameters

guid a structure containing the GUID for which a mapping is
desired

Return Value

Returns a mapping string or NULL on error; call SDL GetError() for more
information.

Remarks

The returned string must be freed with SDL free().

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickInstanceGUID

� SDL GetJoystickGUID

330 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadMappings

Get the current gamepad mappings.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

char ** SDL_GetGamepadMappings(int *count);

Function Parameters

count a pointer filled in with the number of mappings returned,
can be NULL.

Return Value

Returns an array of the mapping strings, NULL-terminated. Must be freed with
SDL free(). Returns NULL on error.

Remarks

You must free the returned pointer with SDL free() when you are done with it,
but you do not free each string in the array.

Version

This function is available since SDL 3.0.0.

SDL GETGAMEPADNAME 331

SDL GetGamepadName

Get the implementation-dependent name for an opened gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

const char* SDL_GetGamepadName(SDL_Gamepad *gamepad);

Function Parameters

gamepad a gamepad identifier previously returned by
SDL OpenGamepad()

Return Value

Returns the implementation dependent name for the gamepad, or NULL if there
is no name or the identifier passed is invalid.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadInstanceName

332 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadPath

Get the implementation-dependent path for an opened gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

const char* SDL_GetGamepadPath(SDL_Gamepad *gamepad);

Function Parameters

gamepad a gamepad identifier previously returned by
SDL OpenGamepad()

Return Value

Returns the implementation dependent path for the gamepad, or NULL if there
is no path or the identifier passed is invalid.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadInstancePath

SDL GETGAMEPADPLAYERINDEX 333

SDL GetGamepadPlayerIndex

Get the player index of an opened gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_GetGamepadPlayerIndex(SDL_Gamepad *gamepad);

Function Parameters

gamepad the gamepad object to query.

Return Value

Returns the player index for gamepad, or -1 if it’s not available.

Remarks

For XInput gamepads this returns the XInput user index.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetGamepadPlayerIndex

334 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadPowerInfo

Get the battery state of a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_PowerState SDL_GetGamepadPowerInfo(SDL_Gamepad *gamepad, int

*percent);

Function Parameters

gamepad the gamepad object to query.
percent a pointer filled in with the percentage of battery life left,

between 0 and 100, or NULL to ignore. This will be filled
in with -1 we can’t determine a value or there is no battery.

Return Value

Returns the current battery state.

Remarks

You should never take a battery status as absolute truth. Batteries (especially
failing batteries) are delicate hardware, and the values reported here are best
estimates based on what that hardware reports. It’s not uncommon for older
batteries to lose stored power much faster than it reports, or completely drain
when reporting it has 20 percent left, etc.

Version

This function is available since SDL 3.0.0.

SDL GETGAMEPADPRODUCT 335

SDL GetGamepadProduct

Get the USB product ID of an opened gamepad, if available.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

Uint16 SDL_GetGamepadProduct(SDL_Gamepad *gamepad);

Function Parameters

gamepad the gamepad object to query.

Return Value

Returns the USB product ID, or zero if unavailable.

Remarks

If the product ID isn’t available this function returns 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadInstanceProduct

336 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadProductVersion

Get the product version of an opened gamepad, if available.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

Uint16 SDL_GetGamepadProductVersion(SDL_Gamepad *gamepad);

Function Parameters

gamepad the gamepad object to query.

Return Value

Returns the USB product version, or zero if unavailable.

Remarks

If the product version isn’t available this function returns 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadInstanceProductVersion

SDL GETGAMEPADPROPERTIES 337

SDL GetGamepadProperties

Get the properties associated with an opened gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_PropertiesID SDL_GetGamepadProperties(SDL_Gamepad *gamepad);

Function Parameters

gamepad a gamepad identifier previously returned by
SDL OpenGamepad()

Return Value

Returns a valid property ID on success or 0 on failure; call SDL GetError() for
more information.

Remarks

These properties are shared with the underlying joystick object.
The following read-only properties are provided by SDL:

� SDL PROP GAMEPAD CAP MONO LED BOOLEAN: true if this gamepad has an
LED that has adjustable brightness

� SDL PROP GAMEPAD CAP RGB LED BOOLEAN: true if this gamepad has an LED
that has adjustable color

� SDL PROP GAMEPAD CAP PLAYER LED BOOLEAN: true if this gamepad has a
player LED

� SDL PROP GAMEPAD CAP RUMBLE BOOLEAN: true if this gamepad has left-
/right rumble

� SDL PROP GAMEPAD CAP TRIGGER RUMBLE BOOLEAN: true if this gamepad
has simple trigger rumble

Version

This function is available since SDL 3.0.0.

338 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL GetProperty

� SDL SetProperty

SDL GETGAMEPADS 339

SDL GetGamepads

Get a list of currently connected gamepads.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_JoystickID* SDL_GetGamepads(int *count);

Function Parameters

count a pointer filled in with the number of gamepads returned

Return Value

Returns a 0 terminated array of joystick instance IDs which should be freed
with SDL free(), or NULL on error; call SDL GetError() for more details.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasGamepad

� SDL OpenGamepad

340 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadSensorData

Get the current state of a gamepad sensor.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_GetGamepadSensorData(SDL_Gamepad *gamepad, SDL_SensorType type,

float *data, int num_values);

Function Parameters

gamepad The gamepad to query
type The type of sensor to query
data A pointer filled with the current sensor state
num values The number of values to write to data

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The number of values and interpretation of the data is sensor dependent. See
SDL sensor.h for the details for each type of sensor.

Version

This function is available since SDL 3.0.0.

SDL GETGAMEPADSENSORDATARATE 341

SDL GetGamepadSensorDataRate

Get the data rate (number of events per second) of a gamepad sensor.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

float SDL_GetGamepadSensorDataRate(SDL_Gamepad *gamepad, SDL_SensorType

type);

Function Parameters

gamepad The gamepad to query
type The type of sensor to query

Return Value

Returns the data rate, or 0.0f if the data rate is not available.

Version

This function is available since SDL 3.0.0.

342 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadSerial

Get the serial number of an opened gamepad, if available.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

const char * SDL_GetGamepadSerial(SDL_Gamepad *gamepad);

Function Parameters

gamepad the gamepad object to query.

Return Value

Returns the serial number, or NULL if unavailable.

Remarks

Returns the serial number of the gamepad, or NULL if it is not available.

Version

This function is available since SDL 3.0.0.

SDL GETGAMEPADSTEAMHANDLE 343

SDL GetGamepadSteamHandle

Get the Steam Input handle of an opened gamepad, if available.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

Uint64 SDL_GetGamepadSteamHandle(SDL_Gamepad *gamepad);

Function Parameters

gamepad the gamepad object to query.

Return Value

Returns the gamepad handle, or 0 if unavailable.

Remarks

Returns an InputHandle t for the gamepad that can be used with Steam Input
API: https://partner.steamgames.com/doc/api/ISteamInput

Version

This function is available since SDL 3.0.0.

344 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadStringForAxis

Convert from an SDL GamepadAxis enum to a string.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

const char * SDL_GetGamepadStringForAxis(SDL_GamepadAxis axis);

Function Parameters

axis an enum value for a given SDL GamepadAxis

Return Value

Returns a string for the given axis, or NULL if an invalid axis is specified. The
string returned is of the format used by SDL Gamepad mapping strings.

Remarks

The caller should not SDL free() the returned string.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadAxisFromString

SDL GETGAMEPADSTRINGFORBUTTON 345

SDL GetGamepadStringForButton

Convert from an SDL GamepadButton enum to a string.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

const char* SDL_GetGamepadStringForButton(SDL_GamepadButton button);

Function Parameters

button an enum value for a given SDL GamepadButton

Return Value

Returns a string for the given button, or NULL if an invalid button is specified.
The string returned is of the format used by SDL Gamepad mapping strings.

Remarks

The caller should not SDL free() the returned string.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadButtonFromString

346 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadStringForType

Convert from an SDL GamepadType enum to a string.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

const char* SDL_GetGamepadStringForType(SDL_GamepadType type);

Function Parameters

type an enum value for a given SDL GamepadType

Return Value

Returns a string for the given type, or NULL if an invalid type is specified. The
string returned is of the format used by SDL Gamepad mapping strings.

Remarks

The caller should not SDL free() the returned string.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadTypeFromString

SDL GETGAMEPADTOUCHPADFINGER 347

SDL GetGamepadTouchpadFinger

Get the current state of a finger on a touchpad on a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_GetGamepadTouchpadFinger(SDL_Gamepad *gamepad, int touchpad, int

finger, Uint8 *state, float *x, float *y, float *pressure);

Function Parameters

gamepad a gamepad
touchpad a touchpad
finger a finger
state filled with state
x filled with x position
y filled with y position
pressure filled with pressure value

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetNumGamepadTouchpadFingers

348 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadType

Get the type of an opened gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_GamepadType SDL_GetGamepadType(SDL_Gamepad *gamepad);

Function Parameters

gamepad the gamepad object to query.

Return Value

Returns the gamepad type, or SDL GAMEPAD TYPE UNKNOWN if it’s not
available.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadInstanceType

SDL GETGAMEPADTYPEFROMSTRING 349

SDL GetGamepadTypeFromString

Convert a string into SDL GamepadType enum.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_GamepadType SDL_GetGamepadTypeFromString(const char *str);

Function Parameters

str string representing a SDL GamepadType type

Return Value

Returns the SDL GamepadType enum corresponding to the input string, or
SDL GAMEPAD TYPE UNKNOWN if no match was found.

Remarks

This function is called internally to translate SDL Gamepad mapping strings for
the underlying joystick device into the consistent SDL Gamepad mapping. You
do not normally need to call this function unless you are parsing SDL Gamepad
mappings in your own code.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadStringForType

350 CHAPTER 1. SDL FUNCTIONS

SDL GetGamepadVendor

Get the USB vendor ID of an opened gamepad, if available.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

Uint16 SDL_GetGamepadVendor(SDL_Gamepad *gamepad);

Function Parameters

gamepad the gamepad object to query.

Return Value

Returns the USB vendor ID, or zero if unavailable.

Remarks

If the vendor ID isn’t available this function returns 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadInstanceVendor

SDL GETGLOBALMOUSESTATE 351

SDL GetGlobalMouseState

Get the current state of the mouse in relation to the desktop.

Header File

Defined in SDL3/SDL mouse.h

Syntax

Uint32 SDL_GetGlobalMouseState(float *x, float *y);

Function Parameters

x filled in with the current X coord relative to the desktop;
can be NULL

y filled in with the current Y coord relative to the desktop;
can be NULL

Return Value

Returns the current button state as a bitmask which can be tested using the
SDL BUTTON(X) macros.

Remarks

This works similarly to SDL GetMouseState(), but the coordinates will be re-
ported relative to the top-left of the desktop. This can be useful if you need to
track the mouse outside of a specific window and SDL CaptureMouse() doesn’t
fit your needs. For example, it could be useful if you need to track the mouse
while dragging a window, where coordinates relative to a window might not be
in sync at all times.

Note: SDL GetMouseState() returns the mouse position as SDL understands
it from the last pump of the event queue. This function, however, queries the
OS for the current mouse position, and as such, might be a slightly less efficient
function. Unless you know what you’re doing and have a good reason to use
this function, you probably want SDL GetMouseState() instead.

Version

This function is available since SDL 3.0.0.

352 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL CaptureMouse

� SDL GetMouseState

SDL GETGLOBALPROPERTIES 353

SDL GetGlobalProperties

Get the global SDL properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

SDL_PropertiesID SDL_GetGlobalProperties(void);

Return Value

Returns a valid property ID on success or 0 on failure; call SDL GetError() for
more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetProperty

� SDL SetProperty

354 CHAPTER 1. SDL FUNCTIONS

SDL GetGrabbedWindow

Get the window that currently has an input grab enabled.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_Window* SDL_GetGrabbedWindow(void);

Return Value

Returns the window if input is grabbed or NULL otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetWindowMouseGrab

� SDL SetWindowKeyboardGrab

SDL GETHAPTICEFFECTSTATUS 355

SDL GetHapticEffectStatus

Get the status of the current effect on the specified haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_GetHapticEffectStatus(SDL_Haptic *haptic, int effect);

Function Parameters

haptic the SDL Haptic device to query for the effect status on
effect the ID of the haptic effect to query its status

Return Value

Returns 0 if it isn’t playing, 1 if it is playing, or a negative error code on failure;
call SDL GetError() for more information.

Remarks

Device must support the SDL HAPTIC STATUS feature.

Version

This function is available since SDL 3.0.0.

356 CHAPTER 1. SDL FUNCTIONS

SDL GetHapticFeatures

Get the haptic device’s supported features in bitwise manner.

Header File

Defined in SDL3/SDL haptic.h

Syntax

Uint32 SDL_GetHapticFeatures(SDL_Haptic *haptic);

Function Parameters

haptic the SDL Haptic device to query

Return Value

Returns a list of supported haptic features in bitwise manner (OR’d), or 0 on
failure; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HapticEffectSupported

� SDL GetMaxHapticEffects

SDL GETHAPTICFROMINSTANCEID 357

SDL GetHapticFromInstanceID

Get the SDL Haptic associated with an instance ID, if it has been opened.

Header File

Defined in SDL3/SDL haptic.h

Syntax

SDL_Haptic* SDL_GetHapticFromInstanceID(SDL_HapticID instance_id);

Function Parameters

instance id the instance ID to get the SDL Haptic for

Return Value

Returns an SDL Haptic on success or NULL on failure or if it hasn’t been opened
yet; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

358 CHAPTER 1. SDL FUNCTIONS

SDL GetHapticInstanceID

Get the instance ID of an opened haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

SDL_HapticID SDL_GetHapticInstanceID(SDL_Haptic *haptic);

Function Parameters

haptic the SDL Haptic device to query

Return Value

Returns the instance ID of the specified haptic device on success or 0 on failure;
call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

SDL GETHAPTICINSTANCENAME 359

SDL GetHapticInstanceName

Get the implementation dependent name of a haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

const char* SDL_GetHapticInstanceName(SDL_HapticID instance_id);

Function Parameters

instance id the haptic device instance ID

Return Value

Returns the name of the selected haptic device. If no name can be found, this
function returns NULL; call SDL GetError() for more information.

Remarks

This can be called before any haptic devices are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetHapticName

� SDL OpenHaptic

360 CHAPTER 1. SDL FUNCTIONS

SDL GetHapticName

Get the implementation dependent name of a haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

const char* SDL_GetHapticName(SDL_Haptic *haptic);

Function Parameters

haptic the SDL Haptic obtained from SDL OpenJoystick()

Return Value

Returns the name of the selected haptic device. If no name can be found, this
function returns NULL; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetHapticInstanceName

SDL GETHAPTICS 361

SDL GetHaptics

Get a list of currently connected haptic devices.

Header File

Defined in SDL3/SDL haptic.h

Syntax

SDL_HapticID* SDL_GetHaptics(int *count);

Function Parameters

count a pointer filled in with the number of haptic devices returned

Return Value

Returns a 0 terminated array of haptic device instance IDs which should be
freed with SDL free(), or NULL on error; call SDL GetError() for more details.

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenHaptic

362 CHAPTER 1. SDL FUNCTIONS

SDL GetHint

Get the value of a hint.

Header File

Defined in SDL3/SDL hints.h

Syntax

const char * SDL_GetHint(const char *name);

Function Parameters

name the hint to query

Return Value

Returns the string value of a hint or NULL if the hint isn’t set.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetHint

� SDL SetHintWithPriority

SDL GETHINTBOOLEAN 363

SDL GetHintBoolean

Get the boolean value of a hint variable.

Header File

Defined in SDL3/SDL hints.h

Syntax

SDL_bool SDL_GetHintBoolean(const char *name, SDL_bool default_value);

Function Parameters

name the name of the hint to get the boolean value from
default value the value to return if the hint does not exist

Return Value

Returns the boolean value of a hint or the provided default value if the hint
does not exist.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetHint

� SDL SetHint

364 CHAPTER 1. SDL FUNCTIONS

SDL GetIOProperties

Get the properties associated with an SDL IOStream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_PropertiesID SDL_GetIOProperties(SDL_IOStream *context);

Function Parameters

context a pointer to an SDL IOStream structure

Return Value

Returns a valid property ID on success or 0 on failure; call SDL GetError() for
more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetProperty

� SDL SetProperty

SDL GETIOSIZE 365

SDL GetIOSize

Use this function to get the size of the data stream in an SDL IOStream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

Sint64 SDL_GetIOSize(SDL_IOStream *context);

Function Parameters

context the SDL IOStream to get the size of the data stream from

Return Value

Returns the size of the data stream in the SDL IOStream on success or a neg-
ative error code on failure; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

366 CHAPTER 1. SDL FUNCTIONS

SDL GetIOStatus

Query the stream status of an SDL IOStream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_IOStatus SDL_GetIOStatus(SDL_IOStream *context);

Function Parameters

context the SDL IOStream to query.

Return Value

Returns an SDL IOStatus enum with the current state.

Remarks

This information can be useful to decide if a short read or write was due to an
error, an EOF, or a non-blocking operation that isn’t yet ready to complete.

An SDL IOStream’s status is only expected to change after a SDL ReadIO
or SDL WriteIO call; don’t expect it to change if you just call this query function
in a tight loop.

Thread Safety

This function should not be called at the same time that another thread is
operating on the same SDL IOStream.

Version

This function is available since SDL 3.0.0.

SDL GETJOYSTICKAXIS 367

SDL GetJoystickAxis

Get the current state of an axis control on a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

Sint16 SDL_GetJoystickAxis(SDL_Joystick *joystick, int axis);

Function Parameters

joystick an SDL Joystick structure containing joystick information
axis the axis to query; the axis indices start at index 0

Return Value

Returns a 16-bit signed integer representing the current position of the axis or
0 on failure; call SDL GetError() for more information.

Remarks

SDL makes no promises about what part of the joystick any given axis refers to.
Your game should have some sort of configuration UI to let users specify what
each axis should be bound to. Alternately, SDL’s higher-level Game Controller
API makes a great effort to apply order to this lower-level interface, so you know
that a specific axis is the ”left thumb stick,” etc.

The value returned by SDL GetJoystickAxis() is a signed integer (-32768 to
32767) representing the current position of the axis. It may be necessary to
impose certain tolerances on these values to account for jitter.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetNumJoystickAxes

368 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickAxisInitialState

Get the initial state of an axis control on a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_bool SDL_GetJoystickAxisInitialState(SDL_Joystick *joystick, int

axis, Sint16 *state);

Function Parameters

joystick an SDL Joystick structure containing joystick information
axis the axis to query; the axis indices start at index 0
state Upon return, the initial value is supplied here.

Return Value

Returns SDL TRUE if this axis has any initial value, or SDL FALSE if not.

Remarks

The state is a value ranging from -32768 to 32767.
The axis indices start at index 0.

Version

This function is available since SDL 3.0.0.

SDL GETJOYSTICKBALL 369

SDL GetJoystickBall

Get the ball axis change since the last poll.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_GetJoystickBall(SDL_Joystick *joystick, int ball, int *dx, int

*dy);

Function Parameters

joystick the SDL Joystick to query
ball the ball index to query; ball indices start at index 0
dx stores the difference in the x axis position since the last poll
dy stores the difference in the y axis position since the last poll

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Trackballs can only return relative motion since the last call to SDL GetJoystickBall(),
these motion deltas are placed into dx and dy.

Most joysticks do not have trackballs.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetNumJoystickBalls

370 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickButton

Get the current state of a button on a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

Uint8 SDL_GetJoystickButton(SDL_Joystick *joystick, int button);

Function Parameters

joystick an SDL Joystick structure containing joystick information
button the button index to get the state from; indices start at index

0

Return Value

Returns 1 if the specified button is pressed, 0 otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetNumJoystickButtons

SDL GETJOYSTICKCONNECTIONSTATE 371

SDL GetJoystickConnectionState

Get the connection state of a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_JoystickConnectionState SDL_GetJoystickConnectionState(SDL_Joystick

*joystick);

Function Parameters

joystick The joystick to query

Return Value

Returns the connection state on success or SDL JOYSTICK CONNECTION INVALID

on failure; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

372 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickFirmwareVersion

Get the firmware version of an opened joystick, if available.

Header File

Defined in SDL3/SDL joystick.h

Syntax

Uint16 SDL_GetJoystickFirmwareVersion(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick obtained from SDL OpenJoystick()

Return Value

Returns the firmware version of the selected joystick, or 0 if unavailable.

Remarks

If the firmware version isn’t available this function returns 0.

Version

This function is available since SDL 3.0.0.

SDL GETJOYSTICKFROMINSTANCEID 373

SDL GetJoystickFromInstanceID

Get the SDL Joystick associated with an instance ID, if it has been opened.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_Joystick* SDL_GetJoystickFromInstanceID(SDL_JoystickID instance_id);

Function Parameters

instance id the instance ID to get the SDL Joystick for

Return Value

Returns an SDL Joystick on success or NULL on failure or if it hasn’t been
opened yet; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

374 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickFromPlayerIndex

Get the SDL Joystick associated with a player index.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_Joystick* SDL_GetJoystickFromPlayerIndex(int player_index);

Function Parameters

player index the player index to get the SDL Joystick for

Return Value

Returns an SDL Joystick on success or NULL on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickPlayerIndex

� SDL SetJoystickPlayerIndex

SDL GETJOYSTICKGUID 375

SDL GetJoystickGUID

Get the implementation-dependent GUID for the joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_JoystickGUID SDL_GetJoystickGUID(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick obtained from SDL OpenJoystick()

Return Value

Returns the GUID of the given joystick. If called on an invalid index, this
function returns a zero GUID; call SDL GetError() for more information.

Remarks

This function requires an open joystick.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickInstanceGUID

� SDL GetJoystickGUIDString

376 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickGUIDFromString

Convert a GUID string into a SDL JoystickGUID structure.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_JoystickGUID SDL_GetJoystickGUIDFromString(const char *pchGUID);

Function Parameters

pchGUID string containing an ASCII representation of a GUID

Return Value

Returns a SDL JoystickGUID structure.

Remarks

Performs no error checking. If this function is given a string containing an
invalid GUID, the function will silently succeed, but the GUID generated will
not be useful.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickGUIDString

SDL GETJOYSTICKGUIDINFO 377

SDL GetJoystickGUIDInfo

Get the device information encoded in a SDL JoystickGUID structure.

Header File

Defined in SDL3/SDL joystick.h

Syntax

void SDL_GetJoystickGUIDInfo(SDL_JoystickGUID guid, Uint16 *vendor,

Uint16 *product, Uint16 *version, Uint16 *crc16);

Function Parameters

guid the SDL JoystickGUID you wish to get info about
vendor A pointer filled in with the device VID, or 0 if not available
product A pointer filled in with the device PID, or 0 if not available
version A pointer filled in with the device version, or 0 if not avail-

able
crc16 A pointer filled in with a CRC used to distinguish different

products with the same VID/PID, or 0 if not available

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickInstanceGUID

378 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickGUIDString

Get an ASCII string representation for a given SDL JoystickGUID.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_GetJoystickGUIDString(SDL_JoystickGUID guid, char *pszGUID, int

cbGUID);

Function Parameters

guid the SDL JoystickGUID you wish to convert to string
pszGUID buffer in which to write the ASCII string
cbGUID the size of pszGUID

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

You should supply at least 33 bytes for pszGUID.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickInstanceGUID

� SDL GetJoystickGUID

� SDL GetJoystickGUIDFromString

SDL GETJOYSTICKHAT 379

SDL GetJoystickHat

Get the current state of a POV hat on a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

Uint8 SDL_GetJoystickHat(SDL_Joystick *joystick, int hat);

#define SDL_HAT_CENTERED 0x00

#define SDL_HAT_UP 0x01

#define SDL_HAT_RIGHT 0x02

#define SDL_HAT_DOWN 0x04

#define SDL_HAT_LEFT 0x08

#define SDL_HAT_RIGHTUP (SDL_HAT_RIGHT|SDL_HAT_UP)

#define SDL_HAT_RIGHTDOWN (SDL_HAT_RIGHT|SDL_HAT_DOWN)

#define SDL_HAT_LEFTUP (SDL_HAT_LEFT|SDL_HAT_UP)

#define SDL_HAT_LEFTDOWN (SDL_HAT_LEFT|SDL_HAT_DOWN)

Function Parameters

joystick an SDL Joystick structure containing joystick information
hat the hat index to get the state from; indices start at index 0

Return Value

Returns the current hat position.

Remarks

The returned value will be one of the SDL HAT * values.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetNumJoystickHats

380 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickInstanceGUID

Get the implementation-dependent GUID of a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_JoystickGUID SDL_GetJoystickInstanceGUID(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the GUID of the selected joystick. If called with an invalid instance id,
this function returns a zero GUID.

Remarks

This can be called before any joysticks are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickGUID

� SDL GetJoystickGUIDString

SDL GETJOYSTICKINSTANCEID 381

SDL GetJoystickInstanceID

Get the instance ID of an opened joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_JoystickID SDL_GetJoystickInstanceID(SDL_Joystick *joystick);

Function Parameters

joystick an SDL Joystick structure containing joystick information

Return Value

Returns the instance ID of the specified joystick on success or 0 on failure; call
SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

382 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickInstanceName

Get the implementation dependent name of a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

const char* SDL_GetJoystickInstanceName(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the name of the selected joystick. If no name can be found, this function
returns NULL; call SDL GetError() for more information.

Remarks

This can be called before any joysticks are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickName

� SDL GetJoysticks

SDL GETJOYSTICKINSTANCEPATH 383

SDL GetJoystickInstancePath

Get the implementation dependent path of a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

const char* SDL_GetJoystickInstancePath(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the path of the selected joystick. If no path can be found, this function
returns NULL; call SDL GetError() for more information.

Remarks

This can be called before any joysticks are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickPath

� SDL GetJoysticks

384 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickInstancePlayerIndex

Get the player index of a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_GetJoystickInstancePlayerIndex(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the player index of a joystick, or -1 if it’s not available

Remarks

This can be called before any joysticks are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickPlayerIndex

� SDL GetJoysticks

SDL GETJOYSTICKINSTANCEPRODUCT 385

SDL GetJoystickInstanceProduct

Get the USB product ID of a joystick, if available.

Header File

Defined in SDL3/SDL joystick.h

Syntax

Uint16 SDL_GetJoystickInstanceProduct(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the USB product ID of the selected joystick. If called with an invalid
instance id, this function returns 0.

Remarks

This can be called before any joysticks are opened. If the product ID isn’t
available this function returns 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickProduct

� SDL GetJoysticks

386 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickInstanceProductVersion

Get the product version of a joystick, if available.

Header File

Defined in SDL3/SDL joystick.h

Syntax

Uint16 SDL_GetJoystickInstanceProductVersion(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the product version of the selected joystick. If called with an invalid
instance id, this function returns 0.

Remarks

This can be called before any joysticks are opened. If the product version isn’t
available this function returns 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickProductVersion

� SDL GetJoysticks

SDL GETJOYSTICKINSTANCETYPE 387

SDL GetJoystickInstanceType

Get the type of a joystick, if available.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_JoystickType SDL_GetJoystickInstanceType(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the SDL JoystickType of the selected joystick. If called with an invalid
instance id, this function returns SDL JOYSTICK TYPE UNKNOWN.

Remarks

This can be called before any joysticks are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickType

� SDL GetJoysticks

388 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickInstanceVendor

Get the USB vendor ID of a joystick, if available.

Header File

Defined in SDL3/SDL joystick.h

Syntax

Uint16 SDL_GetJoystickInstanceVendor(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the USB vendor ID of the selected joystick. If called with an invalid
instance id, this function returns 0.

Remarks

This can be called before any joysticks are opened. If the vendor ID isn’t
available this function returns 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickVendor

� SDL GetJoysticks

SDL GETJOYSTICKNAME 389

SDL GetJoystickName

Get the implementation dependent name of a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

const char* SDL_GetJoystickName(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick obtained from SDL OpenJoystick()

Return Value

Returns the name of the selected joystick. If no name can be found, this function
returns NULL; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickInstanceName

390 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickPath

Get the implementation dependent path of a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

const char* SDL_GetJoystickPath(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick obtained from SDL OpenJoystick()

Return Value

Returns the path of the selected joystick. If no path can be found, this function
returns NULL; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickInstancePath

SDL GETJOYSTICKPLAYERINDEX 391

SDL GetJoystickPlayerIndex

Get the player index of an opened joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_GetJoystickPlayerIndex(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick obtained from SDL OpenJoystick()

Return Value

Returns the player index, or -1 if it’s not available.

Remarks

For XInput controllers this returns the XInput user index. Many joysticks will
not be able to supply this information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetJoystickPlayerIndex

392 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickPowerInfo

Get the battery state of a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_PowerState SDL_GetJoystickPowerInfo(SDL_Joystick *joystick, int

*percent);

Function Parameters

joystick The joystick to query
percent a pointer filled in with the percentage of battery life left,

between 0 and 100, or NULL to ignore. This will be filled
in with -1 we can’t determine a value or there is no battery.

Return Value

Returns the current battery state or SDL POWERSTATE ERROR on failure; call
SDL GetError() for more information.

Remarks

You should never take a battery status as absolute truth. Batteries (especially
failing batteries) are delicate hardware, and the values reported here are best
estimates based on what that hardware reports. It’s not uncommon for older
batteries to lose stored power much faster than it reports, or completely drain
when reporting it has 20 percent left, etc.

Version

This function is available since SDL 3.0.0.

SDL GETJOYSTICKPRODUCT 393

SDL GetJoystickProduct

Get the USB product ID of an opened joystick, if available.

Header File

Defined in SDL3/SDL joystick.h

Syntax

Uint16 SDL_GetJoystickProduct(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick obtained from SDL OpenJoystick()

Return Value

Returns the USB product ID of the selected joystick, or 0 if unavailable.

Remarks

If the product ID isn’t available this function returns 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickInstanceProduct

394 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickProductVersion

Get the product version of an opened joystick, if available.

Header File

Defined in SDL3/SDL joystick.h

Syntax

Uint16 SDL_GetJoystickProductVersion(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick obtained from SDL OpenJoystick()

Return Value

Returns the product version of the selected joystick, or 0 if unavailable.

Remarks

If the product version isn’t available this function returns 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickInstanceProductVersion

SDL GETJOYSTICKPROPERTIES 395

SDL GetJoystickProperties

Get the properties associated with a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_PropertiesID SDL_GetJoystickProperties(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick obtained from SDL OpenJoystick()

Return Value

Returns a valid property ID on success or 0 on failure; call SDL GetError() for
more information.

Remarks

The following read-only properties are provided by SDL:

� SDL PROP JOYSTICK CAP MONO LED BOOLEAN: true if this joystick has an
LED that has adjustable brightness

� SDL PROP JOYSTICK CAP RGB LED BOOLEAN: true if this joystick has an LED
that has adjustable color

� SDL PROP JOYSTICK CAP PLAYER LED BOOLEAN: true if this joystick has a
player LED

� SDL PROP JOYSTICK CAP RUMBLE BOOLEAN: true if this joystick has left-
/right rumble

� SDL PROP JOYSTICK CAP TRIGGER RUMBLE BOOLEAN: true if this joystick has
simple trigger rumble

Version

This function is available since SDL 3.0.0.

396 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL GetProperty

� SDL SetProperty

SDL GETJOYSTICKS 397

SDL GetJoysticks

Get a list of currently connected joysticks.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_JoystickID* SDL_GetJoysticks(int *count);

Function Parameters

count a pointer filled in with the number of joysticks returned

Return Value

Returns a 0 terminated array of joystick instance IDs which should be freed
with SDL free(), or NULL on error; call SDL GetError() for more details.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasJoystick

� SDL OpenJoystick

398 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickSerial

Get the serial number of an opened joystick, if available.

Header File

Defined in SDL3/SDL joystick.h

Syntax

const char * SDL_GetJoystickSerial(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick obtained from SDL OpenJoystick()

Return Value

Returns the serial number of the selected joystick, or NULL if unavailable.

Remarks

Returns the serial number of the joystick, or NULL if it is not available.

Version

This function is available since SDL 3.0.0.

SDL GETJOYSTICKTYPE 399

SDL GetJoystickType

Get the type of an opened joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_JoystickType SDL_GetJoystickType(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick obtained from SDL OpenJoystick()

Return Value

Returns the SDL JoystickType of the selected joystick.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickInstanceType

400 CHAPTER 1. SDL FUNCTIONS

SDL GetJoystickVendor

Get the USB vendor ID of an opened joystick, if available.

Header File

Defined in SDL3/SDL joystick.h

Syntax

Uint16 SDL_GetJoystickVendor(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick obtained from SDL OpenJoystick()

Return Value

Returns the USB vendor ID of the selected joystick, or 0 if unavailable.

Remarks

If the vendor ID isn’t available this function returns 0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickInstanceVendor

SDL GETKEYBOARDFOCUS 401

SDL GetKeyboardFocus

Query the window which currently has keyboard focus.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

SDL_Window * SDL_GetKeyboardFocus(void);

Return Value

Returns the window with keyboard focus.

Version

This function is available since SDL 3.0.0.

402 CHAPTER 1. SDL FUNCTIONS

SDL GetKeyboardInstanceName

Get the name of a keyboard.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

const char* SDL_GetKeyboardInstanceName(SDL_KeyboardID instance_id);

Function Parameters

instance id the keyboard instance ID

Return Value

Returns the name of the selected keyboard, or NULL on failure; call SDL GetError()
for more information.

Remarks

This function returns ”” if the keyboard doesn’t have a name.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetKeyboards

SDL GETKEYBOARDS 403

SDL GetKeyboards

Get a list of currently connected keyboards.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

SDL_KeyboardID* SDL_GetKeyboards(int *count);

Function Parameters

count a pointer filled in with the number of keyboards returned

Return Value

Returns a 0 terminated array of keyboards instance IDs which should be freed
with SDL free(), or NULL on error; call SDL GetError() for more details.

Remarks

Note that this will include any device or virtual driver that includes keyboard
functionality, including some mice, KVM switches, motherboard power buttons,
etc. You should wait for input from a device before you consider it actively in
use.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetKeyboardInstanceName

� SDL HasKeyboard

404 CHAPTER 1. SDL FUNCTIONS

SDL GetKeyboardState

Get a snapshot of the current state of the keyboard.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

const Uint8* SDL_GetKeyboardState(int *numkeys);

Function Parameters

numkeys if non-NULL, receives the length of the returned array

Return Value

Returns a pointer to an array of key states.

Remarks

The pointer returned is a pointer to an internal SDL array. It will be valid for
the whole lifetime of the application and should not be freed by the caller.

A array element with a value of 1 means that the key is pressed and a
value of 0 means that it is not. Indexes into this array are obtained by using
SDL Scancode values.

Use SDL PumpEvents() to update the state array.
This function gives you the current state after all events have been processed,

so if a key or button has been pressed and released before you process events,
then the pressed state will never show up in the SDL GetKeyboardState() calls.

Note: This function doesn’t take into account whether shift has been pressed
or not.

Code Examples

const Uint8 *state = SDL_GetKeyboardState(NULL);

if (state[SDL_SCANCODE_RETURN]) {

printf("<RETURN> is pressed.\n");

}

if (state[SDL_SCANCODE_RIGHT] && state[SDL_SCANCODE_UP]) {

printf("Right and Up Keys Pressed.\n");

}

SDL GETKEYBOARDSTATE 405

Version

This function is available since SDL 3.0.0.

See Also

� SDL PumpEvents

� SDL ResetKeyboard

406 CHAPTER 1. SDL FUNCTIONS

SDL GetKeyFromName

Get a key code from a human-readable name.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

SDL_Keycode SDL_GetKeyFromName(const char *name);

Function Parameters

name the human-readable key name

Return Value

Returns key code, or SDLK UNKNOWN if the name wasn’t recognized; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetKeyFromScancode

� SDL GetKeyName

� SDL GetScancodeFromName

SDL GETKEYFROMSCANCODE 407

SDL GetKeyFromScancode

Get the key code corresponding to the given scancode according to the current
keyboard layout.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

SDL_Keycode SDL_GetKeyFromScancode(SDL_Scancode scancode);

Function Parameters

scancode the desired SDL Scancode to query

Return Value

Returns the SDL Keycode that corresponds to the given SDL Scancode.

Remarks

See SDL Keycode for details.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetKeyName

� SDL GetScancodeFromKey

408 CHAPTER 1. SDL FUNCTIONS

SDL GetKeyName

Get a human-readable name for a key.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

const char* SDL_GetKeyName(SDL_Keycode key);

Function Parameters

key the desired SDL Keycode to query

Return Value

Returns a pointer to a UTF-8 string that stays valid at least until the next call
to this function. If you need it around any longer, you must copy it. If the key
doesn’t have a name, this function returns an empty string (””).

Remarks

See SDL Scancode and SDL Keycode for details.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetKeyFromName

� SDL GetKeyFromScancode

� SDL GetScancodeFromKey

SDL GETLOGOUTPUTFUNCTION 409

SDL GetLogOutputFunction

Get the current log output function.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_GetLogOutputFunction(SDL_LogOutputFunction *callback, void

**userdata);

Function Parameters

callback an SDL LogOutputFunction filled in with the current log
callback

userdata a pointer filled in with the pointer that is passed to
callback

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetLogOutputFunction

410 CHAPTER 1. SDL FUNCTIONS

SDL GetMasksForPixelFormatEnum

Convert one of the enumerated pixel formats to a bpp value and RGBA masks.

Header File

Defined in SDL3/SDL pixels.h

Syntax

SDL_bool SDL_GetMasksForPixelFormatEnum(SDL_PixelFormatEnum format,

int *bpp,

Uint32 * Rmask,

Uint32 * Gmask,

Uint32 * Bmask,

Uint32 * Amask);

Function Parameters

format one of the SDL PixelFormatEnum values
bpp a bits per pixel value; usually 15, 16, or 32
Rmask a pointer filled in with the red mask for the format
Gmask a pointer filled in with the green mask for the format
Bmask a pointer filled in with the blue mask for the format
Amask a pointer filled in with the alpha mask for the format

Return Value

Returns SDL TRUE on success or SDL FALSE if the conversion wasn’t possible;
call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetPixelFormatEnumForMasks

SDL GETMAXHAPTICEFFECTS 411

SDL GetMaxHapticEffects

Get the number of effects a haptic device can store.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_GetMaxHapticEffects(SDL_Haptic *haptic);

Function Parameters

haptic the SDL Haptic device to query

Return Value

Returns the number of effects the haptic device can store or a negative error
code on failure; call SDL GetError() for more information.

Remarks

On some platforms this isn’t fully supported, and therefore is an approximation.
Always check to see if your created effect was actually created and do not rely
solely on SDL GetMaxHapticEffects().

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetMaxHapticEffectsPlaying

� SDL GetHapticFeatures

412 CHAPTER 1. SDL FUNCTIONS

SDL GetMaxHapticEffectsPlaying

Get the number of effects a haptic device can play at the same time.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_GetMaxHapticEffectsPlaying(SDL_Haptic *haptic);

Function Parameters

haptic the SDL Haptic device to query maximum playing effects

Return Value

Returns the number of effects the haptic device can play at the same time or a
negative error code on failure; call SDL GetError() for more information.

Remarks

This is not supported on all platforms, but will always return a value.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetMaxHapticEffects

� SDL GetHapticFeatures

SDL GETMEMORYFUNCTIONS 413

SDL GetMemoryFunctions

Get the current set of SDL memory functions.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

void SDL_GetMemoryFunctions(SDL_malloc_func *malloc_func,

SDL_calloc_func *calloc_func,

SDL_realloc_func *realloc_func,

SDL_free_func *free_func);

Function Parameters

malloc func filled with malloc function
calloc func filled with calloc function
realloc func filled with realloc function
free func filled with free function

Version

This function is available since SDL 3.0.0.

414 CHAPTER 1. SDL FUNCTIONS

SDL GetMice

Get a list of currently connected mice.

Header File

Defined in SDL3/SDL mouse.h

Syntax

SDL_MouseID* SDL_GetMice(int *count);

Function Parameters

count a pointer filled in with the number of mice returned

Return Value

Returns a 0 terminated array of mouse instance IDs which should be freed with
SDL free(), or NULL on error; call SDL GetError() for more details.

Remarks

Note that this will include any device or virtual driver that includes mouse
functionality, including some game controllers, KVM switches, etc. You should
wait for input from a device before you consider it actively in use.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetMouseInstanceName

� SDL HasMouse

SDL GETMODSTATE 415

SDL GetModState

Get the current key modifier state for the keyboard.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

SDL_Keymod SDL_GetModState(void);

Return Value

Returns an OR’d combination of the modifier keys for the keyboard. See
SDL Keymod for details.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetKeyboardState

� SDL SetModState

416 CHAPTER 1. SDL FUNCTIONS

SDL GetMouseFocus

Get the window which currently has mouse focus.

Header File

Defined in SDL3/SDL mouse.h

Syntax

SDL_Window * SDL_GetMouseFocus(void);

Return Value

Returns the window with mouse focus.

Version

This function is available since SDL 3.0.0.

SDL GETMOUSEINSTANCENAME 417

SDL GetMouseInstanceName

Get the name of a mouse.

Header File

Defined in SDL3/SDL mouse.h

Syntax

const char* SDL_GetMouseInstanceName(SDL_MouseID instance_id);

Function Parameters

instance id the mouse instance ID

Return Value

Returns the name of the selected mouse, or NULL on failure; call SDL GetError()
for more information.

Remarks

This function returns ”” if the mouse doesn’t have a name.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetMice

418 CHAPTER 1. SDL FUNCTIONS

SDL GetMouseState

Retrieve the current state of the mouse.

Header File

Defined in SDL3/SDL mouse.h

Syntax

Uint32 SDL_GetMouseState(float *x, float *y);

Function Parameters

x the x coordinate of the mouse cursor position relative to the
focus window

y the y coordinate of the mouse cursor position relative to the
focus window

Return Value

Returns a 32-bit button bitmask of the current button state.

Remarks

The current button state is returned as a button bitmask, which can be tested
using the SDL BUTTON(X) macro (where X is generally 1 for the left, 2 for
middle, 3 for the right button), and x and y are set to the mouse cursor position
relative to the focus window. You can pass NULL for either x or y.

Code Examples

float x, y;

Uint32 buttons;

SDL_PumpEvents(); // make sure we have the latest mouse state.

buttons = SDL_GetMouseState(&x, &y);

SDL_Log("Mouse cursor is at %f, %f", x, y);

if ((buttons & SDL_BUTTON_LMASK) != 0) {

SDL_Log("Mouse Button 1 (left) is pressed.");

}

SDL GETMOUSESTATE 419

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGlobalMouseState

� SDL GetRelativeMouseState

420 CHAPTER 1. SDL FUNCTIONS

SDL GetNaturalDisplayOrientation

Get the orientation of a display when it is unrotated.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_DisplayOrientation SDL_GetNaturalDisplayOrientation(SDL_DisplayID

displayID);

Function Parameters

displayID the instance ID of the display to query

Return Value

Returns The SDL DisplayOrientation enum value of the display, or SDL ORIENTATION UNKNOWN

if it isn’t available.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDisplays

SDL GETNUMALLOCATIONS 421

SDL GetNumAllocations

Get the number of outstanding (unfreed) allocations.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_GetNumAllocations(void);

Return Value

Returns the number of allocations

Version

This function is available since SDL 3.0.0.

422 CHAPTER 1. SDL FUNCTIONS

SDL GetNumAudioDrivers

Use this function to get the number of built-in audio drivers.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_GetNumAudioDrivers(void);

Return Value

Returns the number of built-in audio drivers.

Remarks

This function returns a hardcoded number. This never returns a negative value;
if there are no drivers compiled into this build of SDL, this function returns zero.
The presence of a driver in this list does not mean it will function, it just means
SDL is capable of interacting with that interface. For example, a build of SDL
might have esound support, but if there’s no esound server available, SDL’s
esound driver would fail if used.

By default, SDL tries all drivers, in its preferred order, until one is found to
be usable.

Code Examples

int i;

for (i = 0; i < SDL_GetNumAudioDrivers(); ++i) {

printf("Audio driver %d: %s\n", i, SDL_GetAudioDriver(i));

}

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL GETNUMAUDIODRIVERS 423

See Also

� SDL GetAudioDriver

424 CHAPTER 1. SDL FUNCTIONS

SDL GetNumberProperty

Get a number property on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

Sint64 SDL_GetNumberProperty(SDL_PropertiesID props, const char *name,

Sint64 default_value);

Function Parameters

props the properties to query
name the name of the property to query
default value the default value of the property

Return Value

Returns the value of the property, or default value if it is not set or not a
number property.

Remarks

You can use SDL GetPropertyType() to query whether the property exists and
is a number property.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetPropertyType

� SDL HasProperty

� SDL SetNumberProperty

SDL GETNUMCAMERADRIVERS 425

SDL GetNumCameraDrivers

Use this function to get the number of built-in camera drivers.

Header File

Defined in SDL3/SDL camera.h

Syntax

int SDL_GetNumCameraDrivers(void);

Return Value

Returns the number of built-in camera drivers.

Remarks

This function returns a hardcoded number. This never returns a negative value;
if there are no drivers compiled into this build of SDL, this function returns zero.
The presence of a driver in this list does not mean it will function, it just means
SDL is capable of interacting with that interface. For example, a build of SDL
might have v4l2 support, but if there’s no kernel support available, SDL’s v4l2
driver would fail if used.

By default, SDL tries all drivers, in its preferred order, until one is found to
be usable.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetCameraDriver

426 CHAPTER 1. SDL FUNCTIONS

SDL GetNumGamepadTouchpadFingers

Get the number of supported simultaneous fingers on a touchpad on a game
gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_GetNumGamepadTouchpadFingers(SDL_Gamepad *gamepad, int touchpad);

Function Parameters

gamepad a gamepad
touchpad a touchpad

Return Value

Returns number of supported simultaneous fingers

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadTouchpadFinger

� SDL GetNumGamepadTouchpads

SDL GETNUMGAMEPADTOUCHPADS 427

SDL GetNumGamepadTouchpads

Get the number of touchpads on a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_GetNumGamepadTouchpads(SDL_Gamepad *gamepad);

Function Parameters

gamepad a gamepad

Return Value

Returns number of touchpads

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetNumGamepadTouchpadFingers

428 CHAPTER 1. SDL FUNCTIONS

SDL GetNumHapticAxes

Get the number of haptic axes the device has.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_GetNumHapticAxes(SDL_Haptic *haptic);

Function Parameters

haptic the SDL Haptic device to query

Return Value

Returns the number of axes on success or a negative error code on failure; call
SDL GetError() for more information.

Remarks

The number of haptic axes might be useful if working with the SDL HapticDirection
effect.

Version

This function is available since SDL 3.0.0.

SDL GETNUMJOYSTICKAXES 429

SDL GetNumJoystickAxes

Get the number of general axis controls on a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_GetNumJoystickAxes(SDL_Joystick *joystick);

Function Parameters

joystick an SDL Joystick structure containing joystick information

Return Value

Returns the number of axis controls/number of axes on success or a negative
error code on failure; call SDL GetError() for more information.

Remarks

Often, the directional pad on a game controller will either look like 4 separate
buttons or a POV hat, and not axes, but all of this is up to the device and
platform.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickAxis

� SDL GetNumJoystickBalls

� SDL GetNumJoystickButtons

� SDL GetNumJoystickHats

430 CHAPTER 1. SDL FUNCTIONS

SDL GetNumJoystickBalls

Get the number of trackballs on a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_GetNumJoystickBalls(SDL_Joystick *joystick);

Function Parameters

joystick an SDL Joystick structure containing joystick information

Return Value

Returns the number of trackballs on success or a negative error code on failure;
call SDL GetError() for more information.

Remarks

Joystick trackballs have only relative motion events associated with them and
their state cannot be polled.

Most joysticks do not have trackballs.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickBall

� SDL GetNumJoystickAxes

� SDL GetNumJoystickButtons

� SDL GetNumJoystickHats

SDL GETNUMJOYSTICKBUTTONS 431

SDL GetNumJoystickButtons

Get the number of buttons on a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_GetNumJoystickButtons(SDL_Joystick *joystick);

Function Parameters

joystick an SDL Joystick structure containing joystick information

Return Value

Returns the number of buttons on success or a negative error code on failure;
call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickButton

� SDL GetNumJoystickAxes

� SDL GetNumJoystickBalls

� SDL GetNumJoystickHats

432 CHAPTER 1. SDL FUNCTIONS

SDL GetNumJoystickHats

Get the number of POV hats on a joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_GetNumJoystickHats(SDL_Joystick *joystick);

Function Parameters

joystick an SDL Joystick structure containing joystick information

Return Value

Returns the number of POV hats on success or a negative error code on failure;
call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickHat

� SDL GetNumJoystickAxes

� SDL GetNumJoystickBalls

� SDL GetNumJoystickButtons

SDL GETNUMRENDERDRIVERS 433

SDL GetNumRenderDrivers

Get the number of 2D rendering drivers available for the current display.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetNumRenderDrivers(void);

Return Value

Returns a number ¿= 0 on success or a negative error code on failure; call
SDL GetError() for more information.

Remarks

A render driver is a set of code that handles rendering and texture management
on a particular display. Normally there is only one, but some drivers may have
several available with different capabilities.

There may be none if SDL was compiled without render support.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateRenderer

� SDL GetRenderDriver

434 CHAPTER 1. SDL FUNCTIONS

SDL GetNumVideoDrivers

Get the number of video drivers compiled into SDL.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GetNumVideoDrivers(void);

Return Value

Returns a number ¿= 1 on success or a negative error code on failure; call
SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetVideoDriver

SDL GETORIGINALMEMORYFUNCTIONS 435

SDL GetOriginalMemoryFunctions

Get the original set of SDL memory functions.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

void SDL_GetOriginalMemoryFunctions(SDL_malloc_func *malloc_func,

SDL_calloc_func *calloc_func,

SDL_realloc_func *realloc_func,

SDL_free_func *free_func);

Function Parameters

malloc func filled with malloc function
calloc func filled with calloc function
realloc func filled with realloc function
free func filled with free function

Version

This function is available since SDL 3.0.0.

436 CHAPTER 1. SDL FUNCTIONS

SDL GetPathInfo

Get information about a filesystem path.

Header File

Defined in SDL3/SDL filesystem.h

Syntax

int SDL_GetPathInfo(const char *path, SDL_PathInfo *info);

#define SDL_GLOB_CASEINSENSITIVE (1 << 0)

Function Parameters

path the path to query
info a pointer filled in with information about the path, or NULL

to check for the existence of a file

Return Value

Returns 0 on success or a negative error code if the file doesn’t exist, or another
failure; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

SDL GETPENCAPABILITIES 437

SDL GetPenCapabilities

Retrieves capability flags for a given SDL PenID.

Header File

Defined in SDL3/SDL pen.h

Syntax

Uint32 SDL_GetPenCapabilities(SDL_PenID instance_id,

SDL_PenCapabilityInfo *capabilities);

Function Parameters

instance id The pen to query.
capabilities Detail information about pen capabilities, such as the num-

ber of buttons

Return Value

Returns a set of capability flags, cf. SDL PEN CAPABILITIES

Version

This function is available since SDL 3.0.0.

438 CHAPTER 1. SDL FUNCTIONS

SDL GetPenFromGUID

Retrieves an SDL PenID for the given SDL GUID.

Header File

Defined in SDL3/SDL pen.h

Syntax

SDL_PenID SDL_GetPenFromGUID(SDL_GUID guid);

Function Parameters

guid A pen GUID.

Return Value

Returns A valid SDL PenID, or SDL PEN INVALID if there is no matching
SDL PenID.

Version

This function is available since SDL 3.0.0.

SDL GETPENGUID 439

SDL GetPenGUID

Retrieves the SDL GUID for a given SDL PenID.

Header File

Defined in SDL3/SDL pen.h

Syntax

SDL_GUID SDL_GetPenGUID(SDL_PenID instance_id);

Function Parameters

instance id The pen to query.

Return Value

Returns The corresponding pen GUID; persistent across multiple sessions. If
”instance id” is SDL PEN INVALID, returns an all-zeroes GUID.

Version

This function is available since SDL 3.0.0.

440 CHAPTER 1. SDL FUNCTIONS

SDL GetPenName

Retrieves a human-readable description for a SDL PenID.

Header File

Defined in SDL3/SDL pen.h

Syntax

const char* SDL_GetPenName(SDL_PenID instance_id);

Function Parameters

instance id The pen to query.

Return Value

Returns A string that contains the name of the pen, intended for human con-
sumption. The string might or might not be localised, depending on platform
settings. It is not guaranteed to be unique; use SDL GetPenGUID() for (best-
effort) unique identifiers. The pointer is managed by the SDL pen subsystem
and must not be deallocated. The pointer remains valid until SDL is shut down.
Returns NULL on error (cf. SDL GetError())

Version

This function is available since SDL 3.0.0.

SDL GETPENS 441

SDL GetPens

Retrieves all pens that are connected to the system.

Header File

Defined in SDL3/SDL pen.h

Syntax

SDL_PenID* SDL_GetPens(int *count);

Function Parameters

count The number of pens in the array (number of array elements
minus 1, i.e., not counting the terminator 0).

Return Value

Returns A 0 terminated array of SDL PenID values, or NULL on error. The
array must be freed with SDL free(). On a NULL return, SDL GetError() is
set.

Remarks

Yields an array of SDL PenID values. These identify and track pens throughout
a session. To track pens across sessions (program restart), use SDL GUID .

Version

This function is available since SDL 3.0.0.

442 CHAPTER 1. SDL FUNCTIONS

SDL GetPenStatus

Retrieves the pen’s current status.

Header File

Defined in SDL3/SDL pen.h

Syntax

Uint32 SDL_GetPenStatus(SDL_PenID instance_id, float *x, float *y, float

*axes, size_t num_axes);

Function Parameters

instance id The pen to query.
x Out-mode parameter for pen x coordinate. May be NULL.
y Out-mode parameter for pen y coordinate. May be NULL.
axes Out-mode parameter for axis information. May be null.

The axes are in the same order as SDL PenAxis.
num axes Maximum number of axes to write to ”axes”.

Return Value

Returns a bit mask with the current pen button states (SDL BUTTON LMASK
etc.), possibly SDL PEN DOWN MASK, and exactly one of SDL PEN INK MASK
or SDL PEN ERASER MASK , or 0 on error (see SDL GetError()).

Remarks

If the pen is detached (cf. SDL PenConnected), this operation may return
default values.

Version

This function is available since SDL 3.0.0.

SDL GETPENTYPE 443

SDL GetPenType

Retrieves the pen type for a given SDL PenID.

Header File

Defined in SDL3/SDL pen.h

Syntax

SDL_PenSubtype SDL_GetPenType(SDL_PenID instance_id);

Function Parameters

instance id The pen to query.

Return Value

Returns The corresponding pen type (cf. SDL PenSubtype) or 0 on error. Note
that the pen type does not dictate whether the pen tip is SDL PEN TIP INK or
SDL PEN TIP ERASER; to determine whether a pen is being used for drawing
or in eraser mode, check either the pen tip on SDL EVENT PEN DOWN, or
the flag SDL PEN ERASER MASK in the pen state.

Version

This function is available since SDL 3.0.0.

444 CHAPTER 1. SDL FUNCTIONS

SDL GetPerformanceCounter

Get the current value of the high resolution counter.

Header File

Defined in SDL3/SDL timer.h

Syntax

Uint64 SDL_GetPerformanceCounter(void);

Return Value

Returns the current counter value.

Remarks

This function is typically used for profiling.
The counter values are only meaningful relative to each other. Differences be-

tween values can be converted to times by using SDL GetPerformanceFrequency().

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetPerformanceFrequency

SDL GETPERFORMANCEFREQUENCY 445

SDL GetPerformanceFrequency

Get the count per second of the high resolution counter.

Header File

Defined in SDL3/SDL timer.h

Syntax

Uint64 SDL_GetPerformanceFrequency(void);

Return Value

Returns a platform-specific count per second.

Code Examples

#include <SDL3/SDL.h>

#define DEFAULT_RESOLUTION 1

static int ticks = 0;

static Uint32 SDLCALL

ticktock(Uint32 interval, void *param)

{

++ticks;

return (interval);

}

static Uint32 SDLCALL

callback(Uint32 interval, void *param)

{

SDL_Log("Timer %d : param = %d", interval, (int) (uintptr_t) param);

return interval;

}

int

main(int argc, char *argv[])

{

int i, desired;

SDL_TimerID t1, t2, t3;

Uint32 start32, now32;

Uint64 start, now;

446 CHAPTER 1. SDL FUNCTIONS

/* Enable standard application logging */

SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION,

SDL_LOG_PRIORITY_INFO);

if (SDL_Init(SDL_INIT_TIMER) < 0) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn’t initialize

SDL: %s", SDL_GetError());

return (1);

}

/* Start the timer */

desired = 0;

if (argv[1]) {

desired = SDL_atoi(argv[1]);

}

if (desired == 0) {

desired = DEFAULT_RESOLUTION;

}

t1 = SDL_AddTimer(desired, ticktock, NULL);

/* Wait 10 seconds */

SDL_Log("Waiting 10 seconds");

SDL_Delay(10 * 1000);

/* Stop the timer */

SDL_RemoveTimer(t1);

/* Print the results */

if (ticks) {

SDL_Log("Timer resolution: desired = %d ms, actual = %f ms",

desired, (double) (10 * 1000) / ticks);

}

/* Test multiple timers */

SDL_Log("Testing multiple timers...");

t1 = SDL_AddTimer(100, callback, (void *) 1);

if (!t1)

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,"Could not create

timer 1: %s", SDL_GetError());

t2 = SDL_AddTimer(50, callback, (void *) 2);

if (!t2)

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,"Could not create

timer 2: %s", SDL_GetError());

t3 = SDL_AddTimer(233, callback, (void *) 3);

if (!t3)

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,"Could not create

timer 3: %s", SDL_GetError());

/* Wait 10 seconds */

SDL_Log("Waiting 10 seconds");

SDL GETPERFORMANCEFREQUENCY 447

SDL_Delay(10 * 1000);

SDL_Log("Removing timer 1 and waiting 5 more seconds");

SDL_RemoveTimer(t1);

SDL_Delay(5 * 1000);

SDL_RemoveTimer(t2);

SDL_RemoveTimer(t3);

start = SDL_GetPerformanceCounter();

for (i = 0; i < 1000000; ++i) {

ticktock(0, NULL);

}

now = SDL_GetPerformanceCounter();

SDL_Log("1 million iterations of ticktock took %f ms", (double)((now

- start)*1000) / SDL_GetPerformanceFrequency());

SDL_Log("Performance counter frequency: %"SDL_PRIu64"", (unsigned

long long) SDL_GetPerformanceFrequency());

start32 = SDL_GetTicks();

start = SDL_GetPerformanceCounter();

SDL_Delay(1000);

now = SDL_GetPerformanceCounter();

now32 = SDL_GetTicks();

SDL_Log("Delay 1 second = %d ms in ticks, %f ms according to

performance counter", (now32-start32), (double)((now -

start)*1000) / SDL_GetPerformanceFrequency());

SDL_Quit();

return (0);

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetPerformanceCounter

448 CHAPTER 1. SDL FUNCTIONS

SDL GetPixelFormatEnumForMasks

Convert a bpp value and RGBA masks to an enumerated pixel format.

Header File

Defined in SDL3/SDL pixels.h

Syntax

SDL_PixelFormatEnum SDL_GetPixelFormatEnumForMasks(int bpp,

Uint32 Rmask,

Uint32 Gmask,

Uint32 Bmask,

Uint32 Amask);

Function Parameters

bpp a bits per pixel value; usually 15, 16, or 32
Rmask the red mask for the format
Gmask the green mask for the format
Bmask the blue mask for the format
Amask the alpha mask for the format

Return Value

Returns the SDL PixelFormatEnum value corresponding to the format masks,
or SDL PIXELFORMAT UNKNOWN if there isn’t a match.

Remarks

This will return SDL PIXELFORMAT UNKNOWN if the conversion wasn’t possible.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetMasksForPixelFormatEnum

SDL GETPIXELFORMATNAME 449

SDL GetPixelFormatName

Get the human readable name of a pixel format.

Header File

Defined in SDL3/SDL pixels.h

Syntax

const char* SDL_GetPixelFormatName(SDL_PixelFormatEnum format);

Function Parameters

format the pixel format to query

Return Value

Returns the human readable name of the specified pixel format or SDL PIXELFORMAT UNKNOWN

if the format isn’t recognized.

Code Examples

SDL_Surface* surface; // a valid surface from wherever.

SDL_PixelFormat* pixelFormat = surface->format;

Uint32 pixelFormatEnum = pixelFormat->format;

const char* surfacePixelFormatName =

SDL_GetPixelFormatName(pixelFormatEnum);

SDL_Log("The surface’s pixelformat is %s", surfacePixelFormatName);

// prints something like "The surface’s pixelformat is

SDL_PIXELFORMAT_ABGR8888"

Version

This function is available since SDL 3.0.0.

450 CHAPTER 1. SDL FUNCTIONS

SDL GetPlatform

Get the name of the platform.

Header File

Defined in SDL3/SDL platform.h

Syntax

const char * SDL_GetPlatform (void);

Return Value

Returns the name of the platform. If the correct platform name is not available,
returns a string beginning with the text ”Unknown”.

Remarks

Here are the names returned for some (but not all) supported platforms:

� ”Windows”

� ”macOS”

� ”Linux”

� ”iOS”

� ”Android”

Version

This function is available since SDL 3.0.0.

SDL GETPOWERINFO 451

SDL GetPowerInfo

Get the current power supply details.

Header File

Defined in SDL3/SDL power.h

Syntax

SDL_PowerState SDL_GetPowerInfo(int *seconds, int *percent);

Function Parameters

seconds a pointer filled in with the seconds of battery life left, or
NULL to ignore. This will be filled in with -1 if we can’t
determine a value or there is no battery.

percent a pointer filled in with the percentage of battery life left,
between 0 and 100, or NULL to ignore. This will be filled
in with -1 we can’t determine a value or there is no battery.

Return Value

Returns the current battery state or SDL POWERSTATE ERROR on failure; call
SDL GetError() for more information.

Remarks

You should never take a battery status as absolute truth. Batteries (especially
failing batteries) are delicate hardware, and the values reported here are best
estimates based on what that hardware reports. It’s not uncommon for older
batteries to lose stored power much faster than it reports, or completely drain
when reporting it has 20 percent left, etc.

Battery status can change at any time; if you are concerned with power
state, you should call this function frequently, and perhaps ignore changes until
they seem to be stable for a few seconds.

It’s possible a platform can only report battery percentage or time left but
not both.

Code Examples

int secs, pct;

if (SDL_GetPowerInfo(&secs, &pct) == SDL_POWERSTATE_ON_BATTERY) {

printf("Battery is draining: ");

if (secs == -1) {

452 CHAPTER 1. SDL FUNCTIONS

printf("(unknown time left)\n");

} else {

printf("(%d seconds left)\n", secs);

}

if (pct == -1) {

printf("(unknown percentage left)\n");

} else {

printf("(%d percent left)\n", pct);

}

}

Version

This function is available since SDL 3.0.0.

SDL GETPREFERREDLOCALES 453

SDL GetPreferredLocales

Report the user’s preferred locale.

Header File

Defined in SDL3/SDL locale.h

Syntax

SDL_Locale * SDL_GetPreferredLocales(void);

Return Value

Returns array of locales, terminated with a locale with a NULL language field.
Will return NULL on error; call SDL GetError() for more information.

Remarks

This returns an array of SDL Locale structs, the final item zeroed out. When
the caller is done with this array, it should call SDL free() on the returned value;
all the memory involved is allocated in a single block, so a single SDL free() will
suffice.

Returned language strings are in the format xx, where ’xx’ is an ISO-639
language specifier (such as ”en” for English, ”de” for German, etc). Country
strings are in the format YY, where ”YY” is an ISO-3166 country code (such as
”US” for the United States, ”CA” for Canada, etc). Country might be NULL if
there’s no specific guidance on them (so you might get ”en”, ”US” for American
English, but ”en”, NULL means ”English language, generically”). Language
strings are never NULL, except to terminate the array.

Please note that not all of these strings are 2 characters; some are three or
more.

The returned list of locales are in the order of the user’s preference. For
example, a German citizen that is fluent in US English and knows enough
Japanese to navigate around Tokyo might have a list like: ”de”, ”en US”, ”jp”,
NULL . Someone from England might prefer British English (where ”color” is
spelled ”colour”, etc), but will settle for anything like it: ”en GB”, ”en”, NULL
.

This function returns NULL on error, including when the platform does not
supply this information at all.

This might be a ”slow” call that has to query the operating system. It’s best
to ask for this once and save the results. However, this list can change, usually
because the user has changed a system preference outside of your program; SDL
will send an SDL EVENT LOCALE CHANGED event in this case, if possible,
and you can call this function again to get an updated copy of preferred locales.

454 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

SDL GETPREFPATH 455

SDL GetPrefPath

Get the user-and-app-specific path where files can be written.

Header File

Defined in SDL3/SDL filesystem.h

Syntax

char* SDL_GetPrefPath(const char *org, const char *app);

Function Parameters

org the name of your organization
app the name of your application

Return Value

Returns a UTF-8 string of the user directory in platform-dependent notation.
NULL if there’s a problem (creating directory failed, etc.).

Remarks

Get the ”pref dir”. This is meant to be where users can write personal files
(preferences and save games, etc) that are specific to your application. This
directory is unique per user, per application.

This function will decide the appropriate location in the native filesystem,
create the directory if necessary, and return a string of the absolute path to the
directory in UTF-8 encoding.

On Windows, the string might look like: C:
Users

bob

AppData

Roaming

My Company

My Program Name

On Linux, the string might look like: /home/bob/.local/share/My Program

Name/

On macOS, the string might look like: /Users/bob/Library/Application
Support/My Program Name/

You should assume the path returned by this function is the only safe place
to write files (and that SDL GetBasePath(), while it might be writable, or even
the parent of the returned path, isn’t where you should be writing things).

456 CHAPTER 1. SDL FUNCTIONS

Both the org and app strings may become part of a directory name, so please
follow these rules:

� Try to use the same org string (including case-sensitivity) for all your
applications that use this function.

� Always use a unique app string for each one, and make sure it never
changes for an app once you’ve decided on it.

� Unicode characters are legal, as long as it’s UTF-8 encoded, but...

� ...only use letters, numbers, and spaces. Avoid punctuation like ”Game
Name 2: Bad Guy’s Revenge!” ... ”Game Name 2” is sufficient.

The returned path is guaranteed to end with a path separator (’
’ on Windows, ’/’ on most other platforms).

The pointer returned is owned by the caller. Please call SDL free() on the
pointer when done with it.

Code Examples

char *pref_path = NULL;

void InitializePrefPath() {

char *base_path = SDL_GetPrefPath("My Company", "My Awesome SDL 2

Game");

if (base_path) {

pref_path = base_path;

} else {

/* Do something to disable writing in-game */

}

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetBasePath

SDL GETPRIMARYDISPLAY 457

SDL GetPrimaryDisplay

Return the primary display.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_DisplayID SDL_GetPrimaryDisplay(void);

Return Value

Returns the instance ID of the primary display on success or 0 on failure; call
SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetDisplays

458 CHAPTER 1. SDL FUNCTIONS

SDL GetPrimarySelectionText

Get UTF-8 text from the primary selection, which must be freed with SDL free().

Header File

Defined in SDL3/SDL clipboard.h

Syntax

char * SDL_GetPrimarySelectionText(void);

Return Value

Returns the primary selection text on success or an empty string on failure;
call SDL GetError() for more information. Caller must call SDL free() on the
returned pointer when done with it (even if there was an error).

Remarks

This functions returns empty string if there was not enough memory left for a
copy of the primary selection’s content.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasPrimarySelectionText

� SDL SetPrimarySelectionText

SDL GETPROPERTY 459

SDL GetProperty

Get a property on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

void* SDL_GetProperty(SDL_PropertiesID props, const char *name, void

*default_value);

Function Parameters

props the properties to query
name the name of the property to query
default value the default value of the property

Return Value

Returns the value of the property, or default value if it is not set or not a
pointer property.

Remarks

By convention, the names of properties that SDL exposes on objects will start
with ”SDL.”, and properties that SDL uses internally will start with ”SDL.internal.”.
These should be considered read-only and should not be modified by applica-
tions.

Thread Safety

It is safe to call this function from any thread, although the data returned is
not protected and could potentially be freed if you call SDL SetProperty() or
SDL ClearProperty() on these properties from another thread. If you need to
avoid this, use SDL LockProperties() and SDL UnlockProperties().

Version

This function is available since SDL 3.0.0.

460 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL GetBooleanProperty

� SDL GetFloatProperty

� SDL GetNumberProperty

� SDL GetPropertyType

� SDL GetStringProperty

� SDL HasProperty

� SDL SetProperty

SDL GETPROPERTYTYPE 461

SDL GetPropertyType

Get the type of a property on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

SDL_PropertyType SDL_GetPropertyType(SDL_PropertiesID props, const char

*name);

Function Parameters

props the properties to query
name the name of the property to query

Return Value

Returns the type of the property, or SDL PROPERTY TYPE INVALID if it is
not set.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasProperty

462 CHAPTER 1. SDL FUNCTIONS

SDL GetRealGamepadInstanceType

Get the type of a gamepad, ignoring any mapping override.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_GamepadType SDL_GetRealGamepadInstanceType(SDL_JoystickID

instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns the gamepad type.

Remarks

This can be called before any gamepads are opened.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadInstanceType

� SDL GetGamepads

� SDL GetRealGamepadType

SDL GETREALGAMEPADTYPE 463

SDL GetRealGamepadType

Get the type of an opened gamepad, ignoring any mapping override.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_GamepadType SDL_GetRealGamepadType(SDL_Gamepad *gamepad);

Function Parameters

gamepad the gamepad object to query.

Return Value

Returns the gamepad type, or SDL GAMEPAD TYPE UNKNOWN if it’s not
available.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRealGamepadInstanceType

464 CHAPTER 1. SDL FUNCTIONS

SDL GetRectAndLineIntersection

Calculate the intersection of a rectangle and line segment.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_bool SDL_GetRectAndLineIntersection(const SDL_Rect *

rect, int *X1,

int *Y1, int *X2,

int *Y2);

Function Parameters

rect an SDL Rect structure representing the rectangle to inter-
sect

X1 a pointer to the starting X-coordinate of the line
Y1 a pointer to the starting Y-coordinate of the line
X2 a pointer to the ending X-coordinate of the line
Y2 a pointer to the ending Y-coordinate of the line

Return Value

Returns SDL TRUE if there is an intersection, SDL FALSE otherwise.

Remarks

This function is used to clip a line segment to a rectangle. A line segment
contained entirely within the rectangle or that does not intersect will remain
unchanged. A line segment that crosses the rectangle at either or both ends will
be clipped to the boundary of the rectangle and the new coordinates saved in
X1, Y1, X2, and/or Y2 as necessary.

Version

This function is available since SDL 3.0.0.

SDL GETRECTANDLINEINTERSECTIONFLOAT 465

SDL GetRectAndLineIntersectionFloat

Calculate the intersection of a rectangle and line segment with float precision.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_bool SDL_GetRectAndLineIntersectionFloat(const SDL_FRect *

rect, float *X1,

float *Y1, float *X2,

float *Y2);

Function Parameters

rect an SDL FRect structure representing the rectangle to inter-
sect

X1 a pointer to the starting X-coordinate of the line
Y1 a pointer to the starting Y-coordinate of the line
X2 a pointer to the ending X-coordinate of the line
Y2 a pointer to the ending Y-coordinate of the line

Return Value

Returns SDL TRUE if there is an intersection, SDL FALSE otherwise.

Remarks

This function is used to clip a line segment to a rectangle. A line segment
contained entirely within the rectangle or that does not intersect will remain
unchanged. A line segment that crosses the rectangle at either or both ends will
be clipped to the boundary of the rectangle and the new coordinates saved in
X1, Y1, X2, and/or Y2 as necessary.

Version

This function is available since SDL 3.0.0.

466 CHAPTER 1. SDL FUNCTIONS

SDL GetRectEnclosingPoints

Calculate a minimal rectangle enclosing a set of points.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_bool SDL_GetRectEnclosingPoints(const SDL_Point * points,

int count,

const SDL_Rect * clip,

SDL_Rect * result);

Function Parameters

points an array of SDL Point structures representing points to be
enclosed

count the number of structures in the points array
clip an SDL Rect used for clipping or NULL to enclose all points
result an SDL Rect structure filled in with the minimal enclosing

rectangle

Return Value

Returns SDL TRUE if any points were enclosed or SDL FALSE if all the points
were outside of the clipping rectangle.

Remarks

If clip is not NULL then only points inside of the clipping rectangle are con-
sidered.

Version

This function is available since SDL 3.0.0.

SDL GETRECTENCLOSINGPOINTSFLOAT 467

SDL GetRectEnclosingPointsFloat

Calculate a minimal rectangle enclosing a set of points with float precision.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_bool SDL_GetRectEnclosingPointsFloat(const SDL_FPoint * points,

int count,

const SDL_FRect * clip,

SDL_FRect * result);

Function Parameters

points an array of SDL FPoint structures representing points to be
enclosed

count the number of structures in the points array
clip an SDL FRect used for clipping or NULL to enclose all

points
result an SDL FRect structure filled in with the minimal enclosing

rectangle

Return Value

Returns SDL TRUE if any points were enclosed or SDL FALSE if all the points
were outside of the clipping rectangle.

Remarks

If clip is not NULL then only points inside of the clipping rectangle are con-
sidered.

Version

This function is available since SDL 3.0.0.

468 CHAPTER 1. SDL FUNCTIONS

SDL GetRectIntersection

Calculate the intersection of two rectangles.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_bool SDL_GetRectIntersection(const SDL_Rect * A,

const SDL_Rect * B,

SDL_Rect * result);

Function Parameters

A an SDL Rect structure representing the first rectangle
B an SDL Rect structure representing the second rectangle
result an SDL Rect structure filled in with the intersection of rect-

angles A and B

Return Value

Returns SDL TRUE if there is an intersection, SDL FALSE otherwise.

Remarks

If result is NULL then this function will return SDL FALSE.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasRectIntersection

SDL GETRECTINTERSECTIONFLOAT 469

SDL GetRectIntersectionFloat

Calculate the intersection of two rectangles with float precision.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_bool SDL_GetRectIntersectionFloat(const SDL_FRect * A,

const SDL_FRect * B,

SDL_FRect * result);

Function Parameters

A an SDL FRect structure representing the first rectangle
B an SDL FRect structure representing the second rectangle
result an SDL FRect structure filled in with the intersection of

rectangles A and B

Return Value

Returns SDL TRUE if there is an intersection, SDL FALSE otherwise.

Remarks

If result is NULL then this function will return SDL FALSE.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasRectIntersectionFloat

470 CHAPTER 1. SDL FUNCTIONS

SDL GetRectUnion

Calculate the union of two rectangles.

Header File

Defined in SDL3/SDL rect.h

Syntax

int SDL_GetRectUnion(const SDL_Rect * A,

const SDL_Rect * B,

SDL_Rect * result);

Function Parameters

A an SDL Rect structure representing the first rectangle
B an SDL Rect structure representing the second rectangle
result an SDL Rect structure filled in with the union of rectangles

A and B

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL GETRECTUNIONFLOAT 471

SDL GetRectUnionFloat

Calculate the union of two rectangles with float precision.

Header File

Defined in SDL3/SDL rect.h

Syntax

int SDL_GetRectUnionFloat(const SDL_FRect * A,

const SDL_FRect * B,

SDL_FRect * result);

Function Parameters

A an SDL FRect structure representing the first rectangle
B an SDL FRect structure representing the second rectangle
result an SDL FRect structure filled in with the union of rectangles

A and B

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

472 CHAPTER 1. SDL FUNCTIONS

SDL GetRelativeMouseMode

Query whether relative mouse mode is enabled.

Header File

Defined in SDL3/SDL mouse.h

Syntax

SDL_bool SDL_GetRelativeMouseMode(void);

Return Value

Returns SDL TRUE if relative mode is enabled or SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetRelativeMouseMode

SDL GETRELATIVEMOUSESTATE 473

SDL GetRelativeMouseState

Retrieve the relative state of the mouse.

Header File

Defined in SDL3/SDL mouse.h

Syntax

Uint32 SDL_GetRelativeMouseState(float *x, float *y);

Function Parameters

x a pointer filled with the last recorded x coordinate of the
mouse

y a pointer filled with the last recorded y coordinate of the
mouse

Return Value

Returns a 32-bit button bitmask of the relative button state.

Remarks

The current button state is returned as a button bitmask, which can be tested
using the SDL BUTTON(X)macros (where X is generally 1 for the left, 2 for middle,
3 for the right button), and x and y are set to the mouse deltas since the last
call to SDL GetRelativeMouseState() or since event initialization. You can pass
NULL for either x or y.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetMouseState

474 CHAPTER 1. SDL FUNCTIONS

SDL GetRenderClipRect

Get the clip rectangle for the current target.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetRenderClipRect(SDL_Renderer *renderer, SDL_Rect *rect);

Function Parameters

renderer the rendering context
rect an SDL Rect structure filled in with the current clipping

area or an empty rectangle if clipping is disabled

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderClipEnabled

� SDL SetRenderClipRect

SDL GETRENDERCOLORSCALE 475

SDL GetRenderColorScale

Get the color scale used for render operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetRenderColorScale(SDL_Renderer *renderer, float *scale);

Function Parameters

renderer the rendering context
scale a pointer filled in with the current color scale value

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetRenderColorScale

476 CHAPTER 1. SDL FUNCTIONS

SDL GetRenderDrawBlendMode

Get the blend mode used for drawing operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetRenderDrawBlendMode(SDL_Renderer *renderer, SDL_BlendMode

*blendMode);

Function Parameters

renderer the rendering context
blendMode a pointer filled in with the current SDL BlendMode

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetRenderDrawBlendMode

SDL GETRENDERDRAWCOLOR 477

SDL GetRenderDrawColor

Get the color used for drawing operations (Rect, Line and Clear).

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetRenderDrawColor(SDL_Renderer *renderer, Uint8 *r, Uint8 *g,

Uint8 *b, Uint8 *a);

Function Parameters

renderer the rendering context
r a pointer filled in with the red value used to draw on the

rendering target
g a pointer filled in with the green value used to draw on the

rendering target
b a pointer filled in with the blue value used to draw on the

rendering target
a a pointer filled in with the alpha value used to draw on the

rendering target; usually SDL ALPHA OPAQUE (255)

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderDrawColorFloat

� SDL SetRenderDrawColor

478 CHAPTER 1. SDL FUNCTIONS

SDL GetRenderDrawColorFloat

Get the color used for drawing operations (Rect, Line and Clear).

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetRenderDrawColorFloat(SDL_Renderer *renderer, float *r, float

*g, float *b, float *a);

Function Parameters

renderer the rendering context
r a pointer filled in with the red value used to draw on the

rendering target
g a pointer filled in with the green value used to draw on the

rendering target
b a pointer filled in with the blue value used to draw on the

rendering target
a a pointer filled in with the alpha value used to draw on the

rendering target

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetRenderDrawColorFloat

� SDL GetRenderDrawColor

SDL GETRENDERDRIVER 479

SDL GetRenderDriver

Use this function to get the name of a built in 2D rendering driver.

Header File

Defined in SDL3/SDL render.h

Syntax

const char* SDL_GetRenderDriver(int index);

Function Parameters

index the index of the rendering driver; the value ranges from 0
to SDL GetNumRenderDrivers() - 1

Return Value

Returns the name of the rendering driver at the requested index, or NULL if an
invalid index was specified.

Remarks

The list of rendering drivers is given in the order that they are normally initial-
ized by default; the drivers that seem more reasonable to choose first (as far as
the SDL developers believe) are earlier in the list.

The names of drivers are all simple, low-ASCII identifiers, like ”opengl”,
”direct3d12” or ”metal”. These never have Unicode characters, and are not
meant to be proper names.

The returned value points to a static, read-only string; do not modify or free
it!

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetNumRenderDrivers

480 CHAPTER 1. SDL FUNCTIONS

SDL GetRenderer

Get the renderer associated with a window.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_Renderer* SDL_GetRenderer(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns the rendering context on success or NULL on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL GETRENDERERFROMTEXTURE 481

SDL GetRendererFromTexture

Get the renderer that created an SDL Texture.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_Renderer* SDL_GetRendererFromTexture(SDL_Texture *texture);

Function Parameters

texture the texture to query

Return Value

Returns a pointer to the SDL Renderer that created the texture, or NULL on
failure; call SDL GetError() for more information.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

482 CHAPTER 1. SDL FUNCTIONS

SDL GetRendererInfo

Get information about a rendering context.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetRendererInfo(SDL_Renderer *renderer, SDL_RendererInfo *info);

Function Parameters

renderer the rendering context
info an SDL RendererInfo structure filled with information

about the current renderer

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateRenderer

� SDL CreateRendererWithProperties

SDL GETRENDERERPROPERTIES 483

SDL GetRendererProperties

Get the properties associated with a renderer.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_PropertiesID SDL_GetRendererProperties(SDL_Renderer *renderer);

Function Parameters

renderer the rendering context

Return Value

Returns a valid property ID on success or 0 on failure; call SDL GetError() for
more information.

Remarks

The following read-only properties are provided by SDL:

� SDL PROP RENDERER NAME STRING: the name of the rendering driver

� SDL PROP RENDERER WINDOW POINTER: the window where rendering is dis-
played, if any

� SDL PROP RENDERER SURFACE POINTER: the surface where rendering is dis-
played, if this is a software renderer without a window

� SDL PROP RENDERER OUTPUT COLORSPACE NUMBER: an SDL ColorSpace value
describing the colorspace for output to the display, defaults to SDL COLORSPACE SRGB.

� SDL PROP RENDERER HDR ENABLED BOOLEAN: true if the output colorspace
is SDL COLORSPACE SRGB LINEAR and the renderer is showing on a
display with HDR enabled. This property can change dynamically when
SDL EVENT DISPLAY HDR STATE CHANGED is sent.

� SDL PROP RENDERER SDR WHITE POINT FLOAT: the value of SDR white in
the SDL COLORSPACE SRGB LINEAR colorspace. When HDR is en-
abled, this value is automatically multiplied into the color scale. This
property can change dynamically when SDL EVENT DISPLAY HDR STATE CHANGED
is sent.

484 CHAPTER 1. SDL FUNCTIONS

� SDL PROP RENDERER HDR HEADROOM FLOAT: the additional high dynamic range
that can be displayed, in terms of the SDR white point. When HDR is
not enabled, this will be 1.0. This property can change dynamically when
SDL EVENT DISPLAY HDR STATE CHANGED is sent.

With the direct3d renderer:

� SDL PROP RENDERER D3D9 DEVICE POINTER: the IDirect3DDevice9 associ-
ated with the renderer

With the direct3d11 renderer:

� SDL PROP RENDERER D3D11 DEVICE POINTER: the ID3D11Device associated
with the renderer

With the direct3d12 renderer:

� SDL PROP RENDERER D3D12 DEVICE POINTER: the ID3D12Device associated
with the renderer

� SDL PROP RENDERER D3D12 COMMAND QUEUE POINTER: the ID3D12CommandQueue
associated with the renderer

With the vulkan renderer:

� SDL PROP RENDERER VULKAN INSTANCE POINTER: the VkInstance associated
with the renderer

� SDL PROP RENDERER VULKAN SURFACE NUMBER: the VkSurfaceKHR associ-
ated with the renderer

� SDL PROP RENDERER VULKAN PHYSICAL DEVICE POINTER: the VkPhysicalDe-
vice associated with the renderer

� SDL PROP RENDERER VULKAN DEVICE POINTER: the VkDevice associated with
the renderer

� SDL PROP RENDERER VULKAN GRAPHICS QUEUE FAMILY INDEX NUMBER: the
queue family index used for rendering

� SDL PROP RENDERER VULKAN PRESENT QUEUE FAMILY INDEX NUMBER: the queue
family index used for presentation

� SDL PROP RENDERER VULKAN SWAPCHAIN IMAGE COUNT NUMBER: the number
of swapchain images, or potential frames in flight, used by the Vulkan ren-
derer

Version

This function is available since SDL 3.0.0.

SDL GETRENDERERPROPERTIES 485

See Also

� SDL GetProperty

� SDL SetProperty

486 CHAPTER 1. SDL FUNCTIONS

SDL GetRenderLogicalPresentation

Get device independent resolution and presentation mode for rendering.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetRenderLogicalPresentation(SDL_Renderer *renderer, int *w, int

*h, SDL_RendererLogicalPresentation *mode, SDL_ScaleMode

*scale_mode);

Function Parameters

renderer the rendering context
w an int to be filled with the width
h an int to be filled with the height
mode a pointer filled in with the presentation mode
scale mode a pointer filled in with the scale mode

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function gets the width and height of the logical rendering output, or the
output size in pixels if a logical resolution is not enabled.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetRenderLogicalPresentation

SDL GETRENDERMETALCOMMANDENCODER 487

SDL GetRenderMetalCommandEncoder

Get the Metal command encoder for the current frame.

Header File

Defined in SDL3/SDL render.h

Syntax

void* SDL_GetRenderMetalCommandEncoder(SDL_Renderer *renderer);

Function Parameters

renderer The renderer to query

Return Value

Returns an id<MTLRenderCommandEncoder> on success, or NULL if the renderer
isn’t a Metal renderer or there was an error.

Remarks

This function returns void *, so SDL doesn’t have to include Metal’s headers,
but it can be safely cast to an id<MTLRenderCommandEncoder>.

This will return NULL if Metal refuses to give SDL a drawable to render to,
which might happen if the window is hidden/minimized/offscreen. This doesn’t
apply to command encoders for render targets, just the window’s backbuffer.
Check your return values!

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderMetalLayer

488 CHAPTER 1. SDL FUNCTIONS

SDL GetRenderMetalLayer

Get the CAMetalLayer associated with the given Metal renderer.

Header File

Defined in SDL3/SDL render.h

Syntax

void* SDL_GetRenderMetalLayer(SDL_Renderer *renderer);

Function Parameters

renderer The renderer to query

Return Value

Returns a CAMetalLayer * on success, or NULL if the renderer isn’t a Metal
renderer

Remarks

This function returns void , so SDL doesn’t have to include Metal’s headers,

but it can be safely cast to a CAMetalLayer .

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderMetalCommandEncoder

SDL GETRENDEROUTPUTSIZE 489

SDL GetRenderOutputSize

Get the output size in pixels of a rendering context.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetRenderOutputSize(SDL_Renderer *renderer, int *w, int *h);

Function Parameters

renderer the rendering context
w a pointer filled in with the width in pixels
h a pointer filled in with the height in pixels

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This returns the true output size in pixels, ignoring any render targets or logical
size and presentation.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetCurrentRenderOutputSize

490 CHAPTER 1. SDL FUNCTIONS

SDL GetRenderScale

Get the drawing scale for the current target.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetRenderScale(SDL_Renderer *renderer, float *scaleX, float

*scaleY);

Function Parameters

renderer the rendering context
scaleX a pointer filled in with the horizontal scaling factor
scaleY a pointer filled in with the vertical scaling factor

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetRenderScale

SDL GETRENDERTARGET 491

SDL GetRenderTarget

Get the current render target.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_Texture* SDL_GetRenderTarget(SDL_Renderer *renderer);

Function Parameters

renderer the rendering context

Return Value

Returns the current render target or NULL for the default render target.

Remarks

The default render target is the window for which the renderer was created, and
is reported a NULL here.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetRenderTarget

492 CHAPTER 1. SDL FUNCTIONS

SDL GetRenderViewport

Get the drawing area for the current target.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetRenderViewport(SDL_Renderer *renderer, SDL_Rect *rect);

Function Parameters

renderer the rendering context
rect an SDL Rect structure filled in with the current drawing

area

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderViewportSet

� SDL SetRenderViewport

SDL GETRENDERVSYNC 493

SDL GetRenderVSync

Get VSync of the given renderer.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetRenderVSync(SDL_Renderer *renderer, int *vsync);

Function Parameters

renderer The renderer to toggle
vsync an int filled with 1 for on, 0 for off. All other values are

reserved

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetRenderVSync

494 CHAPTER 1. SDL FUNCTIONS

SDL GetRenderWindow

Get the window associated with a renderer.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_Window* SDL_GetRenderWindow(SDL_Renderer *renderer);

Function Parameters

renderer the renderer to query

Return Value

Returns the window on success or NULL on failure; call SDL GetError() for
more information.

Version

This function is available since SDL 3.0.0.

SDL GETREVISION 495

SDL GetRevision

Get the code revision of SDL that is linked against your program.

Header File

Defined in SDL3/SDL version.h

Syntax

const char* SDL_GetRevision(void);

Return Value

Returns an arbitrary string, uniquely identifying the exact revision of the SDL
library in use.

Remarks

This value is the revision of the code you are linked with and may be dif-
ferent from the code you are compiling with, which is found in the constant
SDL REVISION.

The revision is arbitrary string (a hash value) uniquely identifying the exact
revision of the SDL library in use, and is only useful in comparing against other
revisions. It is NOT an incrementing number.

If SDL wasn’t built from a git repository with the appropriate tools, this
will return an empty string.

You shouldn’t use this function for anything but logging it for debugging
purposes. The string is not intended to be reliable in any way.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetVersion

496 CHAPTER 1. SDL FUNCTIONS

SDL GetRGB

Get RGB values from a pixel in the specified format.

Header File

Defined in SDL3/SDL pixels.h

Syntax

void SDL_GetRGB(Uint32 pixel,

const SDL_PixelFormat * format,

Uint8 * r, Uint8 * g, Uint8 * b);

Function Parameters

pixel a pixel value
format an SDL PixelFormat structure describing the format of the

pixel
r a pointer filled in with the red component
g a pointer filled in with the green component
b a pointer filled in with the blue component

Remarks

This function uses the entire 8-bit [0..255] range when converting color com-
ponents from pixel formats with less than 8-bits per RGB component (e.g., a
completely white pixel in 16-bit RGB565 format would return [0xff, 0xff, 0xff]
not [0xf8, 0xfc, 0xf8]).

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRGBA

� SDL MapRGB

� SDL MapRGBA

SDL GETRGBA 497

SDL GetRGBA

Get RGBA values from a pixel in the specified format.

Header File

Defined in SDL3/SDL pixels.h

Syntax

void SDL_GetRGBA(Uint32 pixel,

const SDL_PixelFormat * format,

Uint8 * r, Uint8 * g, Uint8 * b,

Uint8 * a);

Function Parameters

pixel a pixel value
format an SDL PixelFormat structure describing the format of the

pixel
r a pointer filled in with the red component
g a pointer filled in with the green component
b a pointer filled in with the blue component
a a pointer filled in with the alpha component

Remarks

This function uses the entire 8-bit [0..255] range when converting color com-
ponents from pixel formats with less than 8-bits per RGB component (e.g., a
completely white pixel in 16-bit RGB565 format would return [0xff, 0xff, 0xff]
not [0xf8, 0xfc, 0xf8]).

If the surface has no alpha component, the alpha will be returned as 0xff
(100

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRGB

� SDL MapRGB

� SDL MapRGBA

498 CHAPTER 1. SDL FUNCTIONS

SDL GetScancodeFromKey

Get the scancode corresponding to the given key code according to the current
keyboard layout.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

SDL_Scancode SDL_GetScancodeFromKey(SDL_Keycode key);

Function Parameters

key the desired SDL Keycode to query

Return Value

Returns the SDL Scancode that corresponds to the given SDL Keycode.

Remarks

See SDL Scancode for details.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetKeyFromScancode

� SDL GetScancodeName

SDL GETSCANCODEFROMNAME 499

SDL GetScancodeFromName

Get a scancode from a human-readable name.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

SDL_Scancode SDL_GetScancodeFromName(const char *name);

Function Parameters

name the human-readable scancode name

Return Value

Returns the SDL Scancode, or SDL SCANCODE UNKNOWN if the name wasn’t rec-
ognized; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetKeyFromName

� SDL GetScancodeFromKey

� SDL GetScancodeName

500 CHAPTER 1. SDL FUNCTIONS

SDL GetScancodeName

Get a human-readable name for a scancode.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

const char* SDL_GetScancodeName(SDL_Scancode scancode);

Function Parameters

scancode the desired SDL Scancode to query

Return Value

Returns a pointer to the name for the scancode. If the scancode doesn’t have a
name this function returns an empty string (””).

Remarks

See SDL Scancode for details. Warning: The returned name is by design not
stable across platforms, e.g. the name for SDL SCANCODE LGUI is ”Left GUI” un-
der Linux but ”Left Windows” under Microsoft Windows, and some scancodes
like SDL SCANCODE NONUSBACKSLASH don’t have any name at all. There are even
scancodes that share names, e.g. SDL SCANCODE RETURN and SDL SCANCODE RETURN2

(both called ”Return”). This function is therefore unsuitable for creating a sta-
ble cross-platform two-way mapping between strings and scancodes.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetScancodeFromKey

� SDL GetScancodeFromName

SDL GETSEMAPHOREVALUE 501

SDL GetSemaphoreValue

Get the current value of a semaphore.

Header File

Defined in SDL3/SDL mutex.h

Syntax

Uint32 SDL_GetSemaphoreValue(SDL_Semaphore *sem);

Function Parameters

sem the semaphore to query

Return Value

Returns the current value of the semaphore.

Version

This function is available since SDL 3.0.0.

502 CHAPTER 1. SDL FUNCTIONS

SDL GetSensorData

Get the current state of an opened sensor.

Header File

Defined in SDL3/SDL sensor.h

Syntax

int SDL_GetSensorData(SDL_Sensor *sensor, float *data, int num_values);

Function Parameters

sensor The SDL Sensor object to query
data A pointer filled with the current sensor state
num values The number of values to write to data

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The number of values and interpretation of the data is sensor dependent.

Version

This function is available since SDL 3.0.0.

SDL GETSENSORFROMINSTANCEID 503

SDL GetSensorFromInstanceID

Return the SDL Sensor associated with an instance ID.

Header File

Defined in SDL3/SDL sensor.h

Syntax

SDL_Sensor* SDL_GetSensorFromInstanceID(SDL_SensorID instance_id);

Function Parameters

instance id the sensor instance ID

Return Value

Returns an SDL Sensor object.

Version

This function is available since SDL 3.0.0.

504 CHAPTER 1. SDL FUNCTIONS

SDL GetSensorInstanceID

Get the instance ID of a sensor.

Header File

Defined in SDL3/SDL sensor.h

Syntax

SDL_SensorID SDL_GetSensorInstanceID(SDL_Sensor *sensor);

Function Parameters

sensor The SDL Sensor object to inspect

Return Value

Returns the sensor instance ID, or 0 if sensor is NULL.

Version

This function is available since SDL 3.0.0.

SDL GETSENSORINSTANCENAME 505

SDL GetSensorInstanceName

Get the implementation dependent name of a sensor.

Header File

Defined in SDL3/SDL sensor.h

Syntax

const char* SDL_GetSensorInstanceName(SDL_SensorID instance_id);

Function Parameters

instance id the sensor instance ID

Return Value

Returns the sensor name, or NULL if instance id is not valid

Version

This function is available since SDL 3.0.0.

506 CHAPTER 1. SDL FUNCTIONS

SDL GetSensorInstanceNonPortableType

Get the platform dependent type of a sensor.

Header File

Defined in SDL3/SDL sensor.h

Syntax

int SDL_GetSensorInstanceNonPortableType(SDL_SensorID instance_id);

Function Parameters

instance id the sensor instance ID

Return Value

Returns the sensor platform dependent type, or -1 if instance id is not valid

Version

This function is available since SDL 3.0.0.

SDL GETSENSORINSTANCETYPE 507

SDL GetSensorInstanceType

Get the type of a sensor.

Header File

Defined in SDL3/SDL sensor.h

Syntax

SDL_SensorType SDL_GetSensorInstanceType(SDL_SensorID instance_id);

Function Parameters

instance id the sensor instance ID

Return Value

Returns the SDL SensorType, or SDL SENSOR INVALID if instance id is not
valid

Version

This function is available since SDL 3.0.0.

508 CHAPTER 1. SDL FUNCTIONS

SDL GetSensorName

Get the implementation dependent name of a sensor.

Header File

Defined in SDL3/SDL sensor.h

Syntax

const char* SDL_GetSensorName(SDL_Sensor *sensor);

Function Parameters

sensor The SDL Sensor object

Return Value

Returns the sensor name, or NULL if sensor is NULL.

Version

This function is available since SDL 3.0.0.

SDL GETSENSORNONPORTABLETYPE 509

SDL GetSensorNonPortableType

Get the platform dependent type of a sensor.

Header File

Defined in SDL3/SDL sensor.h

Syntax

int SDL_GetSensorNonPortableType(SDL_Sensor *sensor);

Function Parameters

sensor The SDL Sensor object to inspect

Return Value

Returns the sensor platform dependent type, or -1 if sensor is NULL.

Version

This function is available since SDL 3.0.0.

510 CHAPTER 1. SDL FUNCTIONS

SDL GetSensorProperties

Get the properties associated with a sensor.

Header File

Defined in SDL3/SDL sensor.h

Syntax

SDL_PropertiesID SDL_GetSensorProperties(SDL_Sensor *sensor);

Function Parameters

sensor The SDL Sensor object

Return Value

Returns a valid property ID on success or 0 on failure; call SDL GetError() for
more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetProperty

� SDL SetProperty

SDL GETSENSORS 511

SDL GetSensors

Get a list of currently connected sensors.

Header File

Defined in SDL3/SDL sensor.h

Syntax

SDL_SensorID* SDL_GetSensors(int *count);

Function Parameters

count a pointer filled in with the number of sensors returned

Return Value

Returns a 0 terminated array of sensor instance IDs which should be freed with
SDL free(), or NULL on error; call SDL GetError() for more details.

Version

This function is available since SDL 3.0.0.

512 CHAPTER 1. SDL FUNCTIONS

SDL GetSensorType

Get the type of a sensor.

Header File

Defined in SDL3/SDL sensor.h

Syntax

SDL_SensorType SDL_GetSensorType(SDL_Sensor *sensor);

Function Parameters

sensor The SDL Sensor object to inspect

Return Value

Returns the SDL SensorType type, or SDL SENSOR INVALID if sensor is NULL.

Version

This function is available since SDL 3.0.0.

SDL GETSILENCEVALUEFORFORMAT 513

SDL GetSilenceValueForFormat

Get the appropriate memset value for silencing an audio format.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_GetSilenceValueForFormat(SDL_AudioFormat format);

Function Parameters

format the audio data format to query.

Return Value

Returns A byte value that can be passed to memset.

Remarks

The value returned by this function can be used as the second argument to
memset (or SDL memset) to set an audio buffer in a specific format to silence.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

514 CHAPTER 1. SDL FUNCTIONS

SDL GetStorageFileSize

Query the size of a file within a storage container.

Header File

Defined in SDL3/SDL storage.h

Syntax

int SDL_GetStorageFileSize(SDL_Storage *storage, const char *path,

Uint64 *length);

Function Parameters

storage a storage container to query
path the relative path of the file to query
length a pointer to be filled with the file’s length

Return Value

Returns 0 if the file could be queried, a negative value otherwise; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ReadStorageFile

� SDL StorageReady

SDL GETSTORAGEPATHINFO 515

SDL GetStoragePathInfo

Get information about a filesystem path in a storage container.

Header File

Defined in SDL3/SDL storage.h

Syntax

int SDL_GetStoragePathInfo(SDL_Storage *storage, const char *path,

SDL_PathInfo *info);

Function Parameters

storage a storage container
path the path to query
info a pointer filled in with information about the path, or NULL

to check for the existence of a file

Return Value

Returns 0 on success or a negative error code if the file doesn’t exist, or another
failure; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL StorageReady

516 CHAPTER 1. SDL FUNCTIONS

SDL GetStorageSpaceRemaining

Queries the remaining space in a storage container.

Header File

Defined in SDL3/SDL storage.h

Syntax

Uint64 SDL_GetStorageSpaceRemaining(SDL_Storage *storage);

Function Parameters

storage a storage container to query

Return Value

Returns the amount of remaining space, in bytes

Version

This function is available since SDL 3.0.0.

See Also

� SDL StorageReady

� SDL WriteStorageFile

SDL GETSTRINGPROPERTY 517

SDL GetStringProperty

Get a string property on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

const char* SDL_GetStringProperty(SDL_PropertiesID props, const char

*name, const char *default_value);

Function Parameters

props the properties to query
name the name of the property to query
default value the default value of the property

Return Value

Returns the value of the property, or default value if it is not set or not a
string property.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetPropertyType

� SDL HasProperty

� SDL SetStringProperty

518 CHAPTER 1. SDL FUNCTIONS

SDL GetSurfaceAlphaMod

Get the additional alpha value used in blit operations.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_GetSurfaceAlphaMod(SDL_Surface *surface, Uint8 *alpha);

Function Parameters

surface the SDL Surface structure to query
alpha a pointer filled in with the current alpha value

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetSurfaceColorMod

� SDL SetSurfaceAlphaMod

SDL GETSURFACEBLENDMODE 519

SDL GetSurfaceBlendMode

Get the blend mode used for blit operations.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_GetSurfaceBlendMode(SDL_Surface *surface, SDL_BlendMode

*blendMode);

Function Parameters

surface the SDL Surface structure to query
blendMode a pointer filled in with the current SDL BlendMode

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetSurfaceBlendMode

520 CHAPTER 1. SDL FUNCTIONS

SDL GetSurfaceClipRect

Get the clipping rectangle for a surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_GetSurfaceClipRect(SDL_Surface *surface, SDL_Rect *rect);

Function Parameters

surface the SDL Surface structure representing the surface to be
clipped

rect an SDL Rect structure filled in with the clipping rectangle
for the surface

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

When surface is the destination of a blit, only the area within the clip rectangle
is drawn into.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetSurfaceClipRect

SDL GETSURFACECOLORKEY 521

SDL GetSurfaceColorKey

Get the color key (transparent pixel) for a surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_GetSurfaceColorKey(SDL_Surface *surface, Uint32 *key);

Function Parameters

surface the SDL Surface structure to query
key a pointer filled in with the transparent pixel

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The color key is a pixel of the format used by the surface, as generated by
SDL MapRGB().

If the surface doesn’t have color key enabled this function returns -1.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetSurfaceColorKey

� SDL SurfaceHasColorKey

522 CHAPTER 1. SDL FUNCTIONS

SDL GetSurfaceColorMod

Get the additional color value multiplied into blit operations.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_GetSurfaceColorMod(SDL_Surface *surface, Uint8 *r, Uint8 *g,

Uint8 *b);

Function Parameters

surface the SDL Surface structure to query
r a pointer filled in with the current red color value
g a pointer filled in with the current green color value
b a pointer filled in with the current blue color value

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetSurfaceAlphaMod

� SDL SetSurfaceColorMod

SDL GETSURFACECOLORSPACE 523

SDL GetSurfaceColorspace

Get the colorspace used by a surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_GetSurfaceColorspace(SDL_Surface *surface, SDL_Colorspace

*colorspace);

Function Parameters

surface the SDL Surface structure to query
colorspace a pointer filled in with an SDL ColorSpace value describing

the surface colorspace

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The colorspace defaults to SDL COLORSPACE SRGB LINEAR for floating
point formats, SDL COLORSPACE HDR10 for 10-bit formats, SDL COLORSPACE SRGB
for other RGB surfaces and SDL COLORSPACE BT709 FULL for YUV tex-
tures.

Version

This function is available since SDL 3.0.0.

524 CHAPTER 1. SDL FUNCTIONS

SDL GetSurfaceProperties

Get the properties associated with a surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

SDL_PropertiesID SDL_GetSurfaceProperties(SDL_Surface *surface);

Function Parameters

surface the SDL Surface structure to query

Return Value

Returns a valid property ID on success or 0 on failure; call SDL GetError() for
more information.

Remarks

The following properties are understood by SDL:

� SDL PROP SURFACE COLORSPACE NUMBER: an SDL ColorSpace value describ-
ing the surface colorspace, defaults to SDL COLORSPACE SRGB LINEAR
for floating point formats, SDL COLORSPACE HDR10 for 10-bit for-
mats, SDL COLORSPACE SRGB for other RGB surfaces and SDL COLORSPACE BT709 FULL
for YUV surfaces.

� SDL PROP SURFACE SDR WHITE POINT FLOAT: for HDR10 and floating point
surfaces, this defines the value of 100diffuse white, with higher values be-
ing displayed in the High Dynamic Range headroom. This defaults to 203
for HDR10 surfaces and 1.0 for floating point surfaces.

� SDL PROP SURFACE HDR HEADROOM FLOAT: for HDR10 and floating point
surfaces, this defines the maximum dynamic range used by the content, in
terms of the SDR white point. This defaults to 0.0, which disables tone
mapping.

� SDL PROP SURFACE TONEMAP OPERATOR STRING: the tone mapping opera-
tor used when compressing from a surface with high dynamic range to
another with lower dynamic range. Currently this supports ”chrome”,
which uses the same tone mapping that Chrome uses for HDR content,

SDL GETSURFACEPROPERTIES 525

the form ”*=N”, where N is a floating point scale factor applied in lin-
ear space, and ”none”, which disables tone mapping. This defaults to
”chrome”.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetProperty

� SDL SetProperty

526 CHAPTER 1. SDL FUNCTIONS

SDL GetSystemRAM

Get the amount of RAM configured in the system.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

int SDL_GetSystemRAM(void);

Return Value

Returns the amount of RAM configured in the system in MiB.

Version

This function is available since SDL 3.0.0.

SDL GETSYSTEMTHEME 527

SDL GetSystemTheme

Get the current system theme.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_SystemTheme SDL_GetSystemTheme(void);

Return Value

Returns the current system theme, light, dark, or unknown

Version

This function is available since SDL 3.0.0.

528 CHAPTER 1. SDL FUNCTIONS

SDL GetTextureAlphaMod

Get the additional alpha value multiplied into render copy operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetTextureAlphaMod(SDL_Texture *texture, Uint8 *alpha);

Function Parameters

texture the texture to query
alpha a pointer filled in with the current alpha value

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetTextureAlphaModFloat

� SDL GetTextureColorMod

� SDL SetTextureAlphaMod

SDL GETTEXTUREALPHAMODFLOAT 529

SDL GetTextureAlphaModFloat

Get the additional alpha value multiplied into render copy operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetTextureAlphaModFloat(SDL_Texture *texture, float *alpha);

Function Parameters

texture the texture to query
alpha a pointer filled in with the current alpha value

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetTextureAlphaMod

� SDL GetTextureColorModFloat

� SDL SetTextureAlphaModFloat

530 CHAPTER 1. SDL FUNCTIONS

SDL GetTextureBlendMode

Get the blend mode used for texture copy operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetTextureBlendMode(SDL_Texture *texture, SDL_BlendMode

*blendMode);

Function Parameters

texture the texture to query
blendMode a pointer filled in with the current SDL BlendMode

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetTextureBlendMode

SDL GETTEXTURECOLORMOD 531

SDL GetTextureColorMod

Get the additional color value multiplied into render copy operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetTextureColorMod(SDL_Texture *texture, Uint8 *r, Uint8 *g,

Uint8 *b);

Function Parameters

texture the texture to query
r a pointer filled in with the current red color value
g a pointer filled in with the current green color value
b a pointer filled in with the current blue color value

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetTextureAlphaMod

� SDL GetTextureColorModFloat

� SDL SetTextureColorMod

532 CHAPTER 1. SDL FUNCTIONS

SDL GetTextureColorModFloat

Get the additional color value multiplied into render copy operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetTextureColorModFloat(SDL_Texture *texture, float *r, float

*g, float *b);

Function Parameters

texture the texture to query
r a pointer filled in with the current red color value
g a pointer filled in with the current green color value
b a pointer filled in with the current blue color value

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetTextureAlphaModFloat

� SDL GetTextureColorMod

� SDL SetTextureColorModFloat

SDL GETTEXTUREPROPERTIES 533

SDL GetTextureProperties

Get the properties associated with a texture.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_PropertiesID SDL_GetTextureProperties(SDL_Texture *texture);

Function Parameters

texture the texture to query

Return Value

Returns a valid property ID on success or 0 on failure; call SDL GetError() for
more information.

Remarks

The following read-only properties are provided by SDL:

� SDL PROP TEXTURE COLORSPACE NUMBER: an SDL ColorSpace value describ-
ing the colorspace used by the texture

� SDL PROP TEXTURE SDR WHITE POINT FLOAT: for HDR10 and floating point
textures, this defines the value of 100diffuse white, with higher values be-
ing displayed in the High Dynamic Range headroom. This defaults to 100
for HDR10 textures and 1.0 for other textures.

� SDL PROP TEXTURE HDR HEADROOM FLOAT: for HDR10 and floating point
textures, this defines the maximum dynamic range used by the content,
in terms of the SDR white point. If this is defined, any values outside the
range supported by the display will be scaled into the available HDR head-
room, otherwise they are clipped. This defaults to 1.0 for SDR textures,
4.0 for HDR10 textures, and no default for floating point textures.

With the direct3d11 renderer:

� SDL PROP TEXTURE D3D11 TEXTURE POINTER: the ID3D11Texture2D asso-
ciated with the texture

� SDL PROP TEXTURE D3D11 TEXTURE U POINTER: the ID3D11Texture2D as-
sociated with the U plane of a YUV texture

534 CHAPTER 1. SDL FUNCTIONS

� SDL PROP TEXTURE D3D11 TEXTURE V POINTER: the ID3D11Texture2D as-
sociated with the V plane of a YUV texture

With the direct3d12 renderer:

� SDL PROP TEXTURE D3D12 TEXTURE POINTER: the ID3D12Resource associ-
ated with the texture

� SDL PROP TEXTURE D3D12 TEXTURE U POINTER: the ID3D12Resource asso-
ciated with the U plane of a YUV texture

� SDL PROP TEXTURE D3D12 TEXTURE V POINTER: the ID3D12Resource asso-
ciated with the V plane of a YUV texture

With the vulkan renderer:

� SDL PROP TEXTURE VULKAN TEXTURE POINTER: the VkImage associated with
the texture

� SDL PROP TEXTURE VULKAN TEXTURE U POINTER: the VkImage associated
with the U plane of a YUV texture

� SDL PROP TEXTURE VULKAN TEXTURE V POINTER: the VkImage associated
with the V plane of a YUV texture

� SDL PROP TEXTURE VULKAN TEXTURE UV POINTER: the VkImage associated
with the UV plane of a NV12/NV21 texture

With the opengl renderer:

� SDL PROP TEXTURE OPENGL TEXTURE NUMBER: the GLuint texture associ-
ated with the texture

� SDL PROP TEXTURE OPENGL TEXTURE UV NUMBER: the GLuint texture asso-
ciated with the UV plane of an NV12 texture

� SDL PROP TEXTURE OPENGL TEXTURE U NUMBER: the GLuint texture associ-
ated with the U plane of a YUV texture

� SDL PROP TEXTURE OPENGL TEXTURE V NUMBER: the GLuint texture associ-
ated with the V plane of a YUV texture

� SDL PROP TEXTURE OPENGL TEXTURE TARGET NUMBER: the GLenum for the
texture target (GL TEXTURE 2D, GL TEXTURE RECTANGLE ARB, etc)

� SDL PROP TEXTURE OPENGL TEX W FLOAT: the texture coordinate width of
the texture (0.0 - 1.0)

� SDL PROP TEXTURE OPENGL TEX H FLOAT: the texture coordinate height of
the texture (0.0 - 1.0)

SDL GETTEXTUREPROPERTIES 535

With the opengles2 renderer:

� SDL PROP TEXTURE OPENGLES2 TEXTURE NUMBER: the GLuint texture asso-
ciated with the texture

� SDL PROP TEXTURE OPENGLES2 TEXTURE UV NUMBER: the GLuint texture as-
sociated with the UV plane of an NV12 texture

� SDL PROP TEXTURE OPENGLES2 TEXTURE U NUMBER: the GLuint texture as-
sociated with the U plane of a YUV texture

� SDL PROP TEXTURE OPENGLES2 TEXTURE V NUMBER: the GLuint texture as-
sociated with the V plane of a YUV texture

� SDL PROP TEXTURE OPENGLES2 TEXTURE TARGET NUMBER: the GLenum for
the texture target (GL TEXTURE 2D, GL TEXTURE EXTERNAL OES, etc)

With the vulkan renderer:

� SDL PROP TEXTURE VULKAN TEXTURE NUMBER: the VkImage associated with
the texture

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetProperty

� SDL SetProperty

536 CHAPTER 1. SDL FUNCTIONS

SDL GetTextureScaleMode

Get the scale mode used for texture scale operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_GetTextureScaleMode(SDL_Texture *texture, SDL_ScaleMode

*scaleMode);

Function Parameters

texture the texture to query.
scaleMode a pointer filled in with the current scale mode.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetTextureScaleMode

SDL GETTHREADID 537

SDL GetThreadID

Get the thread identifier for the specified thread.

Header File

Defined in SDL3/SDL thread.h

Syntax

SDL_ThreadID SDL_GetThreadID(SDL_Thread * thread);

Function Parameters

thread the thread to query

Return Value

Returns the ID of the specified thread, or the ID of the current thread if thread
is NULL.

Remarks

This thread identifier is as reported by the underlying operating system. If SDL
is running on a platform that does not support threads the return value will
always be zero.

Code Examples

#include <SDL3/SDL.h>

#include <stdlib.h>

// Very simple thread - counts 0 to 9 delaying 50ms between increments

int TestThread(void *ptr)

{

int cnt;

for (cnt = 0; cnt < 10; ++cnt) {

SDL_Log("Thread counter: %d", cnt);

SDL_Delay(50);

}

return cnt;

}

538 CHAPTER 1. SDL FUNCTIONS

int main(int argc, char *argv[])

{

SDL_Thread *thread;

SDL_ThreadID threadID;

int threadReturnValue;

SDL_Log("Simple SDL_CreateThread test:");

/* Simply create a thread */

thread = SDL_CreateThread(TestThread, "TestThread", (void *)NULL);

if (NULL == thread) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "SDL_CreateThread

failed: %s\n", SDL_GetError());

exit(-1);

}

/* Retrieve the ID for the newly launched thread */

threadID = SDL_GetThreadID(thread);

/* Wait for the thread to complete and get the return code */

SDL_WaitThread(thread, &threadReturnValue);

SDL_Log("Thread returned value: %d", threadReturnValue);

return 0;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetCurrentThreadID

SDL GETTHREADNAME 539

SDL GetThreadName

Get the thread name as it was specified in SDL CreateThread().

Header File

Defined in SDL3/SDL thread.h

Syntax

const char* SDL_GetThreadName(SDL_Thread *thread);

Function Parameters

thread the thread to query

Return Value

Returns a pointer to a UTF-8 string that names the specified thread, or NULL
if it doesn’t have a name.

Remarks

This is internal memory, not to be freed by the caller, and remains valid until
the specified thread is cleaned up by SDL WaitThread().

Version

This function is available since SDL 3.0.0.

540 CHAPTER 1. SDL FUNCTIONS

SDL GetTicks

Get the number of milliseconds since SDL library initialization.

Header File

Defined in SDL3/SDL timer.h

Syntax

Uint64 SDL_GetTicks(void);

Return Value

Returns an unsigned 64-bit value representing the number of milliseconds since
the SDL library initialized.

Code Examples

int variable;

SDL_bool quit = SDL_FALSE;

unsigned int lastTime = 0, currentTime;

while (!quit) {

// do stuff

// ...

// Print a report once per second

currentTime = SDL_GetTicks();

if (currentTime > lastTime + 1000) {

printf("Report: %d\n", variable);

lastTime = currentTime;

}

}

Version

This function is available since SDL 3.0.0.

SDL GETTICKSNS 541

SDL GetTicksNS

Get the number of nanoseconds since SDL library initialization.

Header File

Defined in SDL3/SDL timer.h

Syntax

Uint64 SDL_GetTicksNS(void);

Return Value

Returns an unsigned 64-bit value representing the number of nanoseconds since
the SDL library initialized.

Version

This function is available since SDL 3.0.0.

542 CHAPTER 1. SDL FUNCTIONS

SDL GetTLS

Get the current thread’s value associated with a thread local storage ID.

Header File

Defined in SDL3/SDL thread.h

Syntax

void * SDL_GetTLS(SDL_TLSID id);

Function Parameters

id the thread local storage ID

Return Value

Returns the value associated with the ID for the current thread or NULL if no
value has been set; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetTLS

SDL GETTOUCHDEVICENAME 543

SDL GetTouchDeviceName

Get the touch device name as reported from the driver.

Header File

Defined in SDL3/SDL touch.h

Syntax

const char* SDL_GetTouchDeviceName(SDL_TouchID touchID);

Function Parameters

touchID the touch device instance ID.

Return Value

Returns touch device name, or NULL on error; call SDL GetError() for more
details.

Remarks

You do not own the returned string, do not modify or free it.

Version

This function is available since SDL 3.0.0.

544 CHAPTER 1. SDL FUNCTIONS

SDL GetTouchDevices

Get a list of registered touch devices.

Header File

Defined in SDL3/SDL touch.h

Syntax

SDL_TouchID* SDL_GetTouchDevices(int *count);

Function Parameters

count a pointer filled in with the number of devices returned, can
be NULL.

Return Value

Returns a 0 terminated array of touch device IDs which should be freed with
SDL free(), or NULL on error; call SDL GetError() for more details.

Remarks

On some platforms SDL first sees the touch device if it was actually used.
Therefore the returned list might be empty, although devices are available. After
using all devices at least once the number will be correct.

Version

This function is available since SDL 3.0.0.

SDL GETTOUCHDEVICETYPE 545

SDL GetTouchDeviceType

Get the type of the given touch device.

Header File

Defined in SDL3/SDL touch.h

Syntax

SDL_TouchDeviceType SDL_GetTouchDeviceType(SDL_TouchID touchID);

Function Parameters

touchID the ID of a touch device

Return Value

Returns touch device type

Version

This function is available since SDL 3.0.0.

546 CHAPTER 1. SDL FUNCTIONS

SDL GetTouchFingers

Get a list of active fingers for a given touch device.

Header File

Defined in SDL3/SDL touch.h

Syntax

extern DECLSPEC SDL_Finger **SDLCALL SDL_GetTouchFingers(SDL_TouchID

touchID, int *count);

Function Parameters

touchID the ID of a touch device
count a pointer filled in with the number of fingers returned, can

be NULL.

Return Value

Returns a NULL terminated array of SDL Finger pointers which should be freed
with SDL free(), or NULL on error; call SDL GetError() for more details.

Version

This function is available since SDL 3.0.0.

SDL GETUSERFOLDER 547

SDL GetUserFolder

Finds the most suitable user folder for the specified purpose, and returns its
path in OS-specific notation.

Header File

Defined in SDL3/SDL filesystem.h

Syntax

char* SDL_GetUserFolder(SDL_Folder folder);

Function Parameters

folder The type of folder to find

Return Value

Returns Either a null-terminated C string containing the full path to the folder,
or NULL if an error happened.

Remarks

Many OSes provide certain standard folders for certain purposes, such as storing
pictures, music or videos for a certain user. This function gives the path for
many of those special locations.

This function is specifically for user folders, which are meant for the user
to access and manage. For application-specific folders, meant to hold data for
the application to manage, see SDL GetBasePath() and SDL GetPrefPath().

Note that the function is expensive, and should be called once at the begin-
ning of the execution and kept for as long as needed.

The returned path is guaranteed to end with a path separator (’
’ on Windows, ’/’ on most other platforms).

The returned value is owned by the caller and should be freed with SDL free().
If NULL is returned, the error may be obtained with SDL GetError().

Version

This function is available since SDL 3.0.0.

See Also

� SDL Folder

548 CHAPTER 1. SDL FUNCTIONS

SDL GetVersion

Get the version of SDL that is linked against your program.

Header File

Defined in SDL3/SDL version.h

Syntax

int SDL_GetVersion(SDL_Version * ver);

Function Parameters

ver the SDL Version structure that contains the version infor-
mation

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

If you are linking to SDL dynamically, then it is possible that the current version
will be different than the version you compiled against. This function returns the
current version, while SDL VERSION() is a macro that tells you what version
you compiled with.

This function may be called safely at any time, even before SDL Init().

Code Examples

SDL_Version compiled;

SDL_Version linked;

SDL_VERSION(&compiled);

SDL_GetVersion(&linked);

SDL_Log("We compiled against SDL version %u.%u.%u ...\n",

compiled.major, compiled.minor, compiled.patch);

SDL_Log("But we are linking against SDL version %u.%u.%u.\n",

linked.major, linked.minor, linked.patch);

Version

This function is available since SDL 3.0.0.

SDL GETVERSION 549

See Also

� SDL GetRevision

550 CHAPTER 1. SDL FUNCTIONS

SDL GetVideoDriver

Get the name of a built in video driver.

Header File

Defined in SDL3/SDL video.h

Syntax

const char* SDL_GetVideoDriver(int index);

Function Parameters

index the index of a video driver

Return Value

Returns the name of the video driver with the given index.

Remarks

The video drivers are presented in the order in which they are normally checked
during initialization.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetNumVideoDrivers

SDL GETWINDOWBORDERSSIZE 551

SDL GetWindowBordersSize

Get the size of a window’s borders (decorations) around the client area.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GetWindowBordersSize(SDL_Window *window, int *top, int *left,

int *bottom, int *right);

Function Parameters

window the window to query the size values of the border (decora-
tions) from

top pointer to variable for storing the size of the top border;
NULL is permitted

left pointer to variable for storing the size of the left border;
NULL is permitted

bottom pointer to variable for storing the size of the bottom border;
NULL is permitted

right pointer to variable for storing the size of the right border;
NULL is permitted

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Note: If this function fails (returns -1), the size values will be initialized to 0,
0, 0, 0 (if a non-NULL pointer is provided), as if the window in question was
borderless.

Note: This function may fail on systems where the window has not yet
been decorated by the display server (for example, immediately after calling
SDL CreateWindow). It is recommended that you wait at least until the window
has been presented and composited, so that the window system has a chance to
decorate the window and provide the border dimensions to SDL.

This function also returns -1 if getting the information is not supported.

552 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowSize

SDL GETWINDOWDISPLAYSCALE 553

SDL GetWindowDisplayScale

Get the content display scale relative to a window’s pixel size.

Header File

Defined in SDL3/SDL video.h

Syntax

float SDL_GetWindowDisplayScale(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns the display scale, or 0.0f on failure; call SDL GetError() for more in-
formation.

Remarks

This is a combination of the window pixel density and the display content scale,
and is the expected scale for displaying content in this window. For example,
if a 3840x2160 window had a display scale of 2.0, the user expects the content
to take twice as many pixels and be the same physical size as if it were being
displayed in a 1920x1080 window with a display scale of 1.0.

Conceptually this value corresponds to the scale display setting, and is up-
dated when that setting is changed, or the window moves to a display with a
different scale setting.

Version

This function is available since SDL 3.0.0.

554 CHAPTER 1. SDL FUNCTIONS

SDL GetWindowFlags

Get the window flags.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_WindowFlags SDL_GetWindowFlags(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns a mask of the SDL WindowFlags associated with window

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateWindow

� SDL HideWindow

� SDL MaximizeWindow

� SDL MinimizeWindow

� SDL SetWindowFullscreen

� SDL SetWindowMouseGrab

� SDL ShowWindow

SDL GETWINDOWFROMID 555

SDL GetWindowFromID

Get a window from a stored ID.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_Window* SDL_GetWindowFromID(SDL_WindowID id);

Function Parameters

id the ID of the window

Return Value

Returns the window associated with id or NULL if it doesn’t exist; call SDL GetError()
for more information.

Remarks

The numeric ID is what SDL WindowEvent references, and is necessary to map
these events to specific SDL Window objects.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowID

556 CHAPTER 1. SDL FUNCTIONS

SDL GetWindowFullscreenMode

Query the display mode to use when a window is visible at fullscreen.

Header File

Defined in SDL3/SDL video.h

Syntax

const SDL_DisplayMode* SDL_GetWindowFullscreenMode(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns a pointer to the exclusive fullscreen mode to use or NULL for borderless
fullscreen desktop mode

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetWindowFullscreenMode

� SDL SetWindowFullscreen

SDL GETWINDOWICCPROFILE 557

SDL GetWindowICCProfile

Get the raw ICC profile data for the screen the window is currently on.

Header File

Defined in SDL3/SDL video.h

Syntax

void* SDL_GetWindowICCProfile(SDL_Window *window, size_t *size);

Function Parameters

window the window to query
size the size of the ICC profile

Return Value

Returns the raw ICC profile data on success or NULL on failure; call SDL GetError()
for more information.

Remarks

Data returned should be freed with SDL free.

Version

This function is available since SDL 3.0.0.

558 CHAPTER 1. SDL FUNCTIONS

SDL GetWindowID

Get the numeric ID of a window.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_WindowID SDL_GetWindowID(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns the ID of the window on success or 0 on failure; call SDL GetError()
for more information.

Remarks

The numeric ID is what SDL WindowEvent references, and is necessary to map
these events to specific SDL Window objects.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowFromID

SDL GETWINDOWKEYBOARDGRAB 559

SDL GetWindowKeyboardGrab

Get a window’s keyboard grab mode.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_bool SDL_GetWindowKeyboardGrab(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns SDL TRUE if keyboard is grabbed, and SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetWindowKeyboardGrab

560 CHAPTER 1. SDL FUNCTIONS

SDL GetWindowMaximumSize

Get the maximum size of a window’s client area.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GetWindowMaximumSize(SDL_Window *window, int *w, int *h);

Function Parameters

window the window to query
w a pointer filled in with the maximum width of the window,

may be NULL
h a pointer filled in with the maximum height of the window,

may be NULL

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowMinimumSize

� SDL SetWindowMaximumSize

SDL GETWINDOWMINIMUMSIZE 561

SDL GetWindowMinimumSize

Get the minimum size of a window’s client area.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GetWindowMinimumSize(SDL_Window *window, int *w, int *h);

Function Parameters

window the window to query
w a pointer filled in with the minimum width of the window,

may be NULL
h a pointer filled in with the minimum height of the window,

may be NULL

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowMaximumSize

� SDL SetWindowMinimumSize

562 CHAPTER 1. SDL FUNCTIONS

SDL GetWindowMouseGrab

Get a window’s mouse grab mode.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_bool SDL_GetWindowMouseGrab(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns SDL TRUE if mouse is grabbed, and SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetWindowKeyboardGrab

SDL GETWINDOWMOUSERECT 563

SDL GetWindowMouseRect

Get the mouse confinement rectangle of a window.

Header File

Defined in SDL3/SDL video.h

Syntax

const SDL_Rect* SDL_GetWindowMouseRect(SDL_Window *window);

Function Parameters

window The window to query

Return Value

Returns A pointer to the mouse confinement rectangle of a window, or NULL
if there isn’t one.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetWindowMouseRect

564 CHAPTER 1. SDL FUNCTIONS

SDL GetWindowOpacity

Get the opacity of a window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GetWindowOpacity(SDL_Window *window, float *out_opacity);

Function Parameters

window the window to get the current opacity value from
out opacity the float filled in (0.0f - transparent, 1.0f - opaque)

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

If transparency isn’t supported on this platform, opacity will be reported as 1.0f
without error.

The parameter opacity is ignored if it is NULL.
This function also returns -1 if an invalid window was provided.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetWindowOpacity

SDL GETWINDOWPARENT 565

SDL GetWindowParent

Get parent of a window.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_Window* SDL_GetWindowParent(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns the parent of the window on success or NULL if the window has no
parent.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreatePopupWindow

566 CHAPTER 1. SDL FUNCTIONS

SDL GetWindowPixelDensity

Get the pixel density of a window.

Header File

Defined in SDL3/SDL video.h

Syntax

float SDL_GetWindowPixelDensity(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns the pixel density or 0.0f on failure; call SDL GetError() for more infor-
mation.

Remarks

This is a ratio of pixel size to window size. For example, if the window is
1920x1080 and it has a high density back buffer of 3840x2160 pixels, it would
have a pixel density of 2.0.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowDisplayScale

SDL GETWINDOWPIXELFORMAT 567

SDL GetWindowPixelFormat

Get the pixel format associated with the window.

Header File

Defined in SDL3/SDL video.h

Syntax

Uint32 SDL_GetWindowPixelFormat(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns the pixel format of the window on success or SDL PIXELFORMAT UNKNOWN
on failure; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

568 CHAPTER 1. SDL FUNCTIONS

SDL GetWindowPosition

Get the position of a window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GetWindowPosition(SDL_Window *window, int *x, int *y);

Function Parameters

window the window to query
x a pointer filled in with the x position of the window, may

be NULL
y a pointer filled in with the y position of the window, may

be NULL

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This is the current position of the window as last reported by the windowing
system.

If you do not need the value for one of the positions a NULL may be passed
in the x or y parameter.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetWindowPosition

SDL GETWINDOWPROPERTIES 569

SDL GetWindowProperties

Get the properties associated with a window.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_PropertiesID SDL_GetWindowProperties(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns a valid property ID on success or 0 on failure; call SDL GetError() for
more information.

Remarks

The following read-only properties are provided by SDL:

� SDL PROP WINDOW SHAPE POINTER: the surface associated with a shaped
window

On Android:

� SDL PROP WINDOW ANDROID WINDOW POINTER: the ANativeWindow associ-
ated with the window

� SDL PROP WINDOW ANDROID SURFACE POINTER: the EGLSurface associated
with the window

On iOS:

� SDL PROP WINDOW UIKIT WINDOW POINTER: the (unsafe unretained)UI-
Window associated with the window

� SDL PROP WINDOW UIKIT METAL VIEW TAG NUMBER: the NSInteger tag as-
socated with metal views on the window

On KMS/DRM:

� SDL PROP WINDOW KMSDRM DEVICE INDEX NUMBER: the device index associ-
ated with the window (e.g. the X in /dev/dri/cardX)

570 CHAPTER 1. SDL FUNCTIONS

� SDL PROP WINDOW KMSDRM DRM FD NUMBER: the DRM FD associated with
the window

� SDL PROP WINDOW KMSDRM GBM DEVICE POINTER: the GBM device associ-
ated with the window

On macOS:

� SDL PROP WINDOW COCOA WINDOW POINTER: the (unsafe unretained)NSWin-
dow associated with the window

� SDL PROP WINDOW COCOA METAL VIEW TAG NUMBER: the NSInteger tag as-
socated with metal views on the window

On Vivante:

� SDL PROP WINDOW VIVANTE DISPLAY POINTER: the EGLNativeDisplayType
associated with the window

� SDL PROP WINDOW VIVANTE WINDOW POINTER: the EGLNativeWindowType
associated with the window

� SDL PROP WINDOW VIVANTE SURFACE POINTER: the EGLSurface associated
with the window

On UWP:

� SDL PROP WINDOW WINRT WINDOW POINTER: the IInspectable CoreWindow
associated with the window

On Windows:

� SDL PROP WINDOW WIN32 HWND POINTER: the HWND associated with the
window

� SDL PROP WINDOW WIN32 HDC POINTER: the HDC associated with the win-
dow

� SDL PROP WINDOW WIN32 INSTANCE POINTER: the HINSTANCE associated
with the window

On Wayland:
Note: The xdg * window objects do not internally persist across window

show/hide calls. They will be null if the window is hidden and must be queried
each time it is shown.

� SDL PROP WINDOW WAYLAND DISPLAY POINTER: the wl display associated with
the window

� SDL PROP WINDOW WAYLAND SURFACE POINTER: the wl surface associated with
the window

SDL GETWINDOWPROPERTIES 571

� SDL PROP WINDOW WAYLAND EGL WINDOW POINTER: the wl egl window asso-
ciated with the window

� SDL PROP WINDOW WAYLAND XDG SURFACE POINTER: the xdg surface associ-
ated with the window

� SDL PROP WINDOW WAYLAND XDG TOPLEVEL POINTER: the xdg toplevel role
associated with the window

� ’SDL PROP WINDOW WAYLAND XDG TOPLEVEL EXPORT HANDLE STRING’:
the export handle associated with the window

� SDL PROP WINDOW WAYLAND XDG POPUP POINTER: the xdg popup role asso-
ciated with the window

� SDL PROP WINDOW WAYLAND XDG POSITIONER POINTER: the xdg positioner
associated with the window, in popup mode

On X11:

� SDL PROP WINDOW X11 DISPLAY POINTER: the X11 Display associated with
the window

� SDL PROP WINDOW X11 SCREEN NUMBER: the screen number associated with
the window

� SDL PROP WINDOW X11 WINDOW NUMBER: the X11 Window associated with
the window

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetProperty

� SDL GetNumberProperty

572 CHAPTER 1. SDL FUNCTIONS

SDL GetWindowSize

Get the size of a window’s client area.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GetWindowSize(SDL_Window *window, int *w, int *h);

Function Parameters

window the window to query the width and height from
w a pointer filled in with the width of the window, may be

NULL
h a pointer filled in with the height of the window, may be

NULL

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

NULL can safely be passed as the w or h parameter if the width or height value
is not desired.

The window pixel size may differ from its window coordinate size if the
window is on a high pixel density display. Use SDL GetWindowSizeInPixels()
or SDL GetRenderOutputSize() to get the real client area size in pixels.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderOutputSize

� SDL GetWindowSizeInPixels

� SDL SetWindowSize

SDL GETWINDOWSIZEINPIXELS 573

SDL GetWindowSizeInPixels

Get the size of a window’s client area, in pixels.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GetWindowSizeInPixels(SDL_Window *window, int *w, int *h);

Function Parameters

window the window from which the drawable size should be queried
w a pointer to variable for storing the width in pixels, may be

NULL
h a pointer to variable for storing the height in pixels, may be

NULL

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateWindow

� SDL GetWindowSize

574 CHAPTER 1. SDL FUNCTIONS

SDL GetWindowSurface

Get the SDL surface associated with the window.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_Surface* SDL_GetWindowSurface(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns the surface associated with the window, or NULL on failure; call
SDL GetError() for more information.

Remarks

A new surface will be created with the optimal format for the window, if neces-
sary. This surface will be freed when the window is destroyed. Do not free this
surface.

This surface will be invalidated if the window is resized. After resizing a
window this function must be called again to return a valid surface.

You may not combine this with 3D or the rendering API on this window.
This function is affected by SDL HINT FRAMEBUFFER ACCELERATION.

Code Examples

#include <SDL3/SDL.h> // include SDL header

int main(int argc, char* argv[])

{

SDL_Surface *screen; // even with SDL2, we can still bring ancient

code back

SDL_Window *window;

SDL_Surface *image;

SDL_Init(SDL_INIT_VIDEO); // init video

// create the window like normal

SDL GETWINDOWSURFACE 575

window = SDL_CreateWindow("SDL2 Example", 640, 480, 0);

// but instead of creating a renderer, we can draw directly to the

screen

screen = SDL_GetWindowSurface(window);

// let’s just show some classic code for reference

image = SDL_LoadBMP("box.bmp"); // loads image

SDL_BlitSurface(image, NULL, screen, NULL); // blit it to the screen

SDL_DestroySurface(image);

// this works just like SDL_Flip() in SDL 1.2

SDL_UpdateWindowSurface(window);

// show image for 2 seconds

SDL_Delay(2000);

SDL_DestroyWindow(window);

SDL_Quit();

return 0;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL DestroyWindowSurface

� SDL WindowHasSurface

� SDL UpdateWindowSurface

� SDL UpdateWindowSurfaceRects

576 CHAPTER 1. SDL FUNCTIONS

SDL GetWindowTitle

Get the title of a window.

Header File

Defined in SDL3/SDL video.h

Syntax

const char* SDL_GetWindowTitle(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns the title of the window in UTF-8 format or ”” if there is no title.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetWindowTitle

SDL GL CREATECONTEXT 577

SDL GL CreateContext

Create an OpenGL context for an OpenGL window, and make it current.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_GLContext SDL_GL_CreateContext(SDL_Window *window);

Function Parameters

window the window to associate with the context

Return Value

Returns the OpenGL context associated with window or NULL on error; call
SDL GetError() for more details.

Remarks

Windows users new to OpenGL should note that, for historical reasons, GL func-
tions added after OpenGL version 1.1 are not available by default. Those func-
tions must be loaded at run-time, either with an OpenGL extension-handling
library or with SDL GL GetProcAddress() and its related functions.

SDL GLContext is an alias for void *. It’s opaque to the application.

Code Examples

// Window mode MUST include SDL_WINDOW_OPENGL for use with OpenGL.

SDL_Window *window = SDL_CreateWindow(

"SDL2/OpenGL Demo", 640, 480,

SDL_WINDOW_OPENGL|SDL_WINDOW_RESIZABLE);

// Create an OpenGL context associated with the window.

SDL_GLContext glcontext = SDL_GL_CreateContext(window);

// now you can make GL calls.

glClearColor(0,0,0,1);

glClear(GL_COLOR_BUFFER_BIT);

SDL_GL_SwapWindow(window);

// Once finished with OpenGL functions, the SDL_GLContext can be deleted.

578 CHAPTER 1. SDL FUNCTIONS

SDL_GL_DeleteContext(glcontext);

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL DeleteContext

� SDL GL MakeCurrent

SDL GL DELETECONTEXT 579

SDL GL DeleteContext

Delete an OpenGL context.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GL_DeleteContext(SDL_GLContext context);

Function Parameters

context the OpenGL context to be deleted

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL CreateContext

580 CHAPTER 1. SDL FUNCTIONS

SDL GL ExtensionSupported

Check if an OpenGL extension is supported for the current context.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_bool SDL_GL_ExtensionSupported(const char *extension);

Function Parameters

extension the name of the extension to check

Return Value

Returns SDL TRUE if the extension is supported, SDL FALSE otherwise.

Remarks

This function operates on the current GL context; you must have created a
context and it must be current before calling this function. Do not assume that
all contexts you create will have the same set of extensions available, or that
recreating an existing context will offer the same extensions again.

While it’s probably not a massive overhead, this function is not an O(1)
operation. Check the extensions you care about after creating the GL context
and save that information somewhere instead of calling the function every time
you need to know.

Code Examples

extern void draw_to_the_screen_with_framebuffer_blit(void);

extern void draw_to_the_screen_with_a_textured_quad(void);

if (SDL_GL_ExtensionSupported("GL_EXT_framebuffer_blit")) {

draw_to_the_screen_with_framebuffer_blit(); // faster!

} else {

draw_to_the_screen_with_a_textured_quad(); // slower!

}

SDL GL EXTENSIONSUPPORTED 581

Version

This function is available since SDL 3.0.0.

582 CHAPTER 1. SDL FUNCTIONS

SDL GL GetAttribute

Get the actual value for an attribute from the current context.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GL_GetAttribute(SDL_GLattr attr, int *value);

Function Parameters

attr an SDL GLattr enum value specifying the OpenGL at-
tribute to get

value a pointer filled in with the current value of attr

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL ResetAttributes

� SDL GL SetAttribute

SDL GL GETCURRENTCONTEXT 583

SDL GL GetCurrentContext

Get the currently active OpenGL context.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_GLContext SDL_GL_GetCurrentContext(void);

Return Value

Returns the currently active OpenGL context or NULL on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL MakeCurrent

584 CHAPTER 1. SDL FUNCTIONS

SDL GL GetCurrentWindow

Get the currently active OpenGL window.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_Window* SDL_GL_GetCurrentWindow(void);

Return Value

Returns the currently active OpenGL window on success or NULL on failure;
call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

SDL GL GETPROCADDRESS 585

SDL GL GetProcAddress

Get an OpenGL function by name.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_FunctionPointer SDL_GL_GetProcAddress(const char *proc);

Function Parameters

proc the name of an OpenGL function

Return Value

Returns a pointer to the named OpenGL function. The returned pointer should
be cast to the appropriate function signature.

Remarks

If the GL library is loaded at runtime with SDL GL LoadLibrary(), then all GL
functions must be retrieved this way. Usually this is used to retrieve function
pointers to OpenGL extensions.

There are some quirks to looking up OpenGL functions that require some
extra care from the application. If you code carefully, you can handle these
quirks without any platform-specific code, though:

� On Windows, function pointers are specific to the current GL context;
this means you need to have created a GL context and made it current
before calling SDL GL GetProcAddress(). If you recreate your context
or create a second context, you should assume that any existing function
pointers aren’t valid to use with it. This is (currently) a Windows-specific
limitation, and in practice lots of drivers don’t suffer this limitation, but it
is still the way the wgl API is documented to work and you should expect
crashes if you don’t respect it. Store a copy of the function pointers that
comes and goes with context lifespan.

� On X11, function pointers returned by this function are valid for any con-
text, and can even be looked up before a context is created at all. This
means that, for at least some common OpenGL implementations, if you
look up a function that doesn’t exist, you’ll get a non-NULL result that
is NOT safe to call. You must always make sure the function is actually

586 CHAPTER 1. SDL FUNCTIONS

available for a given GL context before calling it, by checking for the ex-
istence of the appropriate extension with SDL GL ExtensionSupported(),
or verifying that the version of OpenGL you’re using offers the function
as core functionality.

� Some OpenGL drivers, on all platforms, will return NULL if a function
isn’t supported, but you can’t count on this behavior. Check for exten-
sions you use, and if you get a NULL anyway, act as if that extension
wasn’t available. This is probably a bug in the driver, but you can code
defensively for this scenario anyhow.

� Just because you’re on Linux/Unix, don’t assume you’ll be using X11.
Next-gen display servers are waiting to replace it, and may or may not
make the same promises about function pointers.

� OpenGL function pointers must be declared APIENTRY as in the exam-
ple code. This will ensure the proper calling convention is followed on
platforms where this matters (Win32) thereby avoiding stack corruption.

Code Examples

typedef void (APIENTRY * GL_ActiveTextureARB_Func)(unsigned int);

GL_ActiveTextureARB_Func glActiveTextureARB_ptr = 0;

/* Get function pointer */

glActiveTextureARB_ptr=(GL_ActiveTextureARB_Func)

SDL_GL_GetProcAddress("glActiveTextureARB");

/* It was your responsibility to make sure this was a valid function to

call! */

glActiveTextureARB_ptr(GL_TEXTURE0_ARB);

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL ExtensionSupported

� SDL GL LoadLibrary

� SDL GL UnloadLibrary

SDL GL GETSWAPINTERVAL 587

SDL GL GetSwapInterval

Get the swap interval for the current OpenGL context.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GL_GetSwapInterval(int *interval);

Function Parameters

interval Output interval value. 0 if there is no vertical retrace syn-
chronization, 1 if the buffer swap is synchronized with the
vertical retrace, and -1 if late swaps happen immediately
instead of waiting for the next retrace

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

If the system can’t determine the swap interval, or there isn’t a valid current
context, this function will set *interval to 0 as a safe default.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL SetSwapInterval

588 CHAPTER 1. SDL FUNCTIONS

SDL GL LoadLibrary

Dynamically load an OpenGL library.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GL_LoadLibrary(const char *path);

Function Parameters

path the platform dependent OpenGL library name, or NULL to
open the default OpenGL library

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This should be done after initializing the video driver, but before creating any
OpenGL windows. If no OpenGL library is loaded, the default library will be
loaded upon creation of the first OpenGL window.

If you do this, you need to retrieve all of the GL functions used in your
program from the dynamic library using SDL GL GetProcAddress().

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL GetProcAddress

� SDL GL UnloadLibrary

SDL GL MAKECURRENT 589

SDL GL MakeCurrent

Set up an OpenGL context for rendering into an OpenGL window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GL_MakeCurrent(SDL_Window *window, SDL_GLContext context);

Function Parameters

window the window to associate with the context
context the OpenGL context to associate with the window

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The context must have been created with a compatible window.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL CreateContext

590 CHAPTER 1. SDL FUNCTIONS

SDL GL ResetAttributes

Reset all previously set OpenGL context attributes to their default values.

Header File

Defined in SDL3/SDL video.h

Syntax

void SDL_GL_ResetAttributes(void);

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL GetAttribute

� SDL GL SetAttribute

SDL GL SETATTRIBUTE 591

SDL GL SetAttribute

Set an OpenGL window attribute before window creation.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GL_SetAttribute(SDL_GLattr attr, int value);

Function Parameters

attr an SDL GLattr enum value specifying the OpenGL at-
tribute to set

value the desired value for the attribute

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function sets the OpenGL attribute attr to value. The requested at-
tributes should be set before creating an OpenGL window. You should use
SDL GL GetAttribute() to check the values after creating the OpenGL con-
text, since the values obtained can differ from the requested ones.

Code Examples

SDL_Window *window;

SDL_GLContext context;

SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 5);

SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE, 5);

SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE, 5);

SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 16);

SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);

window = SDL_CreateWindow("OpenGL Window", 640, 480, SDL_WINDOW_OPENGL);

if (!window) {

fprintf(stderr, "Couldn’t create window: %s\n", SDL_GetError());

return 1;

592 CHAPTER 1. SDL FUNCTIONS

}

context = SDL_GL_CreateContext(window);

if (!context) {

fprintf(stderr, "Couldn’t create context: %s\n", SDL_GetError());

return 1;

}

int r, g, b;

SDL_GL_GetAttribute(SDL_GL_RED_SIZE, &r);

SDL_GL_GetAttribute(SDL_GL_GREEN_SIZE, &g);

SDL_GL_GetAttribute(SDL_GL_BLUE_SIZE, &b);

printf("Red size: %d, Green size: %d, Blue size: %d\n", r, g, b);

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL GetAttribute

� SDL GL ResetAttributes

SDL GL SETSWAPINTERVAL 593

SDL GL SetSwapInterval

Set the swap interval for the current OpenGL context.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GL_SetSwapInterval(int interval);

Function Parameters

interval 0 for immediate updates, 1 for updates synchronized with
the vertical retrace, -1 for adaptive vsync

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Some systems allow specifying -1 for the interval, to enable adaptive vsync.
Adaptive vsync works the same as vsync, but if you’ve already missed the
vertical retrace for a given frame, it swaps buffers immediately, which might be
less jarring for the user during occasional framerate drops. If an application
requests adaptive vsync and the system does not support it, this function will
fail and return -1. In such a case, you should probably retry the call with 1 for
the interval.

Adaptive vsync is implemented for some glX drivers with GLX EXT swap control tear,
and for some Windows drivers with WGL EXT swap control tear.

Read more on the Khronos wiki: https://www.khronos.org/opengl/wiki/Swap Interval#Adaptive Vsync

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL GetSwapInterval

594 CHAPTER 1. SDL FUNCTIONS

SDL GL SwapWindow

Update a window with OpenGL rendering.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_GL_SwapWindow(SDL_Window *window);

Function Parameters

window the window to change

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This is used with double-buffered OpenGL contexts, which are the default.
On macOS, make sure you bind 0 to the draw framebuffer before swapping

the window, otherwise nothing will happen. If you aren’t using glBindFrame-
buffer(), this is the default and you won’t have to do anything extra.

Code Examples

SDL_Window* window = SDL_CreateWindow("SDL3/OpenGL Demo", 640, 480,

SDL_WINDOW_OPENGL|SDL_WINDOW_RESIZABLE);

/* Create an OpenGL context associated with the window. */

SDL_GLContext glcontext = SDL_GL_CreateContext(window);

/* This makes our buffer swap syncronized with the monitor’s vertical

refresh */

SDL_GL_SetSwapInterval(1);

/* Clear context */

glClearColor(0,0,0,1);

glClear(GL_COLOR_BUFFER_BIT);

/* <Extra drawing functions here> */

SDL GL SWAPWINDOW 595

/* Swap our buffer to display the current contents of buffer on screen */

SDL_GL_SwapWindow(window);

Version

This function is available since SDL 3.0.0.

596 CHAPTER 1. SDL FUNCTIONS

SDL GL UnloadLibrary

Unload the OpenGL library previously loaded by SDL GL LoadLibrary().

Header File

Defined in SDL3/SDL video.h

Syntax

void SDL_GL_UnloadLibrary(void);

Version

This function is available since SDL 3.0.0.

See Also

� SDL GL LoadLibrary

SDL GLOBDIRECTORY 597

SDL GlobDirectory

Enumerate a directory tree, filtered by pattern, and return a list.

Header File

Defined in SDL3/SDL filesystem.h

Syntax

extern DECLSPEC char **SDLCALL SDL_GlobDirectory(const char *path, const

char *pattern, Uint32 flags, int *count);

Function Parameters

path the path of the directory to enumerate
pattern the pattern that files in the directory must match. Can be

NULL.
flags SDL GLOB * bitflags that affect this search.
count on return, will be set to the number of items in the returned

array. Can be NULL.

Return Value

Returns an array of strings on success or NULL on failure; call SDL GetError()
for more information. The caller should pass the returned pointer to SDL free
when done with it.

Remarks

Files are filtered out if they don’t match the string in pattern, which may
contain wildcard characters ’ ’ (match everything) and ’?’ (match one char-
acter). If pattern is NULL, no filtering is done and all results are returned.
Subdirectories are permitted, and are specified with a path separator of ’/’.
Wildcard characters ’ ’ and ’?’ never match a path separator. flags may
be set to SDL GLOB CASEINSENSITIVE to make the pattern matching case-
insensitive.

The returned array is always NULL-terminated, for your iterating conve-
nience, but if count is non-NULL, on return it will contain the number of items
in the array, not counting the NULL terminator.

You must free the returned pointer with SDL free() when done with it.

Thread Safety

It is safe to call this function from any thread.

598 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

SDL GLOBSTORAGEDIRECTORY 599

SDL GlobStorageDirectory

Enumerate a directory tree, filtered by pattern, and return a list.

Header File

Defined in SDL3/SDL storage.h

Syntax

extern DECLSPEC char **SDLCALL SDL_GlobStorageDirectory(SDL_Storage

*storage, const char *path, const char *pattern, Uint32 flags, int

*count);

Function Parameters

storage a storage container
path the path of the directory to enumerate
pattern the pattern that files in the directory must match. Can be

NULL.
flags SDL GLOB * bitflags that affect this search.
count on return, will be set to the number of items in the returned

array. Can be NULL.

Return Value

Returns an array of strings on success or NULL on failure; call SDL GetError()
for more information. The caller should pass the returned pointer to SDL free
when done with it.

Remarks

Files are filtered out if they don’t match the string in pattern, which may
contain wildcard characters ’ ’ (match everything) and ’?’ (match one char-
acter). If pattern is NULL, no filtering is done and all results are returned.
Subdirectories are permitted, and are specified with a path separator of ’/’.
Wildcard characters ’ ’ and ’?’ never match a path separator. flags may
be set to SDL GLOB CASEINSENSITIVE to make the pattern matching case-
insensitive.

The returned array is always NULL-terminated, for your iterating conve-
nience, but if count is non-NULL, on return it will contain the number of items
in the array, not counting the NULL terminator.

You must free the returned pointer with SDL free() when done with it.

600 CHAPTER 1. SDL FUNCTIONS

Thread Safety

It is safe to call this function from any thread, assuming the storage object is
thread-safe.

Version

This function is available since SDL 3.0.0.

SDL GUIDFROMSTRING 601

SDL GUIDFromString

Convert a GUID string into a ::SDL GUID structure.

Header File

Defined in SDL3/SDL guid.h

Syntax

SDL_GUID SDL_GUIDFromString(const char *pchGUID);

Function Parameters

pchGUID string containing an ASCII representation of a GUID

Return Value

Returns a ::SDL GUID structure.

Remarks

Performs no error checking. If this function is given a string containing an
invalid GUID, the function will silently succeed, but the GUID generated will
not be useful.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GUIDToString

602 CHAPTER 1. SDL FUNCTIONS

SDL GUIDToString

Get an ASCII string representation for a given ::SDL GUID.

Header File

Defined in SDL3/SDL guid.h

Syntax

int SDL_GUIDToString(SDL_GUID guid, char *pszGUID, int cbGUID);

Function Parameters

guid the ::SDL GUID you wish to convert to string
pszGUID buffer in which to write the ASCII string
cbGUID the size of pszGUID

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

You should supply at least 33 bytes for pszGUID.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GUIDFromString

SDL HAPTICEFFECTSUPPORTED 603

SDL HapticEffectSupported

Check to see if an effect is supported by a haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

SDL_bool SDL_HapticEffectSupported(SDL_Haptic *haptic, const

SDL_HapticEffect *effect);

Function Parameters

haptic the SDL Haptic device to query
effect the desired effect to query

Return Value

Returns SDL TRUE if the effect is supported or SDL FALSE if it isn’t.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateHapticEffect

� SDL GetHapticFeatures

604 CHAPTER 1. SDL FUNCTIONS

SDL HapticRumbleSupported

Check whether rumble is supported on a haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

SDL_bool SDL_HapticRumbleSupported(SDL_Haptic *haptic);

Function Parameters

haptic haptic device to check for rumble support

Return Value

Returns SDL TRUE if the effect is supported or SDL FALSE if it isn’t.

Code Examples

extern SDL_Haptic* dev;

if (SDL_HapticRumbleSupported(dev)) {

SDL_InitHapticRumble(dev);

SDL_PlayHapticRumble(dev, 1.0f, 3000);

SDL_Delay(3000);

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL InitHapticRumble

SDL HASALTIVEC 605

SDL HasAltiVec

Determine whether the CPU has AltiVec features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasAltiVec(void);

Return Value

Returns SDL TRUE if the CPU has AltiVec features or SDL FALSE if not.

Remarks

This always returns false on CPUs that aren’t using PowerPC instruction sets.

Version

This function is available since SDL 3.0.0.

606 CHAPTER 1. SDL FUNCTIONS

SDL HasARMSIMD

Determine whether the CPU has ARM SIMD (ARMv6) features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasARMSIMD(void);

Return Value

Returns SDL TRUE if the CPU has ARM SIMD features or SDL FALSE if not.

Remarks

This is different from ARM NEON, which is a different instruction set.
This always returns false on CPUs that aren’t using ARM instruction sets.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasNEON

SDL HASAVX 607

SDL HasAVX

Determine whether the CPU has AVX features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasAVX(void);

Return Value

Returns SDL TRUE if the CPU has AVX features or SDL FALSE if not.

Remarks

This always returns false on CPUs that aren’t using Intel instruction sets.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasAVX2

� SDL HasAVX512F

608 CHAPTER 1. SDL FUNCTIONS

SDL HasAVX2

Determine whether the CPU has AVX2 features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasAVX2(void);

Return Value

Returns SDL TRUE if the CPU has AVX2 features or SDL FALSE if not.

Remarks

This always returns false on CPUs that aren’t using Intel instruction sets.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasAVX

� SDL HasAVX512F

SDL HASAVX512F 609

SDL HasAVX512F

Determine whether the CPU has AVX-512F (foundation) features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasAVX512F(void);

Return Value

Returns SDL TRUE if the CPU has AVX-512F features or SDL FALSE if not.

Remarks

This always returns false on CPUs that aren’t using Intel instruction sets.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasAVX

� SDL HasAVX2

610 CHAPTER 1. SDL FUNCTIONS

SDL HasClipboardData

Query whether there is data in the clipboard for the provided mime type.

Header File

Defined in SDL3/SDL clipboard.h

Syntax

SDL_bool SDL_HasClipboardData(const char *mime_type);

Function Parameters

mime type The mime type to check for data for

Return Value

Returns SDL TRUE if there exists data in clipboard for the provided mime
type, SDL FALSE if it does not.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetClipboardData

� SDL GetClipboardData

SDL HASCLIPBOARDTEXT 611

SDL HasClipboardText

Query whether the clipboard exists and contains a non-empty text string.

Header File

Defined in SDL3/SDL clipboard.h

Syntax

SDL_bool SDL_HasClipboardText(void);

Return Value

Returns SDL TRUE if the clipboard has text, or SDL FALSE if it does not.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetClipboardText

� SDL SetClipboardText

612 CHAPTER 1. SDL FUNCTIONS

SDL HasEvent

Check for the existence of a certain event type in the event queue.

Header File

Defined in SDL3/SDL events.h

Syntax

SDL_bool SDL_HasEvent(Uint32 type);

Function Parameters

type the type of event to be queried; see SDL EventType for
details

Return Value

Returns SDL TRUE if events matching type are present, or SDL FALSE if
events matching type are not present.

Remarks

If you need to check for a range of event types, use SDL HasEvents() instead.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasEvents

SDL HASEVENTS 613

SDL HasEvents

Check for the existence of certain event types in the event queue.

Header File

Defined in SDL3/SDL events.h

Syntax

SDL_bool SDL_HasEvents(Uint32 minType, Uint32 maxType);

Function Parameters

minType the low end of event type to be queried, inclusive; see
SDL EventType for details

maxType the high end of event type to be queried, inclusive; see
SDL EventType for details

Return Value

Returns SDL TRUE if events with type ¿= minType and ¡= maxType are present,
or SDL FALSE if not.

Remarks

If you need to check for a single event type, use SDL HasEvent() instead.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasEvents

614 CHAPTER 1. SDL FUNCTIONS

SDL HasExactlyOneBitSet32

Determine if a unsigned 32-bit value has exactly one bit set.

Header File

Defined in SDL3/SDL bits.h

Syntax

SDL_FORCE_INLINE SDL_bool SDL_HasExactlyOneBitSet32(Uint32 x);

Function Parameters

x the 32-bit value to examine

Return Value

Returns SDL TRUE if exactly one bit is set in x, SDL FALSE otherwise.

Remarks

If there are no bits set (x is zero), or more than one bit set, this returns
SDL FALSE. If any one bit is exclusively set, this returns SDL TRUE.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL HASGAMEPAD 615

SDL HasGamepad

Return whether a gamepad is currently connected.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_bool SDL_HasGamepad(void);

Return Value

Returns SDL TRUE if a gamepad is connected, SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepads

616 CHAPTER 1. SDL FUNCTIONS

SDL HasJoystick

Return whether a joystick is currently connected.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_bool SDL_HasJoystick(void);

Return Value

Returns SDL TRUE if a joystick is connected, SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoysticks

SDL HASKEYBOARD 617

SDL HasKeyboard

Return whether a keyboard is currently connected.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

SDL_bool SDL_HasKeyboard(void);

Return Value

Returns SDL TRUE if a keyboard is connected, SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetKeyboards

618 CHAPTER 1. SDL FUNCTIONS

SDL HasLASX

Determine whether the CPU has LASX (LOONGARCH SIMD) features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasLASX(void);

Return Value

Returns SDL TRUE if the CPU has LOONGARCH LASX features or SDL FALSE
if not.

Remarks

This always returns false on CPUs that aren’t using LOONGARCH instruction
sets.

Version

This function is available since SDL 3.0.0.

SDL HASLSX 619

SDL HasLSX

Determine whether the CPU has LSX (LOONGARCH SIMD) features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasLSX(void);

Return Value

Returns SDL TRUE if the CPU has LOONGARCH LSX features or SDL FALSE
if not.

Remarks

This always returns false on CPUs that aren’t using LOONGARCH instruction
sets.

Version

This function is available since SDL 3.0.0.

620 CHAPTER 1. SDL FUNCTIONS

SDL HasMMX

Determine whether the CPU has MMX features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasMMX(void);

Return Value

Returns SDL TRUE if the CPU has MMX features or SDL FALSE if not.

Remarks

This always returns false on CPUs that aren’t using Intel instruction sets.

Version

This function is available since SDL 3.0.0.

SDL HASMOUSE 621

SDL HasMouse

Return whether a mouse is currently connected.

Header File

Defined in SDL3/SDL mouse.h

Syntax

SDL_bool SDL_HasMouse(void);

Return Value

Returns SDL TRUE if a mouse is connected, SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetMice

622 CHAPTER 1. SDL FUNCTIONS

SDL HasNEON

Determine whether the CPU has NEON (ARM SIMD) features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasNEON(void);

Return Value

Returns SDL TRUE if the CPU has ARM NEON features or SDL FALSE if
not.

Remarks

This always returns false on CPUs that aren’t using ARM instruction sets.

Version

This function is available since SDL 3.0.0.

SDL HASPRIMARYSELECTIONTEXT 623

SDL HasPrimarySelectionText

Query whether the primary selection exists and contains a non-empty text
string.

Header File

Defined in SDL3/SDL clipboard.h

Syntax

SDL_bool SDL_HasPrimarySelectionText(void);

Return Value

Returns SDL TRUE if the primary selection has text, or SDL FALSE if it does
not.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetPrimarySelectionText

� SDL SetPrimarySelectionText

624 CHAPTER 1. SDL FUNCTIONS

SDL HasProperty

Return whether a property exists in a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

SDL_bool SDL_HasProperty(SDL_PropertiesID props, const char *name);

Function Parameters

props the properties to query
name the name of the property to query

Return Value

Returns SDL TRUE if the property exists, or SDL FALSE if it doesn’t.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetPropertyType

SDL HASRECTINTERSECTION 625

SDL HasRectIntersection

Determine whether two rectangles intersect.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_bool SDL_HasRectIntersection(const SDL_Rect * A,

const SDL_Rect * B);

Function Parameters

A an SDL Rect structure representing the first rectangle
B an SDL Rect structure representing the second rectangle

Return Value

Returns SDL TRUE if there is an intersection, SDL FALSE otherwise.

Remarks

If either pointer is NULL the function will return SDL FALSE.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRectIntersection

626 CHAPTER 1. SDL FUNCTIONS

SDL HasRectIntersectionFloat

Determine whether two rectangles intersect with float precision.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_bool SDL_HasRectIntersectionFloat(const SDL_FRect * A,

const SDL_FRect * B);

Function Parameters

A an SDL FRect structure representing the first rectangle
B an SDL FRect structure representing the second rectangle

Return Value

Returns SDL TRUE if there is an intersection, SDL FALSE otherwise.

Remarks

If either pointer is NULL the function will return SDL FALSE.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRectIntersection

SDL HASSCREENKEYBOARDSUPPORT 627

SDL HasScreenKeyboardSupport

Check whether the platform has screen keyboard support.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

SDL_bool SDL_HasScreenKeyboardSupport(void);

Return Value

Returns SDL TRUE if the platform has some screen keyboard support or SDL FALSE
if not.

Version

This function is available since SDL 3.0.0.

See Also

� SDL StartTextInput

� SDL ScreenKeyboardShown

628 CHAPTER 1. SDL FUNCTIONS

SDL HasSSE

Determine whether the CPU has SSE features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasSSE(void);

Return Value

Returns SDL TRUE if the CPU has SSE features or SDL FALSE if not.

Remarks

This always returns false on CPUs that aren’t using Intel instruction sets.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasSSE2

� SDL HasSSE3

� SDL HasSSE41

� SDL HasSSE42

SDL HASSSE2 629

SDL HasSSE2

Determine whether the CPU has SSE2 features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasSSE2(void);

Return Value

Returns SDL TRUE if the CPU has SSE2 features or SDL FALSE if not.

Remarks

This always returns false on CPUs that aren’t using Intel instruction sets.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasSSE

� SDL HasSSE3

� SDL HasSSE41

� SDL HasSSE42

630 CHAPTER 1. SDL FUNCTIONS

SDL HasSSE3

Determine whether the CPU has SSE3 features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasSSE3(void);

Return Value

Returns SDL TRUE if the CPU has SSE3 features or SDL FALSE if not.

Remarks

This always returns false on CPUs that aren’t using Intel instruction sets.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasSSE

� SDL HasSSE2

� SDL HasSSE41

� SDL HasSSE42

SDL HASSSE41 631

SDL HasSSE41

Determine whether the CPU has SSE4.1 features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasSSE41(void);

Return Value

Returns SDL TRUE if the CPU has SSE4.1 features or SDL FALSE if not.

Remarks

This always returns false on CPUs that aren’t using Intel instruction sets.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasSSE

� SDL HasSSE2

� SDL HasSSE3

� SDL HasSSE42

632 CHAPTER 1. SDL FUNCTIONS

SDL HasSSE42

Determine whether the CPU has SSE4.2 features.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

SDL_bool SDL_HasSSE42(void);

Return Value

Returns SDL TRUE if the CPU has SSE4.2 features or SDL FALSE if not.

Remarks

This always returns false on CPUs that aren’t using Intel instruction sets.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasSSE

� SDL HasSSE2

� SDL HasSSE3

� SDL HasSSE41

SDL HID BLE SCAN 633

SDL hid ble scan

Start or stop a BLE scan on iOS and tvOS to pair Steam Controllers.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

void SDL_hid_ble_scan(SDL_bool active);

Function Parameters

active SDL TRUE to start the scan, SDL FALSE to stop the scan

Version

This function is available since SDL 3.0.0.

634 CHAPTER 1. SDL FUNCTIONS

SDL hid close

Close a HID device.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_close(SDL_hid_device *dev);

Function Parameters

dev A device handle returned from SDL hid open().

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL HID DEVICE CHANGE COUNT 635

SDL hid device change count

Check to see if devices may have been added or removed.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

Uint32 SDL_hid_device_change_count(void);

Return Value

Returns a change counter that is incremented with each potential device change,
or 0 if device change detection isn’t available.

Remarks

Enumerating the HID devices is an expensive operation, so you can call this to
see if there have been any system device changes since the last call to this func-
tion. A change in the counter returned doesn’t necessarily mean that anything
has changed, but you can call SDL hid enumerate() to get an updated device
list.

Calling this function for the first time may cause a thread or other system
resource to be allocated to track device change notifications.

Version

This function is available since SDL 3.0.0.

See Also

� SDL hid enumerate

636 CHAPTER 1. SDL FUNCTIONS

SDL hid enumerate

Enumerate the HID Devices.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

SDL_hid_device_info * SDL_hid_enumerate(unsigned short vendor_id,

unsigned short product_id);

Function Parameters

vendor id The Vendor ID (VID) of the types of device to open, or 0
to match any vendor.

product id The Product ID (PID) of the types of device to open, or 0
to match any product.

Return Value

Returns a pointer to a linked list of type SDL hid device info, containing infor-
mation about the HID devices attached to the system, or NULL in the case of
failure. Free this linked list by calling SDL hid free enumeration().

Remarks

This function returns a linked list of all the HID devices attached to the system
which match vendor id and product id. If vendor id is set to 0 then any vendor
matches. If product id is set to 0 then any product matches. If vendor id

and product id are both set to 0, then all HID devices will be returned.
By default SDL will only enumerate controllers, to reduce risk of hanging or

crashing on bad drivers, but SDL HINT HIDAPI ENUMERATE ONLY CONTROLLERS
can be set to ”0” to enumerate all HID devices.

Version

This function is available since SDL 3.0.0.

See Also

� SDL hid device change count

SDL HID EXIT 637

SDL hid exit

Finalize the HIDAPI library.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_exit(void);

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function frees all of the static data associated with HIDAPI. It should be
called at the end of execution to avoid memory leaks.

Version

This function is available since SDL 3.0.0.

See Also

� SDL hid init

638 CHAPTER 1. SDL FUNCTIONS

SDL hid free enumeration

Free an enumeration linked list.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

void SDL_hid_free_enumeration(SDL_hid_device_info *devs);

Function Parameters

devs Pointer to a list of struct device returned from
SDL hid enumerate().

Remarks

This function frees a linked list created by SDL hid enumerate().

Version

This function is available since SDL 3.0.0.

SDL HID GET DEVICE INFO 639

SDL hid get device info

Get the device info from a HID device.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

SDL_hid_device_info * SDL_hid_get_device_info(SDL_hid_device *dev);

Function Parameters

dev A device handle returned from SDL hid open().

Return Value

Returns a pointer to the SDL hid device info for this hid device, or NULL in
the case of failure; call SDL GetError() for more information. This struct is
valid until the device is closed with SDL hid close().

Version

This function is available since SDL 3.0.0.

640 CHAPTER 1. SDL FUNCTIONS

SDL hid get feature report

Get a feature report from a HID device.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_get_feature_report(SDL_hid_device *dev, unsigned char *data,

size_t length);

Function Parameters

dev A device handle returned from SDL hid open().
data A buffer to put the read data into, including the Report ID.

Set the first byte of data to the Report ID of the report to be
read, or set it to zero if your device does not use numbered
reports.

length The number of bytes to read, including an extra byte for the
report ID. The buffer can be longer than the actual report.

Return Value

Returns the number of bytes read plus one for the report ID (which is still in
the first byte), or -1 on error.

Remarks

Set the first byte of data to the Report ID of the report to be read. Make sure
to allow space for this extra byte in data. Upon return, the first byte will still
contain the Report ID, and the report data will start in data[1].

Version

This function is available since SDL 3.0.0.

SDL HID GET INDEXED STRING 641

SDL hid get indexed string

Get a string from a HID device, based on its string index.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_get_indexed_string(SDL_hid_device *dev, int string_index,

wchar_t *string, size_t maxlen);

Function Parameters

dev A device handle returned from SDL hid open().
string index The index of the string to get.
string A wide string buffer to put the data into.
maxlen The length of the buffer in multiples of wchar t.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

642 CHAPTER 1. SDL FUNCTIONS

SDL hid get input report

Get an input report from a HID device.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_get_input_report(SDL_hid_device *dev, unsigned char *data,

size_t length);

Function Parameters

dev A device handle returned from SDL hid open().
data A buffer to put the read data into, including the Report ID.

Set the first byte of data to the Report ID of the report to be
read, or set it to zero if your device does not use numbered
reports.

length The number of bytes to read, including an extra byte for the
report ID. The buffer can be longer than the actual report.

Return Value

Returns the number of bytes read plus one for the report ID (which is still in
the first byte), or -1 on error.

Remarks

Set the first byte of data to the Report ID of the report to be read. Make sure
to allow space for this extra byte in data. Upon return, the first byte will still
contain the Report ID, and the report data will start in data[1].

Version

This function is available since SDL 3.0.0.

SDL HID GET MANUFACTURER STRING 643

SDL hid get manufacturer string

Get The Manufacturer String from a HID device.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_get_manufacturer_string(SDL_hid_device *dev, wchar_t

*string, size_t maxlen);

Function Parameters

dev A device handle returned from SDL hid open().
string A wide string buffer to put the data into.
maxlen The length of the buffer in multiples of wchar t.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

644 CHAPTER 1. SDL FUNCTIONS

SDL hid get product string

Get The Product String from a HID device.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_get_product_string(SDL_hid_device *dev, wchar_t *string,

size_t maxlen);

Function Parameters

dev A device handle returned from SDL hid open().
string A wide string buffer to put the data into.
maxlen The length of the buffer in multiples of wchar t.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL HID GET REPORT DESCRIPTOR 645

SDL hid get report descriptor

Get a report descriptor from a HID device.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_get_report_descriptor(SDL_hid_device *dev, unsigned char

*buf, size_t buf_size);

Function Parameters

dev A device handle returned from SDL hid open().
buf The buffer to copy descriptor into.
buf size The size of the buffer in bytes.

Return Value

Returns the number of bytes actually copied, or -1 on error; call SDL GetError()
for more information.

Remarks

User has to provide a preallocated buffer where descriptor will be copied to.
The recommended size for a preallocated buffer is 4096 bytes.

Version

This function is available since SDL 3.0.0.

646 CHAPTER 1. SDL FUNCTIONS

SDL hid get serial number string

Get The Serial Number String from a HID device.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_get_serial_number_string(SDL_hid_device *dev, wchar_t

*string, size_t maxlen);

Function Parameters

dev A device handle returned from SDL hid open().
string A wide string buffer to put the data into.
maxlen The length of the buffer in multiples of wchar t.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL HID INIT 647

SDL hid init

Initialize the HIDAPI library.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_init(void);

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function initializes the HIDAPI library. Calling it is not strictly neces-
sary, as it will be called automatically by SDL hid enumerate() and any of the
SDL hid open *() functions if it is needed. This function should be called at the
beginning of execution however, if there is a chance of HIDAPI handles being
opened by different threads simultaneously.

Each call to this function should have a matching call to SDL hid exit()

Version

This function is available since SDL 3.0.0.

See Also

� SDL hid exit

648 CHAPTER 1. SDL FUNCTIONS

SDL hid open

Open a HID device using a Vendor ID (VID), Product ID (PID) and optionally
a serial number.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

SDL_hid_device * SDL_hid_open(unsigned short vendor_id, unsigned short

product_id, const wchar_t *serial_number);

Function Parameters

vendor id The Vendor ID (VID) of the device to open.
product id The Product ID (PID) of the device to open.
serial number The Serial Number of the device to open (Optionally

NULL).

Return Value

Returns a pointer to a SDL hid device object on success or NULL on failure.

Remarks

If serial number is NULL, the first device with the specified VID and PID is
opened.

Version

This function is available since SDL 3.0.0.

SDL HID OPEN PATH 649

SDL hid open path

Open a HID device by its path name.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

SDL_hid_device * SDL_hid_open_path(const char *path);

Function Parameters

path The path name of the device to open

Return Value

Returns a pointer to a SDL hid device object on success or NULL on failure.

Remarks

The path name be determined by calling SDL hid enumerate(), or a platform-
specific path name can be used (eg: /dev/hidraw0 on Linux).

Version

This function is available since SDL 3.0.0.

650 CHAPTER 1. SDL FUNCTIONS

SDL hid read

Read an Input report from a HID device.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_read(SDL_hid_device *dev, unsigned char *data, size_t

length);

Function Parameters

dev A device handle returned from SDL hid open().
data A buffer to put the read data into.
length The number of bytes to read. For devices with multiple re-

ports, make sure to read an extra byte for the report num-
ber.

Return Value

Returns the actual number of bytes read and -1 on error. If no packet was
available to be read and the handle is in non-blocking mode, this function returns
0.

Remarks

Input reports are returned to the host through the INTERRUPT IN endpoint.
The first byte will contain the Report number if the device uses numbered
reports.

Version

This function is available since SDL 3.0.0.

SDL HID READ TIMEOUT 651

SDL hid read timeout

Read an Input report from a HID device with timeout.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_read_timeout(SDL_hid_device *dev, unsigned char *data,

size_t length, int milliseconds);

Function Parameters

dev A device handle returned from SDL hid open().
data A buffer to put the read data into.
length The number of bytes to read. For devices with multiple re-

ports, make sure to read an extra byte for the report num-
ber.

milliseconds timeout in milliseconds or -1 for blocking wait.

Return Value

Returns the actual number of bytes read and -1 on error. If no packet was
available to be read within the timeout period, this function returns 0.

Remarks

Input reports are returned to the host through the INTERRUPT IN endpoint.
The first byte will contain the Report number if the device uses numbered
reports.

Version

This function is available since SDL 3.0.0.

652 CHAPTER 1. SDL FUNCTIONS

SDL hid send feature report

Send a Feature report to the device.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_send_feature_report(SDL_hid_device *dev, const unsigned char

*data, size_t length);

Function Parameters

dev A device handle returned from SDL hid open().
data The data to send, including the report number as the first

byte.
length The length in bytes of the data to send, including the report

number.

Return Value

Returns the actual number of bytes written and -1 on error.

Remarks

Feature reports are sent over the Control endpoint as a Set Report transfer. The
first byte of data must contain the Report ID. For devices which only support
a single report, this must be set to 0x0. The remaining bytes contain the report
data. Since the Report ID is mandatory, calls to SDL hid send feature report()
will always contain one more byte than the report contains. For example, if a hid
report is 16 bytes long, 17 bytes must be passed to SDL hid send feature report():
the Report ID (or 0x0, for devices which do not use numbered reports), followed
by the report data (16 bytes). In this example, the length passed in would be
17.

Version

This function is available since SDL 3.0.0.

SDL HID SET NONBLOCKING 653

SDL hid set nonblocking

Set the device handle to be non-blocking.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_set_nonblocking(SDL_hid_device *dev, int nonblock);

Function Parameters

dev A device handle returned from SDL hid open().
nonblock enable or not the nonblocking reads - 1 to enable nonblock-

ing - 0 to disable nonblocking.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

In non-blocking mode calls to SDL hid read() will return immediately with a
value of 0 if there is no data to be read. In blocking mode, SDL hid read() will
wait (block) until there is data to read before returning.

Nonblocking can be turned on and off at any time.

Version

This function is available since SDL 3.0.0.

654 CHAPTER 1. SDL FUNCTIONS

SDL hid write

Write an Output report to a HID device.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

int SDL_hid_write(SDL_hid_device *dev, const unsigned char *data, size_t

length);

Function Parameters

dev A device handle returned from SDL hid open().
data The data to send, including the report number as the first

byte.
length The length in bytes of the data to send.

Return Value

Returns the actual number of bytes written and -1 on error.

Remarks

The first byte of data must contain the Report ID. For devices which only
support a single report, this must be set to 0x0. The remaining bytes contain
the report data. Since the Report ID is mandatory, calls to SDL hid write()
will always contain one more byte than the report contains. For example, if a
hid report is 16 bytes long, 17 bytes must be passed to SDL hid write(), the
Report ID (or 0x0, for devices with a single report), followed by the report data
(16 bytes). In this example, the length passed in would be 17.

SDL hid write() will send the data on the first OUT endpoint, if one exists.
If it does not, it will send the data through the Control Endpoint (Endpoint 0).

Version

This function is available since SDL 3.0.0.

SDL HIDECURSOR 655

SDL HideCursor

Hide the cursor.

Header File

Defined in SDL3/SDL mouse.h

Syntax

int SDL_HideCursor(void);

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CursorVisible

� SDL ShowCursor

656 CHAPTER 1. SDL FUNCTIONS

SDL HideWindow

Hide a window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_HideWindow(SDL_Window *window);

Function Parameters

window the window to hide

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ShowWindow

SDL ICONV STRING 657

SDL iconv string

This function converts a buffer or string between encodings in one pass, return-
ing a string that must be freed with SDL free() or NULL on error.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

char* SDL_iconv_string(const char *tocode,

const char *fromcode,

const char *inbuf,

size_t inbytesleft);

Version

This function is available since SDL 3.0.0.

658 CHAPTER 1. SDL FUNCTIONS

SDL Init

Initialize the SDL library.

Header File

Defined in SDL3/SDL init.h

Syntax

int SDL_Init(Uint32 flags);

Function Parameters

flags subsystem initialization flags

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

SDL Init() simply forwards to calling SDL InitSubSystem(). Therefore, the two
may be used interchangeably. Though for readability of your code SDL InitSubSystem()
might be preferred.

The file I/O (for example: SDL IOFromFile) and threading (SDL CreateThread)
subsystems are initialized by default. Message boxes (SDL ShowSimpleMessageBox)
also attempt to work without initializing the video subsystem, in hopes of being
useful in showing an error dialog when SDL Init fails. You must specifically
initialize other subsystems if you use them in your application.

Logging (such as SDL Log) works without initialization, too. flags may be
any of the following OR’d together:

� SDL INIT TIMER: timer subsystem

� SDL INIT AUDIO: audio subsystem

� SDL INIT VIDEO: video subsystem; automatically initializes the events sub-
system

� SDL INIT JOYSTICK: joystick subsystem; automatically initializes the events
subsystem

� SDL INIT HAPTIC: haptic (force feedback) subsystem

SDL INIT 659

� SDL INIT GAMEPAD: gamepad subsystem; automatically initializes the joy-
stick subsystem

� SDL INIT EVENTS: events subsystem

� SDL INIT SENSOR: sensor subsystem

Subsystem initialization is ref-counted, you must call SDL QuitSubSystem()
for each SDL InitSubSystem() to correctly shutdown a subsystem manually (or
call SDL Quit() to force shutdown). If a subsystem is already loaded then this
call will increase the ref-count and return.

Code Examples

#include <SDL3/SDL.h>

int main(int argc, char* argv[])

{

if (SDL_Init(SDL_INIT_VIDEO|SDL_INIT_AUDIO) != 0) {

SDL_Log("Unable to initialize SDL: %s", SDL_GetError());

return 1;

}

/* ... */

SDL_Quit();

return 0;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL InitSubSystem

� SDL Quit

� SDL SetMainReady

� SDL WasInit

660 CHAPTER 1. SDL FUNCTIONS

SDL InitHapticRumble

Initialize a haptic device for simple rumble playback.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_InitHapticRumble(SDL_Haptic *haptic);

Function Parameters

haptic the haptic device to initialize for simple rumble playback

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL PlayHapticRumble

� SDL StopHapticRumble

� SDL HapticRumbleSupported

SDL INITSUBSYSTEM 661

SDL InitSubSystem

Compatibility function to initialize the SDL library.

Header File

Defined in SDL3/SDL init.h

Syntax

int SDL_InitSubSystem(Uint32 flags);

Function Parameters

flags any of the flags used by SDL Init(); see SDL Init for details.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function and SDL Init() are interchangeable.

Code Examples

/* Separating Joystick and Video initialization. */

SDL_Init(SDL_INIT_VIDEO);

SDL_Window* window = SDL_CreateWindow("A Window",

640, 480,

SDL_WINDOW_FULLSCREEN);

SDL_Renderer* renderer = SDL_CreateRenderer(window, NULL, 0);

/* Do Some Video stuff */

/* Initialize the joystick subsystem */

SDL_InitSubSystem(SDL_INIT_JOYSTICK);

/* Do some stuff with video and joystick */

/* Shut them both down */

SDL_Quit();

662 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

See Also

� SDL Init

� SDL Quit

� SDL QuitSubSystem

SDL IOFROMCONSTMEM 663

SDL IOFromConstMem

Use this function to prepare a read-only memory buffer for use with SDL IOStream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_IOStream* SDL_IOFromConstMem(const void *mem, size_t size);

Function Parameters

mem a pointer to a read-only buffer to feed an SDL IOStream
stream

size the buffer size, in bytes

Return Value

Returns a pointer to a new SDL IOStream structure, or NULL if it fails; call
SDL GetError() for more information.

Remarks

This function sets up an SDL IOStream struct based on a memory area of a
certain size. It assumes the memory area is not writable.

Attempting to write to this SDL IOStream stream will report an error with-
out writing to the memory buffer.

This memory buffer is not copied by the SDL IOStream; the pointer you
provide must remain valid until you close the stream. Closing the stream will
not free the original buffer.

If you need to write to a memory buffer, you should use SDL IOFromMem()
with a writable buffer of memory instead.

Version

This function is available since SDL 3.0.0.

See Also

� SDL IOFromMem

� SDL CloseIO

� SDL ReadIO

664 CHAPTER 1. SDL FUNCTIONS

� SDL SeekIO

� SDL TellIO

SDL IOFROMDYNAMICMEM 665

SDL IOFromDynamicMem

Use this function to create an SDL IOStream that is backed by dynamically
allocated memory.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_IOStream* SDL_IOFromDynamicMem(void);

Return Value

Returns a pointer to a new SDL IOStream structure, or NULL if it fails; call
SDL GetError() for more information.

Remarks

This supports the following properties to provide access to the memory and con-
trol over allocations: - SDL PROP IOSTREAM DYNAMIC MEMORY POINTER: a pointer
to the internal memory of the stream. This can be set to NULL to trans-
fer ownership of the memory to the application, which should free the mem-
ory with SDL free(). If this is done, the next operation on the stream must
be SDL CloseIO(). - SDL PROP IOSTREAM DYNAMIC CHUNKSIZE NUMBER: mem-
ory will be allocated in multiples of this size, defaulting to 1024.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseIO

� SDL ReadIO

� SDL SeekIO

� SDL TellIO

� SDL WriteIO

666 CHAPTER 1. SDL FUNCTIONS

SDL IOFromFile

Use this function to create a new SDL IOStream structure for reading from
and/or writing to a named file.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_IOStream* SDL_IOFromFile(const char *file, const char *mode);

Function Parameters

file a UTF-8 string representing the filename to open
mode an ASCII string representing the mode to be used for open-

ing the file.

Return Value

Returns a pointer to the SDL IOStream structure that is created, or NULL on
failure; call SDL GetError() for more information.

Remarks

The mode string is treated roughly the same as in a call to the C library’s
fopen(), even if SDL doesn’t happen to use fopen() behind the scenes.

Available mode strings:

� ”r”: Open a file for reading. The file must exist.

� ”w”: Create an empty file for writing. If a file with the same name already
exists its content is erased and the file is treated as a new empty file.

� ”a”: Append to a file. Writing operations append data at the end of the
file. The file is created if it does not exist.

� ”r+”: Open a file for update both reading and writing. The file must
exist.

� ”w+”: Create an empty file for both reading and writing. If a file with
the same name already exists its content is erased and the file is treated
as a new empty file.

SDL IOFROMFILE 667

� ”a+”: Open a file for reading and appending. All writing operations are
performed at the end of the file, protecting the previous content to be
overwritten. You can reposition (fseek, rewind) the internal pointer to
anywhere in the file for reading, but writing operations will move it back
to the end of file. The file is created if it does not exist. NOTE: In
order to open a file as a binary file, a ”b” character has to be included in
the mode string. This additional ”b” character can either be appended at
the end of the string (thus making the following compound modes: ”rb”,
”wb”, ”ab”, ”r+b”, ”w+b”, ”a+b”) or be inserted between the letter and
the ”+” sign for the mixed modes (”rb+”, ”wb+”, ”ab+”). Additional
characters may follow the sequence, although they should have no effect.
For example, ”t” is sometimes appended to make explicit the file is a text
file.

This function supports Unicode filenames, but they must be encoded in
UTF-8 format, regardless of the underlying operating system.

As a fallback, SDL IOFromFile() will transparently open a matching file-
name in an Android app’s assets.

Closing the SDL IOStream will close SDL’s internal file handle.
The following properties may be set at creation time by SDL:

� SDL PROP IOSTREAM WINDOWS HANDLE POINTER: a pointer, that can be cast
to a win32 HANDLE, that this SDL IOStream is using to access the filesys-
tem. If the program isn’t running on Windows, or SDL used some other
method to access the filesystem, this property will not be set.

� SDL PROP IOSTREAM STDIO FILE POINTER: a pointer, that can be cast to a
stdio FILE , that this SDL IOStream is using to access the filesystem.

If SDL used some other method to access the filesystem, this property

will not be set. PLEASE NOTE that if SDL is using a different

C runtime than your app, trying to use this pointer will almost

certainly result in a crash! This is mostly a problem on Windows;

make sure you build SDL and your app with the same compiler and

settings to avoid it.

� SDL PROP IOSTREAM ANDROID AASSET POINTER: a pointer, that can be

cast to an Android NDK AAsset , that this SDL IOStream is using to
access the filesystem. If SDL used some other method to access the filesys-
tem, this property will not be set.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseIO

668 CHAPTER 1. SDL FUNCTIONS

� SDL ReadIO

� SDL SeekIO

� SDL TellIO

� SDL WriteIO

SDL IOFROMMEM 669

SDL IOFromMem

Use this function to prepare a read-write memory buffer for use with SDL IOStream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_IOStream* SDL_IOFromMem(void *mem, size_t size);

Function Parameters

mem a pointer to a buffer to feed an SDL IOStream stream
size the buffer size, in bytes

Return Value

Returns a pointer to a new SDL IOStream structure, or NULL if it fails; call
SDL GetError() for more information.

Remarks

This function sets up an SDL IOStream struct based on a memory area of a
certain size, for both read and write access.

This memory buffer is not copied by the SDL IOStream; the pointer you
provide must remain valid until you close the stream. Closing the stream will
not free the original buffer.

If you need to make sure the SDL IOStream never writes to the memory
buffer, you should use SDL IOFromConstMem() with a read-only buffer of mem-
ory instead.

Version

This function is available since SDL 3.0.0.

See Also

� SDL IOFromConstMem

� SDL CloseIO

� SDL ReadIO

� SDL SeekIO

670 CHAPTER 1. SDL FUNCTIONS

� SDL TellIO

� SDL WriteIO

SDL IOPRINTF 671

SDL IOprintf

Print to an SDL IOStream data stream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

size_t SDL_IOprintf(SDL_IOStream *context, SDL_PRINTF_FORMAT_STRING

const char *fmt, ...) SDL_PRINTF_VARARG_FUNC(2);

Function Parameters

context a pointer to an SDL IOStream structure
fmt a printf() style format string
... additional parameters matching

Return Value

Returns the number of bytes written, or 0 on error; call SDL GetError() for
more information.

Remarks

This function does formatted printing to the stream.

Version

This function is available since SDL 3.0.0.

See Also

� SDL IOvprintf

� SDL WriteIO

672 CHAPTER 1. SDL FUNCTIONS

SDL iOSSetAnimationCallback

Use this function to set the animation callback on Apple iOS.

Header File

Defined in SDL3/SDL system.h

Syntax

int SDL_iOSSetAnimationCallback(SDL_Window * window, int interval, void

(SDLCALL *callback)(void*), void *callbackParam);

Function Parameters

window the window for which the animation callback should be set
interval the number of frames after which callback will be called
callback the function to call for every frame.
callbackParam a pointer that is passed to callback.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The function prototype for callback is:

void callback(void* callbackParam);

Where its parameter, callbackParam, is what was passed as callbackParam
to SDL iOSSetAnimationCallback().

This function is only available on Apple iOS.
For more information see:
https://wiki.libsdl.org/SDL3/README/ios
Note that if you use the ”main callbacks” instead of a standard C main

function, you don’t have to use this API, as SDL will manage this for you.
Details on main callbacks are here:
https://wiki.libsdl.org/SDL3/README/main-functions

Version

This function is available since SDL 3.0.0.

SDL IOSSETANIMATIONCALLBACK 673

See Also

� SDL iOSSetEventPump

674 CHAPTER 1. SDL FUNCTIONS

SDL iOSSetEventPump

Use this function to enable or disable the SDL event pump on Apple iOS.

Header File

Defined in SDL3/SDL system.h

Syntax

void SDL_iOSSetEventPump(SDL_bool enabled);

Function Parameters

enabled SDL TRUE to enable the event pump, SDL FALSE to dis-
able it

Remarks

This function is only available on Apple iOS.

Version

This function is available since SDL 3.0.0.

See Also

� SDL iOSSetAnimationCallback

SDL IOVPRINTF 675

SDL IOvprintf

Print to an SDL IOStream data stream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

size_t SDL_IOvprintf(SDL_IOStream *context, SDL_PRINTF_FORMAT_STRING

const char *fmt, va_list ap) SDL_PRINTF_VARARG_FUNCV(2);

Function Parameters

context a pointer to an SDL IOStream structure
fmt a printf() style format string
ap a variable argument list

Return Value

Returns the number of bytes written, or 0 on error; call SDL GetError() for
more information.

Remarks

This function does formatted printing to the stream.

Version

This function is available since SDL 3.0.0.

See Also

� SDL IOprintf

� SDL WriteIO

676 CHAPTER 1. SDL FUNCTIONS

SDL isalnum

Query if a character is alphabetic (a letter) or a number.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_isalnum(int x);

Function Parameters

x character value to check.

Return Value

Returns non-zero if x falls within the character class, zero otherwise.

Remarks

WARNING: Regardless of system locale, this will only treat ASCII values for
English ’a-z’, ’A-Z’, and ’0-9’ as true.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL ISALPHA 677

SDL isalpha

Query if a character is alphabetic (a letter).

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_isalpha(int x);

Function Parameters

x character value to check.

Return Value

Returns non-zero if x falls within the character class, zero otherwise.

Remarks

WARNING: Regardless of system locale, this will only treat ASCII values for
English ’a-z’ and ’A-Z’ as true.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

678 CHAPTER 1. SDL FUNCTIONS

SDL IsAndroidTV

Query if the application is running on Android TV.

Header File

Defined in SDL3/SDL system.h

Syntax

SDL_bool SDL_IsAndroidTV(void);

Return Value

Returns SDL TRUE if this is Android TV, SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

SDL ISBLANK 679

SDL isblank

Report if a character is blank (a space or tab).

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_isblank(int x);

Function Parameters

x character value to check.

Return Value

Returns non-zero if x falls within the character class, zero otherwise.

Remarks

WARNING: Regardless of system locale, this will only treat ASCII values
0x20 (space) or 0x9 (tab) as true.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

680 CHAPTER 1. SDL FUNCTIONS

SDL IsChromebook

Query if the application is running on a Chromebook.

Header File

Defined in SDL3/SDL system.h

Syntax

SDL_bool SDL_IsChromebook(void);

Return Value

Returns SDL TRUE if this is a Chromebook, SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

SDL ISCNTRL 681

SDL iscntrl

Report if a character is a control character.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_iscntrl(int x);

Function Parameters

x character value to check.

Return Value

Returns non-zero if x falls within the character class, zero otherwise.

Remarks

WARNING: Regardless of system locale, this will only treat ASCII values 0
through 0x1F, and 0x7F, as true.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

682 CHAPTER 1. SDL FUNCTIONS

SDL IsDeXMode

Query if the application is running on a Samsung DeX docking station.

Header File

Defined in SDL3/SDL system.h

Syntax

SDL_bool SDL_IsDeXMode(void);

Return Value

Returns SDL TRUE if this is a DeX docking station, SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

SDL ISDIGIT 683

SDL isdigit

Report if a character is a numeric digit.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_isdigit(int x);

Function Parameters

x character value to check.

Return Value

Returns non-zero if x falls within the character class, zero otherwise.

Remarks

WARNING: Regardless of system locale, this will only treat ASCII values ’0’
(0x30) through ’9’ (0x39), as true.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

684 CHAPTER 1. SDL FUNCTIONS

SDL IsGamepad

Check if the given joystick is supported by the gamepad interface.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_bool SDL_IsGamepad(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns SDL TRUE if the given joystick is supported by the gamepad interface,
SDL FALSE if it isn’t or it’s an invalid index.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoysticks

� SDL OpenGamepad

SDL ISGRAPH 685

SDL isgraph

Report if a character is any ”printable” except space.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_isgraph(int x);

Function Parameters

x character value to check.

Return Value

Returns non-zero if x falls within the character class, zero otherwise.

Remarks

Be advised that ”printable” has a definition that goes back to text terminals
from the dawn of computing, making this a sort of special case function that
is not suitable for Unicode (or most any) text management. WARNING:
Regardless of system locale, this is equivalent to (SDL isprint(x)) && ((x)

!= ’ ’).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL isprint

686 CHAPTER 1. SDL FUNCTIONS

SDL IsJoystickHaptic

Query if a joystick has haptic features.

Header File

Defined in SDL3/SDL haptic.h

Syntax

SDL_bool SDL_IsJoystickHaptic(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick to test for haptic capabilities

Return Value

Returns SDL TRUE if the joystick is haptic or SDL FALSE if it isn’t.

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenHapticFromJoystick

SDL ISJOYSTICKVIRTUAL 687

SDL IsJoystickVirtual

Query whether or not a joystick is virtual.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_bool SDL_IsJoystickVirtual(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns SDL TRUE if the joystick is virtual, SDL FALSE otherwise.

Version

This function is available since SDL 3.0.0.

688 CHAPTER 1. SDL FUNCTIONS

SDL islower

Report if a character is lower case.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_islower(int x);

Function Parameters

x character value to check.

Return Value

Returns non-zero if x falls within the character class, zero otherwise.

Remarks

WARNING: Regardless of system locale, this will only treat ASCII values ’a’
through ’z’ as true.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL ISMOUSEHAPTIC 689

SDL IsMouseHaptic

Query whether or not the current mouse has haptic capabilities.

Header File

Defined in SDL3/SDL haptic.h

Syntax

SDL_bool SDL_IsMouseHaptic(void);

Return Value

Returns SDL TRUE if the mouse is haptic or SDL FALSE if it isn’t.

Version

This function is available since SDL 3.0.0.

See Also

� SDL OpenHapticFromMouse

690 CHAPTER 1. SDL FUNCTIONS

SDL isprint

Report if a character is ”printable”.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_isprint(int x);

Function Parameters

x character value to check.

Return Value

Returns non-zero if x falls within the character class, zero otherwise.

Remarks

Be advised that ”printable” has a definition that goes back to text terminals
from the dawn of computing, making this a sort of special case function that
is not suitable for Unicode (or most any) text management. WARNING:
Regardless of system locale, this will only treat ASCII values ’ ’ (0x20) through
’ ’ (0x7E) as true.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL ISPUNCT 691

SDL ispunct

Report if a character is a punctuation mark.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_ispunct(int x);

Function Parameters

x character value to check.

Return Value

Returns non-zero if x falls within the character class, zero otherwise.

Remarks

WARNING: Regardless of system locale, this is equivalent to ((SDL isgraph(x))

&& (!SDL isalnum(x))).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL isgraph

� SDL isalnum

692 CHAPTER 1. SDL FUNCTIONS

SDL isspace

Report if a character is whitespace.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_isspace(int x);

Function Parameters

x character value to check.

Return Value

Returns non-zero if x falls within the character class, zero otherwise.

Remarks

WARNING: Regardless of system locale, this will only treat the following
ASCII values as true:

� space (0x20)

� tab (0x09)

� newline (0x0A)

� vertical tab (0x0B)

� form feed (0x0C)

� return (0x0D)

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL ISTABLET 693

SDL IsTablet

Query if the current device is a tablet.

Header File

Defined in SDL3/SDL system.h

Syntax

SDL_bool SDL_IsTablet(void);

Return Value

Returns SDL TRUE if the device is a tablet, SDL FALSE otherwise.

Remarks

If SDL can’t determine this, it will return SDL FALSE.

Version

This function is available since SDL 3.0.0.

694 CHAPTER 1. SDL FUNCTIONS

SDL isupper

Report if a character is upper case.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_isupper(int x);

Function Parameters

x character value to check.

Return Value

Returns non-zero if x falls within the character class, zero otherwise.

Remarks

WARNING: Regardless of system locale, this will only treat ASCII values ’A’
through ’Z’ as true.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL ISXDIGIT 695

SDL isxdigit

Report if a character is a hexadecimal digit.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_isxdigit(int x);

Function Parameters

x character value to check.

Return Value

Returns non-zero if x falls within the character class, zero otherwise.

Remarks

WARNING: Regardless of system locale, this will only treat ASCII values ’A’
through ’F’, ’a’ through ’f’, and ’0’ through ’9’, as true.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

696 CHAPTER 1. SDL FUNCTIONS

SDL JoystickConnected

Get the status of a specified joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_bool SDL_JoystickConnected(SDL_Joystick *joystick);

Function Parameters

joystick the joystick to query

Return Value

Returns SDL TRUE if the joystick has been opened, SDL FALSE if it has not;
call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

SDL JOYSTICKEVENTSENABLED 697

SDL JoystickEventsEnabled

Query the state of joystick event processing.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_bool SDL_JoystickEventsEnabled(void);

Return Value

Returns SDL TRUE if joystick events are being processed, SDL FALSE other-
wise.

Remarks

If joystick events are disabled, you must call SDL UpdateJoysticks() yourself
and check the state of the joystick when you want joystick information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetJoystickEventsEnabled

698 CHAPTER 1. SDL FUNCTIONS

SDL LinuxSetThreadPriority

Sets the UNIX nice value for a thread.

Header File

Defined in SDL3/SDL system.h

Syntax

int SDL_LinuxSetThreadPriority(Sint64 threadID, int priority);

Function Parameters

threadID the Unix thread ID to change priority of.
priority The new, Unix-specific, priority value.

Return Value

Returns 0 on success, or -1 on error.

Remarks

This uses setpriority() if possible, and RealtimeKit if available.

Version

This function is available since SDL 3.0.0.

SDL LINUXSETTHREADPRIORITYANDPOLICY 699

SDL LinuxSetThreadPriorityAndPolicy

Sets the priority (not nice level) and scheduling policy for a thread.

Header File

Defined in SDL3/SDL system.h

Syntax

int SDL_LinuxSetThreadPriorityAndPolicy(Sint64 threadID, int

sdlPriority, int schedPolicy);

Function Parameters

threadID The Unix thread ID to change priority of.
sdlPriority The new SDL ThreadPriority value.
schedPolicy The new scheduling policy (SCHED FIFO, SCHED RR,

SCHED OTHER, etc...)

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This uses setpriority() if possible, and RealtimeKit if available.

Version

This function is available since SDL 3.0.0.

700 CHAPTER 1. SDL FUNCTIONS

SDL LoadBMP

Load a BMP image from a file.

Header File

Defined in SDL3/SDL surface.h

Syntax

SDL_Surface* SDL_LoadBMP(const char *file);

Function Parameters

file the BMP file to load

Return Value

Returns a pointer to a new SDL Surface structure or NULL if there was an
error; call SDL GetError() for more information.

Remarks

The new surface should be freed with SDL DestroySurface(). Not doing so will
result in a memory leak.

Version

This function is available since SDL 3.0.0.

See Also

� SDL DestroySurface

� SDL LoadBMP IO

� SDL SaveBMP

SDL LOADBMP IO 701

SDL LoadBMP IO

Load a BMP image from a seekable SDL data stream.

Header File

Defined in SDL3/SDL surface.h

Syntax

SDL_Surface* SDL_LoadBMP_IO(SDL_IOStream *src, SDL_bool closeio);

Function Parameters

src the data stream for the surface
closeio if SDL TRUE, calls SDL CloseIO() on src before returning,

even in the case of an error

Return Value

Returns a pointer to a new SDL Surface structure or NULL if there was an
error; call SDL GetError() for more information.

Remarks

The new surface should be freed with SDL DestroySurface(). Not doing so will
result in a memory leak.

Version

This function is available since SDL 3.0.0.

See Also

� SDL DestroySurface

� SDL LoadBMP

� SDL SaveBMP IO

702 CHAPTER 1. SDL FUNCTIONS

SDL LoadFile

Load all the data from a file path.

Header File

Defined in SDL3/SDL iostream.h

Syntax

void* SDL_LoadFile(const char *file, size_t *datasize);

Function Parameters

file the path to read all available data from
datasize if not NULL, will store the number of bytes read

Return Value

Returns the data, or NULL if there was an error.

Remarks

The data is allocated with a zero byte at the end (null terminated) for conve-
nience. This extra byte is not included in the value reported via datasize.

The data should be freed with SDL free().

Version

This function is available since SDL 3.0.0.

See Also

� SDL LoadFile IO

SDL LOADFILE IO 703

SDL LoadFile IO

Load all the data from an SDL data stream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

void* SDL_LoadFile_IO(SDL_IOStream *src, size_t *datasize, SDL_bool

closeio);

Function Parameters

src the SDL IOStream to read all available data from
datasize if not NULL, will store the number of bytes read
closeio if SDL TRUE, calls SDL CloseIO() on src before returning,

even in the case of an error

Return Value

Returns the data, or NULL if there was an error.

Remarks

The data is allocated with a zero byte at the end (null terminated) for conve-
nience. This extra byte is not included in the value reported via datasize.

The data should be freed with SDL free().

Version

This function is available since SDL 3.0.0.

See Also

� SDL LoadFile

704 CHAPTER 1. SDL FUNCTIONS

SDL LoadFunction

Look up the address of the named function in a shared object.

Header File

Defined in SDL3/SDL loadso.h

Syntax

SDL_FunctionPointer SDL_LoadFunction(void *handle, const char *name);

Function Parameters

handle a valid shared object handle returned by SDL LoadObject()
name the name of the function to look up

Return Value

Returns a pointer to the function or NULL if there was an error; call SDL GetError()
for more information.

Remarks

This function pointer is no longer valid after calling SDL UnloadObject().
This function can only look up C function names. Other languages may

have name mangling and intrinsic language support that varies from compiler
to compiler.

Make sure you declare your function pointers with the same calling conven-
tion as the actual library function. Your code will crash mysteriously if you do
not do this.

If the requested function doesn’t exist, NULL is returned.

Code Examples

/* Variable declaration */

void* myHandle = NULL;

const char* myFunctionName = "myFancyFunction";

void (*myFancyFunction)(int anInt);

/* Dynamically load mylib.so */

myHandle = SDL_LoadObject("mylib.so");

/* Load the exported function from mylib.so

* The exported function has the following prototype

SDL LOADFUNCTION 705

* void myFancyFunction(int anInt);

*/

myFancyFunction = (void (*)(int))SDL_LoadFunction(myHandle,

myFunctionName);

/* Call myFancyFunction with a random integer */

if (myFancyFunction != NULL) {

myFancyFunction(15);

} else {

/* Error handling here */

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL LoadObject

706 CHAPTER 1. SDL FUNCTIONS

SDL LoadObject

Dynamically load a shared object.

Header File

Defined in SDL3/SDL loadso.h

Syntax

void* SDL_LoadObject(const char *sofile);

Function Parameters

sofile a system-dependent name of the object file

Return Value

Returns an opaque pointer to the object handle or NULL if there was an error;
call SDL GetError() for more information.

Code Examples

/* Dynamically load mylib.so */

SDL_LoadObject("mylib.so");

Version

This function is available since SDL 3.0.0.

See Also

� SDL LoadFunction

� SDL UnloadObject

SDL LOADWAV 707

SDL LoadWAV

Loads a WAV from a file path.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_LoadWAV(const char *path, SDL_AudioSpec * spec,

Uint8 ** audio_buf, Uint32 * audio_len);

Function Parameters

path The file path of the WAV file to open.
spec A pointer to an SDL AudioSpec that will be set to the

WAVE data’s format details on successful return.
audio buf A pointer filled with the audio data, allocated by the func-

tion.
audio len A pointer filled with the length of the audio data buffer in

bytes

Return Value

Returns 0 on success. audio buf will be filled with a pointer to an allocated
buffer containing the audio data, and audio len is filled with the length of that
audio buffer in bytes.

This function returns -1 if the .WAV file cannot be opened, uses an unknown
data format, or is corrupt; call SDL GetError() for more information.

When the application is done with the data returned in audio buf, it should
call SDL free() to dispose of it.

Remarks

This is a convenience function that is effectively the same as:

SDL_LoadWAV_IO(SDL_IOFromFile(path, "rb"), 1, spec, audio_buf,

audio_len);

Thread Safety

It is safe to call this function from any thread.

708 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

See Also

� SDL free

� SDL LoadWAV IO

SDL LOADWAV IO 709

SDL LoadWAV IO

Load the audio data of a WAVE file into memory.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_LoadWAV_IO(SDL_IOStream * src, SDL_bool closeio,

SDL_AudioSpec * spec, Uint8 ** audio_buf,

Uint32 * audio_len);

Function Parameters

src The data source for the WAVE data
closeio If SDL TRUE, calls SDL CloseIO() on src before returning,

even in the case of an error
spec A pointer to an SDL AudioSpec that will be set to the

WAVE data’s format details on successful return
audio buf A pointer filled with the audio data, allocated by the func-

tion
audio len A pointer filled with the length of the audio data buffer in

bytes

Return Value

Returns 0 on success. audio buf will be filled with a pointer to an allocated
buffer containing the audio data, and audio len is filled with the length of that
audio buffer in bytes.

This function returns -1 if the .WAV file cannot be opened, uses an unknown
data format, or is corrupt; call SDL GetError() for more information.

When the application is done with the data returned in audio buf, it should
call SDL free() to dispose of it.

Remarks

Loading a WAVE file requires src, spec, audio buf and audio len to be valid
pointers. The entire data portion of the file is then loaded into memory and
decoded if necessary.

Supported formats are RIFF WAVE files with the formats PCM (8, 16, 24,
and 32 bits), IEEE Float (32 bits), Microsoft ADPCM and IMA ADPCM (4
bits), and A-law and mu-law (8 bits). Other formats are currently unsupported
and cause an error.

710 CHAPTER 1. SDL FUNCTIONS

If this function succeeds, the return value is zero and the pointer to the audio
data allocated by the function is written to audio buf and its length in bytes
to audio len. The SDL AudioSpec members freq, channels, and format are
set to the values of the audio data in the buffer.

It’s necessary to use SDL free() to free the audio data returned in audio buf

when it is no longer used.
Because of the underspecification of the .WAV format, there are many prob-

lematic files in the wild that cause issues with strict decoders. To provide
compatibility with these files, this decoder is lenient in regards to the trun-
cation of the file, the fact chunk, and the size of the RIFF chunk. The hints
SDL HINT WAVE RIFF CHUNK SIZE, SDL HINT WAVE TRUNCATION, and SDL HINT WAVE FACT CHUNK

can be used to tune the behavior of the loading process.
Any file that is invalid (due to truncation, corruption, or wrong values in

the headers), too big, or unsupported causes an error. Additionally, any critical
I/O error from the data source will terminate the loading process with an error.
The function returns NULL on error and in all cases (with the exception of src
being NULL), an appropriate error message will be set.

It is required that the data source supports seeking.
Example:

SDL_LoadWAV_IO(SDL_IOFromFile("sample.wav", "rb"), 1, &spec, &buf, &len);

Note that the SDL LoadWAV function does this same thing for you, but in
a less messy way:

SDL_LoadWAV("sample.wav", &spec, &buf, &len);

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL free

� SDL LoadWAV

SDL LOCKAUDIOSTREAM 711

SDL LockAudioStream

Lock an audio stream for serialized access.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_LockAudioStream(SDL_AudioStream *stream);

Function Parameters

stream The audio stream to lock.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Each SDL AudioStream has an internal mutex it uses to protect its data struc-
tures from threading conflicts. This function allows an app to lock that mutex,
which could be useful if registering callbacks on this stream.

One does not need to lock a stream to use in it most cases, as the stream
manages this lock internally. However, this lock is held during callbacks, which
may run from arbitrary threads at any time, so if an app needs to protect shared
data during those callbacks, locking the stream guarantees that the callback is
not running while the lock is held.

As this is just a wrapper over SDL LockMutex for an internal lock; it has
all the same attributes (recursive locks are allowed, etc).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL UnlockAudioStream

712 CHAPTER 1. SDL FUNCTIONS

SDL LockJoysticks

Locking for atomic access to the joystick API.

Header File

Defined in SDL3/SDL joystick.h

Syntax

void SDL_LockJoysticks(void) SDL_ACQUIRE(SDL_joystick_lock);

Remarks

The SDL joystick functions are thread-safe, however you can lock the joysticks
while processing to guarantee that the joystick list won’t change and joystick
and gamepad events will not be delivered.

Version

This function is available since SDL 3.0.0.

SDL LOCKMUTEX 713

SDL LockMutex

Lock the mutex.

Header File

Defined in SDL3/SDL mutex.h

Syntax

void SDL_LockMutex(SDL_Mutex *mutex) SDL_ACQUIRE(mutex);

Function Parameters

mutex the mutex to lock

Remarks

This will block until the mutex is available, which is to say it is in the unlocked
state and the OS has chosen the caller as the next thread to lock it. Of all
threads waiting to lock the mutex, only one may do so at a time.

It is legal for the owning thread to lock an already-locked mutex. It must
unlock it the same number of times before it is actually made available for other
threads in the system (this is known as a ”recursive mutex”).

This function does not fail; if mutex is NULL, it will return immediately
having locked nothing. If the mutex is valid, this function will always block
until it can lock the mutex, and return with it locked.

Code Examples

¡!– # Begin Mutex Example –¿

int status;

SDL_Mutex *mutex;

mutex = SDL_CreateMutex();

if (!mutex) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn’t create mutex\n");

return 1;

}

SDL_LockMutex(mutex);

SDL_Log("Locked mutex");

SDL_UnlockMutex(mutex);

714 CHAPTER 1. SDL FUNCTIONS

SDL_DestroyMutex(mutex);

¡!– # End Mutex Example –¿

Version

This function is available since SDL 3.0.0.

See Also

� SDL TryLockMutex

� SDL UnlockMutex

SDL LOCKPROPERTIES 715

SDL LockProperties

Lock a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

int SDL_LockProperties(SDL_PropertiesID props);

Function Parameters

props the properties to lock

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Obtain a multi-threaded lock for these properties. Other threads will wait
while trying to lock these properties until they are unlocked. Properties must
be unlocked before they are destroyed.

The lock is automatically taken when setting individual properties, this func-
tion is only needed when you want to set several properties atomically or want
to guarantee that properties being queried aren’t freed in another thread.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL UnlockProperties

716 CHAPTER 1. SDL FUNCTIONS

SDL LockRWLockForReading

Lock the read/write lock for read only operations.

Header File

Defined in SDL3/SDL mutex.h

Syntax

void SDL_LockRWLockForReading(SDL_RWLock *rwlock)

SDL_ACQUIRE_SHARED(rwlock);

Function Parameters

rwlock the read/write lock to lock

Remarks

This will block until the rwlock is available, which is to say it is not locked
for writing by any other thread. Of all threads waiting to lock the rwlock, all
may do so at the same time as long as they are requesting read-only access; if
a thread wants to lock for writing, only one may do so at a time, and no other
threads, read-only or not, may hold the lock at the same time.

It is legal for the owning thread to lock an already-locked rwlock for reading.
It must unlock it the same number of times before it is actually made available
for other threads in the system (this is known as a ”recursive rwlock”).

Note that locking for writing is not recursive (this is only available to read-
only locks).

It is illegal to request a read-only lock from a thread that already holds the
write lock. Doing so results in undefined behavior. Unlock the write lock before
requesting a read-only lock. (But, of course, if you have the write lock, you
don’t need further locks to read in any case.)

This function does not fail; if rwlock is NULL, it will return immediately
having locked nothing. If the rwlock is valid, this function will always block
until it can lock the mutex, and return with it locked.

Version

This function is available since SDL 3.0.0.

See Also

� SDL LockRWLockForWriting

SDL LOCKRWLOCKFORREADING 717

� SDL TryLockRWLockForReading

� SDL UnlockRWLock

718 CHAPTER 1. SDL FUNCTIONS

SDL LockRWLockForWriting

Lock the read/write lock for write operations.

Header File

Defined in SDL3/SDL mutex.h

Syntax

void SDL_LockRWLockForWriting(SDL_RWLock *rwlock) SDL_ACQUIRE(rwlock);

Function Parameters

rwlock the read/write lock to lock

Remarks

This will block until the rwlock is available, which is to say it is not locked for
reading or writing by any other thread. Only one thread may hold the lock
when it requests write access; all other threads, whether they also want to write
or only want read-only access, must wait until the writer thread has released
the lock.

It is illegal for the owning thread to lock an already-locked rwlock for writing
(read-only may be locked recursively, writing can not). Doing so results in
undefined behavior.

It is illegal to request a write lock from a thread that already holds a read-
only lock. Doing so results in undefined behavior. Unlock the read-only lock
before requesting a write lock.

This function does not fail; if rwlock is NULL, it will return immediately
having locked nothing. If the rwlock is valid, this function will always block
until it can lock the mutex, and return with it locked.

Version

This function is available since SDL 3.0.0.

See Also

� SDL LockRWLockForReading

� SDL TryLockRWLockForWriting

� SDL UnlockRWLock

SDL LOCKSPINLOCK 719

SDL LockSpinlock

Lock a spin lock by setting it to a non-zero value.

Header File

Defined in SDL3/SDL atomic.h

Syntax

void SDL_LockSpinlock(SDL_SpinLock *lock);

Function Parameters

lock a pointer to a lock variable

Remarks

Please note that spinlocks are dangerous if you don’t know what
you’re doing. Please be careful using any sort of spinlock!

Version

This function is available since SDL 3.0.0.

See Also

� SDL TryLockSpinlock

� SDL UnlockSpinlock

720 CHAPTER 1. SDL FUNCTIONS

SDL LockSurface

Set up a surface for directly accessing the pixels.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_LockSurface(SDL_Surface *surface);

Function Parameters

surface the SDL Surface structure to be locked

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Between calls to SDL LockSurface() / SDL UnlockSurface(), you can write to
and read from surface->pixels, using the pixel format stored in surface->format.
Once you are done accessing the surface, you should use SDL UnlockSurface()
to release it.

Not all surfaces require locking. If SDL MUSTLOCK(surface) evaluates to 0,
then you can read and write to the surface at any time, and the pixel format of
the surface will not change.

Code Examples

void modify_surface(SDL_Surface *surface) {

/* Make the pixels pointer valid in the surface */

SDL_LockSurface(surface);

/* Surface is locked */

/* Direct pixel access on surface here */

SDL_UnlockSurface(surface);

/* Surface is now unlocked */

SDL LOCKSURFACE 721

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL MUSTLOCK

� SDL UnlockSurface

722 CHAPTER 1. SDL FUNCTIONS

SDL LockTexture

Lock a portion of the texture for write-only pixel access.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_LockTexture(SDL_Texture *texture,

const SDL_Rect *rect,

void **pixels, int *pitch);

Function Parameters

texture the texture to lock for access, which was created with
SDL TEXTUREACCESS STREAMING

rect an SDL Rect structure representing the area to lock for ac-
cess; NULL to lock the entire texture

pixels this is filled in with a pointer to the locked pixels, appropri-
ately offset by the locked area

pitch this is filled in with the pitch of the locked pixels; the pitch
is the length of one row in bytes

Return Value

Returns 0 on success or a negative error code if the texture is not valid or was
not created with SDL TEXTUREACCESS STREAMING; call SDL GetError() for more
information.

Remarks

As an optimization, the pixels made available for editing don’t necessarily con-
tain the old texture data. This is a write-only operation, and if you need to
keep a copy of the texture data you should do that at the application level.

You must use SDL UnlockTexture() to unlock the pixels and apply any
changes.

Version

This function is available since SDL 3.0.0.

SDL LOCKTEXTURE 723

See Also

� SDL LockTextureToSurface

� SDL UnlockTexture

724 CHAPTER 1. SDL FUNCTIONS

SDL LockTextureToSurface

Lock a portion of the texture for write-only pixel access, and expose it as a
SDL surface.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_LockTextureToSurface(SDL_Texture *texture,

const SDL_Rect *rect,

SDL_Surface **surface);

Function Parameters

texture the texture to lock for access, which must be created with
SDL TEXTUREACCESS STREAMING

rect a pointer to the rectangle to lock for access. If the rect is
NULL, the entire texture will be locked

surface this is filled in with an SDL surface representing the locked
area

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Besides providing an SDL Surface instead of raw pixel data, this function oper-
ates like SDL LockTexture.

As an optimization, the pixels made available for editing don’t necessarily
contain the old texture data. This is a write-only operation, and if you need to
keep a copy of the texture data you should do that at the application level.

You must use SDL UnlockTexture() to unlock the pixels and apply any
changes.

The returned surface is freed internally after calling SDL UnlockTexture()
or SDL DestroyTexture(). The caller should not free it.

Version

This function is available since SDL 3.0.0.

SDL LOCKTEXTURETOSURFACE 725

See Also

� SDL LockTexture

� SDL UnlockTexture

726 CHAPTER 1. SDL FUNCTIONS

SDL log

Compute the natural logarithm of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_log(double x);

Function Parameters

x floating point value. Must be greater than 0.

Return Value

Returns the natural logarithm of x

Remarks

Domain: 0 < x <= INF

Range: -INF <= y <= INF

It is an error for x to be less than or equal to 0.
This function operates on double-precision floating point values, use SDL logf

for single-precision floats.
This function may use a different approximation across different versions,

platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL logf

� SDL log10

� SDL exp

SDL LOG 727

SDL Log

Log a message with SDL LOG CATEGORY APPLICATION and SDL LOG PRIORITY INFO.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_Log(SDL_PRINTF_FORMAT_STRING const char *fmt, ...)

SDL_PRINTF_VARARG_FUNC(1);

Function Parameters

fmt a printf() style message format string
... additional parameters matching

Version

This function is available since SDL 3.0.0.

See Also

� SDL LogCritical

� SDL LogDebug

� SDL LogError

� SDL LogInfo

� SDL LogMessage

� SDL LogMessageV

� SDL LogVerbose

� SDL LogWarn

728 CHAPTER 1. SDL FUNCTIONS

SDL log10

Compute the base-10 logarithm of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_log10(double x);

Function Parameters

x floating point value. Must be greater than 0.

Return Value

Returns the logarithm of x

Remarks

Domain: 0 < x <= INF

Range: -INF <= y <= INF

It is an error for x to be less than or equal to 0.
This function operates on double-precision floating point values, use SDL log10f

for single-precision floats.
This function may use a different approximation across different versions,

platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL log10f

� SDL log

� SDL pow

SDL LOG10F 729

SDL log10f

Compute the base-10 logarithm of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_log10f(float x);

Function Parameters

x floating point value. Must be greater than 0.

Return Value

Returns the logarithm of x

Remarks

Domain: 0 < x <= INF

Range: -INF <= y <= INF

It is an error for x to be less than or equal to 0.
This function operates on single-precision floating point values, use SDL log10

for double-precision floats.
This function may use a different approximation across different versions,

platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL log10

� SDL logf

� SDL powf

730 CHAPTER 1. SDL FUNCTIONS

SDL LogCritical

Log a message with SDL LOG PRIORITY CRITICAL.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_LogCritical(int category, SDL_PRINTF_FORMAT_STRING const char

*fmt, ...) SDL_PRINTF_VARARG_FUNC(2);

Function Parameters

category the category of the message
fmt a printf() style message format string
... additional parameters matching

Version

This function is available since SDL 3.0.0.

See Also

� SDL Log

� SDL LogDebug

� SDL LogError

� SDL LogInfo

� SDL LogMessage

� SDL LogMessageV

� SDL LogVerbose

� SDL LogWarn

SDL LOGDEBUG 731

SDL LogDebug

Log a message with SDL LOG PRIORITY DEBUG.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_LogDebug(int category, SDL_PRINTF_FORMAT_STRING const char

*fmt, ...) SDL_PRINTF_VARARG_FUNC(2);

Function Parameters

category the category of the message
fmt a printf() style message format string
... additional parameters matching

Version

This function is available since SDL 3.0.0.

See Also

� SDL Log

� SDL LogCritical

� SDL LogError

� SDL LogInfo

� SDL LogMessage

� SDL LogMessageV

� SDL LogVerbose

� SDL LogWarn

732 CHAPTER 1. SDL FUNCTIONS

SDL LogError

Log a message with SDL LOG PRIORITY ERROR.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_LogError(int category, SDL_PRINTF_FORMAT_STRING const char

*fmt, ...) SDL_PRINTF_VARARG_FUNC(2);

Function Parameters

category the category of the message
fmt a printf() style message format string
... additional parameters matching

Version

This function is available since SDL 3.0.0.

See Also

� SDL Log

� SDL LogCritical

� SDL LogDebug

� SDL LogInfo

� SDL LogMessage

� SDL LogMessageV

� SDL LogVerbose

� SDL LogWarn

SDL LOGF 733

SDL logf

Compute the natural logarithm of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_logf(float x);

Function Parameters

x floating point value. Must be greater than 0.

Return Value

Returns the natural logarithm of x

Remarks

Domain: 0 < x <= INF

Range: -INF <= y <= INF

It is an error for x to be less than or equal to 0.
This function operates on single-precision floating point values, use SDL log

for double-precision floats.
This function may use a different approximation across different versions,

platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL log

� SDL expf

734 CHAPTER 1. SDL FUNCTIONS

SDL LogGetPriority

Get the priority of a particular log category.

Header File

Defined in SDL3/SDL log.h

Syntax

SDL_LogPriority SDL_LogGetPriority(int category);

Function Parameters

category the category to query

Return Value

Returns the SDL LogPriority for the requested category

Version

This function is available since SDL 3.0.0.

See Also

� SDL LogSetPriority

SDL LOGINFO 735

SDL LogInfo

Log a message with SDL LOG PRIORITY INFO.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_LogInfo(int category, SDL_PRINTF_FORMAT_STRING const char *fmt,

...) SDL_PRINTF_VARARG_FUNC(2);

Function Parameters

category the category of the message
fmt a printf() style message format string
... additional parameters matching

Version

This function is available since SDL 3.0.0.

See Also

� SDL Log

� SDL LogCritical

� SDL LogDebug

� SDL LogError

� SDL LogMessage

� SDL LogMessageV

� SDL LogVerbose

� SDL LogWarn

736 CHAPTER 1. SDL FUNCTIONS

SDL LogMessage

Log a message with the specified category and priority.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_LogMessage(int category,

SDL_LogPriority priority,

SDL_PRINTF_FORMAT_STRING const char *fmt, ...)

SDL_PRINTF_VARARG_FUNC(3);

Function Parameters

category the category of the message
priority the priority of the message
fmt a printf() style message format string
... additional parameters matching

Version

This function is available since SDL 3.0.0.

See Also

� SDL Log

� SDL LogCritical

� SDL LogDebug

� SDL LogError

� SDL LogInfo

� SDL LogMessageV

� SDL LogVerbose

� SDL LogWarn

SDL LOGMESSAGEV 737

SDL LogMessageV

Log a message with the specified category and priority.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_LogMessageV(int category,

SDL_LogPriority priority,

SDL_PRINTF_FORMAT_STRING const char *fmt, va_list ap)

SDL_PRINTF_VARARG_FUNCV(3);

Function Parameters

category the category of the message
priority the priority of the message
fmt a printf() style message format string
ap a variable argument list

Version

This function is available since SDL 3.0.0.

See Also

� SDL Log

� SDL LogCritical

� SDL LogDebug

� SDL LogError

� SDL LogInfo

� SDL LogMessage

� SDL LogVerbose

� SDL LogWarn

738 CHAPTER 1. SDL FUNCTIONS

SDL LogResetPriorities

Reset all priorities to default.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_LogResetPriorities(void);

Remarks

This is called by SDL Quit().

Version

This function is available since SDL 3.0.0.

See Also

� SDL LogSetAllPriority

� SDL LogSetPriority

SDL LOGSETALLPRIORITY 739

SDL LogSetAllPriority

Set the priority of all log categories.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_LogSetAllPriority(SDL_LogPriority priority);

Function Parameters

priority the SDL LogPriority to assign

Version

This function is available since SDL 3.0.0.

See Also

� SDL LogResetPriorities

� SDL LogSetPriority

740 CHAPTER 1. SDL FUNCTIONS

SDL LogSetPriority

Set the priority of a particular log category.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_LogSetPriority(int category,

SDL_LogPriority priority);

Function Parameters

category the category to assign a priority to
priority the SDL LogPriority to assign

Version

This function is available since SDL 3.0.0.

See Also

� SDL LogGetPriority

� SDL LogResetPriorities

� SDL LogSetAllPriority

SDL LOGVERBOSE 741

SDL LogVerbose

Log a message with SDL LOG PRIORITY VERBOSE.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_LogVerbose(int category, SDL_PRINTF_FORMAT_STRING const char

*fmt, ...) SDL_PRINTF_VARARG_FUNC(2);

Function Parameters

category the category of the message
fmt a printf() style message format string
... additional parameters matching

Version

This function is available since SDL 3.0.0.

See Also

� SDL Log

� SDL LogCritical

� SDL LogDebug

� SDL LogError

� SDL LogInfo

� SDL LogMessage

� SDL LogMessageV

� SDL LogWarn

742 CHAPTER 1. SDL FUNCTIONS

SDL LogWarn

Log a message with SDL LOG PRIORITY WARN.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_LogWarn(int category, SDL_PRINTF_FORMAT_STRING const char *fmt,

...) SDL_PRINTF_VARARG_FUNC(2);

Function Parameters

category the category of the message
fmt a printf() style message format string
... additional parameters matching

Version

This function is available since SDL 3.0.0.

See Also

� SDL Log

� SDL LogCritical

� SDL LogDebug

� SDL LogError

� SDL LogInfo

� SDL LogMessage

� SDL LogMessageV

� SDL LogVerbose

SDL LROUND 743

SDL lround

Round x to the nearest integer representable as a long

Header File

Defined in SDL3/SDL stdinc.h

Syntax

long SDL_lround(double x);

Function Parameters

x floating point value

Return Value

Returns the nearest integer to x

Remarks

Rounds x to the nearest integer. Values halfway between integers will be
rounded away from zero.

Domain: -INF <= x <= INF

Range: MIN LONG <= y <= MAX LONG

This function operates on double-precision floating point values, use SDL lround
for single-precision floats. To get the result as a floating-point type, use SDL round.

Version

This function is available since SDL 3.0.0.

See Also

� SDL lroundf

� SDL round

� SDL floor

� SDL ceil

� SDL trunc

744 CHAPTER 1. SDL FUNCTIONS

SDL lroundf

Round x to the nearest integer representable as a long

Header File

Defined in SDL3/SDL stdinc.h

Syntax

long SDL_lroundf(float x);

Function Parameters

x floating point value

Return Value

Returns the nearest integer to x

Remarks

Rounds x to the nearest integer. Values halfway between integers will be
rounded away from zero.

Domain: -INF <= x <= INF

Range: MIN LONG <= y <= MAX LONG

This function operates on single-precision floating point values, use SDL lroundf
for double-precision floats. To get the result as a floating-point type, use
SDL roundf,

Version

This function is available since SDL 3.0.0.

See Also

� SDL lround

� SDL roundf

� SDL floorf

� SDL ceilf

� SDL truncf

SDL MAIN 745

SDL main

An app-supplied function for program entry.

Header File

Defined in SDL3/SDL main.h

Syntax

int SDL_main(int argc, char *argv[]);

Remarks

Apps do not directly create this function; they should create a standard ANSI-C
main function instead. If SDL needs to insert some startup code before main

runs, or the platform doesn’t actually use a function called ”main”, SDL will
do some macro magic to redefine main to SDL main and provide its own main.

Apps should include SDL main.h in the same file as their main function, and
they should not use that symbol for anything else in that file, as it might get
redefined.

This function is only provided by the app if it isn’t using SDL MAIN USE CALLBACKS.
Program startup is a surprisingly complex topic. Please see [README/main-

functions](README/main-functions), (or docs/README-main-functions.md
in the source tree) for a more detailed explanation.

Thread Safety

This is the program entry point.

Version

This function is available since SDL 3.0.0.

746 CHAPTER 1. SDL FUNCTIONS

SDL MapRGB

Map an RGB triple to an opaque pixel value for a given pixel format.

Header File

Defined in SDL3/SDL pixels.h

Syntax

Uint32 SDL_MapRGB(const SDL_PixelFormat * format,

Uint8 r, Uint8 g, Uint8 b);

Function Parameters

format an SDL PixelFormat structure describing the pixel format
r the red component of the pixel in the range 0-255
g the green component of the pixel in the range 0-255
b the blue component of the pixel in the range 0-255

Return Value

Returns a pixel value

Remarks

This function maps the RGB color value to the specified pixel format and returns
the pixel value best approximating the given RGB color value for the given pixel
format.

If the format has a palette (8-bit) the index of the closest matching color in
the palette will be returned.

If the specified pixel format has an alpha component it will be returned as
all 1 bits (fully opaque).

If the pixel format bpp (color depth) is less than 32-bpp then the unused
upper bits of the return value can safely be ignored (e.g., with a 16-bpp format
the return value can be assigned to a Uint16, and similarly a Uint8 for an 8-bpp
format).

Version

This function is available since SDL 3.0.0.

SDL MAPRGB 747

See Also

� SDL GetRGB

� SDL GetRGBA

� SDL MapRGBA

748 CHAPTER 1. SDL FUNCTIONS

SDL MapRGBA

Map an RGBA quadruple to a pixel value for a given pixel format.

Header File

Defined in SDL3/SDL pixels.h

Syntax

Uint32 SDL_MapRGBA(const SDL_PixelFormat * format,

Uint8 r, Uint8 g, Uint8 b,

Uint8 a);

Function Parameters

format an SDL PixelFormat structure describing the format of the
pixel

r the red component of the pixel in the range 0-255
g the green component of the pixel in the range 0-255
b the blue component of the pixel in the range 0-255
a the alpha component of the pixel in the range 0-255

Return Value

Returns a pixel value

Remarks

This function maps the RGBA color value to the specified pixel format and
returns the pixel value best approximating the given RGBA color value for the
given pixel format.

If the specified pixel format has no alpha component the alpha value will be
ignored (as it will be in formats with a palette).

If the format has a palette (8-bit) the index of the closest matching color in
the palette will be returned.

If the pixel format bpp (color depth) is less than 32-bpp then the unused
upper bits of the return value can safely be ignored (e.g., with a 16-bpp format
the return value can be assigned to a Uint16, and similarly a Uint8 for an 8-bpp
format).

Version

This function is available since SDL 3.0.0.

SDL MAPRGBA 749

See Also

� SDL GetRGB

� SDL GetRGBA

� SDL MapRGB

750 CHAPTER 1. SDL FUNCTIONS

SDL MaximizeWindow

Request that the window be made as large as possible.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_MaximizeWindow(SDL_Window *window);

Function Parameters

window the window to maximize

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Non-resizable windows can’t be maximized. The window must have the SDL WINDOW RESIZABLE
flag set, or this will have no effect.

On some windowing systems this request is asynchronous and the new win-
dow state may not have have been applied immediately upon the return of this
function. If an immediate change is required, call SDL SyncWindow() to block
until the changes have taken effect.

When the window state changes, an SDL EVENT WINDOW MAXIMIZED
event will be emitted. Note that, as this is just a request, the windowing system
can deny the state change.

When maximizing a window, whether the constraints set via SDL SetWindowMaximumSize()
are honored depends on the policy of the window manager. Win32 and macOS
enforce the constraints when maximizing, while X11 and Wayland window man-
agers may vary.

Version

This function is available since SDL 3.0.0.

SDL MAXIMIZEWINDOW 751

See Also

� SDL MinimizeWindow

� SDL RestoreWindow

� SDL SyncWindow

752 CHAPTER 1. SDL FUNCTIONS

SDL MemoryBarrierAcquireFunction

Insert a memory acquire barrier.

Header File

Defined in SDL3/SDL atomic.h

Syntax

void SDL_MemoryBarrierAcquireFunction(void);

Remarks

Please refer to SDL MemoryBarrierReleaseFunction for the details!

Thread Safety

Obviously this function is safe to use from any thread at any time, but if you
find yourself needing this, you are probably dealing with some very sensitive
code; be careful!

Version

This function is available since SDL 3.0.0.

See Also

� SDL MemoryBarrierReleaseFunction

SDL MEMORYBARRIERRELEASEFUNCTION 753

SDL MemoryBarrierReleaseFunction

Insert a memory release barrier.

Header File

Defined in SDL3/SDL atomic.h

Syntax

void SDL_MemoryBarrierReleaseFunction(void);

Remarks

Memory barriers are designed to prevent reads and writes from being reordered
by the compiler and being seen out of order on multi-core CPUs.

A typical pattern would be for thread A to write some data and a flag, and
for thread B to read the flag and get the data. In this case you would insert
a release barrier between writing the data and the flag, guaranteeing that the
data write completes no later than the flag is written, and you would insert an
acquire barrier between reading the flag and reading the data, to ensure that
all the reads associated with the flag have completed.

In this pattern you should always see a release barrier paired with an acquire
barrier and you should gate the data reads/writes with a single flag variable.

For more information on these semantics, take a look at the blog post:
http://preshing.com/20120913/acquire-and-release-semantics

Thread Safety

Obviously this macro is safe to use from any thread at any time, but if you find
yourself needing this, you are probably dealing with some very sensitive code;
be careful!

Version

This function is available since SDL 3.0.0.

754 CHAPTER 1. SDL FUNCTIONS

SDL Metal CreateView

Create a CAMetalLayer-backed NSView/UIView and attach it to the specified
window.

Header File

Defined in SDL3/SDL metal.h

Syntax

SDL_MetalView SDL_Metal_CreateView(SDL_Window * window);

Function Parameters

window the window

Return Value

Returns handle NSView or UIView

Remarks

On macOS, this does not associate a MTLDevice with the CAMetalLayer on
its own. It is up to user code to do that.

The returned handle can be casted directly to a NSView or UIView. To
access the backing CAMetalLayer, call SDL Metal GetLayer().

Version

This function is available since SDL 3.0.0.

See Also

� SDL Metal DestroyView

� SDL Metal GetLayer

SDL METAL DESTROYVIEW 755

SDL Metal DestroyView

Destroy an existing SDL MetalView object.

Header File

Defined in SDL3/SDL metal.h

Syntax

void SDL_Metal_DestroyView(SDL_MetalView view);

Function Parameters

view the SDL MetalView object

Remarks

This should be called before SDL DestroyWindow, if SDL Metal CreateView
was called after SDL CreateWindow.

Version

This function is available since SDL 3.0.0.

See Also

� SDL Metal CreateView

756 CHAPTER 1. SDL FUNCTIONS

SDL Metal GetLayer

Get a pointer to the backing CAMetalLayer for the given view.

Header File

Defined in SDL3/SDL metal.h

Syntax

void* SDL_Metal_GetLayer(SDL_MetalView view);

Function Parameters

view the SDL MetalView object

Return Value

Returns a pointer

Version

This function is available since SDL 3.0.0.

SDL MINIMIZEWINDOW 757

SDL MinimizeWindow

Request that the window be minimized to an iconic representation.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_MinimizeWindow(SDL_Window *window);

Function Parameters

window the window to minimize

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

On some windowing systems this request is asynchronous and the new window
state may not have have been applied immediately upon the return of this
function. If an immediate change is required, call SDL SyncWindow() to block
until the changes have taken effect.

When the window state changes, an SDL EVENT WINDOW MINIMIZED
event will be emitted. Note that, as this is just a request, the windowing system
can deny the state change.

Version

This function is available since SDL 3.0.0.

See Also

� SDL MaximizeWindow

� SDL RestoreWindow

� SDL SyncWindow

758 CHAPTER 1. SDL FUNCTIONS

SDL MixAudioFormat

Mix audio data in a specified format.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_MixAudioFormat(Uint8 * dst,

const Uint8 * src,

SDL_AudioFormat format,

Uint32 len, int volume);

Function Parameters

dst the destination for the mixed audio
src the source audio buffer to be mixed
format the SDL AudioFormat structure representing the desired

audio format
len the length of the audio buffer in bytes
volume ranges from 0 - 128, and should be set to

SDL MIX MAXVOLUME for full audio volume

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This takes an audio buffer src of len bytes of format data and mixes it into
dst, performing addition, volume adjustment, and overflow clipping. The buffer
pointed to by dst must also be len bytes of format data.

This is provided for convenience – you can mix your own audio data.
Do not use this function for mixing together more than two streams of sample

data. The output from repeated application of this function may be distorted
by clipping, because there is no accumulator with greater range than the input
(not to mention this being an inefficient way of doing it).

It is a common misconception that this function is required to write au-
dio data to an output stream in an audio callback. While you can do that,
SDL MixAudioFormat() is really only needed when you’re mixing a single au-
dio stream with a volume adjustment.

SDL MIXAUDIOFORMAT 759

Code Examples

void MyAudioCallback(void *udata, Uint8 *stream, int len)

{

extern SDL_AudioFormat deviceFormat;

extern const Uint8 *mixData;

SDL_memset(stream, 0, len); // make sure this is silence.

// mix our audio against the silence, at 50% volume.

SDL_MixAudioFormat(stream, mixData, deviceFormat, len,

SDL_MIX_MAXVOLUME / 2);

}

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

760 CHAPTER 1. SDL FUNCTIONS

SDL modf

Split x into integer and fractional parts

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_modf(double x, double *y);

Function Parameters

x floating point value
y output pointer to store the integer part of x

Return Value

Returns the fractional part of x

Remarks

This function operates on double-precision floating point values, use SDL modff
for single-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL modff

� SDL trunc

� SDL fmod

SDL MODFF 761

SDL modff

Split x into integer and fractional parts

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_modff(float x, float *y);

Function Parameters

x floating point value
y output pointer to store the integer part of x

Return Value

Returns the fractional part of x

Remarks

This function operates on single-precision floating point values, use SDL modf
for double-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL modf

� SDL truncf

� SDL fmodf

762 CHAPTER 1. SDL FUNCTIONS

SDL MostSignificantBitIndex32

Get the index of the most significant (set) bit in a 32-bit number.

Header File

Defined in SDL3/SDL bits.h

Syntax

SDL_FORCE_INLINE int SDL_MostSignificantBitIndex32(Uint32 x);

Function Parameters

x the 32-bit value to examine

Return Value

Returns the index of the most significant bit, or -1 if the value is 0.

Remarks

Result is undefined when called with 0. This operation can also be stated as
”count leading zeroes” and ”log base 2”.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL ONAPPLICATIONDIDBECOMEACTIVE 763

SDL OnApplicationDidBecomeActive

Let iOS apps with external event handling report onApplicationDidBecomeAc-
tive.

Header File

Defined in SDL3/SDL system.h

Syntax

void SDL_OnApplicationDidBecomeActive(void);

Remarks

This functions allows iOS apps that have their own event handling to hook
into SDL to generate SDL events. This maps directly to an iOS-specific event,
but since it doesn’t do anything iOS-specific internally, it is available on all
platforms, in case it might be useful for some specific paradigm. Most apps do
not need to use this directly; SDL’s internal event code will handle all this for
windows created by SDL CreateWindow!

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

764 CHAPTER 1. SDL FUNCTIONS

SDL OnApplicationDidChangeStatusBarOrientation

Let iOS apps with external event handling report onApplicationDidChangeSta-
tusBarOrientation.

Header File

Defined in SDL3/SDL system.h

Syntax

void SDL_OnApplicationDidChangeStatusBarOrientation(void);

Remarks

This functions allows iOS apps that have their own event handling to hook
into SDL to generate SDL events. This maps directly to an iOS-specific event,
but since it doesn’t do anything iOS-specific internally, it is available on all
platforms, in case it might be useful for some specific paradigm. Most apps do
not need to use this directly; SDL’s internal event code will handle all this for
windows created by SDL CreateWindow!

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL ONAPPLICATIONDIDENTERBACKGROUND 765

SDL OnApplicationDidEnterBackground

Let iOS apps with external event handling report onApplicationDidEnterBack-
ground.

Header File

Defined in SDL3/SDL system.h

Syntax

void SDL_OnApplicationDidEnterBackground(void);

Remarks

This functions allows iOS apps that have their own event handling to hook
into SDL to generate SDL events. This maps directly to an iOS-specific event,
but since it doesn’t do anything iOS-specific internally, it is available on all
platforms, in case it might be useful for some specific paradigm. Most apps do
not need to use this directly; SDL’s internal event code will handle all this for
windows created by SDL CreateWindow!

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

766 CHAPTER 1. SDL FUNCTIONS

SDL OnApplicationDidReceiveMemoryWarning

Let iOS apps with external event handling report onApplicationDidReceive-
MemoryWarning.

Header File

Defined in SDL3/SDL system.h

Syntax

void SDL_OnApplicationDidReceiveMemoryWarning(void);

Remarks

This functions allows iOS apps that have their own event handling to hook
into SDL to generate SDL events. This maps directly to an iOS-specific event,
but since it doesn’t do anything iOS-specific internally, it is available on all
platforms, in case it might be useful for some specific paradigm. Most apps do
not need to use this directly; SDL’s internal event code will handle all this for
windows created by SDL CreateWindow!

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL ONAPPLICATIONWILLENTERFOREGROUND 767

SDL OnApplicationWillEnterForeground

Let iOS apps with external event handling report onApplicationWillEnterFore-
ground.

Header File

Defined in SDL3/SDL system.h

Syntax

void SDL_OnApplicationWillEnterForeground(void);

Remarks

This functions allows iOS apps that have their own event handling to hook
into SDL to generate SDL events. This maps directly to an iOS-specific event,
but since it doesn’t do anything iOS-specific internally, it is available on all
platforms, in case it might be useful for some specific paradigm. Most apps do
not need to use this directly; SDL’s internal event code will handle all this for
windows created by SDL CreateWindow!

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

768 CHAPTER 1. SDL FUNCTIONS

SDL OnApplicationWillResignActive

Let iOS apps with external event handling report onApplicationWillResignAc-
tive.

Header File

Defined in SDL3/SDL system.h

Syntax

void SDL_OnApplicationWillResignActive(void);

Remarks

This functions allows iOS apps that have their own event handling to hook
into SDL to generate SDL events. This maps directly to an iOS-specific event,
but since it doesn’t do anything iOS-specific internally, it is available on all
platforms, in case it might be useful for some specific paradigm. Most apps do
not need to use this directly; SDL’s internal event code will handle all this for
windows created by SDL CreateWindow!

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL ONAPPLICATIONWILLTERMINATE 769

SDL OnApplicationWillTerminate

Let iOS apps with external event handling report onApplicationWillTerminate.

Header File

Defined in SDL3/SDL system.h

Syntax

void SDL_OnApplicationWillTerminate(void);

Remarks

This functions allows iOS apps that have their own event handling to hook
into SDL to generate SDL events. This maps directly to an iOS-specific event,
but since it doesn’t do anything iOS-specific internally, it is available on all
platforms, in case it might be useful for some specific paradigm. Most apps do
not need to use this directly; SDL’s internal event code will handle all this for
windows created by SDL CreateWindow!

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

770 CHAPTER 1. SDL FUNCTIONS

SDL OpenAudioDevice

Open a specific audio device.

Header File

Defined in SDL3/SDL audio.h

Syntax

SDL_AudioDeviceID SDL_OpenAudioDevice(SDL_AudioDeviceID devid, const

SDL_AudioSpec *spec);

Function Parameters

devid the device instance id to open, or
SDL AUDIO DEVICE DEFAULT OUTPUT or
SDL AUDIO DEVICE DEFAULT CAPTURE for the
most reasonable default device.

spec the requested device configuration. Can be NULL to use
reasonable defaults.

Return Value

Returns The device ID on success, 0 on error; call SDL GetError() for more
information.

Remarks

You can open both output and capture devices through this function. Output
devices will take data from bound audio streams, mix it, and send it to the
hardware. Capture devices will feed any bound audio streams with a copy of
any incoming data.

An opened audio device starts out with no audio streams bound. To start
audio playing, bind a stream and supply audio data to it. Unlike SDL2, there is
no audio callback; you only bind audio streams and make sure they have data
flowing into them (however, you can simulate SDL2’s semantics fairly closely by
using SDL OpenAudioDeviceStream instead of this function).

If you don’t care about opening a specific device, pass a devid of either
SDL AUDIO DEVICE DEFAULT OUTPUT or SDL AUDIO DEVICE DEFAULT CAPTURE. In
this case, SDL will try to pick the most reasonable default, and may also switch
between physical devices seamlessly later, if the most reasonable default changes
during the lifetime of this opened device (user changed the default in the OS’s
system preferences, the default got unplugged so the system jumped to a new

SDL OPENAUDIODEVICE 771

default, the user plugged in headphones on a mobile device, etc). Unless you
have a good reason to choose a specific device, this is probably what you want.

You may request a specific format for the audio device, but there is no
promise the device will honor that request for several reasons. As such, it’s
only meant to be a hint as to what data your app will provide. Audio streams
will accept data in whatever format you specify and manage conversion for you
as appropriate. SDL GetAudioDeviceFormat can tell you the preferred format
for the device before opening and the actual format the device is using after
opening.

It’s legal to open the same device ID more than once; each successful open
will generate a new logical SDL AudioDeviceID that is managed separately
from others on the same physical device. This allows libraries to open a device
separately from the main app and bind its own streams without conflicting.

It is also legal to open a device ID returned by a previous call to this function;
doing so just creates another logical device on the same physical device. This
may be useful for making logical groupings of audio streams.

This function returns the opened device ID on success. This is a new, unique
SDL AudioDeviceID that represents a logical device.

Some backends might offer arbitrary devices (for example, a networked audio
protocol that can connect to an arbitrary server). For these, as a change from
SDL2, you should open a default device ID and use an SDL hint to specify the
target if you care, or otherwise let the backend figure out a reasonable default.
Most backends don’t offer anything like this, and often this would be an end
user setting an environment variable for their custom need, and not something
an application should specifically manage.

When done with an audio device, possibly at the end of the app’s life, one
should call SDL CloseAudioDevice() on the returned device id.

Code Examples

SDL_AudioSpec want;

SDL_AudioDeviceID dev;

SDL_memset(&want, 0, sizeof(want)); /* or SDL_zero(want) */

want.format = SDL_AUDIO_F32;

want.channels = 2;

want.freq = 48000;

dev = SDL_OpenAudioDevice(SDL_AUDIO_DEVICE_DEFAULT_OUTPUT, &want);

if (dev == 0) {

SDL_Log("Failed to open audio: %s", SDL_GetError());

} else {

SDL_ResumeAudioDevice(dev); /* start audio playing. */

SDL_Delay(5000); // let device play for 5 seconds

SDL_CloseAudioDevice(dev);

}

772 CHAPTER 1. SDL FUNCTIONS

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseAudioDevice

� SDL GetAudioDeviceFormat

SDL OPENAUDIODEVICESTREAM 773

SDL OpenAudioDeviceStream

Convenience function for straightforward audio init for the common case.

Header File

Defined in SDL3/SDL audio.h

Syntax

SDL_AudioStream* SDL_OpenAudioDeviceStream(SDL_AudioDeviceID devid,

const SDL_AudioSpec *spec, SDL_AudioStreamCallback callback, void

*userdata);

Function Parameters

devid an audio device to open, or
SDL AUDIO DEVICE DEFAULT OUTPUT or
SDL AUDIO DEVICE DEFAULT CAPTURE.

spec the audio stream’s data format. Required.
callback A callback where the app will provide new data for playback,

or receive new data for capture. Can be NULL, in which
case the app will need to call SDL PutAudioStreamData or
SDL GetAudioStreamData as necessary.

userdata App-controlled pointer passed to callback. Can be NULL.
Ignored if callback is NULL.

Return Value

Returns an audio stream on success, ready to use. NULL on error; call SDL GetError()
for more information. When done with this stream, call SDL DestroyAudioStream
to free resources and close the device.

Remarks

If all your app intends to do is provide a single source of PCM audio, this
function allows you to do all your audio setup in a single call.

This is also intended to be a clean means to migrate apps from SDL2.
This function will open an audio device, create a stream and bind it. Unlike

other methods of setup, the audio device will be closed when this stream is
destroyed, so the app can treat the returned SDL AudioStream as the only
object needed to manage audio playback.

Also unlike other functions, the audio device begins paused. This is to map
more closely to SDL2-style behavior, since there is no extra step here to bind

774 CHAPTER 1. SDL FUNCTIONS

a stream to begin audio flowing. The audio device should be resumed with
SDL ResumeAudioDevice(SDL GetAudioStreamDevice(stream));

This function works with both playback and capture devices.
The spec parameter represents the app’s side of the audio stream. That is,

for recording audio, this will be the output format, and for playing audio, this
will be the input format.

If you don’t care about opening a specific audio device, you can (and prob-
ably should), use SDL AUDIO DEVICE DEFAULT OUTPUT for playback
and SDL AUDIO DEVICE DEFAULT CAPTURE for recording.

One can optionally provide a callback function; if NULL, the app is ex-
pected to queue audio data for playback (or unqueue audio data if capturing).
Otherwise, the callback will begin to fire once the device is unpaused.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetAudioStreamDevice

� SDL ResumeAudioDevice

SDL OPENCAMERADEVICE 775

SDL OpenCameraDevice

Open a video capture device (a ”camera”).

Header File

Defined in SDL3/SDL camera.h

Syntax

SDL_Camera* SDL_OpenCameraDevice(SDL_CameraDeviceID instance_id, const

SDL_CameraSpec *spec);

Function Parameters

instance id the camera device instance ID
spec The desired format for data the device will provide. Can be

NULL.

Return Value

Returns device, or NULL on failure; call SDL GetError() for more information.

Remarks

You can open the device with any reasonable spec, and if the hardware can’t
directly support it, it will convert data seamlessly to the requested format. This
might incur overhead, including scaling of image data.

If you would rather accept whatever format the device offers, you can pass a
NULL spec here and it will choose one for you (and you can use SDL Surface’s
conversion/scaling functions directly if necessary).

You can call SDL GetCameraFormat() to get the actual data format if pass-
ing a NULL spec here. You can see the exact specs a device can support without
conversion with SDL GetCameraSupportedSpecs().

SDL will not attempt to emulate framerate; it will try to set the hardware to
the rate closest to the requested speed, but it won’t attempt to limit or duplicate
frames artificially; call SDL GetCameraFormat() to see the actual framerate of
the opened the device, and check your timestamps if this is crucial to your app!

Note that the camera is not usable until the user approves its use! On some
platforms, the operating system will prompt the user to permit access to the
camera, and they can choose Yes or No at that point. Until they do, the camera
will not be usable. The app should either wait for an SDL EVENT CAMERA DEVICE APPROVED
(or SDL EVENT CAMERA DEVICE DENIED) event, or poll SDL IsCameraApproved()
occasionally until it returns non-zero. On platforms that don’t require explicit

776 CHAPTER 1. SDL FUNCTIONS

user approval (and perhaps in places where the user previously permitted ac-
cess), the approval event might come immediately, but it might come seconds,
minutes, or hours later!

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetCameraDevices

� SDL GetCameraFormat

SDL OPENFILESTORAGE 777

SDL OpenFileStorage

Opens up a container for local filesystem storage.

Header File

Defined in SDL3/SDL storage.h

Syntax

SDL_Storage* SDL_OpenFileStorage(const char *path);

Function Parameters

path the base path prepended to all storage paths, or NULL for
no base path

Return Value

Returns a filesystem storage container on success or NULL on failure; call
SDL GetError() for more information.

Remarks

This is provided for development and tools. Portable applications should use
SDL OpenTitleStorage() for access to game data and SDL OpenUserStorage()
for access to user data.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseStorage

� SDL GetStorageFileSize

� SDL GetStorageSpaceRemaining

� SDL OpenTitleStorage

� SDL OpenUserStorage

� SDL ReadStorageFile

� SDL WriteStorageFile

778 CHAPTER 1. SDL FUNCTIONS

SDL OpenGamepad

Open a gamepad for use.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

SDL_Gamepad* SDL_OpenGamepad(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns a gamepad identifier or NULL if an error occurred; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseGamepad

� SDL IsGamepad

SDL OPENHAPTIC 779

SDL OpenHaptic

Open a haptic device for use.

Header File

Defined in SDL3/SDL haptic.h

Syntax

SDL_Haptic* SDL_OpenHaptic(SDL_HapticID instance_id);

Function Parameters

instance id the haptic device instance ID

Return Value

Returns the device identifier or NULL on failure; call SDL GetError() for more
information.

Remarks

The index passed as an argument refers to the N’th haptic device on this system.
When opening a haptic device, its gain will be set to maximum and auto-

center will be disabled. To modify these values use SDL SetHapticGain() and
SDL SetHapticAutocenter().

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseHaptic

� SDL GetHaptics

� SDL OpenHapticFromJoystick

� SDL OpenHapticFromMouse

� SDL SetHapticAutocenter

� SDL SetHapticGain

780 CHAPTER 1. SDL FUNCTIONS

SDL OpenHapticFromJoystick

Open a haptic device for use from a joystick device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

SDL_Haptic* SDL_OpenHapticFromJoystick(SDL_Joystick *joystick);

Function Parameters

joystick the SDL Joystick to create a haptic device from

Return Value

Returns a valid haptic device identifier on success or NULL on failure; call
SDL GetError() for more information.

Remarks

You must still close the haptic device separately. It will not be closed with the
joystick.

When opened from a joystick you should first close the haptic device before
closing the joystick device. If not, on some implementations the haptic device
will also get unallocated and you’ll be unable to use force feedback on that
device.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseHaptic

� SDL IsJoystickHaptic

SDL OPENHAPTICFROMMOUSE 781

SDL OpenHapticFromMouse

Try to open a haptic device from the current mouse.

Header File

Defined in SDL3/SDL haptic.h

Syntax

SDL_Haptic* SDL_OpenHapticFromMouse(void);

Return Value

Returns the haptic device identifier or NULL on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseHaptic

� SDL IsMouseHaptic

782 CHAPTER 1. SDL FUNCTIONS

SDL OpenIO

Create a custom SDL IOStream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_IOStream* SDL_OpenIO(const SDL_IOStreamInterface *iface, void

*userdata);

Function Parameters

iface The function pointers that implement this SDL IOStream.
userdata The app-controlled pointer that is passed to iface’s functions

when called.

Return Value

Returns a pointer to the allocated memory on success, or NULL on failure; call
SDL GetError() for more information.

Remarks

Applications do not need to use this function unless they are providing their
own SDL IOStream implementation. If you just need an SDL IOStream to
read/write a common data source, you should use the built-in implementations
in SDL, like SDL IOFromFile() or SDL IOFromMem(), etc.

You must free the returned pointer with SDL CloseIO().
This function makes a copy of iface and the caller does not need to keep

this data around after this call.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseIO

� SDL IOFromConstMem

� SDL IOFromFile

� SDL IOFromMem

SDL OPENJOYSTICK 783

SDL OpenJoystick

Open a joystick for use.

Header File

Defined in SDL3/SDL joystick.h

Syntax

SDL_Joystick* SDL_OpenJoystick(SDL_JoystickID instance_id);

Function Parameters

instance id the joystick instance ID

Return Value

Returns a joystick identifier or NULL if an error occurred; call SDL GetError()
for more information.

Remarks

The joystick subsystem must be initialized before a joystick can be opened for
use.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseJoystick

784 CHAPTER 1. SDL FUNCTIONS

SDL OpenSensor

Open a sensor for use.

Header File

Defined in SDL3/SDL sensor.h

Syntax

SDL_Sensor* SDL_OpenSensor(SDL_SensorID instance_id);

Function Parameters

instance id the sensor instance ID

Return Value

Returns an SDL Sensor sensor object, or NULL if an error occurred.

Version

This function is available since SDL 3.0.0.

SDL OPENSTORAGE 785

SDL OpenStorage

Opens up a container using a client-provided storage interface.

Header File

Defined in SDL3/SDL storage.h

Syntax

SDL_Storage* SDL_OpenStorage(const SDL_StorageInterface *iface, void

*userdata);

Function Parameters

iface the function table to be used by this container
userdata the pointer that will be passed to the store interface

Return Value

Returns a storage container on success or NULL on failure; call SDL GetError()
for more information.

Remarks

Applications do not need to use this function unless they are providing their own
SDL Storage implementation. If you just need an SDL Storage, you should use
the built-in implementations in SDL, like SDL OpenTitleStorage() or SDL OpenUserStorage().

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseStorage

� SDL GetStorageFileSize

� SDL GetStorageSpaceRemaining

� SDL ReadStorageFile

� SDL StorageReady

� SDL WriteStorageFile

786 CHAPTER 1. SDL FUNCTIONS

SDL OpenTitleStorage

Opens up a read-only container for the application’s filesystem.

Header File

Defined in SDL3/SDL storage.h

Syntax

SDL_Storage* SDL_OpenTitleStorage(const char *override, SDL_PropertiesID

props);

Function Parameters

override a path to override the backend’s default title root
props a property list that may contain backend-specific informa-

tion

Return Value

Returns a title storage container on success or NULL on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseStorage

� SDL GetStorageFileSize

� SDL OpenUserStorage

� SDL ReadStorageFile

SDL OPENURL 787

SDL OpenURL

Open a URL/URI in the browser or other appropriate external application.

Header File

Defined in SDL3/SDL misc.h

Syntax

int SDL_OpenURL(const char *url);

Function Parameters

url A valid URL/URI to open. Use
file:///full/path/to/file for local files, if sup-
ported.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Open a URL in a separate, system-provided application. How this works will
vary wildly depending on the platform. This will likely launch what makes
sense to handle a specific URL’s protocol (a web browser for http://, etc), but
it might also be able to launch file managers for directories and other things.

What happens when you open a URL varies wildly as well: your game win-
dow may lose focus (and may or may not lose focus if your game was fullscreen
or grabbing input at the time). On mobile devices, your app will likely move to
the background or your process might be paused. Any given platform may or
may not handle a given URL.

If this is unimplemented (or simply unavailable) for a platform, this will fail
with an error. A successful result does not mean the URL loaded, just that we
launched something to handle it (or at least believe we did).

All this to say: this function can be useful, but you should definitely test it
on every platform you target.

Version

This function is available since SDL 3.0.0.

788 CHAPTER 1. SDL FUNCTIONS

SDL OpenUserStorage

Opens up a container for a user’s unique read/write filesystem.

Header File

Defined in SDL3/SDL storage.h

Syntax

SDL_Storage* SDL_OpenUserStorage(const char *org, const char *app,

SDL_PropertiesID props);

Function Parameters

org the name of your organization
app the name of your application
props a property list that may contain backend-specific informa-

tion

Return Value

Returns a user storage container on success or NULL on failure; call SDL GetError()
for more information.

Remarks

While title storage can generally be kept open throughout runtime, user storage
should only be opened when the client is ready to read/write files. This allows
the backend to properly batch file operations and flush them when the container
has been closed; ensuring safe and optimal save I/O.

Version

This function is available since SDL 3.0.0.

See Also

� SDL CloseStorage

� SDL GetStorageFileSize

� SDL GetStorageSpaceRemaining

� SDL OpenTitleStorage

� SDL ReadStorageFile

SDL OPENUSERSTORAGE 789

� SDL StorageReady

� SDL WriteStorageFile

790 CHAPTER 1. SDL FUNCTIONS

SDL PauseAudioDevice

Use this function to pause audio playback on a specified device.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_PauseAudioDevice(SDL_AudioDeviceID dev);

Function Parameters

dev a device opened by SDL OpenAudioDevice()

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function pauses audio processing for a given device. Any bound audio
streams will not progress, and no audio will be generated. Pausing one device
does not prevent other unpaused devices from running.

Unlike in SDL2, audio devices start in an unpaused state, since an app has
to bind a stream before any audio will flow. Pausing a paused device is a legal
no-op.

Pausing a device can be useful to halt all audio without unbinding all the
audio streams. This might be useful while a game is paused, or a level is loading,
etc.

Physical devices can not be paused or unpaused, only logical devices created
through SDL OpenAudioDevice() can be.

Code Examples

extern SDL_AudioDeviceID devid;

SDL_PauseAudioDevice(devid); // audio callback is stopped when this

returns.

SDL_Delay(5000); // audio device plays silence for 5 seconds

SDL_ResumeAudioDevice(devid); // audio callback starts running again.

SDL PAUSEAUDIODEVICE 791

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ResumeAudioDevice

� SDL AudioDevicePaused

792 CHAPTER 1. SDL FUNCTIONS

SDL PauseHaptic

Pause a haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_PauseHaptic(SDL_Haptic *haptic);

Function Parameters

haptic the SDL Haptic device to pause

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Device must support the SDL HAPTIC PAUSE feature. Call SDL ResumeHaptic()
to resume playback.

Do not modify the effects nor add new ones while the device is paused. That
can cause all sorts of weird errors.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ResumeHaptic

SDL PEEPEVENTS 793

SDL PeepEvents

Check the event queue for messages and optionally return them.

Header File

Defined in SDL3/SDL events.h

Syntax

int SDL_PeepEvents(SDL_Event *events, int numevents, SDL_EventAction

action, Uint32 minType, Uint32 maxType);

Function Parameters

events destination buffer for the retrieved events
numevents if action is SDL ADDEVENT, the number of events to add

back to the event queue; if action is SDL PEEKEVENT
or SDL GETEVENT, the maximum number of events to
retrieve

action action to take; see [[#action—Remarks]] for details
minType minimum value of the event type to be considered;

SDL EVENT FIRST is a safe choice
maxType maximum value of the event type to be considered;

SDL EVENT LAST is a safe choice

Return Value

Returns the number of events actually stored or a negative error code on failure;
call SDL GetError() for more information.

Remarks

action may be any of the following:

� SDL ADDEVENT: up to numevents events will be added to the back of the
event queue.

� SDL PEEKEVENT: numevents events at the front of the event queue, within
the specified minimum and maximum type, will be returned to the caller
and will not be removed from the queue.

� SDL GETEVENT: up to numevents events at the front of the event queue,
within the specified minimum and maximum type, will be returned to the
caller and will be removed from the queue.

794 CHAPTER 1. SDL FUNCTIONS

You may have to call SDL PumpEvents() before calling this function. Other-
wise, the events may not be ready to be filtered when you call SDL PeepEvents().

This function is thread-safe.

Version

This function is available since SDL 3.0.0.

See Also

� SDL PollEvent

� SDL PumpEvents

� SDL PushEvent

SDL PENCONNECTED 795

SDL PenConnected

Checks whether a pen is still attached.

Header File

Defined in SDL3/SDL pen.h

Syntax

SDL_bool SDL_PenConnected(SDL_PenID instance_id);

Function Parameters

instance id A pen ID.

Return Value

Returns SDL TRUE if ”instance id” is valid and the corresponding pen is at-
tached, or SDL FALSE otherwise.

Remarks

If a pen is detached, it will not show up for SDL GetPens(). Other operations
will still be available but may return default values.

Version

This function is available since SDL 3.0.0.

796 CHAPTER 1. SDL FUNCTIONS

SDL PlayHapticRumble

Run a simple rumble effect on a haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_PlayHapticRumble(SDL_Haptic *haptic, float strength, Uint32

length);

Function Parameters

haptic the haptic device to play the rumble effect on
strength strength of the rumble to play as a 0-1 float value
length length of the rumble to play in milliseconds

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL InitHapticRumble

� SDL StopHapticRumble

SDL POINTINRECT 797

SDL PointInRect

Determine whether a point resides inside a rectangle.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_FORCE_INLINE SDL_bool SDL_PointInRect(const SDL_Point *p, const

SDL_Rect *r);

Function Parameters

p the point to test.
r the rectangle to test.

Return Value

Returns SDL TRUE if p is contained by r, SDL FALSE otherwise.

Remarks

A point is considered part of a rectangle if both p and r are not NULL, and p’s x
and y coordinates are ¿= to the rectangle’s top left corner, and ¡ the rectangle’s
x+w and y+h. So a 1x1 rectangle considers point (0,0) as ”inside” and (0,1) as
not.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

798 CHAPTER 1. SDL FUNCTIONS

SDL PointInRectFloat

Determine whether a point resides inside a floating point rectangle.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_FORCE_INLINE SDL_bool SDL_PointInRectFloat(const SDL_FPoint *p,

const SDL_FRect *r);

Function Parameters

p the point to test.
r the rectangle to test.

Return Value

Returns SDL TRUE if p is contained by r, SDL FALSE otherwise.

Remarks

A point is considered part of a rectangle if both p and r are not NULL, and p’s x
and y coordinates are ¿= to the rectangle’s top left corner, and ¡ the rectangle’s
x+w and y+h. So a 1x1 rectangle considers point (0,0) as ”inside” and (0,1) as
not.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL POLLEVENT 799

SDL PollEvent

Poll for currently pending events.

Header File

Defined in SDL3/SDL events.h

Syntax

SDL_bool SDL_PollEvent(SDL_Event *event);

Function Parameters

event the SDL Event structure to be filled with the next event
from the queue, or NULL

Return Value

Returns SDL TRUE if this got an event or SDL FALSE if there are none avail-
able.

Remarks

If event is not NULL, the next event is removed from the queue and stored
in the SDL Event structure pointed to by event. The 1 returned refers to this
event, immediately stored in the SDL Event structure – not an event to follow.

If event is NULL, it simply returns 1 if there is an event in the queue, but
will not remove it from the queue.

As this function may implicitly call SDL PumpEvents(), you can only call
this function in the thread that set the video mode.

SDL PollEvent() is the favored way of receiving system events since it can
be done from the main loop and does not suspend the main loop while waiting
on an event to be posted.

The common practice is to fully process the event queue once every frame,
usually as a first step before updating the game’s state:

while (game_is_still_running) {

SDL_Event event;

while (SDL_PollEvent(&event)) { // poll until all events are handled!

// decide what to do with this event.

}

// update game state, draw the current frame

}

800 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

See Also

� SDL PushEvent

� SDL WaitEvent

� SDL WaitEventTimeout

SDL POSTSEMAPHORE 801

SDL PostSemaphore

Atomically increment a semaphore’s value and wake waiting threads.

Header File

Defined in SDL3/SDL mutex.h

Syntax

int SDL_PostSemaphore(SDL_Semaphore *sem);

Function Parameters

sem the semaphore to increment

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL TryWaitSemaphore

� SDL WaitSemaphore

� SDL WaitSemaphoreTimeout

802 CHAPTER 1. SDL FUNCTIONS

SDL pow

Raise x to the power y

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_pow(double x, double y);

Function Parameters

x the base
y the exponent

Return Value

Returns x raised to the power y

Remarks

Domain: -INF <= x <= INF, -INF <= y <= INF

Range: -INF <= z <= INF

If y is the base of the natural logarithm (e), consider using SDL exp instead.
This function operates on double-precision floating point values, use SDL powf

for single-precision floats.
This function may use a different approximation across different versions,

platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL powf

� SDL exp

� SDL log

SDL POWF 803

SDL powf

Raise x to the power y

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_powf(float x, float y);

Function Parameters

x the base
y the exponent

Return Value

Returns x raised to the power y

Remarks

Domain: -INF <= x <= INF, -INF <= y <= INF

Range: -INF <= z <= INF

If y is the base of the natural logarithm (e), consider using SDL exp instead.
This function operates on single-precision floating point values, use SDL powf

for double-precision floats.
This function may use a different approximation across different versions,

platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL pow

� SDL expf

� SDL logf

804 CHAPTER 1. SDL FUNCTIONS

SDL PremultiplyAlpha

Premultiply the alpha on a block of pixels.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_PremultiplyAlpha(int width, int height, SDL_PixelFormatEnum

src_format, const void *src, int src_pitch, SDL_PixelFormatEnum

dst_format, void *dst, int dst_pitch);

Function Parameters

width the width of the block to convert, in pixels
height the height of the block to convert, in pixels
src format an SDL PixelFormatEnum value of the src pixels format
src a pointer to the source pixels
src pitch the pitch of the source pixels, in bytes
dst format an SDL PixelFormatEnum value of the dst pixels format
dst a pointer to be filled in with premultiplied pixel data
dst pitch the pitch of the destination pixels, in bytes

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This is safe to use with src == dst, but not for other overlapping areas.
This function is currently only implemented for SDL PIXELFORMAT ARGB8888.

Version

This function is available since SDL 3.0.0.

SDL PUMPEVENTS 805

SDL PumpEvents

Pump the event loop, gathering events from the input devices.

Header File

Defined in SDL3/SDL events.h

Syntax

void SDL_PumpEvents(void);

Remarks

This function updates the event queue and internal input device state. WARN-
ING: This should only be run in the thread that initialized the video subsystem,
and for extra safety, you should consider only doing those things on the main
thread in any case.

SDL PumpEvents() gathers all the pending input information from devices
and places it in the event queue. Without calls to SDL PumpEvents() no events
would ever be placed on the queue. Often the need for calls to SDL PumpEvents()
is hidden from the user since SDL PollEvent() and SDL WaitEvent() implicitly
call SDL PumpEvents(). However, if you are not polling or waiting for events
(e.g. you are filtering them), then you must call SDL PumpEvents() to force an
event queue update.

Version

This function is available since SDL 3.0.0.

See Also

� SDL PollEvent

� SDL WaitEvent

806 CHAPTER 1. SDL FUNCTIONS

SDL PushEvent

Add an event to the event queue.

Header File

Defined in SDL3/SDL events.h

Syntax

int SDL_PushEvent(SDL_Event *event);

Function Parameters

event the SDL Event to be added to the queue

Return Value

Returns 1 on success, 0 if the event was filtered, or a negative error code on
failure; call SDL GetError() for more information. A common reason for error
is the event queue being full.

Remarks

The event queue can actually be used as a two way communication channel.
Not only can events be read from the queue, but the user can also push their
own events onto it. event is a pointer to the event structure you wish to push
onto the queue. The event is copied into the queue, and the caller may dispose
of the memory pointed to after SDL PushEvent() returns.

Note: Pushing device input events onto the queue doesn’t modify the state
of the device within SDL.

This function is thread-safe, and can be called from other threads safely.
Note: Events pushed onto the queue with SDL PushEvent() get passed

through the event filter but events added with SDL PeepEvents() do not.
For pushing application-specific events, please use SDL RegisterEvents() to

get an event type that does not conflict with other code that also wants its own
custom event types.

Code Examples

// Default Usage:

SDL_Event sdlevent;

sdlevent.type = SDL_EVENT_KEY_DOWN;

sdlevent.key.keysym.sym = SDLK_1;

SDL PUSHEVENT 807

SDL_PushEvent(&sdlevent);

Version

This function is available since SDL 3.0.0.

See Also

� SDL PeepEvents

� SDL PollEvent

� SDL RegisterEvents

808 CHAPTER 1. SDL FUNCTIONS

SDL PutAudioStreamData

Add data to the stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_PutAudioStreamData(SDL_AudioStream *stream, const void *buf, int

len);

Function Parameters

stream The stream the audio data is being added to
buf A pointer to the audio data to add
len The number of bytes to write to the stream

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This data must match the format/channels/samplerate specified in the latest
call to SDL SetAudioStreamFormat, or the format specified when creating the
stream if it hasn’t been changed.

Note that this call simply copies the unconverted data for later. This is
different than SDL2, where data was converted during the Put call and the Get
call would just dequeue the previously-converted data.

Thread Safety

It is safe to call this function from any thread, but if the stream has a callback
set, the caller might need to manage extra locking.

Version

This function is available since SDL 3.0.0.

SDL PUTAUDIOSTREAMDATA 809

See Also

� SDL ClearAudioStream

� SDL FlushAudioStream

� SDL GetAudioStreamData

� SDL GetAudioStreamQueued

810 CHAPTER 1. SDL FUNCTIONS

SDL QueryTexture

Query the attributes of a texture.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_QueryTexture(SDL_Texture *texture, SDL_PixelFormatEnum *format,

int *access, int *w, int *h);

Function Parameters

texture the texture to query
format a pointer filled in with the raw format of the texture; the

actual format may differ, but pixel transfers will use this
format (one of the SDL PixelFormatEnum values). This
argument can be NULL if you don’t need this information.

access a pointer filled in with the actual access to the texture (one
of the SDL TextureAccess values). This argument can be
NULL if you don’t need this information.

w a pointer filled in with the width of the texture in pixels.
This argument can be NULL if you don’t need this infor-
mation.

h a pointer filled in with the height of the texture in pixels.
This argument can be NULL if you don’t need this infor-
mation.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Code Examples

SDL_Texture* source;

// loading etc ...

int w, h;

SDL_QueryTexture(source, NULL, NULL, &w, &h);

SDL QUERYTEXTURE 811

Version

This function is available since SDL 3.0.0.

812 CHAPTER 1. SDL FUNCTIONS

SDL Quit

Clean up all initialized subsystems.

Header File

Defined in SDL3/SDL init.h

Syntax

void SDL_Quit(void);

Remarks

You should call this function even if you have already shutdown each initialized
subsystem with SDL QuitSubSystem(). It is safe to call this function even in
the case of errors in initialization.

You can use this function with atexit() to ensure that it is run when your
application is shutdown, but it is not wise to do this from a library or other
dynamically loaded code.

Code Examples

#include <SDL3/SDL.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

if (SDL_Init(SDL_INIT_EVENTS) != 0) {

fprintf(stderr, "Unable to initialize SDL: %s\n",

SDL_GetError());

return 1;

}

/* ... */

SDL_Quit();

return 0;

}

Version

This function is available since SDL 3.0.0.

SDL QUIT 813

See Also

� SDL Init

� SDL QuitSubSystem

814 CHAPTER 1. SDL FUNCTIONS

SDL QuitSubSystem

Shut down specific SDL subsystems.

Header File

Defined in SDL3/SDL init.h

Syntax

void SDL_QuitSubSystem(Uint32 flags);

Function Parameters

flags any of the flags used by SDL Init(); see SDL Init for details.

Remarks

You still need to call SDL Quit() even if you close all open subsystems with
SDL QuitSubSystem().

Code Examples

#include <SDL3/SDL.h>

extern void display_graph(void);

/* ... */

int main(int argc, char **argv) {

int sdl_initialized = 0;

sdl_initialized = !SDL_Init(0);

/* ... console stuff ... */

if (sdl_initialized && SDL_InitSubSystem(SDL_INIT_VIDEO)) {

display_graph();

SDL_QuitSubSystem(SDL_INIT_VIDEO);

}

/* ... more console stuff ... */

if (sdl_initialized) {

SDL_Quit();

}

return 0;

SDL QUITSUBSYSTEM 815

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL InitSubSystem

� SDL Quit

816 CHAPTER 1. SDL FUNCTIONS

SDL RaiseWindow

Raise a window above other windows and set the input focus.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_RaiseWindow(SDL_Window *window);

Function Parameters

window the window to raise

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL READIO 817

SDL ReadIO

Read from a data source.

Header File

Defined in SDL3/SDL iostream.h

Syntax

size_t SDL_ReadIO(SDL_IOStream *context, void *ptr, size_t size);

Function Parameters

context a pointer to an SDL IOStream structure
ptr a pointer to a buffer to read data into
size the number of bytes to read from the data source.

Return Value

Returns the number of bytes read, or 0 on end of file or other error.

Remarks

This function reads up size bytes from the data source to the area pointed at
by ptr. This function may read less bytes than requested. It will return zero
when the data stream is completely read, or on error. To determine if there was
an error or all data was read, call SDL GetIOStatus().

Version

This function is available since SDL 3.0.0.

See Also

� SDL WriteIO

� SDL GetIOStatus

818 CHAPTER 1. SDL FUNCTIONS

SDL ReadS16BE

Use this function to read 16 bits of big-endian data from an SDL IOStream and
return in native format.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadS16BE(SDL_IOStream *src, Sint16 *value);

Function Parameters

src the stream from which to read data
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the data returned will be in the
native byte order.

Version

This function is available since SDL 3.0.0.

SDL READS16LE 819

SDL ReadS16LE

Use this function to read 16 bits of little-endian data from an SDL IOStream
and return in native format.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadS16LE(SDL_IOStream *src, Sint16 *value);

Function Parameters

src the stream from which to read data
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the data returned will be in the
native byte order.

Version

This function is available since SDL 3.0.0.

820 CHAPTER 1. SDL FUNCTIONS

SDL ReadS32BE

Use this function to read 32 bits of big-endian data from an SDL IOStream and
return in native format.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadS32BE(SDL_IOStream *src, Sint32 *value);

Function Parameters

src the stream from which to read data
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the data returned will be in the
native byte order.

Version

This function is available since SDL 3.0.0.

SDL READS32LE 821

SDL ReadS32LE

Use this function to read 32 bits of little-endian data from an SDL IOStream
and return in native format.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadS32LE(SDL_IOStream *src, Sint32 *value);

Function Parameters

src the stream from which to read data
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the data returned will be in the
native byte order.

Version

This function is available since SDL 3.0.0.

822 CHAPTER 1. SDL FUNCTIONS

SDL ReadS64BE

Use this function to read 64 bits of big-endian data from an SDL IOStream and
return in native format.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadS64BE(SDL_IOStream *src, Sint64 *value);

Function Parameters

src the stream from which to read data
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the data returned will be in the
native byte order.

Version

This function is available since SDL 3.0.0.

SDL READS64LE 823

SDL ReadS64LE

Use this function to read 64 bits of little-endian data from an SDL IOStream
and return in native format.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadS64LE(SDL_IOStream *src, Sint64 *value);

Function Parameters

src the stream from which to read data
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the data returned will be in the
native byte order.

Version

This function is available since SDL 3.0.0.

824 CHAPTER 1. SDL FUNCTIONS

SDL ReadStorageFile

Synchronously read a file from a storage container into a client-provided buffer.

Header File

Defined in SDL3/SDL storage.h

Syntax

int SDL_ReadStorageFile(SDL_Storage *storage, const char *path, void

*destination, Uint64 length);

Function Parameters

storage a storage container to read from
path the relative path of the file to read
destination a client-provided buffer to read the file into
length the length of the destination buffer

Return Value

Returns 0 if the file was read, a negative value otherwise; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetStorageFileSize

� SDL StorageReady

� SDL WriteStorageFile

SDL READSURFACEPIXEL 825

SDL ReadSurfacePixel

Retrieves a single pixel from a surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_ReadSurfacePixel(SDL_Surface *surface, int x, int y, Uint8 *r,

Uint8 *g, Uint8 *b, Uint8 *a);

Function Parameters

surface the surface to read
x the horizontal coordinate, 0 ¡= x ¡ width
y the vertical coordinate, 0 ¡= y ¡ height
r a pointer filled in with the red channel, 0-255, or NULL to

ignore this channel
g a pointer filled in with the green channel, 0-255, or NULL

to ignore this channel
b a pointer filled in with the blue channel, 0-255, or NULL to

ignore this channel
a a pointer filled in with the alpha channel, 0-255, or NULL

to ignore this channel

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function prioritizes correctness over speed: it is suitable for unit tests, but
is not intended for use in a game engine.

Like SDL GetRGBA, this uses the entire 0..255 range when converting color
components from pixel formats with less than 8 bits per RGB component.

Version

This function is available since SDL 3.0.0.

826 CHAPTER 1. SDL FUNCTIONS

SDL ReadU16BE

Use this function to read 16 bits of big-endian data from an SDL IOStream and
return in native format.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadU16BE(SDL_IOStream *src, Uint16 *value);

Function Parameters

src the stream from which to read data
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the data returned will be in the
native byte order.

Version

This function is available since SDL 3.0.0.

SDL READU16LE 827

SDL ReadU16LE

Use this function to read 16 bits of little-endian data from an SDL IOStream
and return in native format.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadU16LE(SDL_IOStream *src, Uint16 *value);

Function Parameters

src the stream from which to read data
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the data returned will be in the
native byte order.

Version

This function is available since SDL 3.0.0.

828 CHAPTER 1. SDL FUNCTIONS

SDL ReadU32BE

Use this function to read 32 bits of big-endian data from an SDL IOStream and
return in native format.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadU32BE(SDL_IOStream *src, Uint32 *value);

Function Parameters

src the stream from which to read data
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the data returned will be in the
native byte order.

Version

This function is available since SDL 3.0.0.

SDL READU32LE 829

SDL ReadU32LE

Use this function to read 32 bits of little-endian data from an SDL IOStream
and return in native format.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadU32LE(SDL_IOStream *src, Uint32 *value);

Function Parameters

src the stream from which to read data
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the data returned will be in the
native byte order.

Version

This function is available since SDL 3.0.0.

830 CHAPTER 1. SDL FUNCTIONS

SDL ReadU64BE

Use this function to read 64 bits of big-endian data from an SDL IOStream and
return in native format.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadU64BE(SDL_IOStream *src, Uint64 *value);

Function Parameters

src the stream from which to read data
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the data returned will be in the
native byte order.

Version

This function is available since SDL 3.0.0.

SDL READU64LE 831

SDL ReadU64LE

Use this function to read 64 bits of little-endian data from an SDL IOStream
and return in native format.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadU64LE(SDL_IOStream *src, Uint64 *value);

Function Parameters

src the stream from which to read data
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the data returned will be in the
native byte order.

Version

This function is available since SDL 3.0.0.

832 CHAPTER 1. SDL FUNCTIONS

SDL ReadU8

Use this function to read a byte from an SDL IOStream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_ReadU8(SDL_IOStream *src, Uint8 *value);

Function Parameters

src the SDL IOStream to read from
value a pointer filled in with the data read

Return Value

Returns SDL TRUE on success or SDL FALSE on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL RECTEMPTY 833

SDL RectEmpty

Determine whether a rectangle has no area.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_FORCE_INLINE SDL_bool SDL_RectEmpty(const SDL_Rect *r);

Function Parameters

r the rectangle to test.

Return Value

Returns SDL TRUE if the rectangle is ”empty”, SDL FALSE otherwise.

Remarks

A rectangle is considered ”empty” for this function if r is NULL, or if r’s width
and/or height are ¡= 0.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

834 CHAPTER 1. SDL FUNCTIONS

SDL RectEmptyFloat

Determine whether a floating point rectangle has no area.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_FORCE_INLINE SDL_bool SDL_RectEmptyFloat(const SDL_FRect *r);

Function Parameters

r the rectangle to test.

Return Value

Returns SDL TRUE if the rectangle is ”empty”, SDL FALSE otherwise.

Remarks

A rectangle is considered ”empty” for this function if r is NULL, or if r’s width
and/or height are ¡= 0.0f.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL RECTSEQUAL 835

SDL RectsEqual

Determine whether two rectangles are equal.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_FORCE_INLINE SDL_bool SDL_RectsEqual(const SDL_Rect *a, const

SDL_Rect *b);

Function Parameters

a the first rectangle to test.
b the second rectangle to test.

Return Value

Returns SDL TRUE if the rectangles are equal, SDL FALSE otherwise.

Remarks

Rectangles are considered equal if both are not NULL and each of their x, y,
width and height match.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

836 CHAPTER 1. SDL FUNCTIONS

SDL RectsEqualEpsilon

Determine whether two floating point rectangles are equal, within some given
epsilon.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_FORCE_INLINE SDL_bool SDL_RectsEqualEpsilon(const SDL_FRect *a,

const SDL_FRect *b, const float epsilon);

Function Parameters

a the first rectangle to test.
b the second rectangle to test.

Return Value

Returns SDL TRUE if the rectangles are equal, SDL FALSE otherwise.

Remarks

Rectangles are considered equal if both are not NULL and each of their x, y,
width and height are within epsilon of each other. If you don’t know what
value to use for epsilon, you should call the SDL RectsEqualFloat function
instead.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL RectsEqualFloat

SDL RECTSEQUALFLOAT 837

SDL RectsEqualFloat

Determine whether two floating point rectangles are equal, within a default
epsilon.

Header File

Defined in SDL3/SDL rect.h

Syntax

SDL_FORCE_INLINE SDL_bool SDL_RectsEqualFloat(const SDL_FRect *a, const

SDL_FRect *b);

Function Parameters

a the first rectangle to test.
b the second rectangle to test.

Return Value

Returns SDL TRUE if the rectangles are equal, SDL FALSE otherwise.

Remarks

Rectangles are considered equal if both are not NULL and each of their x, y,
width and height are within SDL FLT EPSILON of each other. This is often
a reasonable way to compare two floating point rectangles and deal with the
slight precision variations in floating point calculations that tend to pop up.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL RectsEqualEpsilon

838 CHAPTER 1. SDL FUNCTIONS

SDL RegisterApp

Register a win32 window class for SDL’s use.

Header File

Defined in SDL3/SDL main.h

Syntax

int SDL_RegisterApp(const char *name, Uint32 style, void *hInst);

Function Parameters

name the window class name, in UTF-8 encoding. If NULL, SDL
currently uses ”SDL app” but this isn’t guaranteed.

style the value to use in WNDCLASSEX::style. If name is NULL,
SDL currently uses (CS BYTEALIGNCLIENT | CS OWNDC) re-
gardless of what is specified here.

hInst the HINSTANCE to use in WNDCLASSEX::hInstance. If
zero, SDL will use GetModuleHandle(NULL) instead.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This can be called to set the application window class at startup. It is safe
to call this multiple times, as long as every call is eventually paired with a
call to SDL UnregisterApp, but a second registration attempt while a previous
registration is still active will be ignored, other than to increment a counter.

Most applications do not need to, and should not, call this directly; SDL
will call it when initializing the video subsystem.

Version

This function is available since SDL 3.0.0.

SDL REGISTEREVENTS 839

SDL RegisterEvents

Allocate a set of user-defined events, and return the beginning event number
for that set of events.

Header File

Defined in SDL3/SDL events.h

Syntax

Uint32 SDL_RegisterEvents(int numevents);

Function Parameters

numevents the number of events to be allocated

Return Value

Returns the beginning event number, or 0 if numevents is invalid or if there are
not enough user-defined events left.

Code Examples

¡¡Include(SDL UserEvent, , , from=”== Code Examples ==”, to=”== Re-
marks ==”)¿¿

Version

This function is available since SDL 3.0.0.

See Also

� SDL PushEvent

840 CHAPTER 1. SDL FUNCTIONS

SDL ReleaseCameraFrame

Release a frame of video acquired from a camera.

Header File

Defined in SDL3/SDL camera.h

Syntax

int SDL_ReleaseCameraFrame(SDL_Camera *camera, SDL_Surface *frame);

Function Parameters

camera opened camera device
frame The video frame surface to release.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Let the back-end re-use the internal buffer for camera.
This function must be called only on surface objects returned by SDL AcquireCameraFrame().

This function should be called as quickly as possible after acquisition, as SDL
keeps a small FIFO queue of surfaces for video frames; if surfaces aren’t released
in a timely manner, SDL may drop upcoming video frames from the camera.

If the app needs to keep the surface for a significant time, they should make
a copy of it and release the original.

The app should not use the surface again after calling this function; assume
the surface is freed and the pointer is invalid.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AcquireCameraFrame

SDL RELOADGAMEPADMAPPINGS 841

SDL ReloadGamepadMappings

Reinitialize the SDL mapping database to its initial state.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_ReloadGamepadMappings(void);

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This will generate gamepad events as needed if device mappings change.

Version

This function is available since SDL 3.0.0.

842 CHAPTER 1. SDL FUNCTIONS

SDL RemovePath

Remove a file or an empty directory.

Header File

Defined in SDL3/SDL filesystem.h

Syntax

int SDL_RemovePath(const char *path);

Function Parameters

path the path of the directory to enumerate

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL REMOVESTORAGEPATH 843

SDL RemoveStoragePath

Remove a file or an empty directory in a writable storage container.

Header File

Defined in SDL3/SDL storage.h

Syntax

int SDL_RemoveStoragePath(SDL_Storage *storage, const char *path);

Function Parameters

storage a storage container
path the path of the directory to enumerate

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL StorageReady

844 CHAPTER 1. SDL FUNCTIONS

SDL RemoveTimer

Remove a timer created with SDL AddTimer().

Header File

Defined in SDL3/SDL timer.h

Syntax

SDL_bool SDL_RemoveTimer(SDL_TimerID id);

Function Parameters

id the ID of the timer to remove

Return Value

Returns SDL TRUE if the timer is removed or SDL FALSE if the timer wasn’t
found.

Code Examples

extern void *my_callback_param;

extern Uint32 SDLCALL my_callbackfunc(Uint32 interval, void *param);

Uint32 delay = (33 / 10) * 10; /* To round it down to the nearest 10 ms

*/

/* ... */

SDL_TimerID my_timer_id = SDL_AddTimer(delay, my_callbackfunc,

my_callback_param);

/* ... */

SDL_RemoveTimer(my_timer_id);

Version

This function is available since SDL 3.0.0.

SDL REMOVETIMER 845

See Also

� SDL AddTimer

846 CHAPTER 1. SDL FUNCTIONS

SDL RenamePath

Rename a file or directory.

Header File

Defined in SDL3/SDL filesystem.h

Syntax

int SDL_RenamePath(const char *oldpath, const char *newpath);

Function Parameters

oldpath the old path
newpath the new path

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL RENAMESTORAGEPATH 847

SDL RenameStoragePath

Rename a file or directory in a writable storage container.

Header File

Defined in SDL3/SDL storage.h

Syntax

int SDL_RenameStoragePath(SDL_Storage *storage, const char *oldpath,

const char *newpath);

Function Parameters

storage a storage container
oldpath the old path
newpath the new path

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL StorageReady

848 CHAPTER 1. SDL FUNCTIONS

SDL RenderClear

Clear the current rendering target with the drawing color.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderClear(SDL_Renderer *renderer);

Function Parameters

renderer the rendering context

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function clears the entire rendering target, ignoring the viewport and the
clip rectangle.

Code Examples

#include <SDL3/SDL.h>

int main(int argc, char* argv[])

{

SDL_Window* window;

SDL_Renderer* renderer;

/* Initialize SDL. */

if (SDL_Init(SDL_INIT_VIDEO) < 0)

return 1;

/* Create the window where we will draw. */

window = SDL_CreateWindow("SDL_RenderClear",

512, 512,

0);

/* We must call SDL_CreateRenderer in order for draw calls to

affect this window. */

SDL RENDERCLEAR 849

renderer = SDL_CreateRenderer(window, NULL, 0);

/* Select the color for drawing. It is set to red here. */

SDL_SetRenderDrawColor(renderer, 255, 0, 0, 255);

/* Clear the entire screen to our selected color. */

SDL_RenderClear(renderer);

/* Up until now everything was drawn behind the scenes.

This will show the new, red contents of the window. */

SDL_RenderPresent(renderer);

/* Give us time to see the window. */

SDL_Delay(5000);

/* Always be sure to clean up */

SDL_Quit();

return 0;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetRenderDrawColor

850 CHAPTER 1. SDL FUNCTIONS

SDL RenderClipEnabled

Get whether clipping is enabled on the given renderer.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_bool SDL_RenderClipEnabled(SDL_Renderer *renderer);

Function Parameters

renderer the rendering context

Return Value

Returns SDL TRUE if clipping is enabled or SDL FALSE if not; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderClipRect

� SDL SetRenderClipRect

SDL RENDERCOORDINATESFROMWINDOW 851

SDL RenderCoordinatesFromWindow

Get a point in render coordinates when given a point in window coordinates.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderCoordinatesFromWindow(SDL_Renderer *renderer, float

window_x, float window_y, float *x, float *y);

Function Parameters

renderer the rendering context
window x the x coordinate in window coordinates
window y the y coordinate in window coordinates
x a pointer filled with the x coordinate in render coordinates
y a pointer filled with the y coordinate in render coordinates

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetRenderLogicalPresentation

� SDL SetRenderScale

852 CHAPTER 1. SDL FUNCTIONS

SDL RenderCoordinatesToWindow

Get a point in window coordinates when given a point in render coordinates.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderCoordinatesToWindow(SDL_Renderer *renderer, float x, float

y, float *window_x, float *window_y);

Function Parameters

renderer the rendering context
x the x coordinate in render coordinates
y the y coordinate in render coordinates
window x a pointer filled with the x coordinate in window coordinates
window y a pointer filled with the y coordinate in window coordinates

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetRenderLogicalPresentation

� SDL SetRenderScale

SDL RENDERFILLRECT 853

SDL RenderFillRect

Fill a rectangle on the current rendering target with the drawing color at sub-
pixel precision.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderFillRect(SDL_Renderer *renderer, const SDL_FRect *rect);

Function Parameters

renderer The renderer which should fill a rectangle.
rect A pointer to the destination rectangle, or NULL for the

entire rendering target.

Return Value

Returns 0 on success, or -1 on error

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderFillRects

854 CHAPTER 1. SDL FUNCTIONS

SDL RenderFillRects

Fill some number of rectangles on the current rendering target with the drawing
color at subpixel precision.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderFillRects(SDL_Renderer *renderer, const SDL_FRect *rects,

int count);

Function Parameters

renderer The renderer which should fill multiple rectangles.
rects A pointer to an array of destination rectangles.
count The number of rectangles.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderFillRect

SDL RENDERGEOMETRY 855

SDL RenderGeometry

Render a list of triangles, optionally using a texture and indices into the vertex
array Color and alpha modulation is done per vertex (SDL SetTextureColorMod
and SDL SetTextureAlphaMod are ignored).

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderGeometry(SDL_Renderer *renderer,

SDL_Texture *texture,

const SDL_Vertex *vertices, int num_vertices,

const int *indices, int num_indices);

Function Parameters

renderer The rendering context.
texture (optional) The SDL texture to use.
vertices Vertices.
num vertices Number of vertices.
indices (optional) An array of integer indices into the ’vertices’ ar-

ray, if NULL all vertices will be rendered in sequential order.
num indices Number of indices.

Return Value

Returns 0 on success, or -1 if the operation is not supported

Code Examples

#include <SDL3/SDL.h>

#include <SDL3/SDL_main.h>

int main(int argc, char *argv[])

{

SDL_bool quit = SDL_FALSE;

SDL_Window *window = SDL_CreateWindow("Triangle Example", 800, 600, 0);

SDL_Renderer *renderer = SDL_CreateRenderer(window, NULL,

SDL_RENDERER_PRESENTVSYNC);

856 CHAPTER 1. SDL FUNCTIONS

#define vertLen 3

SDL_Vertex vert[vertLen];

// center

vert[0].position.x = 400;

vert[0].position.y = 150;

vert[0].color.r = 1.0;

vert[0].color.g = 0.0;

vert[0].color.b = 0.0;

vert[0].color.a = 1.0;

// left

vert[1].position.x = 200;

vert[1].position.y = 450;

vert[1].color.r = 0.0;

vert[1].color.g = 0.0;

vert[1].color.b = 1.0;

vert[1].color.a = 1.0;

// right

vert[2].position.x = 600;

vert[2].position.y = 450;

vert[2].color.r = 0.0;

vert[2].color.g = 1.0;

vert[2].color.b = 0.0;

vert[2].color.a = 1.0;

while (!quit) {

SDL_Event ev;

while (SDL_PollEvent(&ev) != 0) {

switch(ev.type) {

case SDL_EVENT_QUIT:

quit = SDL_TRUE;

break;

}

}

SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);

SDL_RenderClear(renderer);

SDL_RenderGeometry(renderer, NULL, vert, vertLen, NULL, 0);

SDL_RenderPresent(renderer);

}

SDL_DestroyRenderer(renderer);

SDL_DestroyWindow(window);

SDL_Quit();

return 0;

}

SDL RENDERGEOMETRY 857

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderGeometryRaw

858 CHAPTER 1. SDL FUNCTIONS

SDL RenderGeometryRaw

Render a list of triangles, optionally using a texture and indices into the vertex
arrays Color and alpha modulation is done per vertex (SDL SetTextureColorMod
and SDL SetTextureAlphaMod are ignored).

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderGeometryRaw(SDL_Renderer *renderer,

SDL_Texture *texture,

const float *xy, int xy_stride,

const SDL_Color *color, int color_stride,

const float *uv, int uv_stride,

int num_vertices,

const void *indices, int num_indices, int

size_indices);

Function Parameters

renderer The rendering context.
texture (optional) The SDL texture to use.
xy Vertex positions
xy stride Byte size to move from one element to the next element
color Vertex colors (as SDL Color)
color stride Byte size to move from one element to the next element
uv Vertex normalized texture coordinates
uv stride Byte size to move from one element to the next element
num vertices Number of vertices.
indices (optional) An array of indices into the ’vertices’ arrays, if

NULL all vertices will be rendered in sequential order.
num indices Number of indices.
size indices Index size: 1 (byte), 2 (short), 4 (int)

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

SDL RENDERGEOMETRYRAW 859

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderGeometry

860 CHAPTER 1. SDL FUNCTIONS

SDL RenderGeometryRawFloat

Render a list of triangles, optionally using a texture and indices into the vertex
arrays Color and alpha modulation is done per vertex (SDL SetTextureColorMod
and SDL SetTextureAlphaMod are ignored).

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderGeometryRawFloat(SDL_Renderer *renderer,

SDL_Texture *texture,

const float *xy, int xy_stride,

const SDL_FColor *color, int color_stride,

const float *uv, int uv_stride,

int num_vertices,

const void *indices, int num_indices, int

size_indices);

Function Parameters

renderer The rendering context.
texture (optional) The SDL texture to use.
xy Vertex positions
xy stride Byte size to move from one element to the next element
color Vertex colors (as SDL FColor)
color stride Byte size to move from one element to the next element
uv Vertex normalized texture coordinates
uv stride Byte size to move from one element to the next element
num vertices Number of vertices.
indices (optional) An array of indices into the ’vertices’ arrays, if

NULL all vertices will be rendered in sequential order.
num indices Number of indices.
size indices Index size: 1 (byte), 2 (short), 4 (int)

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

SDL RENDERGEOMETRYRAWFLOAT 861

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderGeometry

� SDL RenderGeometryRaw

862 CHAPTER 1. SDL FUNCTIONS

SDL RenderLine

Draw a line on the current rendering target at subpixel precision.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderLine(SDL_Renderer *renderer, float x1, float y1, float x2,

float y2);

Function Parameters

renderer The renderer which should draw a line.
x1 The x coordinate of the start point.
y1 The y coordinate of the start point.
x2 The x coordinate of the end point.
y2 The y coordinate of the end point.

Return Value

Returns 0 on success, or -1 on error

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderLines

SDL RENDERLINES 863

SDL RenderLines

Draw a series of connected lines on the current rendering target at subpixel
precision.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderLines(SDL_Renderer *renderer, const SDL_FPoint *points,

int count);

Function Parameters

renderer The renderer which should draw multiple lines.
points The points along the lines
count The number of points, drawing count-1 lines

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderLine

864 CHAPTER 1. SDL FUNCTIONS

SDL RenderPoint

Draw a point on the current rendering target at subpixel precision.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderPoint(SDL_Renderer *renderer, float x, float y);

Function Parameters

renderer The renderer which should draw a point.
x The x coordinate of the point.
y The y coordinate of the point.

Return Value

Returns 0 on success, or -1 on error

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderPoints

SDL RENDERPOINTS 865

SDL RenderPoints

Draw multiple points on the current rendering target at subpixel precision.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderPoints(SDL_Renderer *renderer, const SDL_FPoint *points,

int count);

Function Parameters

renderer The renderer which should draw multiple points.
points The points to draw
count The number of points to draw

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderPoint

866 CHAPTER 1. SDL FUNCTIONS

SDL RenderPresent

Update the screen with any rendering performed since the previous call.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderPresent(SDL_Renderer *renderer);

Function Parameters

renderer the rendering context

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

SDL’s rendering functions operate on a backbuffer; that is, calling a rendering
function such as SDL RenderLine() does not directly put a line on the screen,
but rather updates the backbuffer. As such, you compose your entire scene and
present the composed backbuffer to the screen as a complete picture.

Therefore, when using SDL’s rendering API, one does all drawing intended
for the frame, and then calls this function once per frame to present the final
drawing to the user.

The backbuffer should be considered invalidated after each present; do not
assume that previous contents will exist between frames. You are strongly
encouraged to call SDL RenderClear() to initialize the backbuffer before starting
each new frame’s drawing, even if you plan to overwrite every pixel.

Code Examples

Please refer to the code example in SDL RenderClear.

Thread Safety

You may only call this function on the main thread.

SDL RENDERPRESENT 867

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderClear

� SDL RenderLine

� SDL RenderLines

� SDL RenderPoint

� SDL RenderPoints

� SDL RenderRect

� SDL RenderRects

� SDL RenderFillRect

� SDL RenderFillRects

� SDL SetRenderDrawBlendMode

� SDL SetRenderDrawColor

868 CHAPTER 1. SDL FUNCTIONS

SDL RenderReadPixels

Read pixels from the current rendering target.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_Surface * SDL_RenderReadPixels(SDL_Renderer *renderer, const

SDL_Rect *rect);

Function Parameters

renderer the rendering context
rect an SDL Rect structure representing the area in pixels rel-

ative to the to current viewport, or NULL for the entire
viewport

Return Value

Returns a new SDL Surface on success or NULL on failure; call SDL GetError()
for more information.

Remarks

The returned surface should be freed with SDL DestroySurface() WARNING:
This is a very slow operation, and should not be used frequently. If you’re using
this on the main rendering target, it should be called after rendering and before
SDL RenderPresent().

Version

This function is available since SDL 3.0.0.

SDL RENDERRECT 869

SDL RenderRect

Draw a rectangle on the current rendering target at subpixel precision.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderRect(SDL_Renderer *renderer, const SDL_FRect *rect);

Function Parameters

renderer The renderer which should draw a rectangle.
rect A pointer to the destination rectangle, or NULL to outline

the entire rendering target.

Return Value

Returns 0 on success, or -1 on error

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderRects

870 CHAPTER 1. SDL FUNCTIONS

SDL RenderRects

Draw some number of rectangles on the current rendering target at subpixel
precision.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderRects(SDL_Renderer *renderer, const SDL_FRect *rects, int

count);

Function Parameters

renderer The renderer which should draw multiple rectangles.
rects A pointer to an array of destination rectangles.
count The number of rectangles.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderRect

SDL RENDERTEXTURE 871

SDL RenderTexture

Copy a portion of the texture to the current rendering target at subpixel preci-
sion.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderTexture(SDL_Renderer *renderer, SDL_Texture *texture,

const SDL_FRect *srcrect, const SDL_FRect *dstrect);

Function Parameters

renderer The renderer which should copy parts of a texture.
texture The source texture.
srcrect A pointer to the source rectangle, or NULL for the entire

texture.
dstrect A pointer to the destination rectangle, or NULL for the

entire rendering target.

Return Value

Returns 0 on success, or -1 on error

Version

This function is available since SDL 3.0.0.

See Also

� SDL RenderTextureRotated

872 CHAPTER 1. SDL FUNCTIONS

SDL RenderTextureRotated

Copy a portion of the source texture to the current rendering target, with ro-
tation and flipping, at subpixel precision.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_RenderTextureRotated(SDL_Renderer *renderer, SDL_Texture

*texture,

const SDL_FRect *srcrect, const SDL_FRect

*dstrect,

const double angle, const SDL_FPoint *center,

const SDL_FlipMode flip);

Function Parameters

renderer The renderer which should copy parts of a texture.
texture The source texture.
srcrect A pointer to the source rectangle, or NULL for the entire

texture.
dstrect A pointer to the destination rectangle, or NULL for the

entire rendering target.
angle An angle in degrees that indicates the rotation that will be

applied to dstrect, rotating it in a clockwise direction
center A pointer to a point indicating the point around which

dstrect will be rotated (if NULL, rotation will be done
around dstrect.w/2, dstrect.h/2).

flip An SDL FlipMode value stating which flipping actions
should be performed on the texture

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL RENDERTEXTUREROTATED 873

See Also

� SDL RenderTexture

874 CHAPTER 1. SDL FUNCTIONS

SDL RenderViewportSet

Return whether an explicit rectangle was set as the viewport.

Header File

Defined in SDL3/SDL render.h

Syntax

SDL_bool SDL_RenderViewportSet(SDL_Renderer *renderer);

Function Parameters

renderer the rendering context

Return Value

Returns SDL TRUE if the viewport was set to a specific rectangle, or SDL FALSE
if it was set to NULL (the entire target)

Remarks

This is useful if you’re saving and restoring the viewport and want to know
whether you should restore a specific rectangle or NULL. Note that the viewport
is always reset when changing rendering targets.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderViewport

� SDL SetRenderViewport

SDL REPORTASSERTION 875

SDL ReportAssertion

Never call this directly.

Header File

Defined in SDL3/SDL assert.h

Syntax

SDL_AssertState SDL_ReportAssertion(SDL_AssertData *data,

const char *func,

const char *file, int line)

#ifdef __clang__

#if __has_feature(attribute_analyzer_noreturn)

__attribute__((analyzer_noreturn))

#endif

#endif

;

/* Previous ’analyzer_noreturn’ attribute tells Clang’s static analysis

that we’re a custom assert function,

and that the analyzer should assume the condition was always true

past this

SDL_assert test. */

/* Define the trigger breakpoint call used in asserts */

#ifndef SDL_AssertBreakpoint

#if defined(ANDROID) && defined(assert)

/* Define this as empty in case assert() is defined as SDL_assert */

#define SDL_AssertBreakpoint()

#else

#define SDL_AssertBreakpoint() SDL_TriggerBreakpoint()

#endif

#endif /* !SDL_AssertBreakpoint */

/* the do {} while(0) avoids dangling else problems:

if (x) SDL_assert(y); else blah();

Function Parameters

data assert data structure
func function name
file file name
line line number

876 CHAPTER 1. SDL FUNCTIONS

Return Value

Returns assert state

Remarks

Use the SDL assert* macros instead.

Version

This function is available since SDL 3.0.0.

SDL RESETASSERTIONREPORT 877

SDL ResetAssertionReport

Clear the list of all assertion failures.

Header File

Defined in SDL3/SDL assert.h

Syntax

void SDL_ResetAssertionReport(void);

Remarks

This function will clear the list of all assertions triggered up to that point.
Immediately following this call, SDL GetAssertionReport will return no items.
In addition, any previously-triggered assertions will be reset to a trigger count
of zero, and their always ignore state will be false.

Code Examples

SDL_assert(1+1 == 3); // trigger an assertion.

printf("%p\n", SDL_GetAssertionReport()); // not NULL.

SDL_ResetAssertionReport();

printf("%p\n", SDL_GetAssertionReport()); // NULL.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetAssertionReport

878 CHAPTER 1. SDL FUNCTIONS

SDL ResetHint

Reset a hint to the default value.

Header File

Defined in SDL3/SDL hints.h

Syntax

SDL_bool SDL_ResetHint(const char *name);

Function Parameters

name the hint to set

Return Value

Returns SDL TRUE if the hint was set, SDL FALSE otherwise.

Remarks

This will reset a hint to the value of the environment variable, or NULL if the
environment isn’t set. Callbacks will be called normally with this change.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetHint

� SDL ResetHints

SDL RESETHINTS 879

SDL ResetHints

Reset all hints to the default values.

Header File

Defined in SDL3/SDL hints.h

Syntax

void SDL_ResetHints(void);

Remarks

This will reset all hints to the value of the associated environment variable, or
NULL if the environment isn’t set. Callbacks will be called normally with this
change.

Version

This function is available since SDL 3.0.0.

See Also

� SDL ResetHint

880 CHAPTER 1. SDL FUNCTIONS

SDL ResetKeyboard

Clear the state of the keyboard.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

void SDL_ResetKeyboard(void);

Remarks

This function will generate key up events for all pressed keys.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetKeyboardState

SDL RESTOREWINDOW 881

SDL RestoreWindow

Request that the size and position of a minimized or maximized window be
restored.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_RestoreWindow(SDL_Window *window);

Function Parameters

window the window to restore

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

On some windowing systems this request is asynchronous and the new window
state may not have have been applied immediately upon the return of this
function. If an immediate change is required, call SDL SyncWindow() to block
until the changes have taken effect.

When the window state changes, an SDL EVENT WINDOW RESTORED
event will be emitted. Note that, as this is just a request, the windowing system
can deny the state change.

Version

This function is available since SDL 3.0.0.

See Also

� SDL MaximizeWindow

� SDL MinimizeWindow

� SDL SyncWindow

882 CHAPTER 1. SDL FUNCTIONS

SDL ResumeAudioDevice

Use this function to unpause audio playback on a specified device.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_ResumeAudioDevice(SDL_AudioDeviceID dev);

Function Parameters

dev a device opened by SDL OpenAudioDevice()

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function unpauses audio processing for a given device that has previously
been paused with SDL PauseAudioDevice(). Once unpaused, any bound audio
streams will begin to progress again, and audio can be generated.

Unlike in SDL2, audio devices start in an unpaused state, since an app has
to bind a stream before any audio will flow. Unpausing an unpaused device is
a legal no-op.

Physical devices can not be paused or unpaused, only logical devices created
through SDL OpenAudioDevice() can be.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AudioDevicePaused

� SDL PauseAudioDevice

SDL RESUMEHAPTIC 883

SDL ResumeHaptic

Resume a haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_ResumeHaptic(SDL_Haptic *haptic);

Function Parameters

haptic the SDL Haptic device to unpause

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Call to unpause after SDL PauseHaptic().

Version

This function is available since SDL 3.0.0.

See Also

� SDL PauseHaptic

884 CHAPTER 1. SDL FUNCTIONS

SDL round

Round x to the nearest integer.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_round(double x);

Function Parameters

x floating point value

Return Value

Returns the nearest integer to x

Remarks

Rounds x to the nearest integer. Values halfway between integers will be
rounded away from zero.

Domain: -INF <= x <= INF

Range: -INF <= y <= INF, y integer
This function operates on double-precision floating point values, use SDL roundf

for single-precision floats. To get the result as an integer type, use SDL lround.

Version

This function is available since SDL 3.0.0.

See Also

� SDL roundf

� SDL lround

� SDL floor

� SDL ceil

� SDL trunc

SDL ROUNDF 885

SDL roundf

Round x to the nearest integer.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_roundf(float x);

Function Parameters

x floating point value

Return Value

Returns the nearest integer to x

Remarks

Rounds x to the nearest integer. Values halfway between integers will be
rounded away from zero.

Domain: -INF <= x <= INF

Range: -INF <= y <= INF, y integer
This function operates on double-precision floating point values, use SDL roundf

for single-precision floats. To get the result as an integer type, use SDL lroundf.

Version

This function is available since SDL 3.0.0.

See Also

� SDL round

� SDL lroundf

� SDL floorf

� SDL ceilf

� SDL truncf

886 CHAPTER 1. SDL FUNCTIONS

SDL RumbleGamepad

Start a rumble effect on a gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_RumbleGamepad(SDL_Gamepad *gamepad, Uint16 low_frequency_rumble,

Uint16 high_frequency_rumble, Uint32 duration_ms);

Function Parameters

gamepad The gamepad to vibrate
low frequency rumble The intensity of the low frequency (left) rumble motor, from

0 to 0xFFFF
high frequency rumble The intensity of the high frequency (right) rumble motor,

from 0 to 0xFFFF
duration ms The duration of the rumble effect, in milliseconds

Return Value

Returns 0, or -1 if rumble isn’t supported on this gamepad

Remarks

Each call to this function cancels any previous rumble effect, and calling it with
0 intensity stops any rumbling.

This function requires you to process SDL events or call SDL UpdateJoysticks()
to update rumble state.

Version

This function is available since SDL 3.0.0.

SDL RUMBLEGAMEPADTRIGGERS 887

SDL RumbleGamepadTriggers

Start a rumble effect in the gamepad’s triggers.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_RumbleGamepadTriggers(SDL_Gamepad *gamepad, Uint16 left_rumble,

Uint16 right_rumble, Uint32 duration_ms);

Function Parameters

gamepad The gamepad to vibrate
left rumble The intensity of the left trigger rumble motor, from 0 to

0xFFFF
right rumble The intensity of the right trigger rumble motor, from 0 to

0xFFFF
duration ms The duration of the rumble effect, in milliseconds

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Each call to this function cancels any previous trigger rumble effect, and calling
it with 0 intensity stops any rumbling.

Note that this is rumbling of the triggers and not the gamepad as a whole.
This is currently only supported on Xbox One gamepads. If you want the (more
common) whole-gamepad rumble, use SDL RumbleGamepad() instead.

This function requires you to process SDL events or call SDL UpdateJoysticks()
to update rumble state.

Version

This function is available since SDL 3.0.0.

See Also

� SDL RumbleGamepad

888 CHAPTER 1. SDL FUNCTIONS

SDL RumbleJoystick

Start a rumble effect.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_RumbleJoystick(SDL_Joystick *joystick, Uint16

low_frequency_rumble, Uint16 high_frequency_rumble, Uint32

duration_ms);

Function Parameters

joystick The joystick to vibrate
low frequency rumble The intensity of the low frequency (left) rumble motor, from

0 to 0xFFFF
high frequency rumble The intensity of the high frequency (right) rumble motor,

from 0 to 0xFFFF
duration ms The duration of the rumble effect, in milliseconds

Return Value

Returns 0, or -1 if rumble isn’t supported on this joystick

Remarks

Each call to this function cancels any previous rumble effect, and calling it with
0 intensity stops any rumbling.

This function requires you to process SDL events or call SDL UpdateJoysticks()
to update rumble state.

Version

This function is available since SDL 3.0.0.

SDL RUMBLEJOYSTICKTRIGGERS 889

SDL RumbleJoystickTriggers

Start a rumble effect in the joystick’s triggers.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_RumbleJoystickTriggers(SDL_Joystick *joystick, Uint16

left_rumble, Uint16 right_rumble, Uint32 duration_ms);

Function Parameters

joystick The joystick to vibrate
left rumble The intensity of the left trigger rumble motor, from 0 to

0xFFFF
right rumble The intensity of the right trigger rumble motor, from 0 to

0xFFFF
duration ms The duration of the rumble effect, in milliseconds

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Each call to this function cancels any previous trigger rumble effect, and calling
it with 0 intensity stops any rumbling.

Note that this is rumbling of the triggers and not the game controller as
a whole. This is currently only supported on Xbox One controllers. If you
want the (more common) whole-controller rumble, use SDL RumbleJoystick()
instead.

This function requires you to process SDL events or call SDL UpdateJoysticks()
to update rumble state.

Version

This function is available since SDL 3.0.0.

890 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL RumbleJoystick

SDL RUNAPP 891

SDL RunApp

Initializes and launches an SDL application, by doing platform-specific initial-
ization before calling your mainFunction and cleanups after it returns, if that is
needed for a specific platform, otherwise it just calls mainFunction.

Header File

Defined in SDL3/SDL main.h

Syntax

int SDL_RunApp(int argc, char* argv[], SDL_main_func mainFunction, void

* reserved);

Function Parameters

argc The argc parameter from the application’s main() function,
or 0 if the platform’s main-equivalent has no argc

argv The argv parameter from the application’s main() function,
or NULL if the platform’s main-equivalent has no argv

mainFunction Your SDL app’s C-style main(), an SDL main func. NOT
the function you’re calling this from! Its name doesn’t mat-
ter, but its signature must be like int my main(int argc,
char* argv[])

reserved should be NULL (reserved for future use, will probably be
platform-specific then)

Return Value

Returns the return value from mainFunction: 0 on success, -1 on failure; SDL GetError()
might have more information on the failure

Remarks

You can use this if you want to use your own main() implementation without
using SDL main (like when using SDL MAIN HANDLED). When using this,
you do not need SDL SetMainReady().

Version

This function is available since SDL 3.0.0.

892 CHAPTER 1. SDL FUNCTIONS

SDL RunHapticEffect

Run the haptic effect on its associated haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_RunHapticEffect(SDL_Haptic *haptic, int effect, Uint32

iterations);

Function Parameters

haptic the SDL Haptic device to run the effect on
effect the ID of the haptic effect to run
iterations the number of iterations to run the effect; use

SDL HAPTIC INFINITY to repeat forever

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

To repeat the effect over and over indefinitely, set iterations to SDL HAPTIC INFINITY.
(Repeats the envelope - attack and fade.) To make one instance of the effect
last indefinitely (so the effect does not fade), set the effect’s length in its struc-
ture/union to SDL HAPTIC INFINITY instead.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetHapticEffectStatus

� SDL StopHapticEffect

� SDL StopHapticEffects

SDL SAVEBMP 893

SDL SaveBMP

Save a surface to a file.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_SaveBMP(SDL_Surface *surface, const char *file);

Function Parameters

surface the SDL Surface structure containing the image to be saved
file a file to save to

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Surfaces with a 24-bit, 32-bit and paletted 8-bit format get saved in the BMP
directly. Other RGB formats with 8-bit or higher get converted to a 24-bit
surface or, if they have an alpha mask or a colorkey, to a 32-bit surface before
they are saved. YUV and paletted 1-bit and 4-bit formats are not supported.

Version

This function is available since SDL 3.0.0.

See Also

� SDL LoadBMP

� SDL SaveBMP IO

894 CHAPTER 1. SDL FUNCTIONS

SDL SaveBMP IO

Save a surface to a seekable SDL data stream in BMP format.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_SaveBMP_IO(SDL_Surface *surface, SDL_IOStream *dst, SDL_bool

closeio);

Function Parameters

surface the SDL Surface structure containing the image to be saved
dst a data stream to save to
closeio if SDL TRUE, calls SDL CloseIO() on dst before returning,

even in the case of an error

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Surfaces with a 24-bit, 32-bit and paletted 8-bit format get saved in the BMP
directly. Other RGB formats with 8-bit or higher get converted to a 24-bit
surface or, if they have an alpha mask or a colorkey, to a 32-bit surface before
they are saved. YUV and paletted 1-bit and 4-bit formats are not supported.

Version

This function is available since SDL 3.0.0.

See Also

� SDL LoadBMP IO

� SDL SaveBMP

SDL SCALBN 895

SDL scalbn

Scale x by an integer power of two.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_scalbn(double x, int n);

Function Parameters

x floating point value to be scaled
n integer exponent

Return Value

Returns x * 2n̂

Remarks

Multiplies x by the nth power of the floating point radix (always 2).
Domain: -INF <= x <= INF, n integer
Range: -INF <= y <= INF

This function operates on double-precision floating point values, use SDL scalbnf
for single-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL scalbnf

� SDL pow

896 CHAPTER 1. SDL FUNCTIONS

SDL scalbnf

Scale x by an integer power of two.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_scalbnf(float x, int n);

Function Parameters

x floating point value to be scaled
n integer exponent

Return Value

Returns x * 2n̂

Remarks

Multiplies x by the nth power of the floating point radix (always 2).
Domain: -INF <= x <= INF, n integer
Range: -INF <= y <= INF

This function operates on single-precision floating point values, use SDL scalbn
for double-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL scalbn

� SDL powf

SDL SCREENKEYBOARDSHOWN 897

SDL ScreenKeyboardShown

Check whether the screen keyboard is shown for given window.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

SDL_bool SDL_ScreenKeyboardShown(SDL_Window *window);

Function Parameters

window the window for which screen keyboard should be queried

Return Value

Returns SDL TRUE if screen keyboard is shown or SDL FALSE if not.

Version

This function is available since SDL 3.0.0.

See Also

� SDL HasScreenKeyboardSupport

898 CHAPTER 1. SDL FUNCTIONS

SDL ScreenSaverEnabled

Check whether the screensaver is currently enabled.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_bool SDL_ScreenSaverEnabled(void);

Return Value

Returns SDL TRUE if the screensaver is enabled, SDL FALSE if it is disabled.

Remarks

The screensaver is disabled by default.
The default can also be changed using SDL HINT VIDEO ALLOW SCREENSAVER.

Version

This function is available since SDL 3.0.0.

See Also

� SDL DisableScreenSaver

� SDL EnableScreenSaver

SDL SEEKIO 899

SDL SeekIO

Seek within an SDL IOStream data stream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

Sint64 SDL_SeekIO(SDL_IOStream *context, Sint64 offset, int whence);

Function Parameters

context a pointer to an SDL IOStream structure
offset an offset in bytes, relative to whence location; can be neg-

ative
whence any of SDL IO SEEK SET, SDL IO SEEK CUR,

SDL IO SEEK END

Return Value

Returns the final offset in the data stream after the seek or a negative error
code on failure; call SDL GetError() for more information.

Remarks

This function seeks to byte offset, relative to whence. whence may be any of
the following values:

� SDL IO SEEK SET: seek from the beginning of data

� SDL IO SEEK CUR: seek relative to current read point

� SDL IO SEEK END: seek relative to the end of data

If this stream can not seek, it will return -1.

Version

This function is available since SDL 3.0.0.

See Also

� SDL TellIO

900 CHAPTER 1. SDL FUNCTIONS

SDL SendGamepadEffect

Send a gamepad specific effect packet.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_SendGamepadEffect(SDL_Gamepad *gamepad, const void *data, int

size);

Function Parameters

gamepad The gamepad to affect
data The data to send to the gamepad
size The size of the data to send to the gamepad

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL SENDJOYSTICKEFFECT 901

SDL SendJoystickEffect

Send a joystick specific effect packet.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_SendJoystickEffect(SDL_Joystick *joystick, const void *data, int

size);

Function Parameters

joystick The joystick to affect
data The data to send to the joystick
size The size of the data to send to the joystick

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

902 CHAPTER 1. SDL FUNCTIONS

SDL SetAssertionHandler

Set an application-defined assertion handler.

Header File

Defined in SDL3/SDL assert.h

Syntax

void SDL_SetAssertionHandler(

SDL_AssertionHandler handler,

void *userdata);

Function Parameters

handler the SDL AssertionHandler function to call when an asser-
tion fails or NULL for the default handler

userdata a pointer that is passed to handler

Remarks

This function allows an application to show its own assertion UI and/or force
the response to an assertion failure. If the application doesn’t provide this,
SDL will try to do the right thing, popping up a system-specific GUI dialog,
and probably minimizing any fullscreen windows.

This callback may fire from any thread, but it runs wrapped in a mutex, so
it will only fire from one thread at a time.

This callback is NOT reset to SDL’s internal handler upon SDL Quit()!

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetAssertionHandler

SDL SETAUDIOPOSTMIXCALLBACK 903

SDL SetAudioPostmixCallback

Set a callback that fires when data is about to be fed to an audio device.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_SetAudioPostmixCallback(SDL_AudioDeviceID devid,

SDL_AudioPostmixCallback callback, void *userdata);

Function Parameters

devid The ID of an opened audio device.
callback A callback function to be called. Can be NULL.
userdata App-controlled pointer passed to callback. Can be NULL.

Return Value

Returns zero on success, -1 on error; call SDL GetError() for more information.

Remarks

This is useful for accessing the final mix, perhaps for writing a visualizer or
applying a final effect to the audio data before playback.

The buffer is the final mix of all bound audio streams on an opened device;
this callback will fire regularly for any device that is both opened and unpaused.
If there is no new data to mix, either because no streams are bound to the device
or all the streams are empty, this callback will still fire with the entire buffer
set to silence.

This callback is allowed to make changes to the data; the contents of the
buffer after this call is what is ultimately passed along to the hardware.

The callback is always provided the data in float format (values from -1.0f
to 1.0f), but the number of channels or sample rate may be different than the
format the app requested when opening the device; SDL might have had to
manage a conversion behind the scenes, or the playback might have jumped to
new physical hardware when a system default changed, etc. These details may
change between calls. Accordingly, the size of the buffer might change between
calls as well.

This callback can run at any time, and from any thread; if you need to
serialize access to your app’s data, you should provide and use a mutex or other
synchronization device.

904 CHAPTER 1. SDL FUNCTIONS

All of this to say: there are specific needs this callback can fulfill, but it is not
the simplest interface. Apps should generally provide audio in their preferred
format through an SDL AudioStream and let SDL handle the difference.

This function is extremely time-sensitive; the callback should do the least
amount of work possible and return as quickly as it can. The longer the callback
runs, the higher the risk of audio dropouts or other problems.

This function will block until the audio device is in between iterations, so
any existing callback that might be running will finish before this function sets
the new callback and returns.

Setting a NULL callback function disables any previously-set callback.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL SETAUDIOSTREAMFORMAT 905

SDL SetAudioStreamFormat

Change the input and output formats of an audio stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_SetAudioStreamFormat(SDL_AudioStream *stream,

const SDL_AudioSpec *src_spec,

const SDL_AudioSpec *dst_spec);

Function Parameters

stream The stream the format is being changed
src spec The new format of the audio input; if NULL, it is not

changed.
dst spec The new format of the audio output; if NULL, it is not

changed.

Return Value

Returns 0 on success, or -1 on error.

Remarks

Future calls to and SDL GetAudioStreamAvailable and SDL GetAudioStreamData
will reflect the new format, and future calls to SDL PutAudioStreamData must
provide data in the new input formats.

Data that was previously queued in the stream will still be operated on in
the format that was current when it was added, which is to say you can put
the end of a sound file in one format to a stream, change formats for the next
sound file, and start putting that new data while the previous sound file is still
queued, and everything will still play back correctly.

Thread Safety

It is safe to call this function from any thread, as it holds a stream-specific
mutex while running.

Version

This function is available since SDL 3.0.0.

906 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL GetAudioStreamFormat

� SDL SetAudioStreamFrequencyRatio

SDL SETAUDIOSTREAMFREQUENCYRATIO 907

SDL SetAudioStreamFrequencyRatio

Change the frequency ratio of an audio stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_SetAudioStreamFrequencyRatio(SDL_AudioStream *stream, float

ratio);

Function Parameters

stream The stream the frequency ratio is being changed
ratio The frequency ratio. 1.0 is normal speed. Must be between

0.01 and 100.

Return Value

Returns 0 on success, or -1 on error.

Remarks

The frequency ratio is used to adjust the rate at which input data is consumed.
Changing this effectively modifies the speed and pitch of the audio. A value
greater than 1.0 will play the audio faster, and at a higher pitch. A value less
than 1.0 will play the audio slower, and at a lower pitch.

This is applied during SDL GetAudioStreamData, and can be continuously
changed to create various effects.

Thread Safety

It is safe to call this function from any thread, as it holds a stream-specific
mutex while running.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetAudioStreamFrequencyRatio

� SDL SetAudioStreamFormat

908 CHAPTER 1. SDL FUNCTIONS

SDL SetAudioStreamGetCallback

Set a callback that runs when data is requested from an audio stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_SetAudioStreamGetCallback(SDL_AudioStream *stream,

SDL_AudioStreamCallback callback, void *userdata);

Function Parameters

stream the audio stream to set the new callback on.
callback the new callback function to call when data is added to the

stream.
userdata an opaque pointer provided to the callback for its own per-

sonal use.

Return Value

Returns 0 on success, -1 on error. This only fails if stream is NULL.

Remarks

This callback is called before data is obtained from the stream, giving the
callback the chance to add more on-demand.

The callback can (optionally) call SDL PutAudioStreamData() to add more
audio to the stream during this call; if needed, the request that triggered this
callback will obtain the new data immediately.

The callback’s approx request argument is roughly how many bytes of
unconverted data (in the stream’s input format) is needed by the caller, al-
though this may overestimate a little for safety. This takes into account how
much is already in the stream and only asks for any extra necessary to resolve the
request, which means the callback may be asked for zero bytes, and a different
amount on each call.

The callback is not required to supply exact amounts; it is allowed to supply
too much or too little or none at all. The caller will get what’s available, up to
the amount they requested, regardless of this callback’s outcome.

Clearing or flushing an audio stream does not call this callback.
This function obtains the stream’s lock, which means any existing callback

(get or put) in progress will finish running before setting the new callback.
Setting a NULL function turns off the callback.

SDL SETAUDIOSTREAMGETCALLBACK 909

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetAudioStreamPutCallback

910 CHAPTER 1. SDL FUNCTIONS

SDL SetAudioStreamPutCallback

Set a callback that runs when data is added to an audio stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_SetAudioStreamPutCallback(SDL_AudioStream *stream,

SDL_AudioStreamCallback callback, void *userdata);

Function Parameters

stream the audio stream to set the new callback on.
callback the new callback function to call when data is added to the

stream.
userdata an opaque pointer provided to the callback for its own per-

sonal use.

Return Value

Returns 0 on success, -1 on error. This only fails if stream is NULL.

Remarks

This callback is called after the data is added to the stream, giving the callback
the chance to obtain it immediately.

The callback can (optionally) call SDL GetAudioStreamData() to obtain
audio from the stream during this call.

The callback’s approx request argument is how many bytes of converted
data (in the stream’s output format) was provided by the caller, although this
may underestimate a little for safety. This value might be less than what is
currently available in the stream, if data was already there, and might be less
than the caller provided if the stream needs to keep a buffer to aid in resampling.
Which means the callback may be provided with zero bytes, and a different
amount on each call.

The callback may call SDL GetAudioStreamAvailable to see the total amount
currently available to read from the stream, instead of the total provided by the
current call.

The callback is not required to obtain all data. It is allowed to read less
or none at all. Anything not read now simply remains in the stream for later
access.

Clearing or flushing an audio stream does not call this callback.

SDL SETAUDIOSTREAMPUTCALLBACK 911

This function obtains the stream’s lock, which means any existing callback
(get or put) in progress will finish running before setting the new callback.

Setting a NULL function turns off the callback.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetAudioStreamGetCallback

912 CHAPTER 1. SDL FUNCTIONS

SDL SetBooleanProperty

Set a boolean property on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

int SDL_SetBooleanProperty(SDL_PropertiesID props, const char *name,

SDL_bool value);

Function Parameters

props the properties to modify
name the name of the property to modify
value the new value of the property

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetBooleanProperty

SDL SETCLIPBOARDDATA 913

SDL SetClipboardData

Offer clipboard data to the OS.

Header File

Defined in SDL3/SDL clipboard.h

Syntax

int SDL_SetClipboardData(SDL_ClipboardDataCallback callback,

SDL_ClipboardCleanupCallback cleanup, void *userdata, const char

**mime_types, size_t num_mime_types);

Function Parameters

callback A function pointer to the function that provides the clip-
board data

cleanup A function pointer to the function that cleans up the clip-
board data

userdata An opaque pointer that will be forwarded to the callbacks
mime types A list of mime-types that are being offered
num mime types The number of mime-types in the mime types list

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Tell the operating system that the application is offering clipboard data for
each of the proivded mime-types. Once another application requests the data
the callback function will be called allowing it to generate and respond with the
data for the requested mime-type.

The size of text data does not include any terminator, and the text does not
need to be null terminated (e.g. you can directly copy a portion of a document)

Version

This function is available since SDL 3.0.0.

914 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL ClearClipboardData

� SDL GetClipboardData

� SDL HasClipboardData

SDL SETCLIPBOARDTEXT 915

SDL SetClipboardText

Put UTF-8 text into the clipboard.

Header File

Defined in SDL3/SDL clipboard.h

Syntax

int SDL_SetClipboardText(const char *text);

Function Parameters

text the text to store in the clipboard

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetClipboardText

� SDL HasClipboardText

916 CHAPTER 1. SDL FUNCTIONS

SDL SetCursor

Set the active cursor.

Header File

Defined in SDL3/SDL mouse.h

Syntax

int SDL_SetCursor(SDL_Cursor * cursor);

Function Parameters

cursor a cursor to make active

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function sets the currently active cursor to the specified one. If the cursor
is currently visible, the change will be immediately represented on the display.
SDL SetCursor(NULL) can be used to force cursor redraw, if this is desired for
any reason.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetCursor

SDL SETERROR 917

SDL SetError

Set the SDL error message for the current thread.

Header File

Defined in SDL3/SDL error.h

Syntax

int SDL_SetError(SDL_PRINTF_FORMAT_STRING const char *fmt, ...)

SDL_PRINTF_VARARG_FUNC(1);

Function Parameters

fmt a printf()-style message format string
... additional parameters matching

Return Value

Returns always -1.

Remarks

Calling this function will replace any previous error message that was set.
This function always returns -1, since SDL frequently uses -1 to signify an

failing result, leading to this idiom:

if (error_code) {

return SDL_SetError("This operation has failed: %d", error_code);

}

Code Examples

SDL_SetError("Something unexpected happened!");

int errorCode = 0;

/* ... */

errorCode = -37;

/* ... */

if (errorCode < 0)

SDL_SetError("Something unexpected happened: Error Code %d",

errorCode);

918 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

See Also

� SDL ClearError

� SDL GetError

SDL SETEVENTENABLED 919

SDL SetEventEnabled

Set the state of processing events by type.

Header File

Defined in SDL3/SDL events.h

Syntax

void SDL_SetEventEnabled(Uint32 type, SDL_bool enabled);

Function Parameters

type the type of event; see SDL EventType for details
enabled whether to process the event or not

Version

This function is available since SDL 3.0.0.

See Also

� SDL EventEnabled

920 CHAPTER 1. SDL FUNCTIONS

SDL SetEventFilter

Set up a filter to process all events before they change internal state and are
posted to the internal event queue.

Header File

Defined in SDL3/SDL events.h

Syntax

void SDL_SetEventFilter(SDL_EventFilter filter, void *userdata);

Function Parameters

filter An SDL EventFilter function to call when an event happens
userdata a pointer that is passed to filter

Remarks

If the filter function returns 1 when called, then the event will be added to the
internal queue. If it returns 0, then the event will be dropped from the queue,
but the internal state will still be updated. This allows selective filtering of
dynamically arriving events. WARNING: Be very careful of what you do in
the event filter function, as it may run in a different thread!

On platforms that support it, if the quit event is generated by an interrupt
signal (e.g. pressing Ctrl-C), it will be delivered to the application at the next
event poll.

There is one caveat when dealing with the ::SDL QuitEvent event type.
The event filter is only called when the window manager desires to close the
application window. If the event filter returns 1, then the window will be closed,
otherwise the window will remain open if possible.

Note: Disabled events never make it to the event filter function; see SDL SetEventEnabled().
Note: If you just want to inspect events without filtering, you should use

SDL AddEventWatch() instead.
Note: Events pushed onto the queue with SDL PushEvent() get passed

through the event filter, but events pushed onto the queue with SDL PeepEvents()
do not.

Code Examples

#include <SDL3/SDL.h>

SDL SETEVENTFILTER 921

// Just a quick warning: this is a silly way to do things, but it

// illustrates how event filters work. In real life, you’d just

// handle the event when you get it from SDL_PollEvent in the main

// loop. Generally if you find yourself using an event filter, you

// should stop and think carefully about whether you have a good

// reason to be doing so in the first place.

// This is the function we’ll pass to SDL_SetEventFilter. If it sees

// that the user has pressed the keyboard’s space bar, it toggles

// the value pointed to by ‘userdata‘, to represent the color blue,

// between 255 and 0. The main program uses this value to clear the

// window to a specific color as the space bar is pressed.

static int SDLCALL my_event_filter(void *userdata, SDL_Event * event)

{

if ((event->type == SDL_EVENT_KEY_DOWN) && (event->key.keysym.sym ==

SDLK_SPACE)) {

Uint8 *blue = (Uint8 *) userdata;

if (*blue == 0) {

*blue = 255;

} else {

*blue = 0;

}

}

return 1; // let all events be added to the queue since we always

return 1.

}

int main(int argc, char **argv)

{

Uint8 blue = 0;

int quit = 0;

// Just get a window on the screen and clear it to black.

// In real life, you should check these for errors!

SDL_Init(SDL_INIT_VIDEO);

SDL_Window *window = SDL_CreateWindow("Hello SDL", 640, 480, 0);

SDL_Renderer *renderer = SDL_CreateRenderer(window, NULL,

SDL_RENDERER_PRESENTVSYNC);

SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);

SDL_RenderClear(renderer);

SDL_RenderPresent(renderer);

// Set up an event filter...

SDL_SetEventFilter(my_event_filter, &blue);

// Now run the event loop mostly forever. Each event goes through the

// my_event_filter function before it lands here. Each frame, we

fill

922 CHAPTER 1. SDL FUNCTIONS

// in the window with whatever color ‘blue‘ is set to, which might

be

// changed by the filter function, as its address is our userdata.

while (!quit) {

SDL_Event e;

while (SDL_PollEvent(&e)) {

if (e.type == SDL_EVENT_QUIT) {

quit = 1;

}

}

SDL_SetRenderDrawColor(renderer, 0, 0, blue, 255);

SDL_RenderClear(renderer);

SDL_RenderPresent(renderer);

}

SDL_Quit();

return 0;

}

Thread Safety

SDL may call the filter callback at any time from any thread; the application is
responsible for locking resources the callback touches that need to be protected.

Version

This function is available since SDL 3.0.0.

See Also

� SDL AddEventWatch

� SDL SetEventEnabled

� SDL GetEventFilter

� SDL PeepEvents

� SDL PushEvent

SDL SETFLOATPROPERTY 923

SDL SetFloatProperty

Set a floating point property on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

int SDL_SetFloatProperty(SDL_PropertiesID props, const char *name, float

value);

Function Parameters

props the properties to modify
name the name of the property to modify
value the new value of the property

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetFloatProperty

924 CHAPTER 1. SDL FUNCTIONS

SDL SetGamepadEventsEnabled

Set the state of gamepad event processing.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

void SDL_SetGamepadEventsEnabled(SDL_bool enabled);

Function Parameters

enabled whether to process gamepad events or not

Remarks

If gamepad events are disabled, you must call SDL UpdateGamepads() yourself
and check the state of the gamepad when you want gamepad information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GamepadEventsEnabled

� SDL UpdateGamepads

SDL SETGAMEPADLED 925

SDL SetGamepadLED

Update a gamepad’s LED color.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_SetGamepadLED(SDL_Gamepad *gamepad, Uint8 red, Uint8 green,

Uint8 blue);

Function Parameters

gamepad The gamepad to update
red The intensity of the red LED
green The intensity of the green LED
blue The intensity of the blue LED

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

An example of a joystick LED is the light on the back of a PlayStation 4’s
DualShock 4 controller.

For gamepads with a single color LED, the maximum of the RGB values will
be used as the LED brightness.

Version

This function is available since SDL 3.0.0.

926 CHAPTER 1. SDL FUNCTIONS

SDL SetGamepadMapping

Set the current mapping of a joystick or gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_SetGamepadMapping(SDL_JoystickID instance_id, const char

*mapping);

Function Parameters

instance id the joystick instance ID
mapping the mapping to use for this device, or NULL to clear the

mapping

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Details about mappings are discussed with SDL AddGamepadMapping().

Version

This function is available since SDL 3.0.0.

See Also

� SDL AddGamepadMapping

� SDL GetGamepadMapping

SDL SETGAMEPADPLAYERINDEX 927

SDL SetGamepadPlayerIndex

Set the player index of an opened gamepad.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_SetGamepadPlayerIndex(SDL_Gamepad *gamepad, int player_index);

Function Parameters

gamepad the gamepad object to adjust.
player index Player index to assign to this gamepad, or -1 to clear the

player index and turn off player LEDs.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetGamepadPlayerIndex

928 CHAPTER 1. SDL FUNCTIONS

SDL SetGamepadSensorEnabled

Set whether data reporting for a gamepad sensor is enabled.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

int SDL_SetGamepadSensorEnabled(SDL_Gamepad *gamepad, SDL_SensorType

type, SDL_bool enabled);

Function Parameters

gamepad The gamepad to update
type The type of sensor to enable/disable
enabled Whether data reporting should be enabled

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GamepadHasSensor

� SDL GamepadSensorEnabled

SDL SETHAPTICAUTOCENTER 929

SDL SetHapticAutocenter

Set the global autocenter of the device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_SetHapticAutocenter(SDL_Haptic *haptic, int autocenter);

Function Parameters

haptic the SDL Haptic device to set autocentering on
autocenter value to set autocenter to (0-100)

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Autocenter should be between 0 and 100. Setting it to 0 will disable autocen-
tering.

Device must support the SDL HAPTIC AUTOCENTER feature.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetHapticFeatures

930 CHAPTER 1. SDL FUNCTIONS

SDL SetHapticGain

Set the global gain of the specified haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_SetHapticGain(SDL_Haptic *haptic, int gain);

Function Parameters

haptic the SDL Haptic device to set the gain on
gain value to set the gain to, should be between 0 and 100 (0 -

100)

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Device must support the SDL HAPTIC GAIN feature.
The user may specify the maximum gain by setting the environment vari-

able SDL HAPTIC GAIN MAX which should be between 0 and 100. All calls to
SDL SetHapticGain() will scale linearly using SDL HAPTIC GAIN MAX as the max-
imum.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetHapticFeatures

SDL SETHINT 931

SDL SetHint

Set a hint with normal priority.

Header File

Defined in SDL3/SDL hints.h

Syntax

SDL_bool SDL_SetHint(const char *name,

const char *value);

Function Parameters

name the hint to set
value the value of the hint variable

Return Value

Returns SDL TRUE if the hint was set, SDL FALSE otherwise.

Remarks

Hints will not be set if there is an existing override hint or environment variable
that takes precedence. You can use SDL SetHintWithPriority() to set the hint
with override priority instead.

Code Examples

/* Log most events (other than the really spammy ones) */

SDL_SetHint(SDL_HINT_LOGGING, "2");

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetHint

� SDL ResetHint

� SDL SetHintWithPriority

932 CHAPTER 1. SDL FUNCTIONS

SDL SetHintWithPriority

Set a hint with a specific priority.

Header File

Defined in SDL3/SDL hints.h

Syntax

SDL_bool SDL_SetHintWithPriority(const char *name,

const char *value,

SDL_HintPriority priority);

Function Parameters

name the hint to set
value the value of the hint variable
priority the SDL HintPriority level for the hint

Return Value

Returns SDL TRUE if the hint was set, SDL FALSE otherwise.

Remarks

The priority controls the behavior when setting a hint that already has a value.
Hints will replace existing hints of their priority and lower. Environment vari-
ables are considered to have override priority.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetHint

� SDL ResetHint

� SDL SetHint

SDL SETJOYSTICKEVENTSENABLED 933

SDL SetJoystickEventsEnabled

Set the state of joystick event processing.

Header File

Defined in SDL3/SDL joystick.h

Syntax

void SDL_SetJoystickEventsEnabled(SDL_bool enabled);

Function Parameters

enabled whether to process joystick events or not

Remarks

If joystick events are disabled, you must call SDL UpdateJoysticks() yourself
and check the state of the joystick when you want joystick information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL JoystickEventsEnabled

� SDL UpdateJoysticks

934 CHAPTER 1. SDL FUNCTIONS

SDL SetJoystickLED

Update a joystick’s LED color.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_SetJoystickLED(SDL_Joystick *joystick, Uint8 red, Uint8 green,

Uint8 blue);

Function Parameters

joystick The joystick to update
red The intensity of the red LED
green The intensity of the green LED
blue The intensity of the blue LED

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

An example of a joystick LED is the light on the back of a PlayStation 4’s
DualShock 4 controller.

For joysticks with a single color LED, the maximum of the RGB values will
be used as the LED brightness.

Version

This function is available since SDL 3.0.0.

SDL SETJOYSTICKPLAYERINDEX 935

SDL SetJoystickPlayerIndex

Set the player index of an opened joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_SetJoystickPlayerIndex(SDL_Joystick *joystick, int player_index);

Function Parameters

joystick the SDL Joystick obtained from SDL OpenJoystick()
player index Player index to assign to this joystick, or -1 to clear the

player index and turn off player LEDs.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetJoystickPlayerIndex

936 CHAPTER 1. SDL FUNCTIONS

SDL SetJoystickVirtualAxis

Set values on an opened, virtual-joystick’s axis.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_SetJoystickVirtualAxis(SDL_Joystick *joystick, int axis, Sint16

value);

Function Parameters

joystick the virtual joystick on which to set state.
axis the specific axis on the virtual joystick to set.
value the new value for the specified axis.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Please note that values set here will not be applied until the next call to
SDL UpdateJoysticks, which can either be called directly, or can be called indi-
rectly through various other SDL APIs, including, but not limited to the follow-
ing: SDL PollEvent, SDL PumpEvents, SDL WaitEventTimeout, SDL WaitEvent.

Note that when sending trigger axes, you should scale the value to the
full range of Sint16. For example, a trigger at rest would have the value of
SDL JOYSTICK AXIS MIN.

Version

This function is available since SDL 3.0.0.

SDL SETJOYSTICKVIRTUALBUTTON 937

SDL SetJoystickVirtualButton

Set values on an opened, virtual-joystick’s button.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_SetJoystickVirtualButton(SDL_Joystick *joystick, int button,

Uint8 value);

Function Parameters

joystick the virtual joystick on which to set state.
button the specific button on the virtual joystick to set.
value the new value for the specified button.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Please note that values set here will not be applied until the next call to
SDL UpdateJoysticks, which can either be called directly, or can be called indi-
rectly through various other SDL APIs, including, but not limited to the follow-
ing: SDL PollEvent, SDL PumpEvents, SDL WaitEventTimeout, SDL WaitEvent.

Version

This function is available since SDL 3.0.0.

938 CHAPTER 1. SDL FUNCTIONS

SDL SetJoystickVirtualHat

Set values on an opened, virtual-joystick’s hat.

Header File

Defined in SDL3/SDL joystick.h

Syntax

int SDL_SetJoystickVirtualHat(SDL_Joystick *joystick, int hat, Uint8

value);

Function Parameters

joystick the virtual joystick on which to set state.
hat the specific hat on the virtual joystick to set.
value the new value for the specified hat.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Please note that values set here will not be applied until the next call to
SDL UpdateJoysticks, which can either be called directly, or can be called indi-
rectly through various other SDL APIs, including, but not limited to the follow-
ing: SDL PollEvent, SDL PumpEvents, SDL WaitEventTimeout, SDL WaitEvent.

Version

This function is available since SDL 3.0.0.

SDL SETLOGOUTPUTFUNCTION 939

SDL SetLogOutputFunction

Replace the default log output function with one of your own.

Header File

Defined in SDL3/SDL log.h

Syntax

void SDL_SetLogOutputFunction(SDL_LogOutputFunction callback, void

*userdata);

Function Parameters

callback an SDL LogOutputFunction to call instead of the default
userdata a pointer that is passed to callback

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetLogOutputFunction

940 CHAPTER 1. SDL FUNCTIONS

SDL SetMainReady

Circumvent failure of SDL Init() when not using SDL main() as an entry point.

Header File

Defined in SDL3/SDL main.h

Syntax

void SDL_SetMainReady(void);

Remarks

This function is defined in SDL main.h, along with the preprocessor rule to
redefine main() as SDL main(). Thus to ensure that your main() function will
not be changed it is necessary to define SDL MAIN HANDLED before including
SDL.h.

Code Examples

#define SDL_MAIN_HANDLED

#include <SDL3/SDL.h>

#include <SDL3/SDL_main.h>

int main(int argc, char *argv[])

{

SDL_SetMainReady();

SDL_Init(SDL_INIT_VIDEO);

/* ... */

SDL_Quit();

return 0;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL Init

SDL SETMEMORYFUNCTIONS 941

SDL SetMemoryFunctions

Replace SDL’s memory allocation functions with a custom set.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_SetMemoryFunctions(SDL_malloc_func malloc_func,

SDL_calloc_func calloc_func,

SDL_realloc_func realloc_func,

SDL_free_func free_func);

Function Parameters

malloc func custom malloc function
calloc func custom calloc function
realloc func custom realloc function
free func custom free function

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

942 CHAPTER 1. SDL FUNCTIONS

SDL SetModState

Set the current key modifier state for the keyboard.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

void SDL_SetModState(SDL_Keymod modstate);

Function Parameters

modstate the desired SDL Keymod for the keyboard

Remarks

The inverse of SDL GetModState(), SDL SetModState() allows you to impose
modifier key states on your application. Simply pass your desired modifier states
into modstate. This value may be a bitwise, OR’d combination of SDL Keymod
values.

This does not change the keyboard state, only the key modifier flags that
SDL reports.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetModState

SDL SETNUMBERPROPERTY 943

SDL SetNumberProperty

Set an integer property on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

int SDL_SetNumberProperty(SDL_PropertiesID props, const char *name,

Sint64 value);

Function Parameters

props the properties to modify
name the name of the property to modify
value the new value of the property

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetNumberProperty

944 CHAPTER 1. SDL FUNCTIONS

SDL SetPaletteColors

Set a range of colors in a palette.

Header File

Defined in SDL3/SDL pixels.h

Syntax

int SDL_SetPaletteColors(SDL_Palette * palette,

const SDL_Color * colors,

int firstcolor, int ncolors);

Function Parameters

palette the SDL Palette structure to modify
colors an array of SDL Color structures to copy into the palette
firstcolor the index of the first palette entry to modify
ncolors the number of entries to modify

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

SDL SETPIXELFORMATPALETTE 945

SDL SetPixelFormatPalette

Set the palette for a pixel format structure.

Header File

Defined in SDL3/SDL pixels.h

Syntax

int SDL_SetPixelFormatPalette(SDL_PixelFormat * format,

SDL_Palette *palette);

Function Parameters

format the SDL PixelFormat structure that will use the palette
palette the SDL Palette structure that will be used

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

946 CHAPTER 1. SDL FUNCTIONS

SDL SetPrimarySelectionText

Put UTF-8 text into the primary selection.

Header File

Defined in SDL3/SDL clipboard.h

Syntax

int SDL_SetPrimarySelectionText(const char *text);

Function Parameters

text the text to store in the primary selection

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetPrimarySelectionText

� SDL HasPrimarySelectionText

SDL SETPROPERTY 947

SDL SetProperty

Set a property on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

int SDL_SetProperty(SDL_PropertiesID props, const char *name, void

*value);

Function Parameters

props the properties to modify
name the name of the property to modify
value the new value of the property, or NULL to delete the prop-

erty

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetProperty

� SDL HasProperty

� SDL SetBooleanProperty

� SDL SetFloatProperty

� SDL SetNumberProperty

� SDL SetPropertyWithCleanup

� SDL SetStringProperty

948 CHAPTER 1. SDL FUNCTIONS

SDL SetPropertyWithCleanup

Set a property on a set of properties with a cleanup function that is called when
the property is deleted.

Header File

Defined in SDL3/SDL properties.h

Syntax

int SDL_SetPropertyWithCleanup(SDL_PropertiesID props, const char *name,

void *value, void (SDLCALL *cleanup)(void *userdata, void *value),

void *userdata);

Function Parameters

props the properties to modify
name the name of the property to modify
value the new value of the property, or NULL to delete the prop-

erty
cleanup the function to call when this property is deleted, or NULL

if no cleanup is necessary
userdata a pointer that is passed to the cleanup function

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The cleanup function is also called if setting the property fails for any reason.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL SETPROPERTYWITHCLEANUP 949

See Also

� SDL GetProperty

� SDL SetProperty

950 CHAPTER 1. SDL FUNCTIONS

SDL SetRelativeMouseMode

Set relative mouse mode.

Header File

Defined in SDL3/SDL mouse.h

Syntax

int SDL_SetRelativeMouseMode(SDL_bool enabled);

Function Parameters

enabled SDL TRUE to enable relative mode, SDL FALSE to dis-
able.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

While the mouse is in relative mode, the cursor is hidden, the mouse position
is constrained to the window, and SDL will report continuous relative mouse
motion even if the mouse is at the edge of the window.

This function will flush any pending mouse motion.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRelativeMouseMode

SDL SETRENDERCLIPRECT 951

SDL SetRenderClipRect

Set the clip rectangle for rendering on the specified target.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetRenderClipRect(SDL_Renderer *renderer, const SDL_Rect *rect);

Function Parameters

renderer the rendering context
rect an SDL Rect structure representing the clip area, relative

to the viewport, or NULL to disable clipping

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderClipRect

� SDL RenderClipEnabled

952 CHAPTER 1. SDL FUNCTIONS

SDL SetRenderColorScale

Set the color scale used for render operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetRenderColorScale(SDL_Renderer *renderer, float scale);

Function Parameters

renderer the rendering context
scale the color scale value

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The color scale is an additional scale multiplied into the pixel color value while
rendering. This can be used to adjust the brightness of colors during HDR
rendering, or changing HDR video brightness when playing on an SDR display.

The color scale does not affect the alpha channel, only the color brightness.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderColorScale

SDL SETRENDERDRAWBLENDMODE 953

SDL SetRenderDrawBlendMode

Set the blend mode used for drawing operations (Fill and Line).

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetRenderDrawBlendMode(SDL_Renderer *renderer, SDL_BlendMode

blendMode);

Function Parameters

renderer the rendering context
blendMode the SDL BlendMode to use for blending

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

If the blend mode is not supported, the closest supported mode is chosen.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderDrawBlendMode

954 CHAPTER 1. SDL FUNCTIONS

SDL SetRenderDrawColor

Set the color used for drawing operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetRenderDrawColor(SDL_Renderer *renderer, Uint8 r, Uint8 g,

Uint8 b, Uint8 a);

Function Parameters

renderer the rendering context
r the red value used to draw on the rendering target
g the green value used to draw on the rendering target
b the blue value used to draw on the rendering target
a the alpha value used to draw on the render-

ing target; usually SDL ALPHA OPAQUE (255). Use
SDL SetRenderDrawBlendMode to specify how the al-
pha channel is used

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Set the color for drawing or filling rectangles, lines, and points, and for SDL RenderClear().

Code Examples

SDL_Renderer *renderer;

SDL_SetRenderDrawColor(renderer, 255, 0, 0, 255);

SDL_FRect rectangle;

rectangle.x = 0.f;

rectangle.y = 0.f;

rectangle.w = 50.f;

rectangle.h = 50.f;

SDL_RenderFillRect(renderer, &rectangle);

SDL SETRENDERDRAWCOLOR 955

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderDrawColor

� SDL SetRenderDrawColorFloat

956 CHAPTER 1. SDL FUNCTIONS

SDL SetRenderDrawColorFloat

Set the color used for drawing operations (Rect, Line and Clear).

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetRenderDrawColorFloat(SDL_Renderer *renderer, float r, float

g, float b, float a);

Function Parameters

renderer the rendering context
r the red value used to draw on the rendering target
g the green value used to draw on the rendering target
b the blue value used to draw on the rendering target
a the alpha value used to draw on the rendering target. Use

SDL SetRenderDrawBlendMode to specify how the alpha
channel is used

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Set the color for drawing or filling rectangles, lines, and points, and for SDL RenderClear().

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderDrawColorFloat

� SDL SetRenderDrawColor

SDL SETRENDERLOGICALPRESENTATION 957

SDL SetRenderLogicalPresentation

Set a device independent resolution and presentation mode for rendering.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetRenderLogicalPresentation(SDL_Renderer *renderer, int w, int

h, SDL_RendererLogicalPresentation mode, SDL_ScaleMode scale_mode);

Function Parameters

renderer the rendering context
w the width of the logical resolution
h the height of the logical resolution
mode the presentation mode used
scale mode the scale mode used

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function sets the width and height of the logical rendering output. A render
target is created at the specified size and used for rendering and then copied to
the output during presentation.

You can disable logical coordinates by setting the mode to SDL LOGICAL PRESENTATION DISABLED,
and in that case you get the full pixel resolution of the output window.

You can convert coordinates in an event into rendering coordinates using
SDL ConvertEventToRenderCoordinates().

Version

This function is available since SDL 3.0.0.

See Also

� SDL ConvertEventToRenderCoordinates

� SDL GetRenderLogicalPresentation

958 CHAPTER 1. SDL FUNCTIONS

SDL SetRenderScale

Set the drawing scale for rendering on the current target.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetRenderScale(SDL_Renderer *renderer, float scaleX, float

scaleY);

Function Parameters

renderer the rendering context
scaleX the horizontal scaling factor
scaleY the vertical scaling factor

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The drawing coordinates are scaled by the x/y scaling factors before they are
used by the renderer. This allows resolution independent drawing with a single
coordinate system.

If this results in scaling or subpixel drawing by the rendering backend, it
will be handled using the appropriate quality hints. For best results use integer
scaling factors.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderScale

SDL SETRENDERTARGET 959

SDL SetRenderTarget

Set a texture as the current rendering target.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetRenderTarget(SDL_Renderer *renderer, SDL_Texture *texture);

Function Parameters

renderer the rendering context
texture the targeted texture, which must be created with the

SDL TEXTUREACCESS TARGET flag, or NULL to render to the
window instead of a texture.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The default render target is the window for which the renderer was created. To
stop rendering to a texture and render to the window again, call this function
with a NULL texture.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderTarget

960 CHAPTER 1. SDL FUNCTIONS

SDL SetRenderViewport

Set the drawing area for rendering on the current target.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetRenderViewport(SDL_Renderer *renderer, const SDL_Rect *rect);

Function Parameters

renderer the rendering context
rect the SDL Rect structure representing the drawing area, or

NULL to set the viewport to the entire target

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderViewport

� SDL RenderViewportSet

SDL SETRENDERVSYNC 961

SDL SetRenderVSync

Toggle VSync of the given renderer.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetRenderVSync(SDL_Renderer *renderer, int vsync);

Function Parameters

renderer The renderer to toggle
vsync 1 for on, 0 for off. All other values are reserved

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetRenderVSync

962 CHAPTER 1. SDL FUNCTIONS

SDL SetStringProperty

Set a string property on a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

int SDL_SetStringProperty(SDL_PropertiesID props, const char *name,

const char *value);

Function Parameters

props the properties to modify
name the name of the property to modify
value the new value of the property, or NULL to delete the prop-

erty

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function makes a copy of the string; the caller does not have to preserve
the data after this call completes.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetStringProperty

SDL SETSURFACEALPHAMOD 963

SDL SetSurfaceAlphaMod

Set an additional alpha value used in blit operations.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_SetSurfaceAlphaMod(SDL_Surface *surface, Uint8 alpha);

Function Parameters

surface the SDL Surface structure to update
alpha the alpha value multiplied into blit operations

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

When this surface is blitted, during the blit operation the source alpha value
is modulated by this alpha value according to the following formula: srcA =

srcA * (alpha / 255)

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetSurfaceAlphaMod

� SDL SetSurfaceColorMod

964 CHAPTER 1. SDL FUNCTIONS

SDL SetSurfaceBlendMode

Set the blend mode used for blit operations.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_SetSurfaceBlendMode(SDL_Surface *surface, SDL_BlendMode

blendMode);

Function Parameters

surface the SDL Surface structure to update
blendMode the SDL BlendMode to use for blit blending

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

To copy a surface to another surface (or texture) without blending with the exist-
ing data, the blendmode of the SOURCE surface should be set to SDL BLENDMODE NONE.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetSurfaceBlendMode

SDL SETSURFACECLIPRECT 965

SDL SetSurfaceClipRect

Set the clipping rectangle for a surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

SDL_bool SDL_SetSurfaceClipRect(SDL_Surface *surface, const SDL_Rect

*rect);

Function Parameters

surface the SDL Surface structure to be clipped
rect the SDL Rect structure representing the clipping rectangle,

or NULL to disable clipping

Return Value

Returns SDL TRUE if the rectangle intersects the surface, otherwise SDL FALSE
and blits will be completely clipped.

Remarks

When surface is the destination of a blit, only the area within the clip rectangle
is drawn into.

Note that blits are automatically clipped to the edges of the source and
destination surfaces.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetSurfaceClipRect

966 CHAPTER 1. SDL FUNCTIONS

SDL SetSurfaceColorKey

Set the color key (transparent pixel) in a surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_SetSurfaceColorKey(SDL_Surface *surface, int flag, Uint32 key);

Function Parameters

surface the SDL Surface structure to update
flag SDL TRUE to enable color key, SDL FALSE to disable

color key
key the transparent pixel

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The color key defines a pixel value that will be treated as transparent in a blit.
For example, one can use this to specify that cyan pixels should be considered
transparent, and therefore not rendered.

It is a pixel of the format used by the surface, as generated by SDL MapRGB().
RLE acceleration can substantially speed up blitting of images with large

horizontal runs of transparent pixels. See SDL SetSurfaceRLE() for details.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetSurfaceColorKey

� SDL SurfaceHasColorKey

SDL SETSURFACECOLORMOD 967

SDL SetSurfaceColorMod

Set an additional color value multiplied into blit operations.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_SetSurfaceColorMod(SDL_Surface *surface, Uint8 r, Uint8 g, Uint8

b);

Function Parameters

surface the SDL Surface structure to update
r the red color value multiplied into blit operations
g the green color value multiplied into blit operations
b the blue color value multiplied into blit operations

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

When this surface is blitted, during the blit operation each source color channel
is modulated by the appropriate color value according to the following formula:
srcC = srcC * (color / 255)

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetSurfaceColorMod

� SDL SetSurfaceAlphaMod

968 CHAPTER 1. SDL FUNCTIONS

SDL SetSurfaceColorspace

Set the colorspace used by a surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_SetSurfaceColorspace(SDL_Surface *surface, SDL_Colorspace

colorspace);

Function Parameters

surface the SDL Surface structure to update
colorspace an SDL ColorSpace value describing the surface colorspace

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Setting the colorspace doesn’t change the pixels, only how they are interpreted
in color operations.

Version

This function is available since SDL 3.0.0.

SDL SETSURFACEPALETTE 969

SDL SetSurfacePalette

Set the palette used by a surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_SetSurfacePalette(SDL_Surface *surface, SDL_Palette *palette);

Function Parameters

surface the SDL Surface structure to update
palette the SDL Palette structure to use

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

A single palette can be shared with many surfaces.

Version

This function is available since SDL 3.0.0.

970 CHAPTER 1. SDL FUNCTIONS

SDL SetSurfaceRLE

Set the RLE acceleration hint for a surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_SetSurfaceRLE(SDL_Surface *surface, int flag);

Function Parameters

surface the SDL Surface structure to optimize
flag 0 to disable, non-zero to enable RLE acceleration

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

If RLE is enabled, color key and alpha blending blits are much faster, but the
surface must be locked before directly accessing the pixels.

Version

This function is available since SDL 3.0.0.

See Also

� SDL BlitSurface

� SDL LockSurface

� SDL UnlockSurface

SDL SETTEXTINPUTRECT 971

SDL SetTextInputRect

Set the rectangle used to type Unicode text inputs.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

int SDL_SetTextInputRect(const SDL_Rect *rect);

Function Parameters

rect the SDL Rect structure representing the rectangle to receive
text (ignored if NULL)

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Native input methods will place a window with word suggestions near it, without
covering the text being inputted.

To start text input in a given location, this function is intended to be called
before SDL StartTextInput, although some platforms support moving the rect-
angle even while text input (and a composition) is active.

Note: If you want to use the system native IME window, try setting hint
SDL HINT IME SHOW UI to 1, otherwise this function won’t give you
any feedback.

Version

This function is available since SDL 3.0.0.

See Also

� SDL StartTextInput

972 CHAPTER 1. SDL FUNCTIONS

SDL SetTextureAlphaMod

Set an additional alpha value multiplied into render copy operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetTextureAlphaMod(SDL_Texture *texture, Uint8 alpha);

Function Parameters

texture the texture to update
alpha the source alpha value multiplied into copy operations

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

When this texture is rendered, during the copy operation the source alpha value
is modulated by this alpha value according to the following formula: srcA =

srcA * (alpha / 255)

Alpha modulation is not always supported by the renderer; it will return -1
if alpha modulation is not supported.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetTextureAlphaMod

� SDL SetTextureAlphaModFloat

� SDL SetTextureColorMod

SDL SETTEXTUREALPHAMODFLOAT 973

SDL SetTextureAlphaModFloat

Set an additional alpha value multiplied into render copy operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetTextureAlphaModFloat(SDL_Texture *texture, float alpha);

Function Parameters

texture the texture to update
alpha the source alpha value multiplied into copy operations

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

When this texture is rendered, during the copy operation the source alpha value
is modulated by this alpha value according to the following formula: srcA =

srcA * alpha

Alpha modulation is not always supported by the renderer; it will return -1
if alpha modulation is not supported.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetTextureAlphaModFloat

� SDL SetTextureAlphaMod

� SDL SetTextureColorModFloat

974 CHAPTER 1. SDL FUNCTIONS

SDL SetTextureBlendMode

Set the blend mode for a texture, used by SDL RenderTexture().

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetTextureBlendMode(SDL_Texture *texture, SDL_BlendMode

blendMode);

Function Parameters

texture the texture to update
blendMode the SDL BlendMode to use for texture blending

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

If the blend mode is not supported, the closest supported mode is chosen and
this function returns -1.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetTextureBlendMode

SDL SETTEXTURECOLORMOD 975

SDL SetTextureColorMod

Set an additional color value multiplied into render copy operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetTextureColorMod(SDL_Texture *texture, Uint8 r, Uint8 g, Uint8

b);

Function Parameters

texture the texture to update
r the red color value multiplied into copy operations
g the green color value multiplied into copy operations
b the blue color value multiplied into copy operations

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

When this texture is rendered, during the copy operation each source color
channel is modulated by the appropriate color value according to the following
formula: srcC = srcC * (color / 255)

Color modulation is not always supported by the renderer; it will return -1
if color modulation is not supported.

Code Examples

SDL_Renderer *renderer;

SDL_Surface *loadedSurface;

/* ... */

SDL_Texture* pTexture = SDL_CreateTextureFromSurface(renderer,

loadedSurface);

SDL_SetTextureColorMod(pTexture, 64, 64, 64);

/* ... */

976 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetTextureColorMod

� SDL SetTextureAlphaMod

� SDL SetTextureColorModFloat

SDL SETTEXTURECOLORMODFLOAT 977

SDL SetTextureColorModFloat

Set an additional color value multiplied into render copy operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetTextureColorModFloat(SDL_Texture *texture, float r, float g,

float b);

Function Parameters

texture the texture to update
r the red color value multiplied into copy operations
g the green color value multiplied into copy operations
b the blue color value multiplied into copy operations

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

When this texture is rendered, during the copy operation each source color
channel is modulated by the appropriate color value according to the following
formula: srcC = srcC * color

Color modulation is not always supported by the renderer; it will return -1
if color modulation is not supported.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetTextureColorModFloat

� SDL SetTextureAlphaModFloat

� SDL SetTextureColorMod

978 CHAPTER 1. SDL FUNCTIONS

SDL SetTextureScaleMode

Set the scale mode used for texture scale operations.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_SetTextureScaleMode(SDL_Texture *texture, SDL_ScaleMode

scaleMode);

Function Parameters

texture The texture to update.
scaleMode the SDL ScaleMode to use for texture scaling.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The default texture scale mode is SDL SCALEMODE LINEAR.
If the scale mode is not supported, the closest supported mode is chosen.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetTextureScaleMode

SDL SETTHREADPRIORITY 979

SDL SetThreadPriority

Set the priority for the current thread.

Header File

Defined in SDL3/SDL thread.h

Syntax

int SDL_SetThreadPriority(SDL_ThreadPriority priority);

Function Parameters

priority the SDL ThreadPriority to set

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Note that some platforms will not let you alter the priority (or at least, pro-
mote the thread to a higher priority) at all, and some require you to be an
administrator account. Be prepared for this to fail.

Version

This function is available since SDL 3.0.0.

980 CHAPTER 1. SDL FUNCTIONS

SDL SetTLS

Set the current thread’s value associated with a thread local storage ID.

Header File

Defined in SDL3/SDL thread.h

Syntax

int SDL_SetTLS(SDL_TLSID id, const void *value, void (SDLCALL

destructor)(void));

Function Parameters

id the thread local storage ID
value the value to associate with the ID for the current thread
destructor a function called when the thread exits, to free the value

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The function prototype for destructor is:

void destructor(void *value)

where its parameter value is what was passed as value to SDL SetTLS().

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetTLS

SDL SETWINDOWALWAYSONTOP 981

SDL SetWindowAlwaysOnTop

Set the window to always be above the others.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowAlwaysOnTop(SDL_Window *window, SDL_bool on_top);

Function Parameters

window The window of which to change the always on top state
on top SDL TRUE to set the window always on top, SDL FALSE

to disable

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This will add or remove the window’s SDL WINDOW ALWAYS ON TOP flag. This
will bring the window to the front and keep the window above the rest.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowFlags

982 CHAPTER 1. SDL FUNCTIONS

SDL SetWindowBordered

Set the border state of a window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowBordered(SDL_Window *window, SDL_bool bordered);

Function Parameters

window the window of which to change the border state
bordered SDL FALSE to remove border, SDL TRUE to add border

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This will add or remove the window’s SDL WINDOW BORDERLESS flag and add or
remove the border from the actual window. This is a no-op if the window’s
border already matches the requested state.

You can’t change the border state of a fullscreen window.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowFlags

SDL SETWINDOWFOCUSABLE 983

SDL SetWindowFocusable

Set whether the window may have input focus.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowFocusable(SDL_Window *window, SDL_bool focusable);

Function Parameters

window the window to set focusable state
focusable SDL TRUE to allow input focus, SDL FALSE to not allow

input focus

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

984 CHAPTER 1. SDL FUNCTIONS

SDL SetWindowFullscreen

Request that the window’s fullscreen state be changed.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowFullscreen(SDL_Window *window, SDL_bool fullscreen);

Function Parameters

window the window to change
fullscreen SDL TRUE for fullscreen mode, SDL FALSE for windowed

mode

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

By default a window in fullscreen state uses borderless fullscreen desktop mode,
but a specific exclusive display mode can be set using SDL SetWindowFullscreenMode().

On some windowing systems this request is asynchronous and the new fullscreen
state may not have have been applied immediately upon the return of this func-
tion. If an immediate change is required, call SDL SyncWindow() to block until
the changes have taken effect.

When the window state changes, an SDL EVENT WINDOW ENTER FULLSCREEN
or SDL EVENT WINDOW LEAVE FULLSCREEN event will be emitted. Note
that, as this is just a request, it can be denied by the windowing system.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowFullscreenMode

� SDL SetWindowFullscreenMode

� SDL SyncWindow

SDL SETWINDOWFULLSCREENMODE 985

SDL SetWindowFullscreenMode

Set the display mode to use when a window is visible and fullscreen.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowFullscreenMode(SDL_Window *window, const

SDL_DisplayMode *mode);

Function Parameters

window the window to affect
mode a pointer to the display mode to use, which can be NULL for

borderless fullscreen desktop mode, or one of the fullscreen
modes returned by SDL GetFullscreenDisplayModes() to
set an exclusive fullscreen mode.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This only affects the display mode used when the window is fullscreen. To
change the window size when the window is not fullscreen, use SDL SetWindowSize().

If the window is currently in the fullscreen state, this request is asynchronous
on some windowing systems and the new mode dimensions may not be applied
immediately upon the return of this function. If an immediate change is re-
quired, call SDL SyncWindow() to block until the changes have taken effect.

When the new mode takes effect, an SDL EVENT WINDOW RESIZED
and/or an SDL EVENT WINDOOW PIXEL SIZE CHANGED event will be
emitted with the new mode dimensions.

Version

This function is available since SDL 3.0.0.

986 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL GetWindowFullscreenMode

� SDL SetWindowFullscreen

� SDL SyncWindow

SDL SETWINDOWHITTEST 987

SDL SetWindowHitTest

Provide a callback that decides if a window region has special properties.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowHitTest(SDL_Window *window, SDL_HitTest callback, void

*callback_data);

Function Parameters

window the window to set hit-testing on
callback the function to call when doing a hit-test
callback data an app-defined void pointer passed to callback

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Normally windows are dragged and resized by decorations provided by the sys-
tem window manager (a title bar, borders, etc), but for some apps, it makes
sense to drag them from somewhere else inside the window itself; for example,
one might have a borderless window that wants to be draggable from any part,
or simulate its own title bar, etc.

This function lets the app provide a callback that designates pieces of a given
window as special. This callback is run during event processing if we need to
tell the OS to treat a region of the window specially; the use of this callback is
known as ”hit testing.”

Mouse input may not be delivered to your application if it is within a special
area; the OS will often apply that input to moving the window or resizing the
window and not deliver it to the application.

Specifying NULL for a callback disables hit-testing. Hit-testing is disabled
by default.

Platforms that don’t support this functionality will return -1 unconditionally,
even if you’re attempting to disable hit-testing.

Your callback may fire at any time, and its firing does not indicate any
specific behavior (for example, on Windows, this certainly might fire when the

988 CHAPTER 1. SDL FUNCTIONS

OS is deciding whether to drag your window, but it fires for lots of other reasons,
too, some unrelated to anything you probably care about and when the mouse
isn’t actually at the location it is testing). Since this can fire at any time, you
should try to keep your callback efficient, devoid of allocations, etc.

Version

This function is available since SDL 3.0.0.

SDL SETWINDOWICON 989

SDL SetWindowIcon

Set the icon for a window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowIcon(SDL_Window *window, SDL_Surface *icon);

Function Parameters

window the window to change
icon an SDL Surface structure containing the icon for the win-

dow

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Code Examples

#include <SDL3/SDL.h>

int main(int argc, char* argv[]){

SDL_Event e;

SDL_Init(SDL_INIT_VIDEO); // Initialize SDL3

SDL_Window *window = SDL_CreateWindow(// Open a new window

"SDL2 window icon demo", 640, 480, SDL_WINDOW_RESIZABLE

);

SDL_Surface *surface; // Declare an SDL_Surface to be filled in with

pixel data from an image file

Uint16 pixels[16*16] = { // ...or with raw pixel data:

0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff,

0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff,

0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff,

0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff,

0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff,

0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff,

990 CHAPTER 1. SDL FUNCTIONS

0x0fff, 0x0aab, 0x0789, 0x0bcc, 0x0eee, 0x09aa, 0x099a, 0x0ddd,

0x0fff, 0x0eee, 0x0899, 0x0fff, 0x0fff, 0x1fff, 0x0dde, 0x0dee,

0x0fff, 0xabbc, 0xf779, 0x8cdd, 0x3fff, 0x9bbc, 0xaaab, 0x6fff,

0x0fff, 0x3fff, 0xbaab, 0x0fff, 0x0fff, 0x6689, 0x6fff, 0x0dee,

0xe678, 0xf134, 0x8abb, 0xf235, 0xf678, 0xf013, 0xf568, 0xf001,

0xd889, 0x7abc, 0xf001, 0x0fff, 0x0fff, 0x0bcc, 0x9124, 0x5fff,

0xf124, 0xf356, 0x3eee, 0x0fff, 0x7bbc, 0xf124, 0x0789, 0x2fff,

0xf002, 0xd789, 0xf024, 0x0fff, 0x0fff, 0x0002, 0x0134, 0xd79a,

0x1fff, 0xf023, 0xf000, 0xf124, 0xc99a, 0xf024, 0x0567, 0x0fff,

0xf002, 0xe678, 0xf013, 0x0fff, 0x0ddd, 0x0fff, 0x0fff, 0xb689,

0x8abb, 0x0fff, 0x0fff, 0xf001, 0xf235, 0xf013, 0x0fff, 0xd789,

0xf002, 0x9899, 0xf001, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0xe789,

0xf023, 0xf000, 0xf001, 0xe456, 0x8bcc, 0xf013, 0xf002, 0xf012,

0x1767, 0x5aaa, 0xf013, 0xf001, 0xf000, 0x0fff, 0x7fff, 0xf124,

0x0fff, 0x089a, 0x0578, 0x0fff, 0x089a, 0x0013, 0x0245, 0x0eff,

0x0223, 0x0dde, 0x0135, 0x0789, 0x0ddd, 0xbbbc, 0xf346, 0x0467,

0x0fff, 0x4eee, 0x3ddd, 0x0edd, 0x0dee, 0x0fff, 0x0fff, 0x0dee,

0x0def, 0x08ab, 0x0fff, 0x7fff, 0xfabc, 0xf356, 0x0457, 0x0467,

0x0fff, 0x0bcd, 0x4bde, 0x9bcc, 0x8dee, 0x8eff, 0x8fff, 0x9fff,

0xadee, 0xeccd, 0xf689, 0xc357, 0x2356, 0x0356, 0x0467, 0x0467,

0x0fff, 0x0ccd, 0x0bdd, 0x0cdd, 0x0aaa, 0x2234, 0x4135, 0x4346,

0x5356, 0x2246, 0x0346, 0x0356, 0x0467, 0x0356, 0x0467, 0x0467,

0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff,

0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff,

0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff,

0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff, 0x0fff

};

surface = SDL_CreateSurface(16, 16, SDL_PIXELFORMAT_ARGB4444);

// The icon is attached to the window pointer

SDL_SetWindowIcon(window, surface);

// ...and the surface containing the icon pixel data is no longer

required.

SDL_DestroySurface(surface);

// Loop until the user closes the window or presses any key.

for(; e.type != SDL_EVENT_QUIT && e.type != SDL_EVENT_KEY_DOWN;

SDL_PollEvent(&e));

SDL_DestroyWindow(window); // Close and destroy the window.

SDL_Quit(); // Clean up and exit.

return 0;

}

SDL SETWINDOWICON 991

Version

This function is available since SDL 3.0.0.

992 CHAPTER 1. SDL FUNCTIONS

SDL SetWindowInputFocus

Explicitly set input focus to the window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowInputFocus(SDL_Window *window);

Function Parameters

window the window that should get the input focus

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

You almost certainly want SDL RaiseWindow() instead of this function. Use
this with caution, as you might give focus to a window that is completely ob-
scured by other windows.

Version

This function is available since SDL 3.0.0.

See Also

� SDL RaiseWindow

SDL SETWINDOWKEYBOARDGRAB 993

SDL SetWindowKeyboardGrab

Set a window’s keyboard grab mode.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowKeyboardGrab(SDL_Window *window, SDL_bool grabbed);

Function Parameters

window The window for which the keyboard grab mode should be
set.

grabbed This is SDL TRUE to grab keyboard, and SDL FALSE to
release.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Keyboard grab enables capture of system keyboard shortcuts like Alt+Tab or
the Meta/Super key. Note that not all system keyboard shortcuts can be cap-
tured by applications (one example is Ctrl+Alt+Del on Windows).

This is primarily intended for specialized applications such as VNC clients
or VM frontends. Normal games should not use keyboard grab.

When keyboard grab is enabled, SDL will continue to handle Alt+Tab when
the window is full-screen to ensure the user is not trapped in your application. If
you have a custom keyboard shortcut to exit fullscreen mode, you may suppress
this behavior with SDL HINT ALLOW ALT TAB WHILE GRABBED.

If the caller enables a grab while another window is currently grabbed, the
other window loses its grab in favor of the caller’s window.

Version

This function is available since SDL 3.0.0.

994 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL GetWindowKeyboardGrab

� SDL SetWindowMouseGrab

SDL SETWINDOWMAXIMUMSIZE 995

SDL SetWindowMaximumSize

Set the maximum size of a window’s client area.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowMaximumSize(SDL_Window *window, int max_w, int max_h);

Function Parameters

window the window to change
max w the maximum width of the window, or 0 for no limit
max h the maximum height of the window, or 0 for no limit

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowMaximumSize

� SDL SetWindowMinimumSize

996 CHAPTER 1. SDL FUNCTIONS

SDL SetWindowMinimumSize

Set the minimum size of a window’s client area.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowMinimumSize(SDL_Window *window, int min_w, int min_h);

Function Parameters

window the window to change
min w the minimum width of the window, or 0 for no limit
min h the minimum height of the window, or 0 for no limit

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowMinimumSize

� SDL SetWindowMaximumSize

SDL SETWINDOWMODALFOR 997

SDL SetWindowModalFor

Set the window as a modal to a parent window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowModalFor(SDL_Window *modal_window, SDL_Window

*parent_window);

Function Parameters

modal window the window that should be set modal
parent window the parent window for the modal window

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

If the window is already modal to an existing window, it will be reparented to
the new owner. Setting the parent window to null unparents the modal window
and removes modal status.

Setting a window as modal to a parent that is a descendent of the modal
window results in undefined behavior.

Version

This function is available since SDL 3.0.0.

998 CHAPTER 1. SDL FUNCTIONS

SDL SetWindowMouseGrab

Set a window’s mouse grab mode.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowMouseGrab(SDL_Window *window, SDL_bool grabbed);

Function Parameters

window The window for which the mouse grab mode should be set.
grabbed This is SDL TRUE to grab mouse, and SDL FALSE to re-

lease.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Mouse grab confines the mouse cursor to the window.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowMouseGrab

� SDL SetWindowKeyboardGrab

SDL SETWINDOWMOUSERECT 999

SDL SetWindowMouseRect

Confines the cursor to the specified area of a window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowMouseRect(SDL_Window *window, const SDL_Rect *rect);

Function Parameters

window The window that will be associated with the barrier.
rect A rectangle area in window-relative coordinates. If NULL

the barrier for the specified window will be destroyed.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Note that this does NOT grab the cursor, it only defines the area a cursor is
restricted to when the window has mouse focus.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowMouseRect

� SDL SetWindowMouseGrab

1000 CHAPTER 1. SDL FUNCTIONS

SDL SetWindowOpacity

Set the opacity for a window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowOpacity(SDL_Window *window, float opacity);

Function Parameters

window the window which will be made transparent or opaque
opacity the opacity value (0.0f - transparent, 1.0f - opaque)

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The parameter opacity will be clamped internally between 0.0f (transparent)
and 1.0f (opaque).

This function also returns -1 if setting the opacity isn’t supported.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowOpacity

SDL SETWINDOWPOSITION 1001

SDL SetWindowPosition

Request that the window’s position be set.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowPosition(SDL_Window *window, int x, int y);

Function Parameters

window the window to reposition
x the x coordinate of the window, or

SDL WINDOWPOS CENTERED or SDL WINDOWPOS UNDEFINED

y the y coordinate of the window, or
SDL WINDOWPOS CENTERED or SDL WINDOWPOS UNDEFINED

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

If, at the time of this request, the window is in a fixed-size state such as max-
imized, this request may be deferred until the window returns to a resizable
state.

This can be used to reposition fullscreen-desktop windows onto a different
display, however, exclusive fullscreen windows are locked to a specific display and
can only be repositioned programmatically via SDL SetWindowFullscreenMode().

On some windowing systems this request is asynchronous and the new co-
ordinates may not have have been applied immediately upon the return of this
function. If an immediate change is required, call SDL SyncWindow() to block
until the changes have taken effect.

When the window position changes, an SDL EVENT WINDOW MOVED
event will be emitted with the window’s new coordinates. Note that the new
coordinates may not match the exact coordinates requested, as some window-
ing systems can restrict the position of the window in certain scenarios (e.g.
constraining the position so the window is always within desktop bounds). Ad-
ditionally, as this is just a request, it can be denied by the windowing system.

1002 CHAPTER 1. SDL FUNCTIONS

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowPosition

� SDL SyncWindow

SDL SETWINDOWRESIZABLE 1003

SDL SetWindowResizable

Set the user-resizable state of a window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowResizable(SDL_Window *window, SDL_bool resizable);

Function Parameters

window the window of which to change the resizable state
resizable SDL TRUE to allow resizing, SDL FALSE to disallow

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This will add or remove the window’s SDL WINDOW RESIZABLE flag and allow/dis-
allow user resizing of the window. This is a no-op if the window’s resizable state
already matches the requested state.

You can’t change the resizable state of a fullscreen window.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowFlags

1004 CHAPTER 1. SDL FUNCTIONS

SDL SetWindowShape

Set the shape of a transparent window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowShape(SDL_Window *window, SDL_Surface *shape);

Function Parameters

window the window
shape the surface representing the shape of the window, or NULL

to remove any current shape

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This sets the alpha channel of a transparent window and any fully transparent
areas are also transparent to mouse clicks. If you are using something besides
the SDL render API, then you are responsible for setting the alpha channel of
the window yourself.

The shape is copied inside this function, so you can free it afterwards. If
your shape surface changes, you should call SDL SetWindowShape() again to
update the window.

The window must have been created with the SDL WINDOW TRANSPARENT
flag.

Version

This function is available since SDL 3.0.0.

SDL SETWINDOWSIZE 1005

SDL SetWindowSize

Request that the size of a window’s client area be set.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowSize(SDL_Window *window, int w, int h);

Function Parameters

window the window to change
w the width of the window, must be ¿ 0
h the height of the window, must be ¿ 0

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

NULL can safely be passed as the w or h parameter if the width or height value
is not desired.

If, at the time of this request, the window in a fixed-size state, such as
maximized or fullscreen, the request will be deferred until the window exits this
state and becomes resizable again.

To change the fullscreen mode of a window, use SDL SetWindowFullscreenMode()
On some windowing systems, this request is asynchronous and the new win-

dow size may not have have been applied immediately upon the return of this
function. If an immediate change is required, call SDL SyncWindow() to block
until the changes have taken effect.

When the window size changes, an SDL EVENT WINDOW RESIZED event
will be emitted with the new window dimensions. Note that the new dimensions
may not match the exact size requested, as some windowing systems can restrict
the window size in certain scenarios (e.g. constraining the size of the content
area to remain within the usable desktop bounds). Additionally, as this is just
a request, it can be denied by the windowing system.

Version

This function is available since SDL 3.0.0.

1006 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL GetWindowSize

� SDL SetWindowFullscreenMode

� SDL SyncWindow

SDL SETWINDOWSMESSAGEHOOK 1007

SDL SetWindowsMessageHook

Set a callback for every Windows message, run before TranslateMessage().

Header File

Defined in SDL3/SDL system.h

Syntax

void SDL_SetWindowsMessageHook(SDL_WindowsMessageHook callback, void

*userdata);

Function Parameters

callback The SDL WindowsMessageHook function to call.
userdata a pointer to pass to every iteration of callback

Remarks

The callback may modify the message, and should return SDL TRUE if the
message should continue to be processed, or SDL FALSE to prevent further
processing.

Version

This function is available since SDL 3.0.0.

See Also

� SDL WindowsMessageHook

� SDL HINT WINDOWS ENABLE MESSAGELOOP

1008 CHAPTER 1. SDL FUNCTIONS

SDL SetWindowTitle

Set the title of a window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SetWindowTitle(SDL_Window *window, const char *title);

Function Parameters

window the window to change
title the desired window title in UTF-8 format

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This string is expected to be in UTF-8 encoding.

Code Examples

// dynamically setting a window title

#include <SDL3/SDL.h>

int main(int argc, char* argv[]){

SDL_Window *window;

SDL_Event e;

const char *titles[] = { // just for fun, let’s make the title animate

like a marquee and annoy users

"t", "thi", "this w", "this win", "this windo", "this window’s",

"this window’s ti", "this window’s title",

"chis window’s title is", "chih window’s title is ", "chih wandnw’s

title is ", "c h wandnw’g title is ",

"c h a nw’g titln is ", "c h a n g i n ig ", "c h a n g i n

g!", "",

SDL SETWINDOWTITLE 1009

"c h a n g i n g!", "", "c h a n g i n g!", "c h a n g i

n g!"

};

SDL_Init(SDL_INIT_VIDEO); // Init SDL2

// Create a window.

window = SDL_CreateWindow(

"This will surely be overwritten", 320, 240, SDL_WINDOW_RESIZABLE

);

// Enter the main loop. Press any key or hit the x to exit.

for(; e.type!=SDL_EVENT_QUIT&&e.type!=SDL_EVENT_KEY_DOWN;

SDL_PollEvent(&e)){

static int i = 0, t = 0;

if(!(++t%9)){ // every 9th frame...

SDL_SetWindowTitle(window, titles[i]); // loop through the

if(++i >= sizeof(titles)/sizeof(titles[0])) i = 0; // array of

titles

}

SDL_Delay(10);

}

SDL_DestroyWindow(window);

SDL_Quit();

return 0;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowTitle

1010 CHAPTER 1. SDL FUNCTIONS

SDL SetX11EventHook

Set a callback for every X11 event.

Header File

Defined in SDL3/SDL system.h

Syntax

void SDL_SetX11EventHook(SDL_X11EventHook callback, void *userdata);

Function Parameters

callback The SDL X11EventHook function to call.
userdata a pointer to pass to every iteration of callback

Remarks

The callback may modify the event, and should return SDL TRUE if the event
should continue to be processed, or SDL FALSE to prevent further processing.

Version

This function is available since SDL 3.0.0.

SDL SHOWCURSOR 1011

SDL ShowCursor

Show the cursor.

Header File

Defined in SDL3/SDL mouse.h

Syntax

int SDL_ShowCursor(void);

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Code Examples

int main(int argc, char *argv[]) {

/* ... */

if (SDL_ShowCursor() < 0) {

SDL_Log("Failed to show the cursor");

}

/* ... */

return 0;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL CursorVisible

� SDL HideCursor

1012 CHAPTER 1. SDL FUNCTIONS

SDL ShowMessageBox

Create a modal message box.

Header File

Defined in SDL3/SDL messagebox.h

Syntax

int SDL_ShowMessageBox(const SDL_MessageBoxData *messageboxdata, int

*buttonid);

Function Parameters

messageboxdata the SDL MessageBoxData structure with title, text and
other options

buttonid the pointer to which user id of hit button should be copied

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

If your needs aren’t complex, it might be easier to use SDL ShowSimpleMessageBox.

This function should be called on the thread that created the parent window,
or on the main thread if the messagebox has no parent. It will block execution
of that thread until the user clicks a button or closes the messagebox.

This function may be called at any time, even before SDL Init(). This
makes it useful for reporting errors like a failure to create a renderer or OpenGL
context.

On X11, SDL rolls its own dialog box with X11 primitives instead of a formal
toolkit like GTK+ or Qt.

Note that if SDL Init() would fail because there isn’t any available video
target, this function is likely to fail for the same reasons. If this is a concern,
check the return value from this function and fall back to writing to stderr if
you can.

Code Examples

SDL SHOWMESSAGEBOX 1013

#include <SDL3/SDL.h>

int main(int argc, char *argv[])

{

const SDL_MessageBoxButtonData buttons[] = {

{ /* .flags, .buttonid, .text */ 0, 0, "no" },

{ SDL_MESSAGEBOX_BUTTON_RETURNKEY_DEFAULT, 1, "yes" },

{ SDL_MESSAGEBOX_BUTTON_ESCAPEKEY_DEFAULT, 2, "cancel" },

};

const SDL_MessageBoxColorScheme colorScheme = {

{ /* .colors (.r, .g, .b) */

/* [SDL_MESSAGEBOX_COLOR_BACKGROUND] */

{ 255, 0, 0 },

/* [SDL_MESSAGEBOX_COLOR_TEXT] */

{ 0, 255, 0 },

/* [SDL_MESSAGEBOX_COLOR_BUTTON_BORDER] */

{ 255, 255, 0 },

/* [SDL_MESSAGEBOX_COLOR_BUTTON_BACKGROUND] */

{ 0, 0, 255 },

/* [SDL_MESSAGEBOX_COLOR_BUTTON_SELECTED] */

{ 255, 0, 255 }

}

};

const SDL_MessageBoxData messageboxdata = {

SDL_MESSAGEBOX_INFORMATION, /* .flags */

NULL, /* .window */

"example message box", /* .title */

"select a button", /* .message */

SDL_arraysize(buttons), /* .numbuttons */

buttons, /* .buttons */

&colorScheme /* .colorScheme */

};

int buttonid;

if (SDL_ShowMessageBox(&messageboxdata, &buttonid) < 0) {

SDL_Log("error displaying message box");

return 1;

}

if (buttonid == -1) {

SDL_Log("no selection");

} else {

SDL_Log("selection was %s", buttons[buttonid].text);

}

return 0;

}

Version

This function is available since SDL 3.0.0.

1014 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL ShowSimpleMessageBox

SDL SHOWOPENFILEDIALOG 1015

SDL ShowOpenFileDialog

Displays a dialog that lets the user select a file on their filesystem.

Header File

Defined in SDL3/SDL dialog.h

Syntax

void SDL_ShowOpenFileDialog(SDL_DialogFileCallback callback, void

*userdata, SDL_Window *window, const SDL_DialogFileFilter *filters,

const char *default_location, SDL_bool allow_many);

Function Parameters

callback An SDL DialogFileCallback to be invoked when the user
selects a file and accepts, or cancels the dialog, or an error
occurs. The first argument is a null-terminated list of C
strings, representing the paths chosen by the user. The list
will be empty if the user canceled the dialog, and it will be
NULL if an error occured. If an error occured, it can be
fetched with SDL GetError(). The second argument is the
userdata pointer passed to the function. The third argument
is the index of the filter selected by the user, or one past the
index of the last filter (therefore the index of the terminating
NULL filter) if no filter was chosen, or -1 if the platform does
not support detecting the selected filter.

userdata An optional pointer to pass extra data to the callback when
it will be invoked.

window The window that the dialog should be modal for. May be
NULL. Not all platforms support this option.

filters A null-terminated list of SDL DialogFileFilter’s. May be
NULL. Not all platforms support this option, and platforms
that do support it may allow the user to ignore the filters.

default location The default folder or file to start the dialog at. May be
NULL. Not all platforms support this option.

allow many If non-zero, the user will be allowed to select multiple en-
tries. Not all platforms support this option.

Remarks

This function should only be invoked from the main thread.

1016 CHAPTER 1. SDL FUNCTIONS

This is an asynchronous function; it will return immediately, and the result
will be passed to the callback.

The callback will be invoked with a null-terminated list of files the user chose.
The list will be empty if the user canceled the dialog, and it will be NULL if an
error occured.

Note that the callback may be called from a different thread than the one
the function was invoked on.

Depending on the platform, the user may be allowed to input paths that
don’t yet exist.

Version

This function is available since SDL 3.0.0.

See Also

� SDL DialogFileCallback

� SDL DialogFileFilter

� SDL ShowSaveFileDialog

� SDL ShowOpenFolderDialog

SDL SHOWOPENFOLDERDIALOG 1017

SDL ShowOpenFolderDialog

Displays a dialog that lets the user select a folder on their filesystem.

Header File

Defined in SDL3/SDL dialog.h

Syntax

void SDL_ShowOpenFolderDialog(SDL_DialogFileCallback callback, void

*userdata, SDL_Window *window, const char *default_location,

SDL_bool allow_many);

Function Parameters

callback An SDL DialogFileCallback to be invoked when the user
selects a file and accepts, or cancels the dialog, or an error
occurs. The first argument is a null-terminated list of C
strings, representing the paths chosen by the user. The list
will be empty if the user canceled the dialog, and it will be
NULL if an error occured. If an error occured, it can be
fetched with SDL GetError(). The second argument is the
userdata pointer passed to the function. The third argument
is always -1 for SDL ShowOpenFolderDialog.

userdata An optional pointer to pass extra data to the callback when
it will be invoked.

window The window that the dialog should be modal for. May be
NULL. Not all platforms support this option.

default location The default folder or file to start the dialog at. May be
NULL. Not all platforms support this option.

allow many If non-zero, the user will be allowed to select multiple en-
tries. Not all platforms support this option.

Remarks

This function should only be invoked from the main thread.
This is an asynchronous function; it will return immediately, and the result

will be passed to the callback.
The callback will be invoked with a null-terminated list of files the user chose.

The list will be empty if the user canceled the dialog, and it will be NULL if an
error occured.

Note that the callback may be called from a different thread than the one
the function was invoked on.

1018 CHAPTER 1. SDL FUNCTIONS

Depending on the platform, the user may be allowed to input paths that
don’t yet exist.

Version

This function is available since SDL 3.0.0.

See Also

� SDL DialogFileCallback

� SDL ShowOpenFileDialog

� SDL ShowSaveFileDialog

SDL SHOWSAVEFILEDIALOG 1019

SDL ShowSaveFileDialog

Displays a dialog that lets the user choose a new or existing file on their filesys-
tem.

Header File

Defined in SDL3/SDL dialog.h

Syntax

void SDL_ShowSaveFileDialog(SDL_DialogFileCallback callback, void

*userdata, SDL_Window *window, const SDL_DialogFileFilter *filters,

const char *default_location);

Function Parameters

callback An SDL DialogFileCallback to be invoked when the user
selects a file and accepts, or cancels the dialog, or an error
occurs. The first argument is a null-terminated list of C
strings, representing the paths chosen by the user. The list
will be empty if the user canceled the dialog, and it will be
NULL if an error occured. If an error occured, it can be
fetched with SDL GetError(). The second argument is the
userdata pointer passed to the function. The third argument
is the index of the filter selected by the user, or one past the
index of the last filter (therefore the index of the terminating
NULL filter) if no filter was chosen, or -1 if the platform does
not support detecting the selected filter.

userdata An optional pointer to pass extra data to the callback when
it will be invoked.

window The window that the dialog should be modal for. May be
NULL. Not all platforms support this option.

filters A null-terminated list of SDL DialogFileFilter’s. May be
NULL. Not all platforms support this option, and platforms
that do support it may allow the user to ignore the filters.

default location The default folder or file to start the dialog at. May be
NULL. Not all platforms support this option.

Remarks

This function should only be invoked from the main thread.
This is an asynchronous function; it will return immediately, and the result

will be passed to the callback.

1020 CHAPTER 1. SDL FUNCTIONS

The callback will be invoked with a null-terminated list of files the user chose.
The list will be empty if the user canceled the dialog, and it will be NULL if an
error occured.

Note that the callback may be called from a different thread than the one
the function was invoked on.

The chosen file may or may not already exist.

Version

This function is available since SDL 3.0.0.

See Also

� SDL DialogFileCallback

� SDL DialogFileFilter

� SDL ShowOpenFileDialog

� SDL ShowOpenFolderDialog

SDL SHOWSIMPLEMESSAGEBOX 1021

SDL ShowSimpleMessageBox

Display a simple modal message box.

Header File

Defined in SDL3/SDL messagebox.h

Syntax

int SDL_ShowSimpleMessageBox(Uint32 flags, const char *title, const char

*message, SDL_Window *window);

Function Parameters

flags an SDL MessageBoxFlags value
title UTF-8 title text
message UTF-8 message text
window the parent window, or NULL for no parent

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

If your needs aren’t complex, this function is preferred over SDL ShowMessageBox.
flags may be any of the following:

� SDL MESSAGEBOX ERROR: error dialog

� SDL MESSAGEBOX WARNING: warning dialog

� SDL MESSAGEBOX INFORMATION: informational dialog

This function should be called on the thread that created the parent window,
or on the main thread if the messagebox has no parent. It will block execution
of that thread until the user clicks a button or closes the messagebox.

This function may be called at any time, even before SDL Init(). This
makes it useful for reporting errors like a failure to create a renderer or OpenGL
context.

On X11, SDL rolls its own dialog box with X11 primitives instead of a formal
toolkit like GTK+ or Qt.

Note that if SDL Init() would fail because there isn’t any available video
target, this function is likely to fail for the same reasons. If this is a concern,

1022 CHAPTER 1. SDL FUNCTIONS

check the return value from this function and fall back to writing to stderr if
you can.

Code Examples

SDL_ShowSimpleMessageBox(SDL_MESSAGEBOX_ERROR,

"Missing file",

"File is missing. Please reinstall the program.",

NULL);

Version

This function is available since SDL 3.0.0.

See Also

� SDL ShowMessageBox

SDL SHOWWINDOW 1023

SDL ShowWindow

Show a window.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_ShowWindow(SDL_Window *window);

Function Parameters

window the window to show

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Code Examples

SDL_Window *window;

SDL_ShowWindow(window);

Version

This function is available since SDL 3.0.0.

See Also

� SDL HideWindow

� SDL RaiseWindow

1024 CHAPTER 1. SDL FUNCTIONS

SDL ShowWindowSystemMenu

Display the system-level window menu.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_ShowWindowSystemMenu(SDL_Window *window, int x, int y);

Function Parameters

window the window for which the menu will be displayed
x the x coordinate of the menu, relative to the origin (top-left)

of the client area
y the y coordinate of the menu, relative to the origin (top-left)

of the client area

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This default window menu is provided by the system and on some platforms
provides functionality for setting or changing privileged state on the window,
such as moving it between workspaces or displays, or toggling the always-on-top
property.

On platforms or desktops where this is unsupported, this function does noth-
ing.

Version

This function is available since SDL 3.0.0.

SDL SIGNALCONDITION 1025

SDL SignalCondition

Restart one of the threads that are waiting on the condition variable.

Header File

Defined in SDL3/SDL mutex.h

Syntax

int SDL_SignalCondition(SDL_Condition *cond);

Function Parameters

cond the condition variable to signal

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL BroadcastCondition

� SDL WaitCondition

� SDL WaitConditionTimeout

1026 CHAPTER 1. SDL FUNCTIONS

SDL SIMDGetAlignment

Report the alignment this system needs for SIMD allocations.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

size_t SDL_SIMDGetAlignment(void);

Return Value

Returns the alignment in bytes needed for available, known SIMD instructions.

Remarks

This will return the minimum number of bytes to which a pointer must be
aligned to be compatible with SIMD instructions on the current machine. For
example, if the machine supports SSE only, it will return 16, but if it supports
AVX-512F, it’ll return 64 (etc). This only reports values for instruction sets
SDL knows about, so if your SDL build doesn’t have SDL HasAVX512F(), then
it might return 16 for the SSE support it sees and not 64 for the AVX-512
instructions that exist but SDL doesn’t know about. Plan accordingly.

Version

This function is available since SDL 3.0.0.

See Also

� SDL aligned alloc

� SDL aligned free

SDL SIN 1027

SDL sin

Compute the sine of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_sin(double x);

Function Parameters

x floating point value, in radians

Return Value

Returns sine of x

Remarks

Domain: -INF <= x <= INF

Range: -1 <= y <= 1

This function operates on double-precision floating point values, use SDL sinf
for single-precision floats.

This function may use a different approximation across different versions,
platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL sinf

� SDL asin

� SDL cos

1028 CHAPTER 1. SDL FUNCTIONS

SDL sinf

Compute the sine of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_sinf(float x);

Function Parameters

x floating point value, in radians

Return Value

Returns sine of x

Remarks

Domain: -INF <= x <= INF

Range: -1 <= y <= 1

This function operates on single-precision floating point values, use SDL sinf
for double-precision floats.

This function may use a different approximation across different versions,
platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL sin

� SDL asinf

� SDL cosf

SDL SIZE ADD OVERFLOW 1029

SDL size add overflow

If a + b would overflow, return -1.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

SDL_FORCE_INLINE int SDL_size_add_overflow (size_t a, size_t b, size_t

*ret);

Remarks

Otherwise store a + b via ret and return 0.

Version

This function is available since SDL 3.0.0.

1030 CHAPTER 1. SDL FUNCTIONS

SDL size mul overflow

If a * b would overflow, return -1.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

SDL_FORCE_INLINE int SDL_size_mul_overflow (size_t a, size_t b, size_t

*ret);

Remarks

Otherwise store a * b via ret and return 0.

Version

This function is available since SDL 3.0.0.

SDL SOFTSTRETCH 1031

SDL SoftStretch

Perform stretch blit between two surfaces of the same format.

Header File

Defined in SDL3/SDL surface.h

Syntax

int SDL_SoftStretch(SDL_Surface *src, const SDL_Rect *srcrect,

SDL_Surface *dst, const SDL_Rect *dstrect, SDL_ScaleMode scaleMode);

Function Parameters

src the SDL Surface structure to be copied from
srcrect the SDL Rect structure representing the rectangle to be

copied
dst the SDL Surface structure that is the blit target
dstrect the SDL Rect structure representing the target rectangle in

the destination surface
scaleMode scale algorithm to be used

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Using SDL SCALEMODE NEAREST: fast, low quality. Using SDL SCALEMODE LINEAR:
bilinear scaling, slower, better quality, only 32BPP.

Version

This function is available since SDL 3.0.0.

See Also

� SDL BlitSurfaceScaled

1032 CHAPTER 1. SDL FUNCTIONS

SDL sqrt

Compute the square root of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_sqrt(double x);

Function Parameters

x floating point value. Must be greater than or equal to 0.

Return Value

Returns square root of x

Remarks

Domain: 0 <= x <= INF

Range: 0 <= y <= INF

This function operates on double-precision floating point values, use SDL sqrtf
for single-precision floats.

This function may use a different approximation across different versions,
platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL sqrtf

SDL SQRTF 1033

SDL sqrtf

Compute the square root of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_sqrtf(float x);

Function Parameters

x floating point value. Must be greater than or equal to 0.

Return Value

Returns square root of x

Remarks

Domain: 0 <= x <= INF

Range: 0 <= y <= INF

This function operates on single-precision floating point values, use SDL sqrt
for double-precision floats.

This function may use a different approximation across different versions,
platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL sqrt

1034 CHAPTER 1. SDL FUNCTIONS

SDL StartTextInput

Start accepting Unicode text input events.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

void SDL_StartTextInput(void);

Remarks

This function will start accepting Unicode text input events in the focused SDL
window, and start emitting SDL TextInputEvent (SDL EVENT TEXT INPUT)
and SDL TextEditingEvent (SDL EVENT TEXT EDITING) events. Please
use this function in pair with SDL StopTextInput().

Text input events are not received by default.
On some platforms using this function activates the screen keyboard.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetTextInputRect

� SDL StopTextInput

SDL STOPHAPTICEFFECT 1035

SDL StopHapticEffect

Stop the haptic effect on its associated haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_StopHapticEffect(SDL_Haptic *haptic, int effect);

Function Parameters

haptic the SDL Haptic device to stop the effect on
effect the ID of the haptic effect to stop

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL RunHapticEffect

� SDL StopHapticEffects

1036 CHAPTER 1. SDL FUNCTIONS

SDL StopHapticEffects

Stop all the currently playing effects on a haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_StopHapticEffects(SDL_Haptic *haptic);

Function Parameters

haptic the SDL Haptic device to stop

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL RunHapticEffect

� SDL StopHapticEffects

SDL STOPHAPTICRUMBLE 1037

SDL StopHapticRumble

Stop the simple rumble on a haptic device.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_StopHapticRumble(SDL_Haptic *haptic);

Function Parameters

haptic the haptic device to stop the rumble effect on

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL PlayHapticRumble

1038 CHAPTER 1. SDL FUNCTIONS

SDL StopTextInput

Stop receiving any text input events.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

void SDL_StopTextInput(void);

Remarks

Text input events are not received by default.

Version

This function is available since SDL 3.0.0.

See Also

� SDL StartTextInput

SDL STORAGEREADY 1039

SDL StorageReady

Checks if the storage container is ready to use.

Header File

Defined in SDL3/SDL storage.h

Syntax

SDL_bool SDL_StorageReady(SDL_Storage *storage);

Function Parameters

storage a storage container to query

Return Value

Returns SDL TRUE if the container is ready, SDL FALSE otherwise

Remarks

This function should be called in regular intervals until it returns SDL TRUE
- however, it is not recommended to spinwait on this call, as the backend may
depend on a synchronous message loop.

Version

This function is available since SDL 3.0.0.

1040 CHAPTER 1. SDL FUNCTIONS

SDL strcasecmp

Compare two null-terminated UTF-8 strings, case-insensitively.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_strcasecmp(const char *str1, const char *str2);

Function Parameters

str1 The first string to compare. NULL is not permitted!
str2 The second string to compare. NULL is not permitted!

Return Value

Returns less than zero if str1 is ”less than” str2, greater than zero if str1 is
”greater than” str2, and zero if the strings match exactly.

Remarks

This will work with Unicode strings, using a technique called ”case-folding” to
handle the vast majority of case-sensitive human languages regardless of system
locale. It can deal with expanding values: a German Eszett character can
compare against two ASCII ’s’ chars and be considered a match, for example. A
notable exception: it does not handle the Turkish ’i’ character; human language
is complicated!

Since this handles Unicode, it expects the string to be well-formed UTF-8
and not a null-terminated string of arbitrary bytes. Bytes that are not valid
UTF-8 are treated as Unicode character U+FFFD (REPLACEMENT CHAR-
ACTER), which is to say two strings of random bits may turn out to match if
they convert to the same amount of replacement characters.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL STRCMP 1041

SDL strcmp

Compare two null-terminated UTF-8 strings.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_strcmp(const char *str1, const char *str2);

Function Parameters

str1 The first string to compare. NULL is not permitted!
str2 The second string to compare. NULL is not permitted!

Return Value

Returns less than zero if str1 is ”less than” str2, greater than zero if str1 is
”greater than” str2, and zero if the strings match exactly.

Remarks

Due to the nature of UTF-8 encoding, this will work with Unicode strings,
since effectively this function just compares bytes until it hits a null-terminating
character. Also due to the nature of UTF-8, this can be used with SDL qsort()
to put strings in (roughly) alphabetical order.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

1042 CHAPTER 1. SDL FUNCTIONS

SDL strlwr

Convert a string to lowercase.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

char* SDL_strlwr(char *str);

Function Parameters

str The string to convert in-place.

Return Value

Returns The str pointer passed into this function.

Remarks

WARNING: Regardless of system locale, this will only convert ASCII values
’A’ through ’Z’ to lowercase.

This function operates on a null-terminated string of bytes–even if it is mal-
formed UTF-8!–and converts ASCII characters ’A’ through ’Z’ to their lowercase
equivalents in-place, returning the original str pointer.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL strupr

SDL STRNCASECMP 1043

SDL strncasecmp

Compare two UTF-8 strings, case-insensitively, up to a number of bytes.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_strncasecmp(const char *str1, const char *str2, size_t maxlen);

Function Parameters

str1 The first string to compare. NULL is not permitted!
str2 The second string to compare. NULL is not permitted!
maxlen The maximum number of bytes to compare.

Return Value

Returns less than zero if str1 is ”less than” str2, greater than zero if str1 is
”greater than” str2, and zero if the strings match exactly.

Remarks

This will work with Unicode strings, using a technique called ”case-folding” to
handle the vast majority of case-sensitive human languages regardless of system
locale. It can deal with expanding values: a German Eszett character can
compare against two ASCII ’s’ chars and be considered a match, for example. A
notable exception: it does not handle the Turkish ’i’ character; human language
is complicated!

Since this handles Unicode, it expects the string to be well-formed UTF-8
and not a null-terminated string of arbitrary bytes. Bytes that are not valid
UTF-8 are treated as Unicode character U+FFFD (REPLACEMENT CHAR-
ACTER), which is to say two strings of random bits may turn out to match if
they convert to the same amount of replacement characters.

Note that while this function is intended to be used with UTF-8, maxlen
specifies a byte limit! If the limit lands in the middle of a multi-byte UTF-8
sequence, it may convert a portion of the final character to one or more Unicode
character U+FFFD (REPLACEMENT CHARACTER) so as not to overflow a
buffer. maxlen specifies a maximum number of bytes to compare; if the strings
match to this number of bytes (or both have matched to a null-terminator
character before this number of bytes), they will be considered equal.

1044 CHAPTER 1. SDL FUNCTIONS

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL STRNCMP 1045

SDL strncmp

Compare two UTF-8 strings up to a number of bytes.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_strncmp(const char *str1, const char *str2, size_t maxlen);

Function Parameters

str1 The first string to compare. NULL is not permitted!
str2 The second string to compare. NULL is not permitted!
maxlen The maximum number of bytes to compare.

Return Value

Returns less than zero if str1 is ”less than” str2, greater than zero if str1 is
”greater than” str2, and zero if the strings match exactly.

Remarks

Due to the nature of UTF-8 encoding, this will work with Unicode strings,
since effectively this function just compares bytes until it hits a null-terminating
character. Also due to the nature of UTF-8, this can be used with SDL qsort()
to put strings in (roughly) alphabetical order.

Note that while this function is intended to be used with UTF-8, it is doing
a bytewise comparison, and maxlen specifies a byte limit! If the limit lands in
the middle of a multi-byte UTF-8 sequence, it will only compare a portion of the
final character. maxlen specifies a maximum number of bytes to compare; if the
strings match to this number of bytes (or both have matched to a null-terminator
character before this number of bytes), they will be considered equal.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

1046 CHAPTER 1. SDL FUNCTIONS

SDL strupr

Convert a string to uppercase.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

char* SDL_strupr(char *str);

Remarks

WARNING: Regardless of system locale, this will only convert ASCII values
’A’ through ’Z’ to uppercase.

This function operates on a null-terminated string of bytes–even if it is mal-
formed UTF-8!–and converts ASCII characters ’a’ through ’z’ to their uppercase
equivalents in-place, returning the original str pointer.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL strlwr

SDL SURFACEHASCOLORKEY 1047

SDL SurfaceHasColorKey

Returns whether the surface has a color key.

Header File

Defined in SDL3/SDL surface.h

Syntax

SDL_bool SDL_SurfaceHasColorKey(SDL_Surface *surface);

Function Parameters

surface the SDL Surface structure to query

Return Value

Returns SDL TRUE if the surface has a color key, SDL FALSE otherwise.

Remarks

It is safe to pass a NULL surface here; it will return SDL FALSE.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetSurfaceColorKey

� SDL GetSurfaceColorKey

1048 CHAPTER 1. SDL FUNCTIONS

SDL SurfaceHasRLE

Returns whether the surface is RLE enabled.

Header File

Defined in SDL3/SDL surface.h

Syntax

SDL_bool SDL_SurfaceHasRLE(SDL_Surface *surface);

Function Parameters

surface the SDL Surface structure to query

Return Value

Returns SDL TRUE if the surface is RLE enabled, SDL FALSE otherwise.

Remarks

It is safe to pass a NULL surface here; it will return SDL FALSE.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetSurfaceRLE

SDL SWAP16 1049

SDL Swap16

Byte-swap an unsigned 16-bit number.

Header File

Defined in SDL3/SDL endian.h

Syntax

SDL_FORCE_INLINE Uint16 SDL_Swap16(Uint16 x);

Function Parameters

x the value to byte-swap.

Return Value

Returns x, with its bytes in the opposite endian order.

Remarks

This will always byte-swap the value, whether it’s currently in the native byte-
order of the system or not. You should use SDL SwapLE16 or SDL SwapBE16
instead, in most cases.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

1050 CHAPTER 1. SDL FUNCTIONS

SDL Swap32

Byte-swap an unsigned 32-bit number.

Header File

Defined in SDL3/SDL endian.h

Syntax

SDL_FORCE_INLINE Uint32 SDL_Swap32(Uint32 x);

Function Parameters

x the value to byte-swap.

Return Value

Returns x, with its bytes in the opposite endian order.

Remarks

This will always byte-swap the value, whether it’s currently in the native byte-
order of the system or not. You should use SDL SwapLE32 or SDL SwapBE32
instead, in most cases.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL SWAP64 1051

SDL Swap64

Byte-swap an unsigned 64-bit number.

Header File

Defined in SDL3/SDL endian.h

Syntax

SDL_FORCE_INLINE Uint32 SDL_Swap64(Uint64 x);

Function Parameters

x the value to byte-swap.

Return Value

Returns x, with its bytes in the opposite endian order.

Remarks

This will always byte-swap the value, whether it’s currently in the native byte-
order of the system or not. You should use SDL SwapLE64 or SDL SwapBE64
instead, in most cases.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

1052 CHAPTER 1. SDL FUNCTIONS

SDL SwapFloat

Byte-swap a floating point number.

Header File

Defined in SDL3/SDL endian.h

Syntax

SDL_FORCE_INLINE float SDL_SwapFloat(float x);

Function Parameters

x the value to byte-swap.

Return Value

Returns x, with its bytes in the opposite endian order.

Remarks

This will always byte-swap the value, whether it’s currently in the native byte-
order of the system or not. You should use SDL SwapFloatLE or SDL SwapFloatBE
instead, in most cases.

Note that this is a forced-inline function in a header, and not a public API
function available in the SDL library (which is to say, the code is embedded in
the calling program and the linker and dynamic loader will not be able to find
this function inside SDL itself).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL SYNCWINDOW 1053

SDL SyncWindow

Block until any pending window state is finalized.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_SyncWindow(SDL_Window *window);

Function Parameters

window the window for which to wait for the pending state to be
applied

Return Value

Returns 0 on success, a positive value if the operation timed out before the
window was in the requested state, or a negative error code on failure; call
SDL GetError() for more information.

Remarks

On asynchronous windowing systems, this acts as a synchronization barrier for
pending window state. It will attempt to wait until any pending window state
has been applied and is guaranteed to return within finite time. Note that for
how long it can potentially block depends on the underlying window system,
as window state changes may involve somewhat lengthy animations that must
complete before the window is in its final requested state.

On windowing systems where changes are immediate, this does nothing.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetWindowSize

� SDL SetWindowPosition

� SDL SetWindowFullscreen

� SDL MinimizeWindow

1054 CHAPTER 1. SDL FUNCTIONS

� SDL MaximizeWindow

� SDL RestoreWindow

SDL TAN 1055

SDL tan

Compute the tangent of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_tan(double x);

Function Parameters

x floating point value, in radians

Return Value

Returns tangent of x

Remarks

Domain: -INF <= x <= INF

Range: -INF <= y <= INF

This function operates on double-precision floating point values, use SDL tanf
for single-precision floats.

This function may use a different approximation across different versions,
platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL tanf

� SDL sin

� SDL cos

� SDL atan

� SDL atan2

1056 CHAPTER 1. SDL FUNCTIONS

SDL tanf

Compute the tangent of x.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_tanf(float x);

Function Parameters

x floating point value, in radians

Return Value

Returns tangent of x

Remarks

Domain: -INF <= x <= INF

Range: -INF <= y <= INF

This function operates on single-precision floating point values, use SDL tanf
for double-precision floats.

This function may use a different approximation across different versions,
platforms and configurations. i.e, it can return a different value given the same
input on different machines or operating systems, or if SDL is updated.

Version

This function is available since SDL 3.0.0.

See Also

� SDL tan

� SDL sinf

� SDL cosf

� SDL atanf

� SDL atan2f

SDL TELLIO 1057

SDL TellIO

Determine the current read/write offset in an SDL IOStream data stream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

Sint64 SDL_TellIO(SDL_IOStream *context);

Function Parameters

context an SDL IOStream data stream object from which to get the
current offset

Return Value

Returns the current offset in the stream, or -1 if the information can not be
determined.

Remarks

SDL TellIO is actually a wrapper function that calls the SDL IOStream’s seek
method, with an offset of 0 bytes from SDL IO SEEK CUR, to simplify application
development.

Version

This function is available since SDL 3.0.0.

See Also

� SDL SeekIO

1058 CHAPTER 1. SDL FUNCTIONS

SDL TextInputActive

Check whether or not Unicode text input events are enabled.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

SDL_bool SDL_TextInputActive(void);

Return Value

Returns SDL TRUE if text input events are enabled else SDL FALSE.

Version

This function is available since SDL 3.0.0.

See Also

� SDL StartTextInput

SDL TIMEFROMWINDOWS 1059

SDL TimeFromWindows

Converts a Windows FILETIME (100-nanosecond intervals since January 1,
1601) to an SDL time.

Header File

Defined in SDL3/SDL time.h

Syntax

SDL_Time SDL_TimeFromWindows(Uint32 dwLowDateTime, Uint32

dwHighDateTime);

Function Parameters

dwLowDateTime the low portion of the Windows FILETIME value
dwHighDateTime the high portion of the Windows FILETIME value

Return Value

Returns the converted SDL time

Remarks

This function takes the two 32-bit values of the FILETIME structure as param-
eters.

Version

This function is available since SDL 3.0.0.

1060 CHAPTER 1. SDL FUNCTIONS

SDL TimeToDateTime

Converts an SDL Time in nanoseconds since the epoch to a calendar time in
the SDL DateTime format.

Header File

Defined in SDL3/SDL time.h

Syntax

int SDL_TimeToDateTime(SDL_Time ticks, SDL_DateTime *dt, SDL_bool

localTime);

Function Parameters

ticks the SDL Time to be converted
dt the resulting SDL DateTime
localTime the resulting SDL DateTime will be expressed in local time

if true, otherwise it will be in Universal Coordinated Time
(UTC)

Return Value

Returns 0 on success or -1 on error; call SDL GetError() for more information.

Version

This function is available since SDL 3.0.0.

SDL TIMETOWINDOWS 1061

SDL TimeToWindows

Converts an SDL time into a Windows FILETIME (100-nanosecond intervals
since January 1, 1601).

Header File

Defined in SDL3/SDL time.h

Syntax

void SDL_TimeToWindows(SDL_Time ticks, Uint32 *dwLowDateTime, Uint32

*dwHighDateTime);

Function Parameters

ticks the time to convert
dwLowDateTime a pointer filled in with the low portion of the Windows FILE-

TIME value
dwHighDateTime a pointer filled in with the high portion of the Windows

FILETIME value

Remarks

This function fills in the two 32-bit values of the FILETIME structure.

Version

This function is available since SDL 3.0.0.

1062 CHAPTER 1. SDL FUNCTIONS

SDL tolower

Convert low-ASCII English letters to lowercase.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_tolower(int x);

Function Parameters

x character value to check.

Return Value

Returns Lowercase version of x, or x if no conversion available.

Remarks

WARNING: Regardless of system locale, this will only convert ASCII values
’A’ through ’Z’ to lowercase.

This function returns the lowercase equivalent of x. If a character cannot be
converted, or is already lowercase, this function returns x.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL TOUPPER 1063

SDL toupper

Convert low-ASCII English letters to uppercase.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_toupper(int x);

Function Parameters

x character value to check.

Return Value

Returns Capitalized version of x, or x if no conversion available.

Remarks

WARNING: Regardless of system locale, this will only convert ASCII values
’a’ through ’z’ to uppercase.

This function returns the uppercase equivalent of x. If a character cannot
be converted, or is already uppercase, this function returns x.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

1064 CHAPTER 1. SDL FUNCTIONS

SDL trunc

Truncate x to an integer.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

double SDL_trunc(double x);

Function Parameters

x floating point value

Return Value

Returns x truncated to an integer

Remarks

Rounds x to the next closest integer to 0. This is equivalent to removing the
fractional part of x, leaving only the integer part.

Domain: -INF <= x <= INF

Range: -INF <= y <= INF, y integer
This function operates on double-precision floating point values, use SDL truncf

for single-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL truncf

� SDL fmod

� SDL ceil

� SDL floor

� SDL round

� SDL lround

SDL TRUNCF 1065

SDL truncf

Truncate x to an integer.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

float SDL_truncf(float x);

Function Parameters

x floating point value

Return Value

Returns x truncated to an integer

Remarks

Rounds x to the next closest integer to 0. This is equivalent to removing the
fractional part of x, leaving only the integer part.

Domain: -INF <= x <= INF

Range: -INF <= y <= INF, y integer
This function operates on single-precision floating point values, use SDL truncf

for double-precision floats.

Version

This function is available since SDL 3.0.0.

See Also

� SDL trunc

� SDL fmodf

� SDL ceilf

� SDL floorf

� SDL roundf

� SDL lroundf

1066 CHAPTER 1. SDL FUNCTIONS

SDL TryLockMutex

Try to lock a mutex without blocking.

Header File

Defined in SDL3/SDL mutex.h

Syntax

int SDL_TryLockMutex(SDL_Mutex *mutex) SDL_TRY_ACQUIRE(0, mutex);

Function Parameters

mutex the mutex to try to lock

Return Value

Returns 0 or SDL MUTEX TIMEDOUT

Remarks

This works just like SDL LockMutex(), but if the mutex is not available, this
function returns SDL MUTEX TIMEDOUT immediately.

This technique is useful if you need exclusive access to a resource but don’t
want to wait for it, and will return to it to try again later.

This function does not fail; if mutex is NULL, it will return 0 immediately
having locked nothing. If the mutex is valid, this function will always either lock
the mutex and return 0, or return SDL MUTEX TIMEOUT and lock nothing.

Code Examples

int status;

SDL_Mutex *mutex;

mutex = SDL_CreateMutex();

if (!mutex) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn’t create mutex\n");

return 1;

}

status = SDL_TryLockMutex(mutex);

if (status == 0) {

SDL_Log("Locked mutex\n");

SDL TRYLOCKMUTEX 1067

SDL_UnlockMutex(mutex);

} else if (status == SDL_MUTEX_TIMEDOUT) {

/* Mutex not available for locking right now */

} else {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn’t lock mutex\n");

}

SDL_DestroyMutex(mutex);

Version

This function is available since SDL 3.0.0.

See Also

� SDL LockMutex

� SDL UnlockMutex

1068 CHAPTER 1. SDL FUNCTIONS

SDL TryLockRWLockForReading

Try to lock a read/write lock for reading without blocking.

Header File

Defined in SDL3/SDL mutex.h

Syntax

int SDL_TryLockRWLockForReading(SDL_RWLock *rwlock)

SDL_TRY_ACQUIRE_SHARED(0, rwlock);

Function Parameters

rwlock the rwlock to try to lock

Return Value

Returns 0 or SDL RWLOCK TIMEDOUT

Remarks

This works just like SDL LockRWLockForReading(), but if the rwlock is not
available, then this function returns SDL RWLOCK TIMEDOUT immediately.

This technique is useful if you need access to a resource but don’t want to
wait for it, and will return to it to try again later.

Trying to lock for read-only access can succeed if other threads are holding
read-only locks, as this won’t prevent access.

This function does not fail; if rwlock is NULL, it will return 0 immediately
having locked nothing. If rwlock is valid, this function will always either lock the
rwlock and return 0, or return SDL RWLOCK TIMEOUT and lock nothing.

Version

This function is available since SDL 3.0.0.

See Also

� SDL LockRWLockForReading

� SDL TryLockRWLockForWriting

� SDL UnlockRWLock

SDL TRYLOCKRWLOCKFORWRITING 1069

SDL TryLockRWLockForWriting

Try to lock a read/write lock for writing without blocking.

Header File

Defined in SDL3/SDL mutex.h

Syntax

int SDL_TryLockRWLockForWriting(SDL_RWLock *rwlock) SDL_TRY_ACQUIRE(0,

rwlock);

Function Parameters

rwlock the rwlock to try to lock

Return Value

Returns 0 or SDL RWLOCK TIMEDOUT

Remarks

This works just like SDL LockRWLockForWriting(), but if the rwlock is not
available, this function returns SDL RWLOCK TIMEDOUT immediately.

This technique is useful if you need exclusive access to a resource but don’t
want to wait for it, and will return to it to try again later.

It is illegal for the owning thread to lock an already-locked rwlock for writing
(read-only may be locked recursively, writing can not). Doing so results in
undefined behavior.

It is illegal to request a write lock from a thread that already holds a read-
only lock. Doing so results in undefined behavior. Unlock the read-only lock
before requesting a write lock.

This function does not fail; if rwlock is NULL, it will return 0 immediately
having locked nothing. If rwlock is valid, this function will always either lock the
rwlock and return 0, or return SDL RWLOCK TIMEOUT and lock nothing.

Version

This function is available since SDL 3.0.0.

1070 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL LockRWLockForWriting

� SDL TryLockRWLockForReading

� SDL UnlockRWLock

SDL TRYLOCKSPINLOCK 1071

SDL TryLockSpinlock

Try to lock a spin lock by setting it to a non-zero value.

Header File

Defined in SDL3/SDL atomic.h

Syntax

SDL_bool SDL_TryLockSpinlock(SDL_SpinLock *lock);

Function Parameters

lock a pointer to a lock variable

Return Value

Returns SDL TRUE if the lock succeeded, SDL FALSE if the lock is already
held.

Remarks

Please note that spinlocks are dangerous if you don’t know what
you’re doing. Please be careful using any sort of spinlock!

Version

This function is available since SDL 3.0.0.

See Also

� SDL LockSpinlock

� SDL UnlockSpinlock

1072 CHAPTER 1. SDL FUNCTIONS

SDL TryWaitSemaphore

See if a semaphore has a positive value and decrement it if it does.

Header File

Defined in SDL3/SDL mutex.h

Syntax

int SDL_TryWaitSemaphore(SDL_Semaphore *sem);

Function Parameters

sem the semaphore to wait on

Return Value

Returns 0 if the wait succeeds, SDL MUTEX TIMEDOUT if the wait would block, or
a negative error code on failure; call SDL GetError() for more information.

Remarks

This function checks to see if the semaphore pointed to by sem has a posi-
tive value and atomically decrements the semaphore value if it does. If the
semaphore doesn’t have a positive value, the function immediately returns
SDL MUTEX TIMEDOUT.

Code Examples

// BEWARE: This code example was migrated from the SDL2 Wiki, by only

updating the names.

void add_data_to_queue(void);

void get_data_from_queue(void);

int data_available(void);

void wait_for_threads(void);

SDL_AtomicInt done;

SDL_Semaphore *sem;

SDL_AtomicSet(&done, 0);

sem = SDL_CreateSemaphore(0);

Thread_A:

while (!SDL_AtomicGet(&done)) {

SDL TRYWAITSEMAPHORE 1073

add_data_to_queue();

SDL_PostSemaphore(sem);

}

Thread_B:

while (!SDL_AtomicGet(&done)) {

if (SDL_TryWaitSemaphore(sem) == 0 && data_available()) {

get_data_from_queue();

}

/* do other processing */

}

SDL_AtomicSet(&done, 1);

SDL_PostSemaphore(sem);

wait_for_threads();

SDL_DestroySemaphore(sem);

Version

This function is available since SDL 3.0.0.

See Also

� SDL PostSemaphore

� SDL WaitSemaphore

� SDL WaitSemaphoreTimeout

1074 CHAPTER 1. SDL FUNCTIONS

SDL UnbindAudioStream

Unbind a single audio stream from its audio device.

Header File

Defined in SDL3/SDL audio.h

Syntax

void SDL_UnbindAudioStream(SDL_AudioStream *stream);

Function Parameters

stream an audio stream to unbind from a device.

Remarks

This is a convenience function, equivalent to calling SDL UnbindAudioStreams(&stream,

1).

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL BindAudioStream

SDL UNBINDAUDIOSTREAMS 1075

SDL UnbindAudioStreams

Unbind a list of audio streams from their audio devices.

Header File

Defined in SDL3/SDL audio.h

Syntax

void SDL_UnbindAudioStreams(SDL_AudioStream **streams, int num_streams);

Function Parameters

streams an array of audio streams to unbind.
num streams Number streams listed in the streams array.

Remarks

The streams being unbound do not all have to be on the same device. All
streams on the same device will be unbound atomically (data will stop flowing
through all unbound streams on the same device at the same time).

Unbinding a stream that isn’t bound to a device is a legal no-op.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL BindAudioStreams

1076 CHAPTER 1. SDL FUNCTIONS

SDL UnloadObject

Unload a shared object from memory.

Header File

Defined in SDL3/SDL loadso.h

Syntax

void SDL_UnloadObject(void *handle);

Function Parameters

handle a valid shared object handle returned by SDL LoadObject()

Version

This function is available since SDL 3.0.0.

See Also

� SDL LoadObject

SDL UNLOCKAUDIOSTREAM 1077

SDL UnlockAudioStream

Unlock an audio stream for serialized access.

Header File

Defined in SDL3/SDL audio.h

Syntax

int SDL_UnlockAudioStream(SDL_AudioStream *stream);

Function Parameters

stream The audio stream to unlock.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This unlocks an audio stream after a call to SDL LockAudioStream.

Thread Safety

You should only call this from the same thread that previously called SDL LockAudioStream.

Version

This function is available since SDL 3.0.0.

See Also

� SDL LockAudioStream

1078 CHAPTER 1. SDL FUNCTIONS

SDL UnlockJoysticks

Unlocking for atomic access to the joystick API.

Header File

Defined in SDL3/SDL joystick.h

Syntax

void SDL_UnlockJoysticks(void) SDL_RELEASE(SDL_joystick_lock);

Version

This function is available since SDL 3.0.0.

SDL UNLOCKMUTEX 1079

SDL UnlockMutex

Unlock the mutex.

Header File

Defined in SDL3/SDL mutex.h

Syntax

void SDL_UnlockMutex(SDL_Mutex *mutex) SDL_RELEASE(mutex);

Function Parameters

mutex the mutex to unlock.

Remarks

It is legal for the owning thread to lock an already-locked mutex. It must unlock
it the same number of times before it is actually made available for other threads
in the system (this is known as a ”recursive mutex”).

It is illegal to unlock a mutex that has not been locked by the current thread,
and doing so results in undefined behavior.

Code Examples

¡¡Include(SDL CreateMutex, , , from=”## Begin Mutex Example”, to=”##
End Mutex Example”)¿¿

Version

This function is available since SDL 3.0.0.

See Also

� SDL LockMutex

� SDL TryLockMutex

1080 CHAPTER 1. SDL FUNCTIONS

SDL UnlockProperties

Unlock a set of properties.

Header File

Defined in SDL3/SDL properties.h

Syntax

void SDL_UnlockProperties(SDL_PropertiesID props);

Function Parameters

props the properties to unlock

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

See Also

� SDL LockProperties

SDL UNLOCKRWLOCK 1081

SDL UnlockRWLock

Unlock the read/write lock.

Header File

Defined in SDL3/SDL mutex.h

Syntax

void SDL_UnlockRWLock(SDL_RWLock *rwlock) SDL_RELEASE_GENERIC(rwlock);

Function Parameters

rwlock the rwlock to unlock.

Remarks

Use this function to unlock the rwlock, whether it was locked for read-only or
write operations.

It is legal for the owning thread to lock an already-locked read-only lock. It
must unlock it the same number of times before it is actually made available for
other threads in the system (this is known as a ”recursive rwlock”).

It is illegal to unlock a rwlock that has not been locked by the current thread,
and doing so results in undefined behavior.

Version

This function is available since SDL 3.0.0.

See Also

� SDL LockRWLockForReading

� SDL LockRWLockForWriting

� SDL TryLockRWLockForReading

� SDL TryLockRWLockForWriting

1082 CHAPTER 1. SDL FUNCTIONS

SDL UnlockSpinlock

Unlock a spin lock by setting it to 0.

Header File

Defined in SDL3/SDL atomic.h

Syntax

void SDL_UnlockSpinlock(SDL_SpinLock *lock);

Function Parameters

lock a pointer to a lock variable

Remarks

Always returns immediately. Please note that spinlocks are dangerous if
you don’t know what you’re doing. Please be careful using any sort
of spinlock!

Version

This function is available since SDL 3.0.0.

See Also

� SDL LockSpinlock

� SDL TryLockSpinlock

SDL UNLOCKSURFACE 1083

SDL UnlockSurface

Release a surface after directly accessing the pixels.

Header File

Defined in SDL3/SDL surface.h

Syntax

void SDL_UnlockSurface(SDL_Surface *surface);

Function Parameters

surface the SDL Surface structure to be unlocked

Code Examples

¡¡Include(SDL LockSurface, , , from=”== Code Examples ==”, to=”== Re-
marks ==”)¿¿

Version

This function is available since SDL 3.0.0.

See Also

� SDL LockSurface

1084 CHAPTER 1. SDL FUNCTIONS

SDL UnlockTexture

Unlock a texture, uploading the changes to video memory, if needed.

Header File

Defined in SDL3/SDL render.h

Syntax

void SDL_UnlockTexture(SDL_Texture *texture);

Function Parameters

texture a texture locked by SDL LockTexture()

Remarks

Warning: Please note that SDL LockTexture() is intended to be write-only; it
will not guarantee the previous contents of the texture will be provided. You
must fully initialize any area of a texture that you lock before unlocking it, as
the pixels might otherwise be uninitialized memory.

Which is to say: locking and immediately unlocking a texture can result in
corrupted textures, depending on the renderer in use.

Version

This function is available since SDL 3.0.0.

See Also

� SDL LockTexture

SDL UNREGISTERAPP 1085

SDL UnregisterApp

Deregister the win32 window class from an SDL RegisterApp call.

Header File

Defined in SDL3/SDL main.h

Syntax

void SDL_UnregisterApp(void);

Remarks

This can be called to undo the effects of SDL RegisterApp.
Most applications do not need to, and should not, call this directly; SDL

will call it when deinitializing the video subsystem.
It is safe to call this multiple times, as long as every call is eventually paired

with a prior call to SDL RegisterApp. The window class will only be dereg-
istered when the registration counter in SDL RegisterApp decrements to zero
through calls to this function.

Version

This function is available since SDL 3.0.0.

1086 CHAPTER 1. SDL FUNCTIONS

SDL UpdateGamepads

Manually pump gamepad updates if not using the loop.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

void SDL_UpdateGamepads(void);

Remarks

This function is called automatically by the event loop if events are enabled.
Under such circumstances, it will not be necessary to call this function.

Version

This function is available since SDL 3.0.0.

SDL UPDATEHAPTICEFFECT 1087

SDL UpdateHapticEffect

Update the properties of an effect.

Header File

Defined in SDL3/SDL haptic.h

Syntax

int SDL_UpdateHapticEffect(SDL_Haptic *haptic, int effect, const

SDL_HapticEffect *data);

Function Parameters

haptic the SDL Haptic device that has the effect
effect the identifier of the effect to update
data an SDL HapticEffect structure containing the new effect

properties to use

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

Can be used dynamically, although behavior when dynamically changing di-
rection may be strange. Specifically the effect may re-upload itself and start
playing from the start. You also cannot change the type either when running
SDL UpdateHapticEffect().

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateHapticEffect

� SDL RunHapticEffect

1088 CHAPTER 1. SDL FUNCTIONS

SDL UpdateJoysticks

Update the current state of the open joysticks.

Header File

Defined in SDL3/SDL joystick.h

Syntax

void SDL_UpdateJoysticks(void);

Remarks

This is called automatically by the event loop if any joystick events are enabled.

Version

This function is available since SDL 3.0.0.

SDL UPDATENVTEXTURE 1089

SDL UpdateNVTexture

Update a rectangle within a planar NV12 or NV21 texture with new pixels.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_UpdateNVTexture(SDL_Texture *texture,

const SDL_Rect *rect,

const Uint8 *Yplane, int Ypitch,

const Uint8 *UVplane, int UVpitch);

Function Parameters

texture the texture to update
rect a pointer to the rectangle of pixels to update, or NULL to

update the entire texture.
Yplane the raw pixel data for the Y plane.
Ypitch the number of bytes between rows of pixel data for the Y

plane.
UVplane the raw pixel data for the UV plane.
UVpitch the number of bytes between rows of pixel data for the UV

plane.

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

You can use SDL UpdateTexture() as long as your pixel data is a contiguous
block of NV12/21 planes in the proper order, but this function is available if
your pixel data is not contiguous.

Version

This function is available since SDL 3.0.0.

1090 CHAPTER 1. SDL FUNCTIONS

See Also

� SDL UpdateTexture

� SDL UpdateYUVTexture

SDL UPDATESENSORS 1091

SDL UpdateSensors

Update the current state of the open sensors.

Header File

Defined in SDL3/SDL sensor.h

Syntax

void SDL_UpdateSensors(void);

Remarks

This is called automatically by the event loop if sensor events are enabled.
This needs to be called from the thread that initialized the sensor subsystem.

Version

This function is available since SDL 3.0.0.

1092 CHAPTER 1. SDL FUNCTIONS

SDL UpdateTexture

Update the given texture rectangle with new pixel data.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_UpdateTexture(SDL_Texture *texture, const SDL_Rect *rect, const

void *pixels, int pitch);

Function Parameters

texture the texture to update
rect an SDL Rect structure representing the area to update, or

NULL to update the entire texture
pixels the raw pixel data in the format of the texture
pitch the number of bytes in a row of pixel data, including padding

between lines

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

The pixel data must be in the pixel format of the texture. Use SDL QueryTexture()
to query the pixel format of the texture.

This is a fairly slow function, intended for use with static textures that do
not change often.

If the texture is intended to be updated often, it is preferred to create the
texture as streaming and use the locking functions referenced below. While this
function will work with streaming textures, for optimization reasons you may
not get the pixels back if you lock the texture afterward.

Version

This function is available since SDL 3.0.0.

SDL UPDATETEXTURE 1093

See Also

� SDL LockTexture

� SDL UnlockTexture

� SDL UpdateNVTexture

� SDL UpdateYUVTexture

1094 CHAPTER 1. SDL FUNCTIONS

SDL UpdateWindowSurface

Copy the window surface to the screen.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_UpdateWindowSurface(SDL_Window *window);

Function Parameters

window the window to update

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This is the function you use to reflect any changes to the surface on the screen.
This function is equivalent to the SDL 1.2 API SDL Flip().

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowSurface

� SDL UpdateWindowSurfaceRects

SDL UPDATEWINDOWSURFACERECTS 1095

SDL UpdateWindowSurfaceRects

Copy areas of the window surface to the screen.

Header File

Defined in SDL3/SDL video.h

Syntax

int SDL_UpdateWindowSurfaceRects(SDL_Window *window, const SDL_Rect

*rects, int numrects);

Function Parameters

window the window to update
rects an array of SDL Rect structures representing areas of the

surface to copy, in pixels
numrects the number of rectangles

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This is the function you use to reflect changes to portions of the surface on the
screen.

This function is equivalent to the SDL 1.2 API SDL UpdateRects().
Note that this function will update at least the rectangles specified, but

this is only intended as an optimization; in practice, this might update more of
the screen (or all of the screen!), depending on what method SDL uses to send
pixels to the system.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowSurface

� SDL UpdateWindowSurface

1096 CHAPTER 1. SDL FUNCTIONS

SDL UpdateYUVTexture

Update a rectangle within a planar YV12 or IYUV texture with new pixel data.

Header File

Defined in SDL3/SDL render.h

Syntax

int SDL_UpdateYUVTexture(SDL_Texture *texture,

const SDL_Rect *rect,

const Uint8 *Yplane, int Ypitch,

const Uint8 *Uplane, int Upitch,

const Uint8 *Vplane, int Vpitch);

Function Parameters

texture the texture to update
rect a pointer to the rectangle of pixels to update, or NULL to

update the entire texture
Yplane the raw pixel data for the Y plane
Ypitch the number of bytes between rows of pixel data for the Y

plane
Uplane the raw pixel data for the U plane
Upitch the number of bytes between rows of pixel data for the U

plane
Vplane the raw pixel data for the V plane
Vpitch the number of bytes between rows of pixel data for the V

plane

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

You can use SDL UpdateTexture() as long as your pixel data is a contiguous
block of Y and U/V planes in the proper order, but this function is available if
your pixel data is not contiguous.

Version

This function is available since SDL 3.0.0.

SDL UPDATEYUVTEXTURE 1097

See Also

� SDL UpdateNVTexture

� SDL UpdateTexture

1098 CHAPTER 1. SDL FUNCTIONS

SDL Vulkan CreateSurface

Create a Vulkan rendering surface for a window.

Header File

Defined in SDL3/SDL vulkan.h

Syntax

SDL_bool SDL_Vulkan_CreateSurface(SDL_Window *window,

VkInstance instance,

const struct VkAllocationCallbacks

*allocator,

VkSurfaceKHR* surface);

Function Parameters

window The window to which to attach the Vulkan surface
instance The Vulkan instance handle
allocator A VkAllocationCallbacks struct, which lets the app set the

allocator that creates the surface. Can be NULL.
surface A pointer to a VkSurfaceKHR handle to output the newly

created surface

Return Value

Returns SDL TRUE on success, SDL FALSE on error.

Remarks

The window must have been created with the SDL WINDOW VULKAN flag and
instancemust have been created with extensions returned by SDL Vulkan GetInstanceExtensions()
enabled.

If allocator is NULL, Vulkan will use the system default allocator. This
argument is passed directly to Vulkan and isn’t used by SDL itself.

Code Examples

extern void handle_error(void);

SDL_Window *window;

VkInstance instance;

VkSurfaceKHR surface;

SDL VULKAN CREATESURFACE 1099

if (!SDL_Vulkan_CreateSurface(window, instance, NULL, &surface))

handle_error();

Version

This function is available since SDL 3.0.0.

See Also

� SDL Vulkan GetInstanceExtensions

1100 CHAPTER 1. SDL FUNCTIONS

SDL Vulkan GetInstanceExtensions

Get the Vulkan instance extensions needed for vkCreateInstance.

Header File

Defined in SDL3/SDL vulkan.h

Syntax

char const* const* SDL_Vulkan_GetInstanceExtensions(Uint32 *count);

Function Parameters

count a pointer filled in with the number of extensions returned.

Return Value

Returns An array of extension name strings on success, NULL on error.

Remarks

This should be called after either calling SDL Vulkan LoadLibrary() or creating
an SDL Window with the SDL WINDOW VULKAN flag.

On return, the variable pointed to by count will be set to the number of ele-
ments returned, suitable for using with VkInstanceCreateInfo::enabledExtensionCount,
and the returned array can be used with VkInstanceCreateInfo::ppEnabledExtensionNames,
for calling Vulkan’s vkCreateInstance API.

You should not free the returned array; it is owned by SDL.

Code Examples

extern void handle_error(void);

#ifndef VK_EXT_DEBUG_REPORT_EXTENSION_NAME

#define VK_EXT_DEBUG_REPORT_EXTENSION_NAME "VK_EXT_debug_report"

#endif

int count_instance_extensions;

const char * const *instance_extensions =

SDL_Vulkan_GetInstanceExtensions(&count_instance_extensions);

if (instance_extensions == NULL) { handle_error(); }

Uint32 count_extensions = count_instance_extensions;

SDL VULKAN GETINSTANCEEXTENSIONS 1101

const char **extensions = SDL_malloc(count_extensions * sizeof(const

char *));

extensions[0] = VK_EXT_DEBUG_REPORT_EXTENSION_NAME;

SDL_memcpy(&extensions[1], instance_extensions,

count_instance_extensions * sizeof(const char*));

// Now we can make the Vulkan instance

VkInstanceCreateInfo create_info = {};

create_info.enabledExtensionCount = count_extensions;

create_info.ppEnabledExtensionNames = extensions;

VkInstance instance;

VkResult result = vkCreateInstance(&create_info, NULL, &instance);

SDL_free(extensions);

Version

This function is available since SDL 3.0.0.

See Also

� SDL Vulkan CreateSurface

1102 CHAPTER 1. SDL FUNCTIONS

SDL Vulkan GetVkGetInstanceProcAddr

Get the address of the vkGetInstanceProcAddr function.

Header File

Defined in SDL3/SDL vulkan.h

Syntax

SDL_FunctionPointer SDL_Vulkan_GetVkGetInstanceProcAddr(void);

Return Value

Returns the function pointer for vkGetInstanceProcAddr or NULL on error.

Remarks

This should be called after either calling SDL Vulkan LoadLibrary() or creating
an SDL Window with the SDL WINDOW VULKAN flag.

The actual type of the returned function pointer is PFN vkGetInstanceProcAddr,
but that isn’t available because the Vulkan headers are not included here. You
should cast the return value of this function to that type, e.g. vkGetInstanceProcAddr
= (PFN vkGetInstanceProcAddr)SDL Vulkan GetVkGetInstanceProcAddr();

Version

This function is available since SDL 3.0.0.

SDL VULKAN LOADLIBRARY 1103

SDL Vulkan LoadLibrary

Dynamically load the Vulkan loader library.

Header File

Defined in SDL3/SDL vulkan.h

Syntax

int SDL_Vulkan_LoadLibrary(const char *path);

Function Parameters

path The platform dependent Vulkan loader library name or
NULL

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This should be called after initializing the video driver, but before creating any
Vulkan windows. If no Vulkan loader library is loaded, the default library will
be loaded upon creation of the first Vulkan window.

It is fairly common for Vulkan applications to link with libvulkan instead
of explicitly loading it at run time. This will work with SDL provided the
application links to a dynamic library and both it and SDL use the same search
path.

If you specify a non-NULL path, an application should retrieve all of the
Vulkan functions it uses from the dynamic library using SDL Vulkan GetVkGetInstanceProcAddr
unless you can guarantee path points to the same vulkan loader library the ap-
plication linked to.

On Apple devices, if path is NULL, SDL will attempt to find the vkGetInstanceProcAddr
address within all the Mach-O images of the current process. This is because it
is fairly common for Vulkan applications to link with libvulkan (and historically
MoltenVK was provided as a static library). If it is not found, on macOS,
SDL will attempt to load vulkan.framework/vulkan, libvulkan.1.dylib,
MoltenVK.framework/MoltenVK, and libMoltenVK.dylib, in that order. On
iOS, SDL will attempt to load libMoltenVK.dylib. Applications using a dy-
namic framework or .dylib must ensure it is included in its application bundle.

1104 CHAPTER 1. SDL FUNCTIONS

On non-Apple devices, application linking with a static libvulkan is not
supported. Either do not link to the Vulkan loader or link to a dynamic library
version.

Version

This function is available since SDL 3.0.0.

See Also

� SDL Vulkan GetVkInstanceProcAddr

� SDL Vulkan UnloadLibrary

SDL VULKAN UNLOADLIBRARY 1105

SDL Vulkan UnloadLibrary

Unload the Vulkan library previously loaded by SDL Vulkan LoadLibrary().

Header File

Defined in SDL3/SDL vulkan.h

Syntax

void SDL_Vulkan_UnloadLibrary(void);

Version

This function is available since SDL 3.0.0.

See Also

� SDL Vulkan LoadLibrary

1106 CHAPTER 1. SDL FUNCTIONS

SDL WaitCondition

Wait until a condition variable is signaled.

Header File

Defined in SDL3/SDL mutex.h

Syntax

int SDL_WaitCondition(SDL_Condition *cond, SDL_Mutex *mutex);

Function Parameters

cond the condition variable to wait on
mutex the mutex used to coordinate thread access

Return Value

Returns 0 when it is signaled or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function unlocks the specified mutex and waits for another thread to call
SDL SignalCondition() or SDL BroadcastCondition() on the condition variable
cond. Once the condition variable is signaled, the mutex is re-locked and the
function returns.

The mutex must be locked before calling this function. Locking the mutex
recursively (more than once) is not supported and leads to undefined behavior.

This function is the equivalent of calling SDL WaitConditionTimeout() with
a time length of -1.

Version

This function is available since SDL 3.0.0.

See Also

� SDL BroadcastCondition

� SDL SignalCondition

� SDL WaitConditionTimeout

SDL WAITCONDITIONTIMEOUT 1107

SDL WaitConditionTimeout

Wait until a condition variable is signaled or a certain time has passed.

Header File

Defined in SDL3/SDL mutex.h

Syntax

int SDL_WaitConditionTimeout(SDL_Condition *cond,

SDL_Mutex *mutex, Sint32 timeoutMS);

Function Parameters

cond the condition variable to wait on
mutex the mutex used to coordinate thread access
timeoutMS the maximum time to wait, in milliseconds, or -1 to wait

indefinitely

Return Value

Returns 0 if the condition variable is signaled, SDL MUTEX TIMEDOUT if the con-
dition is not signaled in the allotted time, or a negative error code on failure;
call SDL GetError() for more information.

Remarks

This function unlocks the specified mutex and waits for another thread to call
SDL SignalCondition() or SDL BroadcastCondition() on the condition variable
cond, or for the specified time to elapse. Once the condition variable is signaled
or the time elapsed, the mutex is re-locked and the function returns.

The mutex must be locked before calling this function. Locking the mutex
recursively (more than once) is not supported and leads to undefined behavior.

Code Examples

SDL_bool condition = SDL_FALSE;

SDL_Mutex *lock;

SDL_Condition *cond;

lock = SDL_CreateMutex();

cond = SDL_CreateCondition();

Thread_A:

const Uint32 timeout = 1000; /* wake up every second */

1108 CHAPTER 1. SDL FUNCTIONS

SDL_bool done = SDL_FALSE;

while (!done) {

SDL_LockMutex(lock);

while (!condition && SDL_WaitConditionTimeout(cond, lock,

timeout) == 0) {

continue;

}

SDL_UnlockMutex(lock);

if (condition) {

/* ... */

}

/* ... do some periodic work */

}

Thread_B:

SDL_LockMutex(lock);

/* ... */

condition = SDL_TRUE;

/* ... */

SDL_SignalCondition(cond);

SDL_UnlockMutex(lock);

SDL_DestroyCondition(cond);

SDL_DestroyMutex(lock);

Version

This function is available since SDL 3.0.0.

See Also

� SDL BroadcastCondition

� SDL SignalCondition

� SDL WaitCondition

SDL WAITEVENT 1109

SDL WaitEvent

Wait indefinitely for the next available event.

Header File

Defined in SDL3/SDL events.h

Syntax

SDL_bool SDL_WaitEvent(SDL_Event *event);

Function Parameters

event the SDL Event structure to be filled in with the next event
from the queue, or NULL

Return Value

Returns SDL TRUE on success or SDL FALSE if there was an error while wait-
ing for events; call SDL GetError() for more information.

Remarks

If event is not NULL, the next event is removed from the queue and stored in
the SDL Event structure pointed to by event.

As this function may implicitly call SDL PumpEvents(), you can only call
this function in the thread that initialized the video subsystem.

Version

This function is available since SDL 3.0.0.

See Also

� SDL PollEvent

� SDL PushEvent

� SDL WaitEventTimeout

1110 CHAPTER 1. SDL FUNCTIONS

SDL WaitEventTimeout

Wait until the specified timeout (in milliseconds) for the next available event.

Header File

Defined in SDL3/SDL events.h

Syntax

SDL_bool SDL_WaitEventTimeout(SDL_Event *event, Sint32 timeoutMS);

Function Parameters

event the SDL Event structure to be filled in with the next event
from the queue, or NULL

timeoutMS the maximum number of milliseconds to wait for the next
available event

Return Value

Returns SDL TRUE if this got an event or SDL FALSE if the timeout elapsed
without any events available.

Remarks

If event is not NULL, the next event is removed from the queue and stored in
the SDL Event structure pointed to by event.

As this function may implicitly call SDL PumpEvents(), you can only call
this function in the thread that initialized the video subsystem.

The timeout is not guaranteed, the actual wait time could be longer due to
system scheduling.

Version

This function is available since SDL 3.0.0.

See Also

� SDL PollEvent

� SDL PushEvent

� SDL WaitEvent

SDL WAITSEMAPHORE 1111

SDL WaitSemaphore

Wait until a semaphore has a positive value and then decrements it.

Header File

Defined in SDL3/SDL mutex.h

Syntax

int SDL_WaitSemaphore(SDL_Semaphore *sem);

Function Parameters

sem the semaphore wait on

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function suspends the calling thread until either the semaphore pointed to
by sem has a positive value or the call is interrupted by a signal or error. If the
call is successful it will atomically decrement the semaphore value.

This function is the equivalent of calling SDL WaitSemaphoreTimeout()
with a time length of -1.

Code Examples

// BEWARE: This code example was migrated from the SDL2 Wiki, by only

updating the names.

#define NB_WAITER 10

SDL_Semaphore *sem;

// Increments the semaphore every 2s

int poster_thread() {

for (int i = 0; i < NB_WAITER; i++) {

SDL_PostSemaphore(sem);

SDL_Delay(2 * 1000);

}

return 0;

}

int waiter_thread() {

1112 CHAPTER 1. SDL FUNCTIONS

int status;

status = SDL_WaitSemaphore(sem);

if (status == 0) {

SDL_Log("Semaphore was decremented.\n");

} else {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "An error has occured

while waiting: %s\n", SDL_GetError());

}

return 0;

}

int main() {

sem = SDL_CreateSemaphore(0);

create_and_wait_threads(); // 1 poster, 10 waiters

SDL_DestroySemaphore(sem);

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL PostSemaphore

� SDL TryWaitSemaphore

� SDL WaitSemaphoreTimeout

SDL WAITSEMAPHORETIMEOUT 1113

SDL WaitSemaphoreTimeout

Wait until a semaphore has a positive value and then decrements it.

Header File

Defined in SDL3/SDL mutex.h

Syntax

int SDL_WaitSemaphoreTimeout(SDL_Semaphore *sem, Sint32 timeoutMS);

Function Parameters

sem the semaphore to wait on
timeoutMS the length of the timeout, in milliseconds

Return Value

Returns 0 if the wait succeeds, SDL MUTEX TIMEDOUT if the wait does not succeed
in the allotted time, or a negative error code on failure; call SDL GetError() for
more information.

Remarks

This function suspends the calling thread until either the semaphore pointed to
by sem has a positive value, the call is interrupted by a signal or error, or the
specified time has elapsed. If the call is successful it will atomically decrement
the semaphore value.

Code Examples

// BEWARE: This code example was migrated from the SDL2 Wiki, by only

updating the names.

void add_data_to_queue(void);

void get_data_from_queue(void);

int data_available(void);

void wait_for_threads(void);

SDL_AtomicInt done;

SDL_Semaphore *sem;

SDL_AtomicSet(&done, 0);

sem = SDL_CreateSemaphore(0);

1114 CHAPTER 1. SDL FUNCTIONS

Thread_A:

while (!SDL_AtomicGet(&done)) {

add_data_to_queue();

SDL_PostSemaphore(sem);

}

Thread_B:

const Uint32 timeout = 1000; /* wake up every second */

while (!SDL_AtomicGet(&done)) {

if (SDL_WaitSemaphoreTimeout(sem, timeout) == 0 &&

data_available()) {

get_data_from_queue();

}

/* ... do other processing */

}

SDL_AtomicSet(&done, 1);

SDL_PostSemaphore(sem);

wait_for_threads();

SDL_DestroySemaphore(sem);

Version

This function is available since SDL 3.0.0.

See Also

� SDL PostSemaphore

� SDL TryWaitSemaphore

� SDL WaitSemaphore

SDL WAITTHREAD 1115

SDL WaitThread

Wait for a thread to finish.

Header File

Defined in SDL3/SDL thread.h

Syntax

void SDL_WaitThread(SDL_Thread * thread, int *status);

Function Parameters

thread the SDL Thread pointer that was returned from the
SDL CreateThread() call that started this thread

status pointer to an integer that will receive the value returned
from the thread function by its ’return’, or NULL to not
receive such value back.

Remarks

Threads that haven’t been detached will remain (as a ”zombie”) until this func-
tion cleans them up. Not doing so is a resource leak.

Once a thread has been cleaned up through this function, the SDL Thread
that references it becomes invalid and should not be referenced again. As such,
only one thread may call SDL WaitThread() on another.

The return code for the thread function is placed in the area pointed to by
status, if status is not NULL.

You may not wait on a thread that has been used in a call to SDL DetachThread().
Use either that function or this one, but not both, or behavior is undefined.

It is safe to pass a NULL thread to this function; it is a no-op.
Note that the thread pointer is freed by this function and is not valid after-

ward.

Code Examples

#include <SDL3/SDL.h>

// Very simple thread - counts 0 to 9 delaying 50ms between increments

static int TestThread(void *ptr)

{

int cnt;

for (cnt = 0; cnt < 10; ++cnt) {

1116 CHAPTER 1. SDL FUNCTIONS

SDL_Log("Thread counter: %d\n", cnt);

SDL_Delay(50);

}

// Return the final value to the SDL_WaitThread function above

return cnt;

}

int main(int argc, char *argv[])

{

SDL_Thread *thread;

int threadReturnValue;

SDL_Log("Simple SDL_CreateThread test:");

// Simply create a thread

thread = SDL_CreateThread(TestThread, "TestThread", (void *)NULL);

if (NULL == thread) {

SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "SDL_CreateThread

failed: %s\n", SDL_GetError());

} else {

// Wait for the thread to complete. The thread functions return

code will

// be placed in the "threadReturnValue" variable when it

completes.

//

SDL_WaitThread(thread, &threadReturnValue);

SDL_Log("Thread returned value: %d\n", threadReturnValue);

}

return 0;

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL CreateThread

� SDL DetachThread

SDL WARPMOUSEGLOBAL 1117

SDL WarpMouseGlobal

Move the mouse to the given position in global screen space.

Header File

Defined in SDL3/SDL mouse.h

Syntax

int SDL_WarpMouseGlobal(float x, float y);

Function Parameters

x the x coordinate
y the y coordinate

Return Value

Returns 0 on success or a negative error code on failure; call SDL GetError()
for more information.

Remarks

This function generates a mouse motion event.
A failure of this function usually means that it is unsupported by a platform.
Note that this function will appear to succeed, but not actually move the

mouse when used over Microsoft Remote Desktop.

Version

This function is available since SDL 3.0.0.

See Also

� SDL WarpMouseInWindow

1118 CHAPTER 1. SDL FUNCTIONS

SDL WarpMouseInWindow

Move the mouse cursor to the given position within the window.

Header File

Defined in SDL3/SDL mouse.h

Syntax

void SDL_WarpMouseInWindow(SDL_Window * window,

float x, float y);

Function Parameters

window the window to move the mouse into, or NULL for the current
mouse focus

x the x coordinate within the window
y the y coordinate within the window

Remarks

This function generates a mouse motion event if relative mode is not enabled.
If relative mode is enabled, you can force mouse events for the warp by setting
the SDL HINT MOUSE RELATIVE WARP MOTION hint.

Note that this function will appear to succeed, but not actually move the
mouse when used over Microsoft Remote Desktop.

Version

This function is available since SDL 3.0.0.

See Also

� SDL WarpMouseGlobal

SDL WASINIT 1119

SDL WasInit

Get a mask of the specified subsystems which are currently initialized.

Header File

Defined in SDL3/SDL init.h

Syntax

Uint32 SDL_WasInit(Uint32 flags);

Function Parameters

flags any of the flags used by SDL Init(); see SDL Init for details.

Return Value

Returns a mask of all initialized subsystems if flags is 0, otherwise it returns
the initialization status of the specified subsystems.

Code Examples

/* Get init data on all the subsystems */

Uint32 subsystem_init;

subsystem_init = SDL_WasInit(SDL_INIT_AUDIO | SDL_INIT_VIDEO);

if (subsystem_init & SDL_INIT_VIDEO) {

SDL_Log("Video is initialized.");

} else {

SDL_Log("Video is not initialized.");

}

/* Just check for one specific subsystem */

if (SDL_WasInit(SDL_INIT_VIDEO) != 0) {

SDL_Log("Video is initialized.");

} else {

SDL_Log("Video is not initialized.");

}

/* Check for two subsystems */

Uint32 subsystem_mask = SDL_INIT_VIDEO | SDL_INIT_AUDIO;

1120 CHAPTER 1. SDL FUNCTIONS

if (SDL_WasInit(subsystem_mask) == subsystem_mask) {

SDL_Log("Video and Audio initialized.");

} else {

SDL_Log("Video and Audio not initialized.");

}

Version

This function is available since SDL 3.0.0.

See Also

� SDL Init

� SDL InitSubSystem

SDL WCSCASECMP 1121

SDL wcscasecmp

Compare two null-terminated wide strings, case-insensitively.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_wcscasecmp(const wchar_t *str1, const wchar_t *str2);

Function Parameters

str1 The first string to compare. NULL is not permitted!
str2 The second string to compare. NULL is not permitted!

Return Value

Returns less than zero if str1 is ”less than” str2, greater than zero if str1 is
”greater than” str2, and zero if the strings match exactly.

Remarks

This will work with Unicode strings, using a technique called ”case-folding” to
handle the vast majority of case-sensitive human languages regardless of system
locale. It can deal with expanding values: a German Eszett character can
compare against two ASCII ’s’ chars and be considered a match, for example. A
notable exception: it does not handle the Turkish ’i’ character; human language
is complicated!

Depending on your platform, ”wchar t” might be 2 bytes, and expected
to be UTF-16 encoded (like Windows), or 4 bytes in UTF-32 format. Since
this handles Unicode, it expects the string to be well-formed and not a null-
terminated string of arbitrary bytes. Characters that are not valid UTF-16
(or UTF-32) are treated as Unicode character U+FFFD (REPLACEMENT
CHARACTER), which is to say two strings of random bits may turn out to
match if they convert to the same amount of replacement characters.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

1122 CHAPTER 1. SDL FUNCTIONS

SDL wcscmp

Compare two null-terminated wide strings.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_wcscmp(const wchar_t *str1, const wchar_t *str2);

Function Parameters

str1 The first string to compare. NULL is not permitted!
str2 The second string to compare. NULL is not permitted!

Return Value

Returns less than zero if str1 is ”less than” str2, greater than zero if str1 is
”greater than” str2, and zero if the strings match exactly.

Remarks

This only compares wchar t values until it hits a null-terminating character; it
does not care if the string is well-formed UTF-16 (or UTF-32, depending on
your platform’s wchar t size), or uses valid Unicode values.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL WCSNCASECMP 1123

SDL wcsncasecmp

Compare two wide strings, case-insensitively, up to a number of wchar t.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_wcsncasecmp(const wchar_t *str1, const wchar_t *str2, size_t

maxlen);

Function Parameters

str1 The first string to compare. NULL is not permitted!
str2 The second string to compare. NULL is not permitted!
maxlen The maximum number of wchar t values to compare.

Return Value

Returns less than zero if str1 is ”less than” str2, greater than zero if str1 is
”greater than” str2, and zero if the strings match exactly.

Remarks

This will work with Unicode strings, using a technique called ”case-folding” to
handle the vast majority of case-sensitive human languages regardless of system
locale. It can deal with expanding values: a German Eszett character can
compare against two ASCII ’s’ chars and be considered a match, for example. A
notable exception: it does not handle the Turkish ’i’ character; human language
is complicated!

Depending on your platform, ”wchar t” might be 2 bytes, and expected
to be UTF-16 encoded (like Windows), or 4 bytes in UTF-32 format. Since
this handles Unicode, it expects the string to be well-formed and not a null-
terminated string of arbitrary bytes. Characters that are not valid UTF-16
(or UTF-32) are treated as Unicode character U+FFFD (REPLACEMENT
CHARACTER), which is to say two strings of random bits may turn out to
match if they convert to the same amount of replacement characters.

Note that while this function might deal with variable-sized characters,
maxlen specifies a wchar limit! If the limit lands in the middle of a multi-
byte UTF-16 sequence, it may convert a portion of the final character to one
or more Unicode character U+FFFD (REPLACEMENT CHARACTER) so as
not to overflow a buffer. maxlen specifies a maximum number of wchar t val-
ues to compare; if the strings match to this number of wchar t (or both have

1124 CHAPTER 1. SDL FUNCTIONS

matched to a null-terminator character before this number of bytes), they will
be considered equal.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

SDL WCSNCMP 1125

SDL wcsncmp

Compare two wide strings up to a number of wchar t values.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

int SDL_wcsncmp(const wchar_t *str1, const wchar_t *str2, size_t maxlen);

Function Parameters

str1 The first string to compare. NULL is not permitted!
str2 The second string to compare. NULL is not permitted!
maxlen The maximum number of wchar t to compare.

Return Value

Returns less than zero if str1 is ”less than” str2, greater than zero if str1 is
”greater than” str2, and zero if the strings match exactly.

Remarks

This only compares wchar t values; it does not care if the string is well-formed
UTF-16 (or UTF-32, depending on your platform’s wchar t size), or uses valid
Unicode values.

Note that while this function is intended to be used with UTF-16 (or UTF-
32, depending on your platform’s definition of wchar t), it is comparing raw
wchar t values and not Unicode codepoints: maxlen specifies a wchar t limit!
If the limit lands in the middle of a multi-wchar UTF-16 sequence, it will only
compare a portion of the final character. maxlen specifies a maximum number
of wchar t to compare; if the strings match to this number of wide chars (or
both have matched to a null-terminator character before this count), they will
be considered equal.

Thread Safety

It is safe to call this function from any thread.

Version

This function is available since SDL 3.0.0.

1126 CHAPTER 1. SDL FUNCTIONS

SDL WindowHasSurface

Return whether the window has a surface associated with it.

Header File

Defined in SDL3/SDL video.h

Syntax

SDL_bool SDL_WindowHasSurface(SDL_Window *window);

Function Parameters

window the window to query

Return Value

Returns SDL TRUE if there is a surface associated with the window, or SDL FALSE
otherwise.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetWindowSurface

SDL WINRTGETDEVICEFAMILY 1127

SDL WinRTGetDeviceFamily

Detects the device family of WinRT platform at runtime.

Header File

Defined in SDL3/SDL system.h

Syntax

SDL_WinRT_DeviceFamily SDL_WinRTGetDeviceFamily();

Return Value

Returns a value from the SDL WinRT DeviceFamily enum.

Version

This function is available since SDL 3.0.0.

1128 CHAPTER 1. SDL FUNCTIONS

SDL WinRTGetFSPath

Retrieve a WinRT defined path on the local file system.

Header File

Defined in SDL3/SDL system.h

Syntax

const char * SDL_WinRTGetFSPath(SDL_WinRT_Path pathType);

Function Parameters

pathType the type of path to retrieve, one of SDL WinRT Path

Return Value

Returns a UTF-8 string (8-bit, multi-byte) containing the path, or NULL if the
path is not available for any reason; call SDL GetError() for more information.

Remarks

Not all paths are available on all versions of Windows. This is especially true
on Windows Phone. Check the documentation for the given SDL WinRT Path
for more information on which path types are supported where.

Documentation on most app-specific path types on WinRT can be found on
MSDN, at the URL:

https://msdn.microsoft.com/en-us/library/windows/apps/hh464917.aspx

Version

This function is available since SDL 3.0.0.

SDL WRITEIO 1129

SDL WriteIO

Write to an SDL IOStream data stream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

size_t SDL_WriteIO(SDL_IOStream *context, const void *ptr, size_t size);

Function Parameters

context a pointer to an SDL IOStream structure
ptr a pointer to a buffer containing data to write
size the number of bytes to write

Return Value

Returns the number of bytes written, which will be less than size on error; call
SDL GetError() for more information.

Remarks

This function writes exactly size bytes from the area pointed at by ptr to the
stream. If this fails for any reason, it’ll return less than size to demonstrate
how far the write progressed. On success, it returns size.

On error, this function still attempts to write as much as possible, so it might
return a positive value less than the requested write size.

The caller can use SDL GetIOStatus() to determine if the problem is recov-
erable, such as a non-blocking write that can simply be retried later, or a fatal
error.

Version

This function is available since SDL 3.0.0.

See Also

� SDL IOprintf

� SDL ReadIO

� SDL SeekIO

� SDL GetIOStatus

1130 CHAPTER 1. SDL FUNCTIONS

SDL WriteS16BE

Use this function to write 16 bits in native format to an SDL IOStream as
big-endian data.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteS16BE(SDL_IOStream *dst, Sint16 value);

Function Parameters

dst the stream to which data will be written
value the data to be written, in native format

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the application always specifies
native format, and the data written will be in big-endian format.

Version

This function is available since SDL 3.0.0.

SDL WRITES16LE 1131

SDL WriteS16LE

Use this function to write 16 bits in native format to an SDL IOStream as
little-endian data.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteS16LE(SDL_IOStream *dst, Sint16 value);

Function Parameters

dst the stream to which data will be written
value the data to be written, in native format

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the application always specifies
native format, and the data written will be in little-endian format.

Version

This function is available since SDL 3.0.0.

1132 CHAPTER 1. SDL FUNCTIONS

SDL WriteS32BE

Use this function to write 32 bits in native format to an SDL IOStream as
big-endian data.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteS32BE(SDL_IOStream *dst, Sint32 value);

Function Parameters

dst the stream to which data will be written
value the data to be written, in native format

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the application always specifies
native format, and the data written will be in big-endian format.

Version

This function is available since SDL 3.0.0.

SDL WRITES32LE 1133

SDL WriteS32LE

Use this function to write 32 bits in native format to an SDL IOStream as
little-endian data.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteS32LE(SDL_IOStream *dst, Sint32 value);

Function Parameters

dst the stream to which data will be written
value the data to be written, in native format

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the application always specifies
native format, and the data written will be in little-endian format.

Version

This function is available since SDL 3.0.0.

1134 CHAPTER 1. SDL FUNCTIONS

SDL WriteS64BE

Use this function to write 64 bits in native format to an SDL IOStream as
big-endian data.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteS64BE(SDL_IOStream *dst, Sint64 value);

Function Parameters

dst the stream to which data will be written
value the data to be written, in native format

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the application always specifies
native format, and the data written will be in big-endian format.

Version

This function is available since SDL 3.0.0.

SDL WRITES64LE 1135

SDL WriteS64LE

Use this function to write 64 bits in native format to an SDL IOStream as
little-endian data.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteS64LE(SDL_IOStream *dst, Sint64 value);

Function Parameters

dst the stream to which data will be written
value the data to be written, in native format

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the application always specifies
native format, and the data written will be in little-endian format.

Version

This function is available since SDL 3.0.0.

1136 CHAPTER 1. SDL FUNCTIONS

SDL WriteStorageFile

Synchronously write a file from client memory into a storage container.

Header File

Defined in SDL3/SDL storage.h

Syntax

int SDL_WriteStorageFile(SDL_Storage *storage, const char *path, const

void *source, Uint64 length);

Function Parameters

storage a storage container to write to
path the relative path of the file to write
source a client-provided buffer to write from
length the length of the source buffer

Return Value

Returns 0 if the file was written, a negative value otherwise; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetStorageSpaceRemaining

� SDL ReadStorageFile

� SDL StorageReady

SDL WRITEU16BE 1137

SDL WriteU16BE

Use this function to write 16 bits in native format to an SDL IOStream as
big-endian data.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteU16BE(SDL_IOStream *dst, Uint16 value);

Function Parameters

dst the stream to which data will be written
value the data to be written, in native format

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the application always specifies
native format, and the data written will be in big-endian format.

Version

This function is available since SDL 3.0.0.

1138 CHAPTER 1. SDL FUNCTIONS

SDL WriteU16LE

Use this function to write 16 bits in native format to an SDL IOStream as
little-endian data.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteU16LE(SDL_IOStream *dst, Uint16 value);

Function Parameters

dst the stream to which data will be written
value the data to be written, in native format

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the application always specifies
native format, and the data written will be in little-endian format.

Version

This function is available since SDL 3.0.0.

SDL WRITEU32BE 1139

SDL WriteU32BE

Use this function to write 32 bits in native format to an SDL IOStream as
big-endian data.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteU32BE(SDL_IOStream *dst, Uint32 value);

Function Parameters

dst the stream to which data will be written
value the data to be written, in native format

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the application always specifies
native format, and the data written will be in big-endian format.

Version

This function is available since SDL 3.0.0.

1140 CHAPTER 1. SDL FUNCTIONS

SDL WriteU32LE

Use this function to write 32 bits in native format to an SDL IOStream as
little-endian data.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteU32LE(SDL_IOStream *dst, Uint32 value);

Function Parameters

dst the stream to which data will be written
value the data to be written, in native format

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the application always specifies
native format, and the data written will be in little-endian format.

Version

This function is available since SDL 3.0.0.

SDL WRITEU64BE 1141

SDL WriteU64BE

Use this function to write 64 bits in native format to an SDL IOStream as
big-endian data.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteU64BE(SDL_IOStream *dst, Uint64 value);

Function Parameters

dst the stream to which data will be written
value the data to be written, in native format

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the application always specifies
native format, and the data written will be in big-endian format.

Version

This function is available since SDL 3.0.0.

1142 CHAPTER 1. SDL FUNCTIONS

SDL WriteU64LE

Use this function to write 64 bits in native format to an SDL IOStream as
little-endian data.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteU64LE(SDL_IOStream *dst, Uint64 value);

Function Parameters

dst the stream to which data will be written
value the data to be written, in native format

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Remarks

SDL byteswaps the data only if necessary, so the application always specifies
native format, and the data written will be in little-endian format.

Version

This function is available since SDL 3.0.0.

SDL WRITEU8 1143

SDL WriteU8

Use this function to write a byte to an SDL IOStream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

SDL_bool SDL_WriteU8(SDL_IOStream *dst, Uint8 value);

Function Parameters

dst the SDL IOStream to write to
value the byte value to write

Return Value

Returns SDL TRUE on successful write, SDL FALSE on failure; call SDL GetError()
for more information.

Version

This function is available since SDL 3.0.0.

1144 CHAPTER 1. SDL FUNCTIONS

Chapter 2

SDL Macros

1145

1146 CHAPTER 2. SDL MACROS

SDL ANDROID EXTERNAL STORAGE READ

See the official Android developer guide for more information: http://developer.android.com/guide/topics/data/data-
storage.html

Header File

Defined in SDL3/SDL system.h

Syntax

#define SDL_ANDROID_EXTERNAL_STORAGE_READ 0x01

Version

This macro is available since SDL 3.0.0.

SDL ARRAYSIZE 1147

SDL arraysize

The number of elements in an array.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_arraysize(array) (sizeof(array)/sizeof(array[0]))

Remarks

NOTE: This macro double-evaluates the argument, so you should never have
side effects in the parameter.

Version

This macro is available since SDL 3.0.0.

1148 CHAPTER 2. SDL MACROS

SDL assert

An assertion test that is normally performed only in debug builds.

Header File

Defined in SDL3/SDL assert.h

Syntax

#define SDL_assert(condition) if (assertion_enabled && (condition)) {

trigger_assertion; }

Remarks

This macro is enabled when the SDL ASSERT LEVEL is ¿= 2, otherwise it is
disabled. This is meant to only do these tests in debug builds, so they can tend
to be more expensive, and they are meant to bring everything to a halt when
they fail, with the programmer there to assess the problem.

In short: you can sprinkle these around liberally and assume they will evap-
orate out of the build when building for end-users.

When assertions are disabled, this wraps condition in a sizeof operator,
which means any function calls and side effects will not run, but the compiler
will not complain about any otherwise-unused variables that are only referenced
in the assertion.

One can set the environment variable ”SDL ASSERT” to one of several
strings (”abort”, ”break”, ”retry”, ”ignore”, ”always ignore”) to force a default
behavior, which may be desirable for automation purposes. If your platform
requires GUI interfaces to happen on the main thread but you’re debugging an
assertion in a background thread, it might be desirable to set this to ”break”
so that your debugger takes control as soon as assert is triggered, instead of
risking a bad UI interaction (deadlock, etc) in the application.

Note that SDL ASSERT is an environment variable and not an SDL hint!
Please refer to your platform’s documentation for how to set it!

Version

This macro is available since SDL 3.0.0.

SDL ASSERT ALWAYS 1149

SDL assert always

An assertion test that always performed.

Header File

Defined in SDL3/SDL assert.h

Syntax

#define SDL_assert_always(condition) SDL_enabled_assert(condition)

Remarks

This macro is always enabled no matter what SDL ASSERT LEVEL is set to.
You almost never want to use this, as it could trigger on an end-user’s system,
crashing your program.

One can set the environment variable ”SDL ASSERT” to one of several
strings (”abort”, ”break”, ”retry”, ”ignore”, ”always ignore”) to force a default
behavior, which may be desirable for automation purposes. If your platform
requires GUI interfaces to happen on the main thread but you’re debugging an
assertion in a background thread, it might be desirable to set this to ”break”
so that your debugger takes control as soon as assert is triggered, instead of
risking a bad UI interaction (deadlock, etc) in the application.

Note that SDL ASSERT is an environment variable and not an SDL hint!
Please refer to your platform’s documentation for how to set it!

Version

This macro is available since SDL 3.0.0.

1150 CHAPTER 2. SDL MACROS

SDL ASSERT LEVEL

The level of assertion aggressiveness.

Header File

Defined in SDL3/SDL assert.h

Syntax

#define SDL_ASSERT_LEVEL SomeNumberBasedOnVariousFactors

Remarks

This value changes depending on compiler options and other preprocessor de-
fines.

It is currently one of the following values, but future SDL releases might add
more:

� 0: All SDL assertion macros are disabled.

� 1: Release settings: SDL assert disabled, SDL assert release enabled.

� 2: Debug settings: SDL assert and SDL assert release enabled.

� 3: Paranoid settings: All SDL assertion macros enabled, including SDL assert paranoid.

Version

This macro is available since SDL 3.0.0.

SDL ASSERT PARANOID 1151

SDL assert paranoid

An assertion test that is performed only when built with paranoid settings.

Header File

Defined in SDL3/SDL assert.h

Syntax

#define SDL_assert_paranoid(condition) SDL_disabled_assert(condition)

Remarks

This macro is enabled when the SDL ASSERT LEVEL is ¿= 3, otherwise it
is disabled. This is a higher level than both release and debug, so these tests
are meant to be expensive and only run when specifically looking for extremely
unexpected failure cases in a special build.

When assertions are disabled, this wraps condition in a sizeof operator,
which means any function calls and side effects will not run, but the compiler
will not complain about any otherwise-unused variables that are only referenced
in the assertion.

One can set the environment variable ”SDL ASSERT” to one of several
strings (”abort”, ”break”, ”retry”, ”ignore”, ”always ignore”) to force a default
behavior, which may be desirable for automation purposes. If your platform
requires GUI interfaces to happen on the main thread but you’re debugging an
assertion in a background thread, it might be desirable to set this to ”break”
so that your debugger takes control as soon as assert is triggered, instead of
risking a bad UI interaction (deadlock, etc) in the application.

Note that SDL ASSERT is an environment variable and not an SDL hint!
Please refer to your platform’s documentation for how to set it!

Version

This macro is available since SDL 3.0.0.

1152 CHAPTER 2. SDL MACROS

SDL assert release

An assertion test that is performed even in release builds.

Header File

Defined in SDL3/SDL assert.h

Syntax

#define SDL_assert_release(condition) SDL_disabled_assert(condition)

Remarks

This macro is enabled when the SDL ASSERT LEVEL is ¿= 1, otherwise it is
disabled. This is meant to be for tests that are cheap to make and extremely
unlikely to fail; generally it is frowned upon to have an assertion failure in a
release build, so these assertions generally need to be of more than life-and-death
importance if there’s a chance they might trigger. You should almost always
consider handling these cases more gracefully than an assert allows.

When assertions are disabled, this wraps condition in a sizeof operator,
which means any function calls and side effects will not run, but the compiler
will not complain about any otherwise-unused variables that are only referenced
in the assertion.

One can set the environment variable ”SDL ASSERT” to one of several
strings (”abort”, ”break”, ”retry”, ”ignore”, ”always ignore”) to force a default
behavior, which may be desirable for automation purposes. If your platform
requires GUI interfaces to happen on the main thread but you’re debugging an
assertion in a background thread, it might be desirable to set this to ”break”
so that your debugger takes control as soon as assert is triggered, instead of
risking a bad UI interaction (deadlock, etc) in the application.

Note that SDL ASSERT is an environment variable and not an SDL hint!
Please refer to your platform’s documentation for how to set it!

Version

This macro is available since SDL 3.0.0.

SDL ATOMICDECREF 1153

SDL AtomicDecRef

Decrement an atomic variable used as a reference count.

Header File

Defined in SDL3/SDL atomic.h

Syntax

#define SDL_AtomicDecRef(a) (SDL_AtomicAdd(a, -1) == 1)

Return Value

Returns SDL TRUE if the variable reached zero after decrementing, SDL FALSE
otherwise

Remarks

Note: If you don’t know what this macro is for, you shouldn’t use it!

Version

This macro is available since SDL 3.0.0.

See Also

� SDL AtomicIncRef

1154 CHAPTER 2. SDL MACROS

SDL AtomicIncRef

Increment an atomic variable used as a reference count.

Header File

Defined in SDL3/SDL atomic.h

Syntax

#define SDL_AtomicIncRef(a) SDL_AtomicAdd(a, 1)

Return Value

Returns the previous value of the atomic variable.

Remarks

Note: If you don’t know what this macro is for, you shouldn’t use it!

Version

This macro is available since SDL 3.0.0.

See Also

� SDL AtomicDecRef

SDL AUDIO BITSIZE 1155

SDL AUDIO BITSIZE

Retrieve the size, in bits, from an SDL AudioFormat.

Header File

Defined in SDL3/SDL audio.h

Syntax

#define SDL_AUDIO_BITSIZE(x) ((x) & SDL_AUDIO_MASK_BITSIZE)

Return Value

Returns data size in bits

Remarks

For example, SDL AUDIO BITSIZE(SDL AUDIO S16) returns 16.

Thread Safety

It is safe to call this macro from any thread.

Version

This macro is available since SDL 3.0.0.

1156 CHAPTER 2. SDL MACROS

SDL AUDIO BYTESIZE

Retrieve the size, in bytes, from an SDL AudioFormat.

Header File

Defined in SDL3/SDL audio.h

Syntax

#define SDL_AUDIO_BYTESIZE(x) (SDL_AUDIO_BITSIZE(x) / 8)

Return Value

Returns data size in bytes

Remarks

For example, SDL AUDIO BYTESIZE(SDL AUDIO S16) returns 2.

Thread Safety

It is safe to call this macro from any thread.

Version

This macro is available since SDL 3.0.0.

SDL AUDIO DEVICE DEFAULT CAPTURE 1157

SDL AUDIO DEVICE DEFAULT CAPTURE

A value used to request a default capture audio device.

Header File

Defined in SDL3/SDL audio.h

Syntax

#define SDL_AUDIO_DEVICE_DEFAULT_CAPTURE ((SDL_AudioDeviceID) 0xFFFFFFFE)

Remarks

Several functions that require an SDL AudioDeviceID will accept this value to
signify the app just wants the system to choose a default device instead of the
app providing a specific one.

Version

This macro is available since SDL 3.0.0.

1158 CHAPTER 2. SDL MACROS

SDL AUDIO DEVICE DEFAULT OUTPUT

A value used to request a default output audio device.

Header File

Defined in SDL3/SDL audio.h

Syntax

#define SDL_AUDIO_DEVICE_DEFAULT_OUTPUT ((SDL_AudioDeviceID) 0xFFFFFFFF)

Remarks

Several functions that require an SDL AudioDeviceID will accept this value to
signify the app just wants the system to choose a default device instead of the
app providing a specific one.

Version

This macro is available since SDL 3.0.0.

SDL AUDIO FRAMESIZE 1159

SDL AUDIO FRAMESIZE

Calculate the size of each audio frame (in bytes) from an SDL AudioSpec.

Header File

Defined in SDL3/SDL audio.h

Syntax

#define SDL_AUDIO_FRAMESIZE(x) (SDL_AUDIO_BYTESIZE((x).format) *

(x).channels)

Return Value

Returns the number of bytes used per sample frame.

Remarks

This reports on the size of an audio sample frame: stereo Sint16 data (2 channels
of 2 bytes each) would be 4 bytes per frame, for example.

Thread Safety

It is safe to call this macro from any thread.

Version

This macro is available since SDL 3.0.0.

1160 CHAPTER 2. SDL MACROS

SDL AUDIO ISBIGENDIAN

Determine if an SDL AudioFormat represents bigendian data.

Header File

Defined in SDL3/SDL audio.h

Syntax

#define SDL_AUDIO_ISBIGENDIAN(x) ((x) & SDL_AUDIO_MASK_BIG_ENDIAN)

Return Value

Returns non-zero if format is bigendian, zero otherwise.

Remarks

For example, SDL AUDIO ISBIGENDIAN(SDL AUDIO S16LE) returns 0.

Thread Safety

It is safe to call this macro from any thread.

Version

This macro is available since SDL 3.0.0.

SDL AUDIO ISFLOAT 1161

SDL AUDIO ISFLOAT

Determine if an SDL AudioFormat represents floating point data.

Header File

Defined in SDL3/SDL audio.h

Syntax

#define SDL_AUDIO_ISFLOAT(x) ((x) & SDL_AUDIO_MASK_FLOAT)

Return Value

Returns non-zero if format is floating point, zero otherwise.

Remarks

For example, SDL AUDIO ISFLOAT(SDL AUDIO S16) returns 0.

Thread Safety

It is safe to call this macro from any thread.

Version

This macro is available since SDL 3.0.0.

1162 CHAPTER 2. SDL MACROS

SDL AUDIO ISINT

Determine if an SDL AudioFormat represents integer data.

Header File

Defined in SDL3/SDL audio.h

Syntax

#define SDL_AUDIO_ISINT(x) (!SDL_AUDIO_ISFLOAT(x))

Return Value

Returns non-zero if format is integer, zero otherwise.

Remarks

For example, SDL AUDIO ISINT(SDL AUDIO F32) returns 0.

Thread Safety

It is safe to call this macro from any thread.

Version

This macro is available since SDL 3.0.0.

SDL AUDIO ISLITTLEENDIAN 1163

SDL AUDIO ISLITTLEENDIAN

Determine if an SDL AudioFormat represents littleendian data.

Header File

Defined in SDL3/SDL audio.h

Syntax

#define SDL_AUDIO_ISLITTLEENDIAN(x) (!SDL_AUDIO_ISBIGENDIAN(x))

Return Value

Returns non-zero if format is littleendian, zero otherwise.

Remarks

For example, SDL AUDIO ISLITTLEENDIAN(SDL AUDIO S16BE) returns 0.

Thread Safety

It is safe to call this macro from any thread.

Version

This macro is available since SDL 3.0.0.

1164 CHAPTER 2. SDL MACROS

SDL AUDIO ISSIGNED

Determine if an SDL AudioFormat represents signed data.

Header File

Defined in SDL3/SDL audio.h

Syntax

#define SDL_AUDIO_ISSIGNED(x) ((x) & SDL_AUDIO_MASK_SIGNED)

Return Value

Returns non-zero if format is signed, zero otherwise.

Remarks

For example, SDL AUDIO ISSIGNED(SDL AUDIO U8) returns 0.

Thread Safety

It is safe to call this macro from any thread.

Version

This macro is available since SDL 3.0.0.

SDL AUDIO ISUNSIGNED 1165

SDL AUDIO ISUNSIGNED

Determine if an SDL AudioFormat represents unsigned data.

Header File

Defined in SDL3/SDL audio.h

Syntax

#define SDL_AUDIO_ISUNSIGNED(x) (!SDL_AUDIO_ISSIGNED(x))

Return Value

Returns non-zero if format is unsigned, zero otherwise.

Remarks

For example, SDL AUDIO ISUNSIGNED(SDL AUDIO S16) returns 0.

Thread Safety

It is safe to call this macro from any thread.

Version

This macro is available since SDL 3.0.0.

1166 CHAPTER 2. SDL MACROS

SDL BUTTON

Used as a mask when testing buttons in buttonstate.

Header File

Defined in SDL3/SDL mouse.h

Syntax

#define SDL_BUTTON(X) (1 << ((X)-1))

Remarks

� Button 1: Left mouse button

� Button 2: Middle mouse button

� Button 3: Right mouse button

� Button 4: Side mouse button 1

� Button 5: Side mouse button 2

Version

This macro is available since SDL 3.0.0.

SDL CACHELINE SIZE 1167

SDL CACHELINE SIZE

A guess for the cacheline size used for padding.

Header File

Defined in SDL3/SDL cpuinfo.h

Syntax

#define SDL_CACHELINE_SIZE 128

Remarks

Most x86 processors have a 64 byte cache line. The 64-bit PowerPC processors
have a 128 byte cache line. We use the larger value to be generally safe.

Version

This macro is available since SDL 3.0.0.

1168 CHAPTER 2. SDL MACROS

SDL COMPILEDVERSION

This is the version number macro for the current SDL version.

Header File

Defined in SDL3/SDL version.h

Syntax

#define SDL_COMPILEDVERSION \

SDL_VERSIONNUM(SDL_MAJOR_VERSION, SDL_MINOR_VERSION, SDL_PATCHLEVEL)

Version

This macro is available since SDL 3.0.0.

SDL COMPILERBARRIER 1169

SDL CompilerBarrier

Mark a compiler barrier.

Header File

Defined in SDL3/SDL atomic.h

Syntax

#define SDL_CompilerBarrier() DoCompilerSpecificReadWriteBarrier()

Remarks

A compiler barrier prevents the compiler from reordering reads and writes to
globally visible variables across the call.

This macro only prevents the compiler from reordering reads and writes, it
does not prevent the CPU from reordering reads and writes. However, all of the
atomic operations that modify memory are full memory barriers.

Thread Safety

Obviously this macro is safe to use from any thread at any time, but if you find
yourself needing this, you are probably dealing with some very sensitive code;
be careful!

Version

This macro is available since SDL 3.0.0.

1170 CHAPTER 2. SDL MACROS

SDL CPUPauseInstruction

A macro to insert a CPU-specific ”pause” instruction into the program.

Header File

Defined in SDL3/SDL atomic.h

Syntax

#define SDL_CPUPauseInstruction()

DoACPUPauseInACompilerAndArchitectureSpecificWay

Remarks

This can be useful in busy-wait loops, as it serves as a hint to the CPU as to
the program’s intent; some CPUs can use this to do more efficient processing.
On some platforms, this doesn’t do anything, so using this macro might just be
a harmless no-op.

Note that if you are busy-waiting, there are often more-efficient approaches
with other synchronization primitives: mutexes, semaphores, condition vari-
ables, etc.

Thread Safety

This macro is safe to use from any thread.

Version

This macro is available since SDL 3.0.0.

SDL FALSE 1171

SDL FALSE

A boolean false.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_FALSE 0

Version

This macro is available since SDL 3.0.0.

See Also

� SDL bool

1172 CHAPTER 2. SDL MACROS

SDL HAPTIC AUTOCENTER

Device can set autocenter.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_AUTOCENTER (1u<<17)

Remarks

Device supports setting autocenter.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL SetHapticAutocenter

SDL HAPTIC CARTESIAN 1173

SDL HAPTIC CARTESIAN

Uses cartesian coordinates for the direction.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_CARTESIAN 1

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticDirection

1174 CHAPTER 2. SDL MACROS

SDL HAPTIC CONSTANT

Constant effect supported.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_CONSTANT (1u<<0)

Remarks

Constant haptic effect.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticCondition

SDL HAPTIC CUSTOM 1175

SDL HAPTIC CUSTOM

Custom effect is supported.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_CUSTOM (1u<<15)

Remarks

User defined custom haptic effect.

Version

This macro is available since SDL 3.0.0.

1176 CHAPTER 2. SDL MACROS

SDL HAPTIC DAMPER

Damper effect supported - uses axes velocity.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_DAMPER (1u<<8)

Remarks

Condition haptic effect that simulates dampening. Effect is based on the axes
velocity.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticCondition

SDL HAPTIC FRICTION 1177

SDL HAPTIC FRICTION

Friction effect supported - uses axes movement.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_FRICTION (1u<<10)

Remarks

Condition haptic effect that simulates friction. Effect is based on the axes
movement.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticCondition

1178 CHAPTER 2. SDL MACROS

SDL HAPTIC GAIN

Device can set global gain.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_GAIN (1u<<16)

Remarks

Device supports setting the global gain.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL SetHapticGain

SDL HAPTIC INERTIA 1179

SDL HAPTIC INERTIA

Inertia effect supported - uses axes acceleration.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_INERTIA (1u<<9)

Remarks

Condition haptic effect that simulates inertia. Effect is based on the axes accel-
eration.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticCondition

1180 CHAPTER 2. SDL MACROS

SDL HAPTIC INFINITY

Used to play a device an infinite number of times.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_INFINITY 4294967295U

Version

This macro is available since SDL 3.0.0.

See Also

� SDL RunHapticEffect

SDL HAPTIC LEFTRIGHT 1181

SDL HAPTIC LEFTRIGHT

Left/Right effect supported.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_LEFTRIGHT (1u<<11)

Remarks

Haptic effect for direct control over high/low frequency motors.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticLeftRight

1182 CHAPTER 2. SDL MACROS

SDL HAPTIC PAUSE

Device can be paused.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_PAUSE (1u<<19)

Remarks

Devices supports being paused.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL PauseHaptic

� SDL ResumeHaptic

SDL HAPTIC POLAR 1183

SDL HAPTIC POLAR

Uses polar coordinates for the direction.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_POLAR 0

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticDirection

1184 CHAPTER 2. SDL MACROS

SDL HAPTIC RAMP

Ramp effect supported.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_RAMP (1u<<6)

Remarks

Ramp haptic effect.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticRamp

SDL HAPTIC RESERVED1 1185

SDL HAPTIC RESERVED1

Reserved for future use

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_RESERVED1 (1u<<12)

Version

This macro is available since SDL 3.0.0.

1186 CHAPTER 2. SDL MACROS

SDL HAPTIC SAWTOOTHDOWN

Sawtoothdown wave effect supported.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_SAWTOOTHDOWN (1u<<5)

Remarks

Periodic haptic effect that simulates saw tooth down waves.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticPeriodic

SDL HAPTIC SAWTOOTHUP 1187

SDL HAPTIC SAWTOOTHUP

Sawtoothup wave effect supported.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_SAWTOOTHUP (1u<<4)

Remarks

Periodic haptic effect that simulates saw tooth up waves.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticPeriodic

1188 CHAPTER 2. SDL MACROS

SDL HAPTIC SINE

Sine wave effect supported.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_SINE (1u<<1)

Remarks

Periodic haptic effect that simulates sine waves.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticPeriodic

SDL HAPTIC SPHERICAL 1189

SDL HAPTIC SPHERICAL

Uses spherical coordinates for the direction.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_SPHERICAL 2

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticDirection

1190 CHAPTER 2. SDL MACROS

SDL HAPTIC SPRING

Spring effect supported - uses axes position.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_SPRING (1u<<7)

Remarks

Condition haptic effect that simulates a spring. Effect is based on the axes
position.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticCondition

SDL HAPTIC SQUARE 1191

SDL HAPTIC SQUARE

Square wave effect supported.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_SQUARE (1<<2)

Remarks

Periodic haptic effect that simulates square waves.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticPeriodic

1192 CHAPTER 2. SDL MACROS

SDL HAPTIC STATUS

Device can be queried for effect status.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_STATUS (1u<<18)

Remarks

Device supports querying effect status.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL GetHapticEffectStatus

SDL HAPTIC STEERING AXIS 1193

SDL HAPTIC STEERING AXIS

Use this value to play an effect on the steering wheel axis.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_STEERING_AXIS 3

Remarks

This provides better compatibility across platforms and devices as SDL will
guess the correct axis.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticDirection

1194 CHAPTER 2. SDL MACROS

SDL HAPTIC TRIANGLE

Triangle wave effect supported.

Header File

Defined in SDL3/SDL haptic.h

Syntax

#define SDL_HAPTIC_TRIANGLE (1u<<3)

Remarks

Periodic haptic effect that simulates triangular waves.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL HapticPeriodic

SDL HINT ALLOW ALT TAB WHILE GRABBED 1195

SDL HINT ALLOW ALT TAB WHILE GRABBED

Specify the behavior of Alt+Tab while the keyboard is grabbed.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_ALLOW_ALT_TAB_WHILE_GRABBED

"SDL_ALLOW_ALT_TAB_WHILE_GRABBED"

Remarks

By default, SDL emulates Alt+Tab functionality while the keyboard is grabbed
and your window is full-screen. This prevents the user from getting stuck in
your application if you’ve enabled keyboard grab.

The variable can be set to the following values:

� ”0”: SDL will not handle Alt+Tab. Your application is responsible for
handling Alt+Tab while the keyboard is grabbed.

� ”1”: SDL will minimize your window when Alt+Tab is pressed (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1196 CHAPTER 2. SDL MACROS

SDL HINT ANDROID ALLOW RECREATE ACTIVITY

A variable to control whether the SDL activity is allowed to be re-created.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_ANDROID_ALLOW_RECREATE_ACTIVITY

"SDL_ANDROID_ALLOW_RECREATE_ACTIVITY"

Remarks

If this hint is true, the activity can be recreated on demand by the OS, and
Java static data and C++ static data remain with their current values. If this
hint is false, then SDL will call exit() when you return from your main function
and the application will be terminated and then started fresh each time.

The variable can be set to the following values:

� ”0”: The application starts fresh at each launch. (default)

� ”1”: The application activity can be recreated by the OS.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT ANDROID BLOCK ON PAUSE 1197

SDL HINT ANDROID BLOCK ON PAUSE

A variable to control whether the event loop will block itself when the app is
paused.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_ANDROID_BLOCK_ON_PAUSE "SDL_ANDROID_BLOCK_ON_PAUSE"

Remarks

The variable can be set to the following values:

� ”0”: Non blocking.

� ”1”: Blocking. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1198 CHAPTER 2. SDL MACROS

SDL HINT ANDROID BLOCK ON PAUSE PAUSEAUDIO

A variable to control whether SDL will pause audio in background.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_ANDROID_BLOCK_ON_PAUSE_PAUSEAUDIO

"SDL_ANDROID_BLOCK_ON_PAUSE_PAUSEAUDIO"

Remarks

The variable can be set to the following values:

� ”0”: Not paused, requires that SDL HINT ANDROID BLOCK ON PAUSE
be set to ”0”

� ”1”: Paused. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT ANDROID TRAP BACK BUTTON 1199

SDL HINT ANDROID TRAP BACK BUTTON

A variable to control whether we trap the Android back button to handle it
manually.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_ANDROID_TRAP_BACK_BUTTON "SDL_ANDROID_TRAP_BACK_BUTTON"

Remarks

This is necessary for the right mouse button to work on some Android devices,
or to be able to trap the back button for use in your code reliably. If this
hint is true, the back button will show up as an SDL EVENT KEY DOWN /
SDL EVENT KEY UP pair with a keycode of SDL SCANCODE AC BACK.

The variable can be set to the following values:

� ”0”: Back button will be handled as usual for system. (default)

� ”1”: Back button will be trapped, allowing you to handle the key press
manually. (This will also let right mouse click work on systems where the
right mouse button functions as back.)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1200 CHAPTER 2. SDL MACROS

SDL HINT APP ID

A variable setting the app ID string.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_APP_ID "SDL_APP_ID"

Remarks

This string is used by desktop compositors to identify and group windows to-
gether, as well as match applications with associated desktop settings and icons.

On Wayland this corresponds to the ”app ID” window property and on X11
this corresponds to the WM CLASS property. Windows inherit the value of
this hint at creation time. Changing this hint after a window has been created
will not change the app ID or class of existing windows.

For *nix platforms, this string should be formatted in reverse-DNS notation
and follow some basic rules to be valid:

� The application ID must be composed of two or more elements separated
by a period (.) character.

� Each element must contain one or more of the alphanumeric characters
(A-Z, a-z, 0-9) plus underscore () and hyphen (-) and must not start
with a digit. Note that hyphens, while technically allowed, should not be
used if possible, as they are not supported by all components that use the
ID, such as D-Bus. For maximum compatibility, replace hyphens with an
underscore.

� The empty string is not a valid element (ie: your application ID may not
start or end with a period and it is not valid to have two periods in a row).

� The entire ID must be less than 255 characters in length.

Examples of valid app ID strings:

� org.MyOrg.MyApp

� com.your company.your app

Desktops such as GNOME and KDE require that the app ID string matches
your application’s .desktop file name (e.g. if the app ID string is ’org.MyOrg.MyApp’,
your application’s .desktop file should be named ’org.MyOrg.MyApp.desktop’).

SDL HINT APP ID 1201

If you plan to package your application in a container such as Flatpak, the
app ID should match the name of your Flatpak container as well.

If not set, SDL will attempt to use the application executable name. If
the executable name cannot be retrieved, the generic string ”SDL App” will be
used.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1202 CHAPTER 2. SDL MACROS

SDL HINT APP NAME

Specify an application name.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_APP_NAME "SDL_APP_NAME"

Remarks

This hint lets you specify the application name sent to the OS when required.
For example, this will often appear in volume control applets for audio streams,
and in lists of applications which are inhibiting the screensaver. You should use
a string that describes your program (”My Game 2: The Revenge”)

Setting this to ”” or leaving it unset will have SDL use a reasonable default:
probably the application’s name or ”SDL Application” if SDL doesn’t have any
better information.

Note that, for audio streams, this can be overridden with SDL HINT AUDIO DEVICE APP NAME.
This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT APPLE TV CONTROLLER UI EVENTS 1203

SDL HINT APPLE TV CONTROLLER UI EVENTS

A variable controlling whether controllers used with the Apple TV generate UI
events.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_APPLE_TV_CONTROLLER_UI_EVENTS

"SDL_APPLE_TV_CONTROLLER_UI_EVENTS"

Remarks

When UI events are generated by controller input, the app will be backgrounded
when the Apple TV remote’s menu button is pressed, and when the pause or B
buttons on gamepads are pressed.

More information about properly making use of controllers for the Ap-
ple TV can be found here: https://developer.apple.com/tvos/human-interface-
guidelines/remote-and-controllers/

The variable can be set to the following values:

� ”0”: Controller input does not generate UI events. (default)

� ”1”: Controller input generates UI events.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1204 CHAPTER 2. SDL MACROS

SDL HINT APPLE TV REMOTE ALLOW ROTATION

A variable controlling whether the Apple TV remote’s joystick axes will auto-
matically match the rotation of the remote.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_APPLE_TV_REMOTE_ALLOW_ROTATION

"SDL_APPLE_TV_REMOTE_ALLOW_ROTATION"

Remarks

The variable can be set to the following values:

� ”0”: Remote orientation does not affect joystick axes. (default)

� ”1”: Joystick axes are based on the orientation of the remote.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT AUDIO CATEGORY 1205

SDL HINT AUDIO CATEGORY

A variable controlling the audio category on iOS and macOS.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_AUDIO_CATEGORY "SDL_AUDIO_CATEGORY"

Remarks

The variable can be set to the following values:

� ”ambient”: Use the AVAudioSessionCategoryAmbient audio category, will
be muted by the phone mute switch (default)

� ”playback”: Use the AVAudioSessionCategoryPlayback category.

For more information, see Apple’s documentation: https://developer.apple.com/library/content/documentation/Audio/Conceptual/AudioSessionProgrammingGuide/AudioSessionCategoriesandModes/AudioSessionCategoriesandModes.html
This hint should be set before an audio device is opened.

Version

This hint is available since SDL 3.0.0.

1206 CHAPTER 2. SDL MACROS

SDL HINT AUDIO DEVICE APP NAME

Specify an application name for an audio device.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_AUDIO_DEVICE_APP_NAME "SDL_AUDIO_DEVICE_APP_NAME"

Remarks

Some audio backends (such as PulseAudio) allow you to describe your audio
stream. Among other things, this description might show up in a system control
panel that lets the user adjust the volume on specific audio streams instead of
using one giant master volume slider.

This hints lets you transmit that information to the OS. The contents of
this hint are used while opening an audio device. You should use a string that
describes your program (”My Game 2: The Revenge”)

Setting this to ”” or leaving it unset will have SDL use a reasonable default:
this will be the name set with SDL HINT APP NAME, if that hint is set.
Otherwise, it’ll probably the application’s name or ”SDL Application” if SDL
doesn’t have any better information.

This hint should be set before an audio device is opened.

Version

This hint is available since SDL 3.0.0.

SDL HINT AUDIO DEVICE SAMPLE FRAMES 1207

SDL HINT AUDIO DEVICE SAMPLE FRAMES

A variable controlling device buffer size.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_AUDIO_DEVICE_SAMPLE_FRAMES

"SDL_AUDIO_DEVICE_SAMPLE_FRAMES"

Remarks

This hint is an integer ¿ 0, that represents the size of the device’s buffer in
sample frames (stereo audio data in 16-bit format is 4 bytes per sample frame,
for example).

SDL3 generally decides this value on behalf of the app, but if for some reason
the app needs to dictate this (because they want either lower latency or higher
throughput AND ARE WILLING TO DEAL WITH what that might require
of the app), they can specify it.

SDL will try to accomodate this value, but there is no promise you’ll get the
buffer size requested. Many platforms won’t honor this request at all, or might
adjust it.

This hint should be set before an audio device is opened.

Version

This hint is available since SDL 3.0.0.

1208 CHAPTER 2. SDL MACROS

SDL HINT AUDIO DEVICE STREAM NAME

Specify an audio stream name for an audio device.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_AUDIO_DEVICE_STREAM_NAME "SDL_AUDIO_DEVICE_STREAM_NAME"

Remarks

Some audio backends (such as PulseAudio) allow you to describe your audio
stream. Among other things, this description might show up in a system control
panel that lets the user adjust the volume on specific audio streams instead of
using one giant master volume slider.

This hints lets you transmit that information to the OS. The contents of
this hint are used while opening an audio device. You should use a string
that describes your what your program is playing (”audio stream” is probably
sufficient in many cases, but this could be useful for something like ”team chat”
if you have a headset playing VoIP audio separately).

Setting this to ”” or leaving it unset will have SDL use a reasonable default:
”audio stream” or something similar.

Note that while this talks about audio streams, this is an OS-level concept, so
it applies to a physical audio device in this case, and not an SDL AudioStream,
nor an SDL logical audio device.

This hint should be set before an audio device is opened.

Version

This hint is available since SDL 3.0.0.

SDL HINT AUDIO DEVICE STREAM ROLE 1209

SDL HINT AUDIO DEVICE STREAM ROLE

Specify an application role for an audio device.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_AUDIO_DEVICE_STREAM_ROLE "SDL_AUDIO_DEVICE_STREAM_ROLE"

Remarks

Some audio backends (such as Pipewire) allow you to describe the role of your
audio stream. Among other things, this description might show up in a system
control panel or software for displaying and manipulating media playback/cap-
ture graphs.

This hints lets you transmit that information to the OS. The contents of
this hint are used while opening an audio device. You should use a string that
describes your what your program is playing (Game, Music, Movie, etc...).

Setting this to ”” or leaving it unset will have SDL use a reasonable default:
”Game” or something similar.

Note that while this talks about audio streams, this is an OS-level concept, so
it applies to a physical audio device in this case, and not an SDL AudioStream,
nor an SDL logical audio device.

This hint should be set before an audio device is opened.

Version

This hint is available since SDL 3.0.0.

1210 CHAPTER 2. SDL MACROS

SDL HINT AUDIO DRIVER

A variable that specifies an audio backend to use.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_AUDIO_DRIVER "SDL_AUDIO_DRIVER"

Remarks

By default, SDL will try all available audio backends in a reasonable order until
it finds one that can work, but this hint allows the app or user to force a specific
driver, such as ”pipewire” if, say, you are on PulseAudio but want to try talking
to the lower level instead.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT AUDIO INCLUDE MONITORS 1211

SDL HINT AUDIO INCLUDE MONITORS

A variable that causes SDL to not ignore audio ”monitors”.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_AUDIO_INCLUDE_MONITORS "SDL_AUDIO_INCLUDE_MONITORS"

Remarks

This is currently only used by the PulseAudio driver.
By default, SDL ignores audio devices that aren’t associated with physical

hardware. Changing this hint to ”1” will expose anything SDL sees that appears
to be an audio source or sink. This will add ”devices” to the list that the user
probably doesn’t want or need, but it can be useful in scenarios where you want
to hook up SDL to some sort of virtual device, etc.

The variable can be set to the following values:

� ”0”: Audio monitor devices will be ignored. (default)

� ”1”: Audio monitor devices will show up in the device list.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1212 CHAPTER 2. SDL MACROS

SDL HINT AUTO UPDATE JOYSTICKS

A variable controlling whether SDL updates joystick state when getting input
events.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_AUTO_UPDATE_JOYSTICKS "SDL_AUTO_UPDATE_JOYSTICKS"

Remarks

The variable can be set to the following values:

� ”0”: You’ll call SDL UpdateJoysticks() manually.

� ”1”: SDL will automatically call SDL UpdateJoysticks(). (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT AUTO UPDATE SENSORS 1213

SDL HINT AUTO UPDATE SENSORS

A variable controlling whether SDL updates sensor state when getting input
events.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_AUTO_UPDATE_SENSORS "SDL_AUTO_UPDATE_SENSORS"

Remarks

The variable can be set to the following values:

� ”0”: You’ll call SDL UpdateSensors() manually.

� ”1”: SDL will automatically call SDL UpdateSensors(). (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1214 CHAPTER 2. SDL MACROS

SDL HINT BMP SAVE LEGACY FORMAT

Prevent SDL from using version 4 of the bitmap header when saving BMPs.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_BMP_SAVE_LEGACY_FORMAT "SDL_BMP_SAVE_LEGACY_FORMAT"

Remarks

The bitmap header version 4 is required for proper alpha channel support and
SDL will use it when required. Should this not be desired, this hint can force
the use of the 40 byte header version which is supported everywhere.

The variable can be set to the following values:

� ”0”: Surfaces with a colorkey or an alpha channel are saved to a 32-bit
BMP file with an alpha mask. SDL will use the bitmap header version 4
and set the alpha mask accordingly. (default)

� ”1”: Surfaces with a colorkey or an alpha channel are saved to a 32-bit
BMP file without an alpha mask. The alpha channel data will be in the
file, but applications are going to ignore it.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT CAMERA DRIVER 1215

SDL HINT CAMERA DRIVER

A variable that decides what camera backend to use.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_CAMERA_DRIVER "SDL_CAMERA_DRIVER"

Remarks

By default, SDL will try all available camera backends in a reasonable order until
it finds one that can work, but this hint allows the app or user to force a specific
target, such as ”directshow” if, say, you are on Windows Media Foundations
but want to try DirectShow instead.

The default value is unset, in which case SDL will try to figure out the best
camera backend on your behalf. This hint needs to be set before SDL Init() is
called to be useful.

Version

This hint is available since SDL 3.0.0.

1216 CHAPTER 2. SDL MACROS

SDL HINT CPU FEATURE MASK

A variable that limits what CPU features are available.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_CPU_FEATURE_MASK "SDL_CPU_FEATURE_MASK"

Remarks

By default, SDL marks all features the current CPU supports as available. This
hint allows to limit these to a subset.

When the hint is unset, or empty, SDL will enable all detected CPU features.
The variable can be set to a comma separated list containing the following

items:

� ”all”

� ”altivec”

� ”sse”

� ”sse2”

� ”sse3”

� ”sse41”

� ”sse42”

� ”avx”

� ”avx2”

� ”avx512f”

� ”arm-simd”

� ”neon”

� ”lsx”

� ”lasx”

The items can be prefixed by ’+’/’-’ to add/remove features.

SDL HINT CPU FEATURE MASK 1217

Version

This hint is available since SDL 3.0.0.

1218 CHAPTER 2. SDL MACROS

SDL HINT DISPLAY USABLE BOUNDS

Override for SDL GetDisplayUsableBounds().

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_DISPLAY_USABLE_BOUNDS "SDL_DISPLAY_USABLE_BOUNDS"

Remarks

If set, this hint will override the expected results for SDL GetDisplayUsableBounds()
for display index 0. Generally you don’t want to do this, but this allows an em-
bedded system to request that some of the screen be reserved for other uses
when paired with a well-behaved application.

The contents of this hint must be 4 comma-separated integers, the first is
the bounds x, then y, width and height, in that order.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT EMSCRIPTEN ASYNCIFY 1219

SDL HINT EMSCRIPTEN ASYNCIFY

Disable giving back control to the browser automatically when running with
asyncify.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_EMSCRIPTEN_ASYNCIFY "SDL_EMSCRIPTEN_ASYNCIFY"

Remarks

With -s ASYNCIFY, SDL calls emscripten sleep during operations such as re-
freshing the screen or polling events.

This hint only applies to the emscripten platform.
The variable can be set to the following values:

� ”0”: Disable emscripten sleep calls (if you give back browser control man-
ually or use asyncify for other purposes).

� ”1”: Enable emscripten sleep calls. (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1220 CHAPTER 2. SDL MACROS

SDL HINT EMSCRIPTEN CANVAS SELECTOR

Specify the CSS selector used for the ”default” window/canvas.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_EMSCRIPTEN_CANVAS_SELECTOR

"SDL_EMSCRIPTEN_CANVAS_SELECTOR"

Remarks

This hint only applies to the emscripten platform.
The default value is ”#canvas”
This hint should be set before creating a window.

Version

This hint is available since SDL 3.0.0.

SDL HINT EMSCRIPTEN KEYBOARD ELEMENT 1221

SDL HINT EMSCRIPTEN KEYBOARD ELEMENT

Override the binding element for keyboard inputs for Emscripten builds.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_EMSCRIPTEN_KEYBOARD_ELEMENT

"SDL_EMSCRIPTEN_KEYBOARD_ELEMENT"

Remarks

This hint only applies to the emscripten platform.
The variable can be one of:

� ”#window”: the javascript window object (default)

� ”#document”: the javascript document object

� ”#screen”: the javascript window.screen object

� ”#canvas”: the WebGL canvas element

� any other string without a leading # sign applies to the element on the
page with that ID.

This hint should be set before creating a window.

Version

This hint is available since SDL 3.0.0.

1222 CHAPTER 2. SDL MACROS

SDL HINT ENABLE SCREEN KEYBOARD

A variable that controls whether the on-screen keyboard should be shown when
text input is active.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_ENABLE_SCREEN_KEYBOARD "SDL_ENABLE_SCREEN_KEYBOARD"

Remarks

The variable can be set to the following values:

� ”auto”: The on-screen keyboard will be shown if there is no physical
keyboard attached. (default)

� ”0”: Do not show the on-screen keyboard.

� ”1”: Show the on-screen keyboard, if available.

This hint must be set before SDL StartTextInput() is called

Version

This hint is available since SDL 3.0.0.

SDL HINT EVENT LOGGING 1223

SDL HINT EVENT LOGGING

A variable controlling verbosity of the logging of SDL events pushed onto the
internal queue.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_EVENT_LOGGING "SDL_EVENT_LOGGING"

Remarks

The variable can be set to the following values, from least to most verbose:

� ”0”: Don’t log any events. (default)

� ”1”: Log most events (other than the really spammy ones).

� ”2”: Include mouse and finger motion events.

This is generally meant to be used to debug SDL itself, but can be useful for
application developers that need better visibility into what is going on in the
event queue. Logged events are sent through SDL Log(), which means by default
they appear on stdout on most platforms or maybe OutputDebugString() on
Windows, and can be funneled by the app with SDL SetLogOutputFunction(),
etc.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1224 CHAPTER 2. SDL MACROS

SDL HINT FILE DIALOG DRIVER

A variable that specifies a dialog backend to use.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_FILE_DIALOG_DRIVER "SDL_FILE_DIALOG_DRIVER"

Remarks

By default, SDL will try all available dialog backends in a reasonable order until
it finds one that can work, but this hint allows the app or user to force a specific
target.

If the specified target does not exist or is not available, the dialog-related
function calls will fail.

This hint currently only applies to platforms using the generic ”Unix” dialog
implementation, but may be extended to more platforms in the future. Note
that some Unix and Unix-like platforms have their own implementation, such
as macOS and Haiku.

The variable can be set to the following values:

� NULL: Select automatically (default, all platforms)

� ”portal”: Use XDG Portals through DBus (Unix only)

� ”zenity”: Use the Zenity program (Unix only)

More options may be added in the future.
This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT FORCE RAISEWINDOW 1225

SDL HINT FORCE RAISEWINDOW

A variable controlling whether raising the window should be done more force-
fully.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_FORCE_RAISEWINDOW "SDL_FORCE_RAISEWINDOW"

Remarks

The variable can be set to the following values:

� ”0”: Honor the OS policy for raising windows. (default)

� ”1”: Force the window to be raised, overriding any OS policy.

At present, this is only an issue under MS Windows, which makes it nearly
impossible to programmatically move a window to the foreground, for ”security”
reasons. See http://stackoverflow.com/a/34414846 for a discussion.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1226 CHAPTER 2. SDL MACROS

SDL HINT FRAMEBUFFER ACCELERATION

A variable controlling how 3D acceleration is used to accelerate the SDL screen
surface.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_FRAMEBUFFER_ACCELERATION "SDL_FRAMEBUFFER_ACCELERATION"

Remarks

SDL can try to accelerate the SDL screen surface by using streaming textures
with a 3D rendering engine. This variable controls whether and how this is
done.

The variable can be set to the following values:

� ”0”: Disable 3D acceleration

� ”1”: Enable 3D acceleration, using the default renderer. (default)

� ”X”: Enable 3D acceleration, using X where X is one of the valid rendering
drivers. (e.g. ”direct3d”, ”opengl”, etc.)

This hint should be set before calling SDL GetWindowSurface()

Version

This hint is available since SDL 3.0.0.

SDL HINT GAMECONTROLLER IGNORE DEVICES 1227

SDL HINT GAMECONTROLLER IGNORE DEVICES

A variable containing a list of devices to skip when scanning for game controllers.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_GAMECONTROLLER_IGNORE_DEVICES

"SDL_GAMECONTROLLER_IGNORE_DEVICES"

Remarks

The format of the string is a comma separated list of USB VID/PID pairs in
hexadecimal form, e.g.

0xAAAA/0xBBBB,0xCCCC/0xDDDD
The variable can also take the form of ”@file”, in which case the named file

will be loaded and interpreted as the value of the variable.
This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1228 CHAPTER 2. SDL MACROS

SDL HINT GAMECONTROLLER IGNORE DEVICES EXCEPT

If set, all devices will be skipped when scanning for game controllers except for
the ones listed in this variable.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_GAMECONTROLLER_IGNORE_DEVICES_EXCEPT

"SDL_GAMECONTROLLER_IGNORE_DEVICES_EXCEPT"

Remarks

The format of the string is a comma separated list of USB VID/PID pairs in
hexadecimal form, e.g.

0xAAAA/0xBBBB,0xCCCC/0xDDDD
The variable can also take the form of ”@file”, in which case the named file

will be loaded and interpreted as the value of the variable.
This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT GAMECONTROLLER SENSOR FUSION 1229

SDL HINT GAMECONTROLLER SENSOR FUSION

A variable that controls whether the device’s built-in accelerometer and gyro
should be used as sensors for gamepads.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_GAMECONTROLLER_SENSOR_FUSION

"SDL_GAMECONTROLLER_SENSOR_FUSION"

Remarks

The variable can be set to the following values:

� ”0”: Sensor fusion is disabled

� ”1”: Sensor fusion is enabled for all controllers that lack sensors

Or the variable can be a comma separated list of USB VID/PID pairs in
hexadecimal form, e.g.

0xAAAA/0xBBBB,0xCCCC/0xDDDD
The variable can also take the form of ”@file”, in which case the named file

will be loaded and interpreted as the value of the variable.
This hint should be set before a gamepad is opened.

Version

This hint is available since SDL 3.0.0.

1230 CHAPTER 2. SDL MACROS

SDL HINT GAMECONTROLLERCONFIG

A variable that lets you manually hint extra gamecontroller db entries.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_GAMECONTROLLERCONFIG "SDL_GAMECONTROLLERCONFIG"

Remarks

The variable should be newline delimited rows of gamecontroller config data,
see SDL gamepad.h

You can update mappings after SDL is initialized with SDL GetGamepadMappingForGUID()
and SDL AddGamepadMapping()

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT GAMECONTROLLERCONFIG FILE 1231

SDL HINT GAMECONTROLLERCONFIG FILE

A variable that lets you provide a file with extra gamecontroller db entries.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_GAMECONTROLLERCONFIG_FILE

"SDL_GAMECONTROLLERCONFIG_FILE"

Remarks

The file should contain lines of gamecontroller config data, see SDL gamepad.h
You can update mappings after SDL is initialized with SDL GetGamepadMappingForGUID()

and SDL AddGamepadMapping()
This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1232 CHAPTER 2. SDL MACROS

SDL HINT GAMECONTROLLERTYPE

A variable that overrides the automatic controller type detection.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_GAMECONTROLLERTYPE "SDL_GAMECONTROLLERTYPE"

Remarks

The variable should be comma separated entries, in the form: VID/PID=type
The VID and PID should be hexadecimal with exactly 4 digits, e.g. 0x00fd
This hint affects what low level protocol is used with the HIDAPI driver.
The variable can be set to the following values:

� ”Xbox360”

� ”XboxOne”

� ”PS3”

� ”PS4”

� ”PS5”

� ”SwitchPro”

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT GDK TEXTINPUT DEFAULT TEXT 1233

SDL HINT GDK TEXTINPUT DEFAULT TEXT

This variable sets the default text of the TextInput window on GDK platforms.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_GDK_TEXTINPUT_DEFAULT_TEXT

"SDL_GDK_TEXTINPUT_DEFAULT_TEXT"

Remarks

This hint is available only if SDL GDK TEXTINPUT defined.
This hint should be set before calling SDL StartTextInput()

Version

This hint is available since SDL 3.0.0.

1234 CHAPTER 2. SDL MACROS

SDL HINT GDK TEXTINPUT DESCRIPTION

This variable sets the description of the TextInput window on GDK platforms.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_GDK_TEXTINPUT_DESCRIPTION

"SDL_GDK_TEXTINPUT_DESCRIPTION"

Remarks

This hint is available only if SDL GDK TEXTINPUT defined.
This hint should be set before calling SDL StartTextInput()

Version

This hint is available since SDL 3.0.0.

SDL HINT GDK TEXTINPUT MAX LENGTH 1235

SDL HINT GDK TEXTINPUT MAX LENGTH

This variable sets the maximum input length of the TextInput window on GDK
platforms.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_GDK_TEXTINPUT_MAX_LENGTH "SDL_GDK_TEXTINPUT_MAX_LENGTH"

Remarks

The value must be a stringified integer, for example ”10” to allow for up to 10
characters of text input.

This hint is available only if SDL GDK TEXTINPUT defined.
This hint should be set before calling SDL StartTextInput()

Version

This hint is available since SDL 3.0.0.

1236 CHAPTER 2. SDL MACROS

SDL HINT GDK TEXTINPUT SCOPE

This variable sets the input scope of the TextInput window on GDK platforms.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_GDK_TEXTINPUT_SCOPE "SDL_GDK_TEXTINPUT_SCOPE"

Remarks

Set this hint to change the XGameUiTextEntryInputScope value that will be
passed to the window creation function. The value must be a stringified integer,
for example ”0” for XGameUiTextEntryInputScope::Default.

This hint is available only if SDL GDK TEXTINPUT defined.
This hint should be set before calling SDL StartTextInput()

Version

This hint is available since SDL 3.0.0.

SDL HINT GDK TEXTINPUT TITLE 1237

SDL HINT GDK TEXTINPUT TITLE

This variable sets the title of the TextInput window on GDK platforms.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_GDK_TEXTINPUT_TITLE "SDL_GDK_TEXTINPUT_TITLE"

Remarks

This hint is available only if SDL GDK TEXTINPUT defined.
This hint should be set before calling SDL StartTextInput()

Version

This hint is available since SDL 3.0.0.

1238 CHAPTER 2. SDL MACROS

SDL HINT HIDAPI ENUMERATE ONLY CONTROLLERS

A variable to control whether SDL hid enumerate() enumerates all HID devices
or only controllers.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_HIDAPI_ENUMERATE_ONLY_CONTROLLERS

"SDL_HIDAPI_ENUMERATE_ONLY_CONTROLLERS"

Remarks

The variable can be set to the following values:

� ”0”: SDL hid enumerate() will enumerate all HID devices.

� ”1”: SDL hid enumerate() will only enumerate controllers. (default)

By default SDL will only enumerate controllers, to reduce risk of hanging
or crashing on devices with bad drivers and avoiding macOS keyboard capture
permission prompts.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT HIDAPI IGNORE DEVICES 1239

SDL HINT HIDAPI IGNORE DEVICES

A variable containing a list of devices to ignore in SDL hid enumerate().

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_HIDAPI_IGNORE_DEVICES "SDL_HIDAPI_IGNORE_DEVICES"

Remarks

The format of the string is a comma separated list of USB VID/PID pairs in
hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

For example, to ignore the Shanwan DS3 controller and any Valve controller,
you might use the string ”0x2563/0x0523,0x28de/0x0000”

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1240 CHAPTER 2. SDL MACROS

SDL HINT IME INTERNAL EDITING

A variable to control whether certain IMEs should handle text editing internally
instead of sending SDL EVENT TEXT EDITING events.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_IME_INTERNAL_EDITING "SDL_IME_INTERNAL_EDITING"

Remarks

The variable can be set to the following values:

� ”0”: SDL EVENT TEXT EDITING events are sent, and it is the applica-
tion’s responsibility to render the text from these events and differentiate
it somehow from committed text. (default)

� ”1”: If supported by the IME then SDL EVENT TEXT EDITING events
are not sent, and text that is being composed will be rendered in its own
UI.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT IME SHOW UI 1241

SDL HINT IME SHOW UI

A variable to control whether certain IMEs should show native UI components
(such as the Candidate List) instead of suppressing them.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_IME_SHOW_UI "SDL_IME_SHOW_UI"

Remarks

The variable can be set to the following values:

� ”0”: Native UI components are not display. (default)

� ”1”: Native UI components are displayed.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1242 CHAPTER 2. SDL MACROS

SDL HINT IOS HIDE HOME INDICATOR

A variable controlling whether the home indicator bar on iPhone X should be
hidden.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_IOS_HIDE_HOME_INDICATOR "SDL_IOS_HIDE_HOME_INDICATOR"

Remarks

The variable can be set to the following values:

� ”0”: The indicator bar is not hidden. (default for windowed applications)

� ”1”: The indicator bar is hidden and is shown when the screen is touched
(useful for movie playback applications).

� ”2”: The indicator bar is dim and the first swipe makes it visible and the
second swipe performs the ”home” action. (default for fullscreen applica-
tions)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK ALLOW BACKGROUND EVENTS 1243

SDL HINT JOYSTICK ALLOW BACKGROUND EVENTS

A variable that lets you enable joystick (and gamecontroller) events even when
your app is in the background.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_ALLOW_BACKGROUND_EVENTS

"SDL_JOYSTICK_ALLOW_BACKGROUND_EVENTS"

Remarks

The variable can be set to the following values:

� ”0”: Disable joystick & gamecontroller input events when the application
is in the background. (default)

� ”1”: Enable joystick & gamecontroller input events when the application
is in the background.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1244 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK ARCADESTICK DEVICES

A variable containing a list of arcade stick style controllers.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_ARCADESTICK_DEVICES

"SDL_JOYSTICK_ARCADESTICK_DEVICES"

Remarks

The format of the string is a comma separated list of USB VID/PID pairs in
hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK ARCADESTICK DEVICES EXCLUDED 1245

SDL HINT JOYSTICK ARCADESTICK DEVICES EXCLUDED

A variable containing a list of devices that are not arcade stick style controllers.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_ARCADESTICK_DEVICES_EXCLUDED

"SDL_JOYSTICK_ARCADESTICK_DEVICES_EXCLUDED"

Remarks

This will override SDL HINT JOYSTICK ARCADESTICK DEVICES and the
built in device list.

The format of the string is a comma separated list of USB VID/PID pairs
in hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1246 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK BLACKLIST DEVICES

A variable containing a list of devices that should not be considerd joysticks.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_BLACKLIST_DEVICES

"SDL_JOYSTICK_BLACKLIST_DEVICES"

Remarks

The format of the string is a comma separated list of USB VID/PID pairs in
hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK BLACKLIST DEVICES EXCLUDED 1247

SDL HINT JOYSTICK BLACKLIST DEVICES EXCLUDED

A variable containing a list of devices that should be considered joysticks.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_BLACKLIST_DEVICES_EXCLUDED

"SDL_JOYSTICK_BLACKLIST_DEVICES_EXCLUDED"

Remarks

This will override SDL HINT JOYSTICK BLACKLIST DEVICES and the built
in device list.

The format of the string is a comma separated list of USB VID/PID pairs
in hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1248 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK DEVICE

A variable containing a comma separated list of devices to open as joysticks.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_DEVICE "SDL_JOYSTICK_DEVICE"

Remarks

This variable is currently only used by the Linux joystick driver.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK DIRECTINPUT 1249

SDL HINT JOYSTICK DIRECTINPUT

A variable controlling whether DirectInput should be used for controllers.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_DIRECTINPUT "SDL_JOYSTICK_DIRECTINPUT"

Remarks

The variable can be set to the following values:

� ”0”: Disable DirectInput detection.

� ”1”: Enable DirectInput detection. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1250 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK FLIGHTSTICK DEVICES

A variable containing a list of flightstick style controllers.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_FLIGHTSTICK_DEVICES

"SDL_JOYSTICK_FLIGHTSTICK_DEVICES"

Remarks

The format of the string is a comma separated list of USB VID/PID pairs in
hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of @file, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK FLIGHTSTICK DEVICES EXCLUDED 1251

SDL HINT JOYSTICK FLIGHTSTICK DEVICES EXCLUDED

A variable containing a list of devices that are not flightstick style controllers.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_FLIGHTSTICK_DEVICES_EXCLUDED

"SDL_JOYSTICK_FLIGHTSTICK_DEVICES_EXCLUDED"

Remarks

This will override SDL HINT JOYSTICK FLIGHTSTICK DEVICES and the
built in device list.

The format of the string is a comma separated list of USB VID/PID pairs
in hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1252 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK GAMECUBE DEVICES

A variable containing a list of devices known to have a GameCube form factor.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_GAMECUBE_DEVICES

"SDL_JOYSTICK_GAMECUBE_DEVICES"

Remarks

The format of the string is a comma separated list of USB VID/PID pairs in
hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK GAMECUBE DEVICES EXCLUDED 1253

SDL HINT JOYSTICK GAMECUBE DEVICES EXCLUDED

A variable containing a list of devices known not to have a GameCube form
factor.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_GAMECUBE_DEVICES_EXCLUDED

"SDL_JOYSTICK_GAMECUBE_DEVICES_EXCLUDED"

Remarks

This will override SDL HINT JOYSTICK GAMECUBE DEVICES and the built
in device list.

The format of the string is a comma separated list of USB VID/PID pairs
in hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1254 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI

A variable controlling whether the HIDAPI joystick drivers should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI "SDL_JOYSTICK_HIDAPI"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI drivers are not used.

� ”1”: HIDAPI drivers are used. (default)

This variable is the default for all drivers, but can be overridden by the hints
for specific drivers below.

This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI COMBINE JOY CONS 1255

SDL HINT JOYSTICK HIDAPI COMBINE JOY CONS

A variable controlling whether Nintendo Switch Joy-Con controllers will be com-
bined into a single Pro-like controller when using the HIDAPI driver.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_COMBINE_JOY_CONS

"SDL_JOYSTICK_HIDAPI_COMBINE_JOY_CONS"

Remarks

The variable can be set to the following values:

� ”0”: Left and right Joy-Con controllers will not be combined and each
will be a mini-gamepad.

� ”1”: Left and right Joy-Con controllers will be combined into a single
controller. (default)

This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

1256 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI GAMECUBE

A variable controlling whether the HIDAPI driver for Nintendo GameCube con-
trollers should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_GAMECUBE "SDL_JOYSTICK_HIDAPI_GAMECUBE"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI GAMECUBE RUMBLE BRAKE 1257

SDL HINT JOYSTICK HIDAPI GAMECUBE RUMBLE BRAKE

A variable controlling whether rumble is used to implement the GameCube
controller’s 3 rumble modes, Stop(0), Rumble(1), and StopHard(2).

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_GAMECUBE_RUMBLE_BRAKE

"SDL_JOYSTICK_HIDAPI_GAMECUBE_RUMBLE_BRAKE"

Remarks

This is useful for applications that need full compatibility for things like ADSR
envelopes. - Stop is implemented by setting low frequency rumble to 0 and
high frequency rumble ¿0 - Rumble is both at any arbitrary value - StopHard is
implemented by setting both low frequency rumble and high frequency rumble
to 0

The variable can be set to the following values:

� ”0”: Normal rumble behavior is behavior is used. (default)

� ”1”: Proper GameCube controller rumble behavior is used.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1258 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI JOY CONS

A variable controlling whether the HIDAPI driver for Nintendo Switch Joy-Cons
should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_JOY_CONS "SDL_JOYSTICK_HIDAPI_JOY_CONS"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI.
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI JOYCON HOME LED 1259

SDL HINT JOYSTICK HIDAPI JOYCON HOME LED

A variable controlling whether the Home button LED should be turned on when
a Nintendo Switch Joy-Con controller is opened.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_JOYCON_HOME_LED

"SDL_JOYSTICK_HIDAPI_JOYCON_HOME_LED"

Remarks

The variable can be set to the following values:

� ”0”: home button LED is turned off

� ”1”: home button LED is turned on

By default the Home button LED state is not changed. This hint can also be
set to a floating point value between 0.0 and 1.0 which controls the brightness
of the Home button LED.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1260 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI LUNA

A variable controlling whether the HIDAPI driver for Amazon Luna controllers
connected via Bluetooth should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_LUNA "SDL_JOYSTICK_HIDAPI_LUNA"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI.
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI NINTENDO CLASSIC 1261

SDL HINT JOYSTICK HIDAPI NINTENDO CLASSIC

A variable controlling whether the HIDAPI driver for Nintendo Online classic
controllers should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_NINTENDO_CLASSIC

"SDL_JOYSTICK_HIDAPI_NINTENDO_CLASSIC"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI.
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

1262 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI PS3

A variable controlling whether the HIDAPI driver for PS3 controllers should be
used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_PS3 "SDL_JOYSTICK_HIDAPI_PS3"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI on macOS, and
”0” on other platforms.

For official Sony driver (sixaxis.sys) use SDL HINT JOYSTICK HIDAPI PS3 SIXAXIS DRIVER.
See https://github.com/ViGEm/DsHidMini for an alternative driver on Win-
dows.

This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI PS3 SIXAXIS DRIVER 1263

SDL HINT JOYSTICK HIDAPI PS3 SIXAXIS DRIVER

A variable controlling whether the Sony driver (sixaxis.sys) for PS3 controllers
(Sixaxis/DualShock 3) should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_PS3_SIXAXIS_DRIVER

"SDL_JOYSTICK_HIDAPI_PS3_SIXAXIS_DRIVER"

Remarks

The variable can be set to the following values:

� ”0”: Sony driver (sixaxis.sys) is not used.

� ”1”: Sony driver (sixaxis.sys) is used.

The default value is 0.
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

1264 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI PS4

A variable controlling whether the HIDAPI driver for PS4 controllers should be
used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_PS4 "SDL_JOYSTICK_HIDAPI_PS4"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI.
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI PS4 RUMBLE 1265

SDL HINT JOYSTICK HIDAPI PS4 RUMBLE

A variable controlling whether extended input reports should be used for PS4
controllers when using the HIDAPI driver.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_PS4_RUMBLE

"SDL_JOYSTICK_HIDAPI_PS4_RUMBLE"

Remarks

The variable can be set to the following values:

� ”0”: extended reports are not enabled. (default)

� ”1”: extended reports are enabled.

Extended input reports allow rumble on Bluetooth PS4 controllers, but break
DirectInput handling for applications that don’t use SDL.

Once extended reports are enabled, they can not be disabled without power
cycling the controller.

For compatibility with applications written for versions of SDL prior to the
introduction of PS5 controller support, this value will also control the state of ex-
tended reports on PS5 controllers when the SDL HINT JOYSTICK HIDAPI PS5 RUMBLE
hint is not explicitly set.

This hint can be enabled anytime.

Version

This hint is available since SDL 3.0.0.

1266 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI PS5

A variable controlling whether the HIDAPI driver for PS5 controllers should be
used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_PS5 "SDL_JOYSTICK_HIDAPI_PS5"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI.
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI PS5 PLAYER LED 1267

SDL HINT JOYSTICK HIDAPI PS5 PLAYER LED

A variable controlling whether the player LEDs should be lit to indicate which
player is associated with a PS5 controller.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_PS5_PLAYER_LED

"SDL_JOYSTICK_HIDAPI_PS5_PLAYER_LED"

Remarks

The variable can be set to the following values:

� ”0”: player LEDs are not enabled.

� ”1”: player LEDs are enabled. (default)

Version

This hint is available since SDL 3.0.0.

1268 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI PS5 RUMBLE

A variable controlling whether extended input reports should be used for PS5
controllers when using the HIDAPI driver.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_PS5_RUMBLE

"SDL_JOYSTICK_HIDAPI_PS5_RUMBLE"

Remarks

The variable can be set to the following values:

� ”0”: extended reports are not enabled. (default)

� ”1”: extended reports.

Extended input reports allow rumble on Bluetooth PS5 controllers, but break
DirectInput handling for applications that don’t use SDL.

Once extended reports are enabled, they can not be disabled without power
cycling the controller.

For compatibility with applications written for versions of SDL prior to
the introduction of PS5 controller support, this value defaults to the value of
SDL HINT JOYSTICK HIDAPI PS4 RUMBLE.

This hint can be enabled anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI SHIELD 1269

SDL HINT JOYSTICK HIDAPI SHIELD

A variable controlling whether the HIDAPI driver for NVIDIA SHIELD con-
trollers should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_SHIELD "SDL_JOYSTICK_HIDAPI_SHIELD"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI.
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

1270 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI STADIA

A variable controlling whether the HIDAPI driver for Google Stadia controllers
should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_STADIA "SDL_JOYSTICK_HIDAPI_STADIA"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI STEAM 1271

SDL HINT JOYSTICK HIDAPI STEAM

A variable controlling whether the HIDAPI driver for Bluetooth Steam Con-
trollers should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_STEAM "SDL_JOYSTICK_HIDAPI_STEAM"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used. (default)

� ”1”: HIDAPI driver is used for Steam Controllers, which requires Blue-
tooth access and may prompt the user for permission on iOS and Android.

This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

1272 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI STEAMDECK

A variable controlling whether the HIDAPI driver for the Steam Deck builtin
controller should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_STEAMDECK

"SDL_JOYSTICK_HIDAPI_STEAMDECK"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI.
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI SWITCH 1273

SDL HINT JOYSTICK HIDAPI SWITCH

A variable controlling whether the HIDAPI driver for Nintendo Switch con-
trollers should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_SWITCH "SDL_JOYSTICK_HIDAPI_SWITCH"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI.
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

1274 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI SWITCH HOME LED

A variable controlling whether the Home button LED should be turned on when
a Nintendo Switch Pro controller is opened.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_SWITCH_HOME_LED

"SDL_JOYSTICK_HIDAPI_SWITCH_HOME_LED"

Remarks

The variable can be set to the following values:

� ”0”: Home button LED is turned off.

� ”1”: Home button LED is turned on.

By default the Home button LED state is not changed. This hint can also be
set to a floating point value between 0.0 and 1.0 which controls the brightness
of the Home button LED.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI SWITCH PLAYER LED 1275

SDL HINT JOYSTICK HIDAPI SWITCH PLAYER LED

A variable controlling whether the player LEDs should be lit to indicate which
player is associated with a Nintendo Switch controller.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_SWITCH_PLAYER_LED

"SDL_JOYSTICK_HIDAPI_SWITCH_PLAYER_LED"

Remarks

The variable can be set to the following values:

� ”0”: Player LEDs are not enabled.

� ”1”: Player LEDs are enabled. (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1276 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI VERTICAL JOY CONS

A variable controlling whether Nintendo Switch Joy-Con controllers will be in
vertical mode when using the HIDAPI driver.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_VERTICAL_JOY_CONS

"SDL_JOYSTICK_HIDAPI_VERTICAL_JOY_CONS"

Remarks

The variable can be set to the following values:

� ”0”: Left and right Joy-Con controllers will not be in vertical mode. (de-
fault)

� ”1”: Left and right Joy-Con controllers will be in vertical mode.

This hint should be set before opening a Joy-Con controller.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI WII 1277

SDL HINT JOYSTICK HIDAPI WII

A variable controlling whether the HIDAPI driver for Nintendo Wii and Wii U
controllers should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_WII "SDL_JOYSTICK_HIDAPI_WII"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

This driver doesn’t work with the dolphinbar, so the default is SDL FALSE
for now.

This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

1278 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI WII PLAYER LED

A variable controlling whether the player LEDs should be lit to indicate which
player is associated with a Wii controller.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_WII_PLAYER_LED

"SDL_JOYSTICK_HIDAPI_WII_PLAYER_LED"

Remarks

The variable can be set to the following values:

� ”0”: Player LEDs are not enabled.

� ”1”: Player LEDs are enabled. (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI XBOX 1279

SDL HINT JOYSTICK HIDAPI XBOX

A variable controlling whether the HIDAPI driver for XBox controllers should
be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_XBOX "SDL_JOYSTICK_HIDAPI_XBOX"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is ”0” onWindows, otherwise the value of SDL HINT JOYSTICK HIDAPI
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

1280 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI XBOX 360

A variable controlling whether the HIDAPI driver for XBox 360 controllers
should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_XBOX_360 "SDL_JOYSTICK_HIDAPI_XBOX_360"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI XBOX
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI XBOX 360 PLAYER LED 1281

SDL HINT JOYSTICK HIDAPI XBOX 360 PLAYER LED

A variable controlling whether the player LEDs should be lit to indicate which
player is associated with an Xbox 360 controller.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_XBOX_360_PLAYER_LED

"SDL_JOYSTICK_HIDAPI_XBOX_360_PLAYER_LED"

Remarks

The variable can be set to the following values:

� ”0”: Player LEDs are not enabled.

� ”1”: Player LEDs are enabled. (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1282 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI XBOX 360 WIRELESS

A variable controlling whether the HIDAPI driver for XBox 360 wireless con-
trollers should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_XBOX_360_WIRELESS

"SDL_JOYSTICK_HIDAPI_XBOX_360_WIRELESS"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI XBOX 360
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK HIDAPI XBOX ONE 1283

SDL HINT JOYSTICK HIDAPI XBOX ONE

A variable controlling whether the HIDAPI driver for XBox One controllers
should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_XBOX_ONE "SDL_JOYSTICK_HIDAPI_XBOX_ONE"

Remarks

The variable can be set to the following values:

� ”0”: HIDAPI driver is not used.

� ”1”: HIDAPI driver is used.

The default is the value of SDL HINT JOYSTICK HIDAPI XBOX.
This hint should be set before enumerating controllers.

Version

This hint is available since SDL 3.0.0.

1284 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK HIDAPI XBOX ONE HOME LED

A variable controlling whether the Home button LED should be turned on when
an Xbox One controller is opened.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_HIDAPI_XBOX_ONE_HOME_LED

"SDL_JOYSTICK_HIDAPI_XBOX_ONE_HOME_LED"

Remarks

The variable can be set to the following values:

� ”0”: Home button LED is turned off.

� ”1”: Home button LED is turned on.

By default the Home button LED state is not changed. This hint can also be
set to a floating point value between 0.0 and 1.0 which controls the brightness
of the Home button LED. The default brightness is 0.4.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK IOKIT 1285

SDL HINT JOYSTICK IOKIT

A variable controlling whether IOKit should be used for controller handling.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_IOKIT "SDL_JOYSTICK_IOKIT"

Remarks

The variable can be set to the following values:

� ”0”: IOKit is not used.

� ”1”: IOKit is used. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1286 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK LINUX CLASSIC

A variable controlling whether to use the classic /dev/input/js joystick interface
or the newer /dev/input/event joystick interface on Linux.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_LINUX_CLASSIC "SDL_JOYSTICK_LINUX_CLASSIC"

Remarks

The variable can be set to the following values:

� ”0”: Use /dev/input/event (default)

� ”1”: Use /dev/input/js

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK LINUX DEADZONES 1287

SDL HINT JOYSTICK LINUX DEADZONES

A variable controlling whether joysticks on Linux adhere to their HID-defined
deadzones or return unfiltered values.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_LINUX_DEADZONES "SDL_JOYSTICK_LINUX_DEADZONES"

Remarks

The variable can be set to the following values:

� ”0”: Return unfiltered joystick axis values. (default)

� ”1”: Return axis values with deadzones taken into account.

This hint should be set before a controller is opened.

Version

This hint is available since SDL 3.0.0.

1288 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK LINUX DIGITAL HATS

A variable controlling whether joysticks on Linux will always treat ’hat’ axis
inputs (ABS HAT0X - ABS HAT3Y) as 8-way digital hats without checking
whether they may be analog.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_LINUX_DIGITAL_HATS

"SDL_JOYSTICK_LINUX_DIGITAL_HATS"

Remarks

The variable can be set to the following values:

� ”0”: Only map hat axis inputs to digital hat outputs if the input axes
appear to actually be digital. (default)

� ”1”: Always handle the input axes numbered ABS HAT0X to ABS HAT3Y
as digital hats.

This hint should be set before a controller is opened.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK LINUX HAT DEADZONES 1289

SDL HINT JOYSTICK LINUX HAT DEADZONES

A variable controlling whether digital hats on Linux will apply deadzones to
their underlying input axes or use unfiltered values.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_LINUX_HAT_DEADZONES

"SDL_JOYSTICK_LINUX_HAT_DEADZONES"

Remarks

The variable can be set to the following values:

� ”0”: Return digital hat values based on unfiltered input axis values.

� ”1”: Return digital hat values with deadzones on the input axes taken
into account. (default)

This hint should be set before a controller is opened.

Version

This hint is available since SDL 3.0.0.

1290 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK MFI

A variable controlling whether GCController should be used for controller han-
dling.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_MFI "SDL_JOYSTICK_MFI"

Remarks

The variable can be set to the following values:

� ”0”: GCController is not used.

� ”1”: GCController is used. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK RAWINPUT 1291

SDL HINT JOYSTICK RAWINPUT

A variable controlling whether the RAWINPUT joystick drivers should be used
for better handling XInput-capable devices.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_RAWINPUT "SDL_JOYSTICK_RAWINPUT"

Remarks

The variable can be set to the following values:

� ”0”: RAWINPUT drivers are not used.

� ”1”: RAWINPUT drivers are used. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1292 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK RAWINPUT CORRELATE XINPUT

A variable controlling whether the RAWINPUT driver should pull correlated
data from XInput.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_RAWINPUT_CORRELATE_XINPUT

"SDL_JOYSTICK_RAWINPUT_CORRELATE_XINPUT"

Remarks

The variable can be set to the following values:

� ”0”: RAWINPUT driver will only use data from raw input APIs.

� ”1”: RAWINPUT driver will also pull data from XInput andWindows.Gaming.Input,
providing better trigger axes, guide button presses, and rumble support
for Xbox controllers. (default)

This hint should be set before a gamepad is opened.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK ROG CHAKRAM 1293

SDL HINT JOYSTICK ROG CHAKRAM

A variable controlling whether the ROG Chakram mice should show up as joy-
sticks.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_ROG_CHAKRAM "SDL_JOYSTICK_ROG_CHAKRAM"

Remarks

The variable can be set to the following values:

� ”0”: ROG Chakram mice do not show up as joysticks. (default)

� ”1”: ROG Chakram mice show up as joysticks.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1294 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK THREAD

A variable controlling whether a separate thread should be used for handling
joystick detection and raw input messages on Windows.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_THREAD "SDL_JOYSTICK_THREAD"

Remarks

The variable can be set to the following values:

� ”0”: A separate thread is not used. (default)

� ”1”: A separate thread is used for handling raw input messages.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK THROTTLE DEVICES 1295

SDL HINT JOYSTICK THROTTLE DEVICES

A variable containing a list of throttle style controllers.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_THROTTLE_DEVICES

"SDL_JOYSTICK_THROTTLE_DEVICES"

Remarks

The format of the string is a comma separated list of USB VID/PID pairs in
hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1296 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK THROTTLE DEVICES EXCLUDED

A variable containing a list of devices that are not throttle style controllers.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_THROTTLE_DEVICES_EXCLUDED

"SDL_JOYSTICK_THROTTLE_DEVICES_EXCLUDED"

Remarks

This will override SDL HINT JOYSTICK THROTTLE DEVICES and the built
in device list.

The format of the string is a comma separated list of USB VID/PID pairs
in hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK WGI 1297

SDL HINT JOYSTICK WGI

A variable controlling whether Windows.Gaming.Input should be used for con-
troller handling.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_WGI "SDL_JOYSTICK_WGI"

Remarks

The variable can be set to the following values:

� ”0”: WGI is not used.

� ”1”: WGI is used. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1298 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK WHEEL DEVICES

A variable containing a list of wheel style controllers.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_WHEEL_DEVICES "SDL_JOYSTICK_WHEEL_DEVICES"

Remarks

The format of the string is a comma separated list of USB VID/PID pairs in
hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT JOYSTICK WHEEL DEVICES EXCLUDED 1299

SDL HINT JOYSTICK WHEEL DEVICES EXCLUDED

A variable containing a list of devices that are not wheel style controllers.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_WHEEL_DEVICES_EXCLUDED

"SDL_JOYSTICK_WHEEL_DEVICES_EXCLUDED"

Remarks

This will override SDL HINT JOYSTICK WHEEL DEVICES and the built in
device list.

The format of the string is a comma separated list of USB VID/PID pairs
in hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1300 CHAPTER 2. SDL MACROS

SDL HINT JOYSTICK ZERO CENTERED DEVICES

A variable containing a list of devices known to have all axes centered at zero.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_JOYSTICK_ZERO_CENTERED_DEVICES

"SDL_JOYSTICK_ZERO_CENTERED_DEVICES"

Remarks

The format of the string is a comma separated list of USB VID/PID pairs in
hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint should be set before a controller is opened.

Version

This hint is available since SDL 3.0.0.

SDL HINT KMSDRM DEVICE INDEX 1301

SDL HINT KMSDRM DEVICE INDEX

A variable that controls what KMSDRM device to use.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_KMSDRM_DEVICE_INDEX "SDL_KMSDRM_DEVICE_INDEX"

Remarks

SDL might open something like ”/dev/dri/cardNN” to access KMSDRM func-
tionality, where ”NN” is a device index number. SDL makes a guess at the best
index to use (usually zero), but the app or user can set this hint to a number
between 0 and 99 to force selection.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1302 CHAPTER 2. SDL MACROS

SDL HINT KMSDRM REQUIRE DRM MASTER

A variable that controls whether SDL requires DRM master access in order to
initialize the KMSDRM video backend.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_KMSDRM_REQUIRE_DRM_MASTER

"SDL_KMSDRM_REQUIRE_DRM_MASTER"

Remarks

The DRM subsystem has a concept of a ”DRM master” which is a DRM client
that has the ability to set planes, set cursor, etc. When SDL is DRM master, it
can draw to the screen using the SDL rendering APIs. Without DRM master,
SDL is still able to process input and query attributes of attached displays, but
it cannot change display state or draw to the screen directly.

In some cases, it can be useful to have the KMSDRM backend even if it
cannot be used for rendering. An app may want to use SDL for input processing
while using another rendering API (such as an MMAL overlay on Raspberry
Pi) or using its own code to render to DRM overlays that SDL doesn’t support.

The variable can be set to the following values:

� ”0”: SDL will allow usage of the KMSDRM backend without DRMmaster.

� ”1”: SDL Will require DRM master to use the KMSDRM backend. (de-
fault)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT LOGGING 1303

SDL HINT LOGGING

A variable controlling the default SDL log levels.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_LOGGING "SDL_LOGGING"

Remarks

This variable is a comma separated set of category=level tokens that define the
default logging levels for SDL applications.

The category can be a numeric category, one of ”app”, ”error”, ”assert”,
”system”, ”audio”, ”video”, ”render”, ”input”, ”test”, or for any unspecified
category.

The level can be a numeric level, one of ”verbose”, ”debug”, ”info”, ”warn”,
”error”, ”critical”, or ”quiet” to disable that category.

You can omit the category if you want to set the logging level for all cate-
gories.

If this hint isn’t set, the default log levels are equivalent to: app=info,assert=warn,test=verbose,*=error
This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1304 CHAPTER 2. SDL MACROS

SDL HINT MAC BACKGROUND APP

A variable controlling whether to force the application to become the foreground
process when launched on macOS.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MAC_BACKGROUND_APP "SDL_MAC_BACKGROUND_APP"

Remarks

The variable can be set to the following values:

� ”0”: The application is brought to the foreground when launched. (de-
fault)

� ”1”: The application may remain in the background when launched.

This hint should be set before applicationDidFinishLaunching() is called.

Version

This hint is available since SDL 3.0.0.

SDL HINT MAC CTRL CLICK EMULATE RIGHT CLICK 1305

SDL HINT MAC CTRL CLICK EMULATE RIGHT CLICK

A variable that determines whether Ctrl+Click should generate a right-click
event on macOS.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MAC_CTRL_CLICK_EMULATE_RIGHT_CLICK

"SDL_MAC_CTRL_CLICK_EMULATE_RIGHT_CLICK"

Remarks

The variable can be set to the following values:

� ”0”: Ctrl+Click does not generate a right mouse button click event. (de-
fault)

� ”1”: Ctrl+Click generated a right mouse button click event.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1306 CHAPTER 2. SDL MACROS

SDL HINT MAC OPENGL ASYNC DISPATCH

A variable controlling whether dispatching OpenGL context updates should
block the dispatching thread until the main thread finishes processing on macOS.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MAC_OPENGL_ASYNC_DISPATCH

"SDL_MAC_OPENGL_ASYNC_DISPATCH"

Remarks

The variable can be set to the following values:

� ”0”: Dispatching OpenGL context updates will block the dispatching
thread until the main thread finishes processing. (default)

� ”1”: Dispatching OpenGL context updates will allow the dispatching
thread to continue execution.

Generally you want the default, but if you have OpenGL code in a back-
ground thread on a Mac, and the main thread hangs because it’s waiting for
that background thread, but that background thread is also hanging because
it’s waiting for the main thread to do an update, this might fix your issue.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT MAIN CALLBACK RATE 1307

SDL HINT MAIN CALLBACK RATE

Request SDL AppIterate() be called at a specific rate.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MAIN_CALLBACK_RATE "SDL_MAIN_CALLBACK_RATE"

Remarks

This number is in Hz, so ”60” means try to iterate 60 times per second.
On some platforms, or if you are using SDL main instead of SDL AppIterate,

this hint is ignored. When the hint can be used, it is allowed to be changed at
any time.

This defaults to 60, and specifying NULL for the hint’s value will restore the
default.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1308 CHAPTER 2. SDL MACROS

SDL HINT MOUSE AUTO CAPTURE

A variable controlling whether the mouse is captured while mouse buttons are
pressed.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MOUSE_AUTO_CAPTURE "SDL_MOUSE_AUTO_CAPTURE"

Remarks

The variable can be set to the following values:

� ”0”: The mouse is not captured while mouse buttons are pressed.

� ”1”: The mouse is captured while mouse buttons are pressed.

By default the mouse is captured while mouse buttons are pressed so if the
mouse is dragged outside the window, the application continues to receive mouse
events until the button is released.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT MOUSE DOUBLE CLICK RADIUS 1309

SDL HINT MOUSE DOUBLE CLICK RADIUS

A variable setting the double click radius, in pixels.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MOUSE_DOUBLE_CLICK_RADIUS

"SDL_MOUSE_DOUBLE_CLICK_RADIUS"

Remarks

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1310 CHAPTER 2. SDL MACROS

SDL HINT MOUSE DOUBLE CLICK TIME

A variable setting the double click time, in milliseconds.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MOUSE_DOUBLE_CLICK_TIME "SDL_MOUSE_DOUBLE_CLICK_TIME"

Remarks

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT MOUSE FOCUS CLICKTHROUGH 1311

SDL HINT MOUSE FOCUS CLICKTHROUGH

Allow mouse click events when clicking to focus an SDL window.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MOUSE_FOCUS_CLICKTHROUGH "SDL_MOUSE_FOCUS_CLICKTHROUGH"

Remarks

The variable can be set to the following values:

� ”0”: Ignore mouse clicks that activate a window. (default)

� ”1”: Generate events for mouse clicks that activate a window.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1312 CHAPTER 2. SDL MACROS

SDL HINT MOUSE NORMAL SPEED SCALE

A variable setting the speed scale for mouse motion, in floating point, when the
mouse is not in relative mode.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MOUSE_NORMAL_SPEED_SCALE "SDL_MOUSE_NORMAL_SPEED_SCALE"

Remarks

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT MOUSE RELATIVE MODE CENTER 1313

SDL HINT MOUSE RELATIVE MODE CENTER

A variable controlling whether relative mouse mode constrains the mouse to the
center of the window.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MOUSE_RELATIVE_MODE_CENTER

"SDL_MOUSE_RELATIVE_MODE_CENTER"

Remarks

Constraining to the center of the window works better for FPS games and when
the application is running over RDP. Constraining to the whole window works
better for 2D games and increases the chance that the mouse will be in the
correct position when using high DPI mice.

The variable can be set to the following values:

� ”0”: Relative mouse mode constrains the mouse to the window.

� ”1”: Relative mouse mode constrains the mouse to the center of the win-
dow. (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1314 CHAPTER 2. SDL MACROS

SDL HINT MOUSE RELATIVE MODE WARP

A variable controlling whether relative mouse mode is implemented using mouse
warping.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MOUSE_RELATIVE_MODE_WARP "SDL_MOUSE_RELATIVE_MODE_WARP"

Remarks

The variable can be set to the following values:

� ”0”: Relative mouse mode uses raw input. (default)

� ”1”: Relative mouse mode uses mouse warping.

This hint can be set anytime relative mode is not currently enabled.

Version

This hint is available since SDL 3.0.0.

SDL HINT MOUSE RELATIVE SPEED SCALE 1315

SDL HINT MOUSE RELATIVE SPEED SCALE

A variable setting the scale for mouse motion, in floating point, when the mouse
is in relative mode.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MOUSE_RELATIVE_SPEED_SCALE

"SDL_MOUSE_RELATIVE_SPEED_SCALE"

Remarks

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1316 CHAPTER 2. SDL MACROS

SDL HINT MOUSE RELATIVE SYSTEM SCALE

A variable controlling whether the system mouse acceleration curve is used for
relative mouse motion.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MOUSE_RELATIVE_SYSTEM_SCALE

"SDL_MOUSE_RELATIVE_SYSTEM_SCALE"

Remarks

The variable can be set to the following values:

� ”0”: Relative mouse motion will be unscaled. (default)

� ”1”: Relative mouse motion will be scaled using the system mouse accel-
eration curve.

If SDL HINT MOUSE RELATIVE SPEED SCALE is set, that will override
the system speed scale.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT MOUSE RELATIVE WARP MOTION 1317

SDL HINT MOUSE RELATIVE WARP MOTION

A variable controlling whether a motion event should be generated for mouse
warping in relative mode.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MOUSE_RELATIVE_WARP_MOTION

"SDL_MOUSE_RELATIVE_WARP_MOTION"

Remarks

The variable can be set to the following values:

� ”0”: Warping the mouse will not generate a motion event in relative mode

� ”1”: Warping the mouse will generate a motion event in relative mode

By default warping the mouse will not generate motion events in relative
mode. This avoids the application having to filter out large relative motion due
to warping.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1318 CHAPTER 2. SDL MACROS

SDL HINT MOUSE TOUCH EVENTS

A variable controlling whether mouse events should generate synthetic touch
events.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_MOUSE_TOUCH_EVENTS "SDL_MOUSE_TOUCH_EVENTS"

Remarks

The variable can be set to the following values:

� ”0”: Mouse events will not generate touch events. (default for desktop
platforms)

� ”1”: Mouse events will generate touch events. (default for mobile plat-
forms, such as Android and iOS)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT NO SIGNAL HANDLERS 1319

SDL HINT NO SIGNAL HANDLERS

Tell SDL not to catch the SIGINT or SIGTERM signals on POSIX platforms.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_NO_SIGNAL_HANDLERS "SDL_NO_SIGNAL_HANDLERS"

Remarks

The variable can be set to the following values:

� ”0”: SDL will install a SIGINT and SIGTERM handler, and when it
catches a signal, convert it into an SDL EVENT QUIT event. (default)

� ”1”: SDL will not install a signal handler at all.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1320 CHAPTER 2. SDL MACROS

SDL HINT OPENGL ES DRIVER

A variable controlling what driver to use for OpenGL ES contexts.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_OPENGL_ES_DRIVER "SDL_OPENGL_ES_DRIVER"

Remarks

On some platforms, currently Windows and X11, OpenGL drivers may sup-
port creating contexts with an OpenGL ES profile. By default SDL uses these
profiles, when available, otherwise it attempts to load an OpenGL ES library,
e.g. that provided by the ANGLE project. This variable controls whether SDL
follows this default behaviour or will always load an OpenGL ES library.

Circumstances where this is useful include - Testing an app with a particular
OpenGL ES implementation, e.g ANGLE, or emulator, e.g. those from ARM,
Imagination or Qualcomm. - Resolving OpenGL ES function addresses at link
time by linking with the OpenGL ES library instead of querying them at run
time with SDL GL GetProcAddress().

Caution: for an application to work with the default behaviour across dif-
ferent OpenGL drivers it must query the OpenGL ES function addresses at run
time using SDL GL GetProcAddress().

This variable is ignored on most platforms because OpenGL ES is native or
not supported.

The variable can be set to the following values:

� ”0”: Use ES profile of OpenGL, if available. (default)

� ”1”: Load OpenGL ES library using the default library names.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT ORIENTATIONS 1321

SDL HINT ORIENTATIONS

A variable controlling which orientations are allowed on iOS/Android.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_ORIENTATIONS "SDL_IOS_ORIENTATIONS"

Remarks

In some circumstances it is necessary to be able to explicitly control which UI
orientations are allowed.

This variable is a space delimited list of the following values:

� ”LandscapeLeft”

� ”LandscapeRight”

� ”Portrait”

� ”PortraitUpsideDown”

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1322 CHAPTER 2. SDL MACROS

SDL HINT PEN DELAY MOUSE BUTTON

A variable controlling whether pen mouse button emulation triggers only when
the pen touches the tablet surface.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_PEN_DELAY_MOUSE_BUTTON "SDL_PEN_DELAY_MOUSE_BUTTON"

Remarks

The variable can be set to the following values:

� ”0”: The pen reports mouse button press/release immediately when the
pen button is pressed/released, and the pen tip touching the surface counts
as left mouse button press.

� ”1”: Mouse button presses are sent when the pen first touches the tablet
(analogously for releases). Not pressing a pen button simulates mouse
button 1, pressing the first pen button simulates mouse button 2 etc.; it
is not possible to report multiple buttons as pressed at the same time.
(default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT PEN NOT MOUSE 1323

SDL HINT PEN NOT MOUSE

A variable controlling whether to treat pen movement as separate from mouse
movement.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_PEN_NOT_MOUSE "SDL_PEN_NOT_MOUSE"

Remarks

By default, pens report both SDL MouseMotionEvent and SDL PenMotionEvent
updates (analogously for button presses). This hint allows decoupling mouse
and pen updates.

This variable toggles between the following behaviour:

� ”0”: Pen acts as a mouse with mouse ID SDL PEN MOUSEID. (default)
Use case: client application is not pen aware, user wants to use pen instead
of mouse to interact.

� ”1”: Pen reports mouse clicks and movement events but does not up-
date SDL-internal mouse state (buttons pressed, current mouse location).
Use case: client application is not pen aware, user frequently alternates
between pen and ”real” mouse.

� ”2”: Pen reports no mouse events. Use case: pen-aware client application
uses this hint to allow user to toggle between pen+mouse mode (”2”) and
pen-only mode (”1” or ”0”).

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1324 CHAPTER 2. SDL MACROS

SDL HINT POLL SENTINEL

A variable controlling the use of a sentinel event when polling the event queue.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_POLL_SENTINEL "SDL_POLL_SENTINEL"

Remarks

When polling for events, SDL PumpEvents is used to gather new events from de-
vices. If a device keeps producing new events between calls to SDL PumpEvents,
a poll loop will become stuck until the new events stop. This is most noticeable
when moving a high frequency mouse.

The variable can be set to the following values:

� ”0”: Disable poll sentinels.

� ”1”: Enable poll sentinels. (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT PREFERRED LOCALES 1325

SDL HINT PREFERRED LOCALES

Override for SDL GetPreferredLocales().

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_PREFERRED_LOCALES "SDL_PREFERRED_LOCALES"

Remarks

If set, this will be favored over anything the OS might report for the user’s pre-
ferred locales. Changing this hint at runtime will not generate a SDL EVENT LOCALE CHANGED
event (but if you can change the hint, you can push your own event, if you want).

The format of this hint is a comma-separated list of language and locale,
combined with an underscore, as is a common format: ”en GB”. Locale is
optional: ”en”. So you might have a list like this: ”en GB,jp,es PT”

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1326 CHAPTER 2. SDL MACROS

SDL HINT QUIT ON LAST WINDOW CLOSE

A variable that decides whether to send SDL EVENT QUIT when closing the
last window.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_QUIT_ON_LAST_WINDOW_CLOSE

"SDL_QUIT_ON_LAST_WINDOW_CLOSE"

Remarks

The variable can be set to the following values:

� ”0”: SDL will not send an SDL EVENT QUIT event when the last win-
dow is requesting to close. Note that in this case, there are still other
legitimate reasons one might get an SDL EVENT QUIT event: choosing
”Quit” from the macOS menu bar, sending a SIGINT (ctrl-c) on Unix,
etc.

� ”1”: SDL will send a quit event when the last window is requesting to
close. (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT RENDER DIRECT3D11 DEBUG 1327

SDL HINT RENDER DIRECT3D11 DEBUG

A variable controlling whether to enable Direct3D 11+’s Debug Layer.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_RENDER_DIRECT3D11_DEBUG "SDL_RENDER_DIRECT3D11_DEBUG"

Remarks

This variable does not have any effect on the Direct3D 9 based renderer.
The variable can be set to the following values:

� ”0”: Disable Debug Layer use. (default)

� ”1”: Enable Debug Layer use.

This hint should be set before creating a renderer.

Version

This hint is available since SDL 3.0.0.

1328 CHAPTER 2. SDL MACROS

SDL HINT RENDER DIRECT3D THREADSAFE

A variable controlling whether the Direct3D device is initialized for thread-safe
operations.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_RENDER_DIRECT3D_THREADSAFE

"SDL_RENDER_DIRECT3D_THREADSAFE"

Remarks

The variable can be set to the following values:

� ”0”: Thread-safety is not enabled. (default)

� ”1”: Thread-safety is enabled.

This hint should be set before creating a renderer.

Version

This hint is available since SDL 3.0.0.

SDL HINT RENDER DRIVER 1329

SDL HINT RENDER DRIVER

A variable specifying which render driver to use.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_RENDER_DRIVER "SDL_RENDER_DRIVER"

Remarks

If the application doesn’t pick a specific renderer to use, this variable specifies
the name of the preferred renderer. If the preferred renderer can’t be initialized,
the normal default renderer is used.

This variable is case insensitive and can be set to the following values:

� ”direct3d”

� ”direct3d11”

� ”direct3d12”

� ”opengl”

� ”opengles2”

� ”opengles”

� ”metal”

� ”vulkan”

� ”software”

The default varies by platform, but it’s the first one in the list that is available
on the current platform.

This hint should be set before creating a renderer.

Version

This hint is available since SDL 3.0.0.

1330 CHAPTER 2. SDL MACROS

SDL HINT RENDER LINE METHOD

A variable controlling how the 2D render API renders lines.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_RENDER_LINE_METHOD "SDL_RENDER_LINE_METHOD"

Remarks

The variable can be set to the following values:

� ”0”: Use the default line drawing method (Bresenham’s line algorithm)

� ”1”: Use the driver point API using Bresenham’s line algorithm (correct,
draws many points)

� ”2”: Use the driver line API (occasionally misses line endpoints based on
hardware driver quirks

� ”3”: Use the driver geometry API (correct, draws thicker diagonal lines)

This hint should be set before creating a renderer.

Version

This hint is available since SDL 3.0.0.

SDL HINT RENDER METAL PREFER LOW POWER DEVICE 1331

SDL HINT RENDER METAL PREFER LOW POWER DEVICE

A variable controlling whether the Metal render driver select low power device
over default one.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_RENDER_METAL_PREFER_LOW_POWER_DEVICE

"SDL_RENDER_METAL_PREFER_LOW_POWER_DEVICE"

Remarks

The variable can be set to the following values:

� ”0”: Use the prefered OS device. (default)

� ”1”: Select a low power device.

This hint should be set before creating a renderer.

Version

This hint is available since SDL 3.0.0.

1332 CHAPTER 2. SDL MACROS

SDL HINT RENDER PS2 DYNAMIC VSYNC

A variable controlling whether vsync is automatically disabled if doesn’t reach
enough FPS.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_RENDER_PS2_DYNAMIC_VSYNC "SDL_RENDER_PS2_DYNAMIC_VSYNC"

Remarks

The variable can be set to the following values:

� ”0”: It will be using VSYNC as defined in the main flag. (default)

� ”1”: If VSYNC was previously enabled, then it will disable VSYNC if
doesn’t reach enough speed

This hint should be set before creating a renderer.

Version

This hint is available since SDL 3.0.0.

SDL HINT RENDER VSYNC 1333

SDL HINT RENDER VSYNC

A variable controlling whether updates to the SDL screen surface should be
synchronized with the vertical refresh, to avoid tearing.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_RENDER_VSYNC "SDL_RENDER_VSYNC"

Remarks

This hint overrides the application preference when creating a renderer.
The variable can be set to the following values:

� ”0”: Disable vsync. (default)

� ”1”: Enable vsync.

This hint should be set before creating a renderer.

Version

This hint is available since SDL 3.0.0.

1334 CHAPTER 2. SDL MACROS

SDL HINT RENDER VULKAN DEBUG

A variable controlling whether to enable Vulkan Validation Layers.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_RENDER_VULKAN_DEBUG "SDL_RENDER_VULKAN_DEBUG"

Remarks

This variable can be set to the following values:

� ”0”: Disable Validation Layer use

� ”1”: Enable Validation Layer use

By default, SDL does not use Vulkan Validation Layers.

Version

This hint is available since SDL 3.0.0.

SDL HINT RETURN KEY HIDES IME 1335

SDL HINT RETURN KEY HIDES IME

A variable to control whether the return key on the soft keyboard should hide
the soft keyboard on Android and iOS.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_RETURN_KEY_HIDES_IME "SDL_RETURN_KEY_HIDES_IME"

Remarks

The variable can be set to the following values:

� ”0”: The return key will be handled as a key event. (default)

� ”1”: The return key will hide the keyboard.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1336 CHAPTER 2. SDL MACROS

SDL HINT ROG GAMEPAD MICE

A variable containing a list of ROG gamepad capable mice.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_ROG_GAMEPAD_MICE "SDL_ROG_GAMEPAD_MICE"

Remarks

The format of the string is a comma separated list of USB VID/PID pairs in
hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT ROG GAMEPAD MICE EXCLUDED 1337

SDL HINT ROG GAMEPAD MICE EXCLUDED

A variable containing a list of devices that are not ROG gamepad capable mice.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_ROG_GAMEPAD_MICE_EXCLUDED

"SDL_ROG_GAMEPAD_MICE_EXCLUDED"

Remarks

This will override SDL HINT ROG GAMEPAD MICE and the built in device
list.

The format of the string is a comma separated list of USB VID/PID pairs
in hexadecimal form, e.g. 0xAAAA/0xBBBB,0xCCCC/0xDDDD

The variable can also take the form of ”@file”, in which case the named file
will be loaded and interpreted as the value of the variable.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1338 CHAPTER 2. SDL MACROS

SDL HINT RPI VIDEO LAYER

A variable controlling which Dispmanx layer to use on a Raspberry PI.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_RPI_VIDEO_LAYER "SDL_RPI_VIDEO_LAYER"

Remarks

Also known as Z-order. The variable can take a negative or positive value. The
default is 10000.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT SCREENSAVER INHIBIT ACTIVITY NAME 1339

SDL HINT SCREENSAVER INHIBIT ACTIVITY NAME

Specify an ”activity name” for screensaver inhibition.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_SCREENSAVER_INHIBIT_ACTIVITY_NAME

"SDL_SCREENSAVER_INHIBIT_ACTIVITY_NAME"

Remarks

Some platforms, notably Linux desktops, list the applications which are inhibit-
ing the screensaver or other power-saving features.

This hint lets you specify the ”activity name” sent to the OS when SDL DisableScreenSaver()
is used (or the screensaver is automatically disabled). The contents of this hint
are used when the screensaver is disabled. You should use a string that describes
what your program is doing (and, therefore, why the screensaver is disabled).
For example, ”Playing a game” or ”Watching a video”.

Setting this to ”” or leaving it unset will have SDL use a reasonable default:
”Playing a game” or something similar.

This hint should be set before calling SDL DisableScreenSaver()

Version

This hint is available since SDL 3.0.0.

1340 CHAPTER 2. SDL MACROS

SDL HINT SHUTDOWN DBUS ON QUIT

A variable controlling whether SDL calls dbus shutdown() on quit.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_SHUTDOWN_DBUS_ON_QUIT "SDL_SHUTDOWN_DBUS_ON_QUIT"

Remarks

This is useful as a debug tool to validate memory leaks, but shouldn’t ever be
set in production applications, as other libraries used by the application might
use dbus under the hood and this cause cause crashes if they continue after
SDL Quit().

The variable can be set to the following values:

� ”0”: SDL will not call dbus shutdown() on quit. (default)

� ”1”: SDL will call dbus shutdown() on quit.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT STORAGE TITLE DRIVER 1341

SDL HINT STORAGE TITLE DRIVER

A variable that specifies a backend to use for title storage.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_STORAGE_TITLE_DRIVER "SDL_STORAGE_TITLE_DRIVER"

Remarks

By default, SDL will try all available storage backends in a reasonable order
until it finds one that can work, but this hint allows the app or user to force
a specific target, such as ”pc” if, say, you are on Steam but want to avoid
SteamRemoteStorage for title data.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1342 CHAPTER 2. SDL MACROS

SDL HINT STORAGE USER DRIVER

A variable that specifies a backend to use for user storage.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_STORAGE_USER_DRIVER "SDL_STORAGE_USER_DRIVER"

Remarks

By default, SDL will try all available storage backends in a reasonable order
until it finds one that can work, but this hint allows the app or user to force
a specific target, such as ”pc” if, say, you are on Steam but want to avoid
SteamRemoteStorage for user data.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT THREAD FORCE REALTIME TIME CRITICAL 1343

SDL HINT THREAD FORCE REALTIME TIME CRITICAL

Specifies whether SDL THREAD PRIORITY TIME CRITICAL should be treated
as realtime.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_THREAD_FORCE_REALTIME_TIME_CRITICAL

"SDL_THREAD_FORCE_REALTIME_TIME_CRITICAL"

Remarks

On some platforms, like Linux, a realtime priority thread may be subject to
restrictions that require special handling by the application. This hint exists to
let SDL know that the app is prepared to handle said restrictions.

On Linux, SDL will apply the following configuration to any thread that
becomes realtime:

� The SCHED RESET ON FORK bit will be set on the scheduling policy,

� An RLIMIT RTTIME budget will be configured to the rtkit specified
limit.

� Exceeding this limit will result in the kernel sending SIGKILL to the app,
refer to the man pages for more information.

The variable can be set to the following values:

� ”0”: default platform specific behaviour

� ”1”: Force SDL THREAD PRIORITY TIME CRITICAL to a realtime
scheduling policy

This hint should be set before calling SDL SetThreadPriority()

Version

This hint is available since SDL 3.0.0.

1344 CHAPTER 2. SDL MACROS

SDL HINT THREAD PRIORITY POLICY

A string specifying additional information to use with SDL SetThreadPriority.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_THREAD_PRIORITY_POLICY "SDL_THREAD_PRIORITY_POLICY"

Remarks

By default SDL SetThreadPriority will make appropriate system changes in
order to apply a thread priority. For example on systems using pthreads the
scheduler policy is changed automatically to a policy that works well with a
given priority. Code which has specific requirements can override SDL’s default
behavior with this hint.

pthread hint values are ”current”, ”other”, ”fifo” and ”rr”. Currently no
other platform hint values are defined but may be in the future.

On Linux, the kernel may send SIGKILL to realtime tasks which exceed
the distro configured execution budget for rtkit. This budget can be queried
through RLIMIT RTTIME after calling SDL SetThreadPriority().

This hint should be set before calling SDL SetThreadPriority()

Version

This hint is available since SDL 3.0.0.

SDL HINT TIMER RESOLUTION 1345

SDL HINT TIMER RESOLUTION

A variable that controls the timer resolution, in milliseconds.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_TIMER_RESOLUTION "SDL_TIMER_RESOLUTION"

Remarks

The higher resolution the timer, the more frequently the CPU services timer
interrupts, and the more precise delays are, but this takes up power and CPU
time. This hint is only used on Windows.

See this blog post for more information: http://randomascii.wordpress.com/2013/07/08/windows-
timer-resolution-megawatts-wasted/

The default value is ”1”.
If this variable is set to ”0”, the system timer resolution is not set.
This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1346 CHAPTER 2. SDL MACROS

SDL HINT TOUCH MOUSE EVENTS

A variable controlling whether touch events should generate synthetic mouse
events.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_TOUCH_MOUSE_EVENTS "SDL_TOUCH_MOUSE_EVENTS"

Remarks

The variable can be set to the following values:

� ”0”: Touch events will not generate mouse events.

� ”1”: Touch events will generate mouse events. (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT TRACKPAD IS TOUCH ONLY 1347

SDL HINT TRACKPAD IS TOUCH ONLY

A variable controlling whether trackpads should be treated as touch devices.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_TRACKPAD_IS_TOUCH_ONLY "SDL_TRACKPAD_IS_TOUCH_ONLY"

Remarks

On macOS (and possibly other platforms in the future), SDL will report touches
on a trackpad as mouse input, which is generally what users expect from this
device; however, these are often actually full multitouch-capable touch devices,
so it might be preferable to some apps to treat them as such.

The variable can be set to the following values:

� ”0”: Trackpad will send mouse events. (default)

� ”1”: Trackpad will send touch events.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1348 CHAPTER 2. SDL MACROS

SDL HINT TV REMOTE AS JOYSTICK

A variable controlling whether the Android / tvOS remotes should be listed as
joystick devices, instead of sending keyboard events.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_TV_REMOTE_AS_JOYSTICK "SDL_TV_REMOTE_AS_JOYSTICK"

Remarks

The variable can be set to the following values:

� ”0”: Remotes send enter/escape/arrow key events.

� ”1”: Remotes are available as 2 axis, 2 button joysticks. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT VIDEO ALLOW SCREENSAVER 1349

SDL HINT VIDEO ALLOW SCREENSAVER

A variable controlling whether the screensaver is enabled.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_ALLOW_SCREENSAVER "SDL_VIDEO_ALLOW_SCREENSAVER"

Remarks

The variable can be set to the following values:

� ”0”: Disable screensaver. (default)

� ”1”: Enable screensaver.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1350 CHAPTER 2. SDL MACROS

SDL HINT VIDEO DOUBLE BUFFER

Tell the video driver that we only want a double buffer.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_DOUBLE_BUFFER "SDL_VIDEO_DOUBLE_BUFFER"

Remarks

By default, most lowlevel 2D APIs will use a triple buffer scheme that wastes
no CPU time on waiting for vsync after issuing a flip, but introduces a frame
of latency. On the other hand, using a double buffer scheme instead is recom-
mended for cases where low latency is an important factor because we save a
whole frame of latency.

We do so by waiting for vsync immediately after issuing a flip, usually just
after eglSwapBuffers call in the backend’s * SwapWindow function.

This hint is currently supported on the following drivers:

� Raspberry Pi (raspberrypi)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT VIDEO DRIVER 1351

SDL HINT VIDEO DRIVER

A variable that specifies a video backend to use.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_DRIVER "SDL_VIDEO_DRIVER"

Remarks

By default, SDL will try all available video backends in a reasonable order until
it finds one that can work, but this hint allows the app or user to force a specific
target, such as ”x11” if, say, you are on Wayland but want to try talking to the
X server instead.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1352 CHAPTER 2. SDL MACROS

SDL HINT VIDEO EGL ALLOW GETDISPLAY FALLBACK

If eglGetPlatformDisplay fails, fall back to calling eglGetDisplay.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_EGL_ALLOW_GETDISPLAY_FALLBACK

"SDL_VIDEO_EGL_GETDISPLAY_FALLBACK"

Remarks

The variable can be set to one of the following values:

� ”0”: Do not fall back to eglGetDisplay.

� ”1”: Fall back to eglGetDisplay if eglGetPlatformDisplay fails. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT VIDEO FORCE EGL 1353

SDL HINT VIDEO FORCE EGL

A variable controlling whether the OpenGL context should be created with
EGL.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_FORCE_EGL "SDL_VIDEO_FORCE_EGL"

Remarks

The variable can be set to the following values:

� ”0”: Use platform-specific GL context creation API (GLX, WGL, CGL,
etc). (default)

� ”1”: Use EGL

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1354 CHAPTER 2. SDL MACROS

SDL HINT VIDEO MAC FULLSCREEN SPACES

A variable that specifies the policy for fullscreen Spaces on macOS.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_MAC_FULLSCREEN_SPACES

"SDL_VIDEO_MAC_FULLSCREEN_SPACES"

Remarks

The variable can be set to the following values:

� ”0”: Disable Spaces support (FULLSCREEN DESKTOP won’t use them
and SDL WINDOW RESIZABLE windows won’t offer the ”fullscreen”
button on their titlebars).

� ”1”: Enable Spaces support (FULLSCREEN DESKTOP will use them
and SDL WINDOW RESIZABLE windows will offer the ”fullscreen” but-
ton on their titlebars). (default)

This hint should be set before creating a window.

Version

This hint is available since SDL 3.0.0.

SDL HINT VIDEO MINIMIZE ON FOCUS LOSS 1355

SDL HINT VIDEO MINIMIZE ON FOCUS LOSS

A variable controlling whether fullscreen windows are minimized when they lose
focus.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_MINIMIZE_ON_FOCUS_LOSS

"SDL_VIDEO_MINIMIZE_ON_FOCUS_LOSS"

Remarks

The variable can be set to the following values:

� ”0”: Fullscreen windows will not be minimized when they lose focus. (de-
fault)

� ”1”: Fullscreen windows are minimized when they lose focus.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1356 CHAPTER 2. SDL MACROS

SDL HINT VIDEO SYNC WINDOW OPERATIONS

A variable controlling whether all window operations will block until complete.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_SYNC_WINDOW_OPERATIONS

"SDL_VIDEO_SYNC_WINDOW_OPERATIONS"

Remarks

Window systems that run asynchronously may not have the results of window
operations that resize or move the window applied immediately upon the return
of the requesting function. Setting this hint will cause such operations to block
after every call until the pending operation has completed. Setting this to ’1’ is
the equivalent of calling SDL SyncWindow() after every function call.

Be aware that amount of time spent blocking while waiting for window op-
erations to complete can be quite lengthy, as animations may have to complete,
which can take upwards of multiple seconds in some cases.

The variable can be set to the following values:

� ”0”: Window operations are non-blocking. (default)

� ”1”: Window operations will block until completed.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT VIDEO WAYLAND ALLOW LIBDECOR 1357

SDL HINT VIDEO WAYLAND ALLOW LIBDECOR

A variable controlling whether the libdecor Wayland backend is allowed to be
used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_WAYLAND_ALLOW_LIBDECOR

"SDL_VIDEO_WAYLAND_ALLOW_LIBDECOR"

Remarks

libdecor is used over xdg-shell when xdg-decoration protocol is unavailable.
The variable can be set to the following values:

� ”0”: libdecor use is disabled.

� ”1”: libdecor use is enabled. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1358 CHAPTER 2. SDL MACROS

SDL HINT VIDEO WAYLAND EMULATE MOUSE WARP

Enable or disable hidden mouse pointer warp emulation, needed by some older
games.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_WAYLAND_EMULATE_MOUSE_WARP

"SDL_VIDEO_WAYLAND_EMULATE_MOUSE_WARP"

Remarks

Wayland requires the pointer confinement protocol to warp the mouse, but
that is just a hint that the compositor is free to ignore, and warping the the
pointer to or from regions outside of the focused window is prohibited. When
this hint is set and the pointer is hidden, SDL will emulate mouse warps using
relative mouse mode. This is required for some older games (such as Source
engine games), which warp the mouse to the centre of the screen rather than
using relative mouse motion. Note that relative mouse mode may have different
mouse acceleration behaviour than pointer warps.

The variable can be set to the following values:

� ”0”: Attempts to warp the mouse will be made, if the appropriate protocol
is available.

� ”1”: Some mouse warps will be emulated by forcing relative mouse mode.

If not set, this is automatically enabled unless an application uses relative
mouse mode directly.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT VIDEO WAYLAND MODE EMULATION 1359

SDL HINT VIDEO WAYLAND MODE EMULATION

A variable controlling whether video mode emulation is enabled under Wayland.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_WAYLAND_MODE_EMULATION

"SDL_VIDEO_WAYLAND_MODE_EMULATION"

Remarks

When this hint is set, a standard set of emulated CVT video modes will be
exposed for use by the application. If it is disabled, the only modes exposed
will be the logical desktop size and, in the case of a scaled desktop, the native
display resolution.

The variable can be set to the following values:

� ”0”: Video mode emulation is disabled.

� ”1”: Video mode emulation is enabled. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1360 CHAPTER 2. SDL MACROS

SDL HINT VIDEO WAYLAND MODE SCALING

A variable controlling how modes with a non-native aspect ratio are displayed
under Wayland.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_WAYLAND_MODE_SCALING

"SDL_VIDEO_WAYLAND_MODE_SCALING"

Remarks

When this hint is set, the requested scaling will be used when displaying fullscreen
video modes that don’t match the display’s native aspect ratio. This is contin-
gent on compositor viewport support.

The variable can be set to the following values:

� ”aspect” - Video modes will be displayed scaled, in their proper aspect
ratio, with black bars.

� ”stretch” - Video modes will be scaled to fill the entire display. (default)

� ”none” - Video modes will be displayed as 1:1 with no scaling.

This hint should be set before creating a window.

Version

This hint is available since SDL 3.0.0.

SDL HINT VIDEO WAYLAND PREFER LIBDECOR 1361

SDL HINT VIDEO WAYLAND PREFER LIBDECOR

A variable controlling whether the libdecor Wayland backend is preferred over
native decrations.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_WAYLAND_PREFER_LIBDECOR

"SDL_VIDEO_WAYLAND_PREFER_LIBDECOR"

Remarks

When this hint is set, libdecor will be used to provide window decorations,
even if xdg-decoration is available. (Note that, by default, libdecor will use
xdg-decoration itself if available).

The variable can be set to the following values:

� ”0”: libdecor is enabled only if server-side decorations are unavailable.
(default)

� ”1”: libdecor is always enabled if available.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1362 CHAPTER 2. SDL MACROS

SDL HINT VIDEO WAYLAND SCALE TO DISPLAY

A variable forcing non-DPI-aware Wayland windows to output at 1:1 scaling.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_WAYLAND_SCALE_TO_DISPLAY

"SDL_VIDEO_WAYLAND_SCALE_TO_DISPLAY"

Remarks

When this hint is set, Wayland windows that are not flagged as being DPI-aware
will be output with scaling designed to force 1:1 pixel mapping.

This is intended to allow legacy applications to be displayed without desktop
scaling being applied, and has issues with certain display configurations, as this
forces the window to behave in a way that Wayland desktops were not designed
to accommodate:

� Rounding errors can result with odd window sizes and/or desktop scales.

� The window may be unusably small.

� The window may jump in size at times.

� The window may appear to be larger than the desktop size to the appli-
cation.

� Possible loss of cursor precision.

New applications should be designed with proper DPI awareness handling
instead of enabling this.

The variable can be set to the following values:

� ”0”: Windows will be scaled normally.

� ”1”: Windows will be forced to scale to achieve 1:1 output.

This hint should be set before creating a window.

Version

This hint is available since SDL 3.0.0.

SDL HINT VIDEO WIN D3DCOMPILER 1363

SDL HINT VIDEO WIN D3DCOMPILER

A variable specifying which shader compiler to preload when using the Chrome
ANGLE binaries.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_WIN_D3DCOMPILER

"SDL_VIDEO_WIN_D3DCOMPILER"

Remarks

SDL has EGL and OpenGL ES2 support on Windows via the ANGLE project.
It can use two different sets of binaries, those compiled by the user from source
or those provided by the Chrome browser. In the later case, these binaries
require that SDL loads a DLL providing the shader compiler.

The variable can be set to the following values:

� ”d3dcompiler 46.dll” - best for Vista or later. (default)

� ”d3dcompiler 43.dll” - for XP support.

� ”none” - do not load any library, useful if you compiled ANGLE from
source and included the compiler in your binaries.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1364 CHAPTER 2. SDL MACROS

SDL HINT VIDEO X11 NET WM BYPASS COMPOSITOR

A variable controlling whether the X11 NET WM BYPASS COMPOSITOR
hint should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_X11_NET_WM_BYPASS_COMPOSITOR

"SDL_VIDEO_X11_NET_WM_BYPASS_COMPOSITOR"

Remarks

The variable can be set to the following values:

� ”0”: Disable NET WM BYPASS COMPOSITOR.

� ”1”: Enable NET WM BYPASS COMPOSITOR. (default)

This hint should be set before creating a window.

Version

This hint is available since SDL 3.0.0.

SDL HINT VIDEO X11 NET WM PING 1365

SDL HINT VIDEO X11 NET WM PING

A variable controlling whether the X11 NET WM PING protocol should be
supported.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_X11_NET_WM_PING "SDL_VIDEO_X11_NET_WM_PING"

Remarks

By default SDL will use NET WM PING, but for applications that know they
will not always be able to respond to ping requests in a timely manner they can
turn it off to avoid the window manager thinking the app is hung.

The variable can be set to the following values:

� ”0”: Disable NET WM PING.

� ”1”: Enable NET WM PING. (default)

This hint should be set before creating a window.

Version

This hint is available since SDL 3.0.0.

1366 CHAPTER 2. SDL MACROS

SDL HINT VIDEO X11 SCALING FACTOR

A variable forcing the content scaling factor for X11 displays.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_X11_SCALING_FACTOR "SDL_VIDEO_X11_SCALING_FACTOR"

Remarks

The variable can be set to a floating point value in the range 1.0-10.0f
This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT VIDEO X11 WINDOW VISUALID 1367

SDL HINT VIDEO X11 WINDOW VISUALID

A variable forcing the visual ID chosen for new X11 windows.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_X11_WINDOW_VISUALID

"SDL_VIDEO_X11_WINDOW_VISUALID"

Remarks

This hint should be set before creating a window.

Version

This hint is available since SDL 3.0.0.

1368 CHAPTER 2. SDL MACROS

SDL HINT VIDEO X11 XRANDR

A variable controlling whether the X11 XRandR extension should be used.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VIDEO_X11_XRANDR "SDL_VIDEO_X11_XRANDR"

Remarks

The variable can be set to the following values:

� ”0”: Disable XRandR.

� ”1”: Enable XRandR. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT VITA TOUCH MOUSE DEVICE 1369

SDL HINT VITA TOUCH MOUSE DEVICE

A variable controlling which touchpad should generate synthetic mouse events.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_VITA_TOUCH_MOUSE_DEVICE "SDL_VITA_TOUCH_MOUSE_DEVICE"

Remarks

The variable can be set to the following values:

� ”0”: Only front touchpad should generate mouse events. (default)

� ”1”: Only back touchpad should generate mouse events.

� ”2”: Both touchpads should generate mouse events.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1370 CHAPTER 2. SDL MACROS

SDL HINT WAVE FACT CHUNK

A variable controlling how the fact chunk affects the loading of a WAVE file.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WAVE_FACT_CHUNK "SDL_WAVE_FACT_CHUNK"

Remarks

The fact chunk stores information about the number of samples of a WAVE
file. The Standards Update from Microsoft notes that this value can be used
to ’determine the length of the data in seconds’. This is especially useful for
compressed formats (for which this is a mandatory chunk) if they produce mul-
tiple sample frames per block and truncating the block is not allowed. The fact
chunk can exactly specify how many sample frames there should be in this case.

Unfortunately, most application seem to ignore the fact chunk and so SDL
ignores it by default as well.

The variable can be set to the following values:

� ”truncate” - Use the number of samples to truncate the wave data if the
fact chunk is present and valid.

� ”strict” - Like ”truncate”, but raise an error if the fact chunk is invalid,
not present for non-PCM formats, or if the data chunk doesn’t have that
many samples.

� ”ignorezero” - Like ”truncate”, but ignore fact chunk if the number of
samples is zero.

� ”ignore” - Ignore fact chunk entirely. (default)

This hint should be set before calling SDL LoadWAV() or SDL LoadWAV IO()

Version

This hint is available since SDL 3.0.0.

SDL HINT WAVE RIFF CHUNK SIZE 1371

SDL HINT WAVE RIFF CHUNK SIZE

A variable controlling how the size of the RIFF chunk affects the loading of a
WAVE file.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WAVE_RIFF_CHUNK_SIZE "SDL_WAVE_RIFF_CHUNK_SIZE"

Remarks

The size of the RIFF chunk (which includes all the sub-chunks of the WAVE
file) is not always reliable. In case the size is wrong, it’s possible to just ignore
it and step through the chunks until a fixed limit is reached.

Note that files that have trailing data unrelated to the WAVE file or corrupt
files may slow down the loading process without a reliable boundary. By default,
SDL stops after 10000 chunks to prevent wasting time. Use the environment
variable SDL WAVE CHUNK LIMIT to adjust this value.

The variable can be set to the following values:

� ”force” - Always use the RIFF chunk size as a boundary for the chunk
search.

� ”ignorezero” - Like ”force”, but a zero size searches up to 4 GiB. (default)

� ”ignore” - Ignore the RIFF chunk size and always search up to 4 GiB.

� ”maximum” - Search for chunks until the end of file. (not recommended)

This hint should be set before calling SDL LoadWAV() or SDL LoadWAV IO()

Version

This hint is available since SDL 3.0.0.

1372 CHAPTER 2. SDL MACROS

SDL HINT WAVE TRUNCATION

A variable controlling how a truncated WAVE file is handled.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WAVE_TRUNCATION "SDL_WAVE_TRUNCATION"

Remarks

A WAVE file is considered truncated if any of the chunks are incomplete or the
data chunk size is not a multiple of the block size. By default, SDL decodes
until the first incomplete block, as most applications seem to do.

The variable can be set to the following values:

� ”verystrict” - Raise an error if the file is truncated.

� ”strict” - Like ”verystrict”, but the size of the RIFF chunk is ignored.

� ”dropframe” - Decode until the first incomplete sample frame.

� ”dropblock” - Decode until the first incomplete block. (default)

This hint should be set before calling SDL LoadWAV() or SDL LoadWAV IO()

Version

This hint is available since SDL 3.0.0.

SDL HINT WINDOW ACTIVATE WHEN RAISED 1373

SDL HINT WINDOW ACTIVATE WHEN RAISED

A variable controlling whether the window is activated when the SDL RaiseWindow
function is called.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINDOW_ACTIVATE_WHEN_RAISED

"SDL_WINDOW_ACTIVATE_WHEN_RAISED"

Remarks

The variable can be set to the following values:

� ”0”: The window is not activated when the SDL RaiseWindow function
is called.

� ”1”: The window is activated when the SDL RaiseWindow function is
called. (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1374 CHAPTER 2. SDL MACROS

SDL HINT WINDOW ACTIVATE WHEN SHOWN

A variable controlling whether the window is activated when the SDL ShowWindow
function is called.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINDOW_ACTIVATE_WHEN_SHOWN

"SDL_WINDOW_ACTIVATE_WHEN_SHOWN"

Remarks

The variable can be set to the following values:

� ”0”: The window is not activated when the SDL ShowWindow function
is called.

� ”1”: The window is activated when the SDL ShowWindow function is
called. (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT WINDOW ALLOW TOPMOST 1375

SDL HINT WINDOW ALLOW TOPMOST

If set to ”0” then never set the top-most flag on an SDL Window even if the
application requests it.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINDOW_ALLOW_TOPMOST "SDL_WINDOW_ALLOW_TOPMOST"

Remarks

This is a debugging aid for developers and not expected to be used by end users.
The variable can be set to the following values:

� ”0”: don’t allow topmost

� ”1”: allow topmost (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1376 CHAPTER 2. SDL MACROS

SDL HINT WINDOW FRAME USABLE WHILE CURSOR HIDDEN

A variable controlling whether the window frame and title bar are interactive
when the cursor is hidden.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINDOW_FRAME_USABLE_WHILE_CURSOR_HIDDEN

"SDL_WINDOW_FRAME_USABLE_WHILE_CURSOR_HIDDEN"

Remarks

The variable can be set to the following values:

� ”0”: The window frame is not interactive when the cursor is hidden (no
move, resize, etc).

� ”1”: The window frame is interactive when the cursor is hidden. (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT WINDOWS CLOSE ON ALT F4 1377

SDL HINT WINDOWS CLOSE ON ALT F4

A variable controlling whether SDL generates window-close events for Alt+F4
on Windows.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINDOWS_CLOSE_ON_ALT_F4 "SDL_WINDOWS_CLOSE_ON_ALT_F4"

Remarks

The variable can be set to the following values:

� ”0”: SDL will only do normal key handling for Alt+F4.

� ”1”: SDL will generate a window-close event when it sees Alt+F4. (de-
fault)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1378 CHAPTER 2. SDL MACROS

SDL HINT WINDOWS ENABLE MENU MNEMONICS

A variable controlling whether menus can be opened with their keyboard short-
cut (Alt+mnemonic).

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINDOWS_ENABLE_MENU_MNEMONICS

"SDL_WINDOWS_ENABLE_MENU_MNEMONICS"

Remarks

If the mnemonics are enabled, then menus can be opened by pressing the Alt key
and the corresponding mnemonic (for example, Alt+F opens the File menu).
However, in case an invalid mnemonic is pressed, Windows makes an audible
beep to convey that nothing happened. This is true even if the window has no
menu at all!

Because most SDL applications don’t have menus, and some want to use
the Alt key for other purposes, SDL disables mnemonics (and the beeping) by
default.

Note: This also affects keyboard events: with mnemonics enabled, when a
menu is opened from the keyboard, you will not receive a KEYUP event for the
mnemonic key, and might not receive one for Alt.

The variable can be set to the following values:

� ”0”: Alt+mnemonic does nothing, no beeping. (default)

� ”1”: Alt+mnemonic opens menus, invalid mnemonics produce a beep.

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

SDL HINT WINDOWS ENABLE MESSAGELOOP 1379

SDL HINT WINDOWS ENABLE MESSAGELOOP

A variable controlling whether the windows message loop is processed by SDL.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINDOWS_ENABLE_MESSAGELOOP

"SDL_WINDOWS_ENABLE_MESSAGELOOP"

Remarks

The variable can be set to the following values:

� ”0”: The window message loop is not run.

� ”1”: The window message loop is processed in SDL PumpEvents(). (de-
fault)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1380 CHAPTER 2. SDL MACROS

SDL HINT WINDOWS FORCE MUTEX CRITICAL SECTIONS

A variable controlling whether SDL uses Critical Sections for mutexes on Win-
dows.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINDOWS_FORCE_MUTEX_CRITICAL_SECTIONS

"SDL_WINDOWS_FORCE_MUTEX_CRITICAL_SECTIONS"

Remarks

On Windows 7 and newer, Slim Reader/Writer Locks are available. They offer
better performance, allocate no kernel resources and use less memory. SDL will
fall back to Critical Sections on older OS versions or if forced to by this hint.

The variable can be set to the following values:

� ”0”: Use SRW Locks when available, otherwise fall back to Critical Sec-
tions. (default)

� ”1”: Force the use of Critical Sections in all cases.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT WINDOWS FORCE SEMAPHORE KERNEL 1381

SDL HINT WINDOWS FORCE SEMAPHORE KERNEL

A variable controlling whether SDL uses Kernel Semaphores on Windows.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINDOWS_FORCE_SEMAPHORE_KERNEL

"SDL_WINDOWS_FORCE_SEMAPHORE_KERNEL"

Remarks

Kernel Semaphores are inter-process and require a context switch on every inter-
action. On Windows 8 and newer, the WaitOnAddress API is available. Using
that and atomics to implement semaphores increases performance. SDL will fall
back to Kernel Objects on older OS versions or if forced to by this hint.

The variable can be set to the following values:

� ”0”: Use Atomics and WaitOnAddress API when available, otherwise fall
back to Kernel Objects. (default)

� ”1”: Force the use of Kernel Objects in all cases.

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1382 CHAPTER 2. SDL MACROS

SDL HINT WINDOWS INTRESOURCE ICON

A variable to specify custom icon resource id from RC file on Windows platform.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINDOWS_INTRESOURCE_ICON

"SDL_WINDOWS_INTRESOURCE_ICON"

Remarks

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT WINDOWS RAW KEYBOARD 1383

SDL HINT WINDOWS RAW KEYBOARD

A variable controlling whether raw keyboard events are used on Windows.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINDOWS_RAW_KEYBOARD "SDL_WINDOWS_RAW_KEYBOARD"

Remarks

The variable can be set to the following values:

� ”0”: The Windows message loop is used for keyboard events.

� ”1”: Low latency raw keyboard events are used. (default)

This hint can be set anytime.

Version

This hint is available since SDL 3.0.0.

1384 CHAPTER 2. SDL MACROS

SDL HINT WINDOWS USE D3D9EX

A variable controlling whether SDL uses the D3D9Ex API introduced in Win-
dows Vista, instead of normal D3D9.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINDOWS_USE_D3D9EX "SDL_WINDOWS_USE_D3D9EX"

Remarks

Direct3D 9Ex contains changes to state management that can eliminate device
loss errors during scenarios like Alt+Tab or UAC prompts. D3D9Ex may require
some changes to your application to cope with the new behavior, so this is
disabled by default.

For more information on Direct3D 9Ex, see:

� https://docs.microsoft.com/en-us/windows/win32/direct3darticles/graphics-
apis-in-windows-vista#direct3d-9ex

� https://docs.microsoft.com/en-us/windows/win32/direct3darticles/direct3d-
9ex-improvements

The variable can be set to the following values:

� ”0”: Use the original Direct3D 9 API. (default)

� ”1”: Use the Direct3D 9Ex API on Vista and later (and fall back if
D3D9Ex is unavailable)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

SDL HINT WINRT HANDLE BACK BUTTON 1385

SDL HINT WINRT HANDLE BACK BUTTON

A variable controlling whether back-button-press events on Windows Phone to
be marked as handled.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINRT_HANDLE_BACK_BUTTON "SDL_WINRT_HANDLE_BACK_BUTTON"

Remarks

Windows Phone devices typically feature a Back button. When pressed, the
OS will emit back-button-press events, which apps are expected to handle in an
appropriate manner. If apps do not explicitly mark these events as ’Handled’,
then the OS will invoke its default behavior for unhandled back-button-press
events, which on Windows Phone 8 and 8.1 is to terminate the app (and attempt
to switch to the previous app, or to the device’s home screen).

Setting the SDL HINT WINRT HANDLE BACK BUTTON hint to ”1” will
cause SDL to mark back-button-press events as Handled, if and when one is sent
to the app.

Internally, Windows Phone sends back button events as parameters to spe-
cial back-button-press callback functions. Apps that need to respond to back-
button-press events are expected to register one or more callback functions for
such, shortly after being launched (during the app’s initialization phase). After
the back button is pressed, the OS will invoke these callbacks. If the app’s call-
back(s) do not explicitly mark the event as handled by the time they return, or
if the app never registers one of these callback, the OS will consider the event
un-handled, and it will apply its default back button behavior (terminate the
app).

SDL registers its own back-button-press callback with the Windows Phone
OS. This callback will emit a pair of SDL key-press events (SDL EVENT KEY DOWN
and SDL EVENT KEY UP), each with a scancode of SDL SCANCODE AC BACK,
after which it will check the contents of the hint, SDL HINT WINRT HANDLE BACK BUTTON.
If the hint’s value is set to ”1”, the back button event’s Handled property will
get set to ’true’. If the hint’s value is set to something else, or if it is unset,
SDL will leave the event’s Handled property alone. (By default, the OS sets
this property to ’false’, to note.)

SDL apps can either set SDL HINT WINRT HANDLE BACK BUTTON
well before a back button is pressed, or can set it in direct-response to a back
button being pressed.

1386 CHAPTER 2. SDL MACROS

In order to get notified when a back button is pressed, SDL apps should
register a callback function with SDL AddEventWatch(), and have it listen for
SDL EVENT KEY DOWN events that have a scancode of SDL SCANCODE AC BACK.
(Alternatively, SDL EVENT KEY UP events can be listened-for. Listening for
either event type is suitable.) Any value of SDL HINT WINRT HANDLE BACK BUTTON
set by such a callback, will be applied to the OS’ current back-button-press
event.

More details on back button behavior in Windows Phone apps can be found
at the following page, on Microsoft’s developer site: http://msdn.microsoft.com/en-
us/library/windowsphone/develop/jj247550(v=vs.105).aspx

Version

This hint is available since SDL 3.0.0.

SDL HINT WINRT PRIVACY POLICY LABEL 1387

SDL HINT WINRT PRIVACY POLICY LABEL

A variable specifying the label text for a WinRT app’s privacy policy link.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINRT_PRIVACY_POLICY_LABEL

"SDL_WINRT_PRIVACY_POLICY_LABEL"

Remarks

Network-enabled WinRT apps must include a privacy policy. On Windows 8,
8.1, and RT, Microsoft mandates that this policy be available via the Windows
Settings charm. SDL provides code to add a link there, with its label text being
set via the optional hint, SDL HINT WINRT PRIVACY POLICY LABEL.

Please note that a privacy policy’s contents are not set via this hint. A
separate hint, SDL HINT WINRT PRIVACY POLICY URL, is used to link to
the actual text of the policy.

The contents of this hint should be encoded as a UTF8 string.
The default value is ”Privacy Policy”.
For additional information on linking to a privacy policy, see the documen-

tation for SDL HINT WINRT PRIVACY POLICY URL.
This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1388 CHAPTER 2. SDL MACROS

SDL HINT WINRT PRIVACY POLICY URL

A variable specifying the URL to a WinRT app’s privacy policy.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_WINRT_PRIVACY_POLICY_URL "SDL_WINRT_PRIVACY_POLICY_URL"

Remarks

All network-enabled WinRT apps must make a privacy policy available to its
users. On Windows 8, 8.1, and RT, Microsoft mandates that this policy be
be available in the Windows Settings charm, as accessed from within the app.
SDL provides code to add a URL-based link there, which can point to the app’s
privacy policy.

To setup a URL to an app’s privacy policy, set SDL HINT WINRT PRIVACY POLICY URL
before calling any SDL Init() functions. The contents of the hint should be a
valid URL. For example, ”http://www.example.com”.

The default value is ””, which will prevent SDL from adding a privacy policy
link to the Settings charm. This hint should only be set during app init.

The label text of an app’s ”Privacy Policy” link may be customized via
another hint, SDL HINT WINRT PRIVACY POLICY LABEL.

Please note that on Windows Phone, Microsoft does not provide standard UI
for displaying a privacy policy link, and as such, SDL HINT WINRT PRIVACY POLICY URL
will not get used on that platform. Network-enabled phone apps should display
their privacy policy through some other, in-app means.

Version

This hint is available since SDL 3.0.0.

SDL HINT X11 FORCE OVERRIDE REDIRECT 1389

SDL HINT X11 FORCE OVERRIDE REDIRECT

A variable controlling whether X11 windows are marked as override-redirect.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_X11_FORCE_OVERRIDE_REDIRECT

"SDL_X11_FORCE_OVERRIDE_REDIRECT"

Remarks

If set, this might increase framerate at the expense of the desktop not working
as expected. Override-redirect windows aren’t noticed by the window manager
at all.

You should probably only use this for fullscreen windows, and you probably
shouldn’t even use it for that. But it’s here if you want to try!

The variable can be set to the following values:

� ”0”: Do not mark the window as override-redirect. (default)

� ”1”: Mark the window as override-redirect.

This hint should be set before creating a window.

Version

This hint is available since SDL 3.0.0.

1390 CHAPTER 2. SDL MACROS

SDL HINT X11 WINDOW TYPE

A variable specifying the type of an X11 window.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_X11_WINDOW_TYPE "SDL_X11_WINDOW_TYPE"

Remarks

During SDL CreateWindow, SDL uses the NET WM WINDOW TYPE X11
property to report to the window manager the type of window it wants to
create. This might be set to various things if SDL WINDOW TOOLTIP or
SDL WINDOW POPUP MENU, etc, were specified. For ”normal” windows
that haven’t set a specific type, this hint can be used to specify a custom type.
For example, a dock window might set this to ” NET WM WINDOW TYPE DOCK”.

This hint should be set before creating a window.

Version

This hint is available since SDL 3.0.0.

SDL HINT XINPUT ENABLED 1391

SDL HINT XINPUT ENABLED

A variable controlling whether XInput should be used for controller handling.

Header File

Defined in SDL3/SDL hints.h

Syntax

#define SDL_HINT_XINPUT_ENABLED "SDL_XINPUT_ENABLED"

Remarks

The variable can be set to the following values:

� ”0”: XInput is not enabled.

� ”1”: XInput is enabled. (default)

This hint should be set before SDL is initialized.

Version

This hint is available since SDL 3.0.0.

1392 CHAPTER 2. SDL MACROS

SDL JOYSTICK AXIS MAX

The largest value an SDL Joystick’s axis can report.

Header File

Defined in SDL3/SDL joystick.h

Syntax

#define SDL_JOYSTICK_AXIS_MAX 32767

Version

This macro is available since SDL 3.0.0.

See Also

� SDL JOYSTICK AXIS MIN

SDL JOYSTICK AXIS MIN 1393

SDL JOYSTICK AXIS MIN

The smallest value an SDL Joystick’s axis can report.

Header File

Defined in SDL3/SDL joystick.h

Syntax

#define SDL_JOYSTICK_AXIS_MIN -32768

Remarks

This is a negative number!

Version

This macro is available since SDL 3.0.0.

See Also

� SDL JOYSTICK AXIS MAX

1394 CHAPTER 2. SDL MACROS

SDL MAIN USE CALLBACKS

Inform SDL to use the main callbacks instead of main.

Header File

Defined in SDL3/SDL main.h

Syntax

#define SDL_MAIN_USE_CALLBACKS 1

Remarks

SDL does not define this macro, but will check if it is defined when including
SDL main.h. If defined, SDL will expect the app to provide several functions:
SDL AppInit, SDL AppEvent, SDL AppIterate, and SDL AppQuit. The app
should not provide a main function in this case, and doing so will likely cause
the build to fail.

Please see README/main-functions, (or docs/README-
main-functions.md in the source tree) for a more detailed explanation.

Version

This macro is used by the headers since SDL 3.0.0.

See Also

� SDL AppInit

� SDL AppEvent

� SDL AppIterate

� SDL AppQuit

SDL MAX SINT16 1395

SDL MAX SINT16

A signed 16-bit integer type.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_MAX_SINT16 ((Sint16)0x7FFF) /* 32767 */

Version

This macro is available since SDL 3.0.0.

1396 CHAPTER 2. SDL MACROS

SDL MAX SINT32

A signed 32-bit integer type.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_MAX_SINT32 ((Sint32)0x7FFFFFFF) /* 2147483647 */

Version

This macro is available since SDL 3.0.0.

SDL MAX SINT64 1397

SDL MAX SINT64

A signed 64-bit integer type.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_MAX_SINT64 ((Sint64)0x7FFFFFFFFFFFFFFFll) /*

9223372036854775807 */

Version

This macro is available since SDL 3.0.0.

1398 CHAPTER 2. SDL MACROS

SDL MAX SINT8

A signed 8-bit integer type.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_MAX_SINT8 ((Sint8)0x7F) /* 127 */

Version

This macro is available since SDL 3.0.0.

SDL MAX TIME 1399

SDL MAX TIME

SDL times are signed, 64-bit integers representing nanoseconds since the Unix
epoch (Jan 1, 1970).

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_MAX_TIME SDL_MAX_SINT64

Remarks

They can be converted between POSIX time t values with SDL NS TO SECONDS()
and SDL SECONDS TO NS(), and between Windows FILETIME values with
SDL TimeToWindows() and SDL TimeFromWindows().

Version

This macro is available since SDL 3.0.0.

1400 CHAPTER 2. SDL MACROS

SDL MAX UINT16

An unsigned 16-bit integer type.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_MAX_UINT16 ((Uint16)0xFFFF) /* 65535 */

Version

This macro is available since SDL 3.0.0.

SDL MAX UINT32 1401

SDL MAX UINT32

An unsigned 32-bit integer type.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_MAX_UINT32 ((Uint32)0xFFFFFFFFu) /* 4294967295 */

Version

This macro is available since SDL 3.0.0.

1402 CHAPTER 2. SDL MACROS

SDL MAX UINT64

An unsigned 64-bit integer type.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_MAX_UINT64 ((Uint64)0xFFFFFFFFFFFFFFFFull) /*

18446744073709551615 */

Version

This macro is available since SDL 3.0.0.

SDL MAX UINT8 1403

SDL MAX UINT8

An unsigned 8-bit integer type.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_MAX_UINT8 ((Uint8)0xFF) /* 255 */

Version

This macro is available since SDL 3.0.0.

1404 CHAPTER 2. SDL MACROS

SDL MIX MAXVOLUME

Maximum volume allowed in calls to SDL MixAudioFormat.

Header File

Defined in SDL3/SDL audio.h

Syntax

#define SDL_MIX_MAXVOLUME 128

Version

This macro is available since SDL 3.0.0.

SDL MUSTLOCK 1405

SDL MUSTLOCK

Evaluates to true if the surface needs to be locked before access.

Header File

Defined in SDL3/SDL surface.h

Syntax

#define SDL_MUSTLOCK(S) (((S)->flags & SDL_RLEACCEL) != 0)

Version

This macro is available since SDL 3.0.0.

1406 CHAPTER 2. SDL MACROS

SDL MUTEX TIMEDOUT

Synchronization functions return this value if they time out.

Header File

Defined in SDL3/SDL mutex.h

Syntax

#define SDL_MUTEX_TIMEDOUT 1

Remarks

Not all functions can time out; some will block indefinitely.

Version

This macro is available since SDL 3.0.0.

SDL PROP GLOBAL SYSTEM DATE FORMAT NUMBER 1407

SDL PROP GLOBAL SYSTEM DATE FORMAT NUMBER

The SDL DateFormat to use as the preferred date display format for the current
system locale.

Header File

Defined in SDL3/SDL time.h

Syntax

#define SDL_PROP_GLOBAL_SYSTEM_DATE_FORMAT_NUMBER "SDL.time.date_format"

Version

This macro is available since SDL 3.0.0.

See Also

� SDL PROP GLOBAL SYSTEM TIME FORMAT NUMBER

1408 CHAPTER 2. SDL MACROS

SDL PROP GLOBAL SYSTEM TIME FORMAT NUMBER

The SDL TimeFormat to use as the preferred time display format for the current
system locale.

Header File

Defined in SDL3/SDL time.h

Syntax

#define SDL_PROP_GLOBAL_SYSTEM_TIME_FORMAT_NUMBER "SDL.time.time_format"

Version

This macro is available since SDL 3.0.0.

See Also

� SDL PROP GLOBAL SYSTEM DATE FORMAT NUMBER

SDL PROP GLOBAL VIDEO WAYLAND WL DISPLAY POINTER 1409

SDL PROP GLOBAL VIDEO WAYLAND WL DISPLAY POINTER

The pointer to the global wl display object used by the Wayland video back-
end.

Header File

Defined in SDL3/SDL video.h

Syntax

#define SDL_PROP_GLOBAL_VIDEO_WAYLAND_WL_DISPLAY_POINTER

"SDL.video.wayland.wl_display"

Remarks

Can be set before the video subsystem is initialized to import an external
wl display object from an application or toolkit for use in SDL, or read af-
ter initialization to export the wl display used by the Wayland video backend.
Setting this property after the video subsystem has been initialized has no ef-
fect, and reading it when the video subsystem is uninitialized will either return
the user provided value, if one was set prior to initialization, or NULL. See
docs/README-wayland.md for more information.

1410 CHAPTER 2. SDL MACROS

SDL REVISION

This macro is a string describing the source at a particular point in development.

Header File

Defined in SDL3/SDL revision.h

Syntax

#define SDL_REVISION "Some arbitrary string decided at SDL build time"

Remarks

This string is often generated from revision control’s state at build time.
This string can be quite complex and does not follow any standard. For

example, it might be something like ”SDL-prerelease-3.1.1-47-gf687e0732”. It
might also be user-defined at build time, so it’s best to treat it as a clue in
debugging forensics and not something the app will parse in any way.

Version

This macro is available since SDL 3.0.0.

SDL SOFTWARE RENDERER 1411

SDL SOFTWARE RENDERER

The name of the software renderer.

Header File

Defined in SDL3/SDL render.h

Syntax

#define SDL_SOFTWARE_RENDERER "software"

Version

This macro is available since SDL 3.0.0.

1412 CHAPTER 2. SDL MACROS

SDL STANDARD GRAVITY

A constant to represent standard gravity for accelerometer sensors.

Header File

Defined in SDL3/SDL sensor.h

Syntax

#define SDL_STANDARD_GRAVITY 9.80665f

Remarks

The accelerometer returns the current acceleration in SI meters per second
squared. This measurement includes the force of gravity, so a device at rest
will have an value of SDL STANDARD GRAVITY away from the center of the
earth, which is a positive Y value.

Version

This macro is available since SDL 3.0.0.

SDL STRINGIFY ARG 1413

SDL STRINGIFY ARG

Macro useful for building other macros with strings in them.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_STRINGIFY_ARG(arg) #arg

Remarks

For example:

#define LOG_ERROR(X) OutputDebugString(SDL_STRINGIFY_ARG(__FUNCTION__)

": " X "\n")‘

Version

This macro is available since SDL 3.0.0.

1414 CHAPTER 2. SDL MACROS

SDL SwapBE16

Swap a 16-bit value from bigendian to native byte order.

Header File

Defined in SDL3/SDL endian.h

Syntax

#define SDL_SwapBE16(x) SwapOnlyIfNecessary(x)

Return Value

Returns x in native byte order.

Remarks

If this is running on a bigendian system, x is returned unchanged.
This macro never references x more than once, avoiding side effects.

Version

This macro is available since SDL 3.0.0.

SDL SWAPBE32 1415

SDL SwapBE32

Swap a 32-bit value from bigendian to native byte order.

Header File

Defined in SDL3/SDL endian.h

Syntax

#define SDL_SwapBE32(x) SwapOnlyIfNecessary(x)

Return Value

Returns x in native byte order.

Remarks

If this is running on a bigendian system, x is returned unchanged.
This macro never references x more than once, avoiding side effects.

Version

This macro is available since SDL 3.0.0.

1416 CHAPTER 2. SDL MACROS

SDL SwapBE64

Swap a 64-bit value from bigendian to native byte order.

Header File

Defined in SDL3/SDL endian.h

Syntax

#define SDL_SwapBE64(x) SwapOnlyIfNecessary(x)

Return Value

Returns x in native byte order.

Remarks

If this is running on a bigendian system, x is returned unchanged.
This macro never references x more than once, avoiding side effects.

Version

This macro is available since SDL 3.0.0.

SDL SWAPFLOATBE 1417

SDL SwapFloatBE

Swap a floating point value from bigendian to native byte order.

Header File

Defined in SDL3/SDL endian.h

Syntax

#define SDL_SwapFloatBE(x) SwapOnlyIfNecessary(x)

Return Value

Returns x in native byte order.

Remarks

If this is running on a bigendian system, x is returned unchanged.
This macro never references x more than once, avoiding side effects.

Version

This macro is available since SDL 3.0.0.

1418 CHAPTER 2. SDL MACROS

SDL SwapFloatLE

Swap a floating point value from littleendian to native byte order.

Header File

Defined in SDL3/SDL endian.h

Syntax

#define SDL_SwapFloatLE(x) SwapOnlyIfNecessary(x)

Return Value

Returns x in native byte order.

Remarks

If this is running on a littleendian system, x is returned unchanged.
This macro never references x more than once, avoiding side effects.

Version

This macro is available since SDL 3.0.0.

SDL SWAPLE16 1419

SDL SwapLE16

Swap a 16-bit value from littleendian to native byte order.

Header File

Defined in SDL3/SDL endian.h

Syntax

#define SDL_SwapLE16(x) SwapOnlyIfNecessary(x)

Return Value

Returns x in native byte order.

Remarks

If this is running on a littleendian system, x is returned unchanged.
This macro never references x more than once, avoiding side effects.

Version

This macro is available since SDL 3.0.0.

1420 CHAPTER 2. SDL MACROS

SDL SwapLE32

Swap a 32-bit value from littleendian to native byte order.

Header File

Defined in SDL3/SDL endian.h

Syntax

#define SDL_SwapLE32(x) SwapOnlyIfNecessary(x)

Return Value

Returns x in native byte order.

Remarks

If this is running on a littleendian system, x is returned unchanged.
This macro never references x more than once, avoiding side effects.

Version

This macro is available since SDL 3.0.0.

SDL SWAPLE64 1421

SDL SwapLE64

Swap a 64-bit value from littleendian to native byte order.

Header File

Defined in SDL3/SDL endian.h

Syntax

#define SDL_SwapLE64(x) SwapOnlyIfNecessary(x)

Return Value

Returns x in native byte order.

Remarks

If this is running on a littleendian system, x is returned unchanged.
This macro never references x more than once, avoiding side effects.

Version

This macro is available since SDL 3.0.0.

1422 CHAPTER 2. SDL MACROS

SDL TriggerBreakpoint

Attempt to tell an attached debugger to pause.

Header File

Defined in SDL3/SDL assert.h

Syntax

#define SDL_TriggerBreakpoint()

TriggerABreakpointInAPlatformSpecificManner

Remarks

This allows an app to programmatically halt (”break”) the debugger as if it had
hit a breakpoint, allowing the developer to examine program state, etc.

This is a macro–not a function–so that the debugger breaks on the source
code line that used SDL TriggerBreakpoint and not in some random guts of
SDL. SDL assert uses this macro for the same reason.

If the program is not running under a debugger, SDL TriggerBreakpoint
will likely terminate the app, possibly without warning. If the current platform
isn’t supported (SDL doesn’t know how to trigger a breakpoint), this macro
does nothing.

Thread Safety

It is safe to call this function from any thread.

Version

This macro is available since SDL 3.0.0.

SDL TRUE 1423

SDL TRUE

A boolean true.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

#define SDL_TRUE 1

Version

This macro is available since SDL 3.0.0.

See Also

� SDL bool

1424 CHAPTER 2. SDL MACROS

SDL VERSION

Macro to determine SDL version program was compiled against.

Header File

Defined in SDL3/SDL version.h

Syntax

#define SDL_VERSION(x) \

{ \

(x)->major = SDL_MAJOR_VERSION; \

(x)->minor = SDL_MINOR_VERSION; \

(x)->patch = SDL_PATCHLEVEL; \

}

Remarks

This macro fills in an SDL Version structure with the version of the library you
compiled against. This is determined by what header the compiler uses. Note
that if you dynamically linked the library, you might have a slightly newer or
older version at runtime. That version can be determined with SDL GetVersion(),
which, unlike SDL VERSION(), is not a macro.

Version

This macro is available since SDL 3.0.0.

See Also

� SDL Version

� SDL GetVersion

SDL VERSION ATLEAST 1425

SDL VERSION ATLEAST

This macro will evaluate to true if compiled with SDL at least X.Y.Z.

Header File

Defined in SDL3/SDL version.h

Syntax

#define SDL_VERSION_ATLEAST(X, Y, Z) \

(SDL_COMPILEDVERSION >= SDL_VERSIONNUM(X, Y, Z))

Version

This macro is available since SDL 3.0.0.

1426 CHAPTER 2. SDL MACROS

SDL VERSIONNUM

This macro turns the version numbers into a numeric value.

Header File

Defined in SDL3/SDL version.h

Syntax

#define SDL_VERSIONNUM(major, minor, patch) \

((major) << 24 | (minor) << 8 | (patch) << 0)

Remarks

(1,2,3) becomes 0x1000203.

Version

This macro is available since SDL 3.0.0.

SDL WINDOWPOS CENTERED MASK 1427

SDL WINDOWPOS CENTERED MASK

Used to indicate that the window position should be centered.

Header File

Defined in SDL3/SDL video.h

Syntax

#define SDL_WINDOWPOS_CENTERED_MASK 0x2FFF0000u

Version

This macro is available since SDL 3.0.0.

1428 CHAPTER 2. SDL MACROS

SDL WINDOWPOS UNDEFINED MASK

Used to indicate that you don’t care what the window position is.

Header File

Defined in SDL3/SDL video.h

Syntax

#define SDL_WINDOWPOS_UNDEFINED_MASK 0x1FFF0000u

Version

This macro is available since SDL 3.0.0.

Chapter 3

SDL Datatypes

1429

1430 CHAPTER 3. SDL DATATYPES

SDL AssertData

Information about an assertion failure.

Header File

Defined in SDL3/SDL assert.h

Syntax

typedef struct SDL_AssertData

{

SDL_bool always_ignore; /**< SDL_TRUE if app should always continue

when assertion is triggered. */

unsigned int trigger_count; /**< Number of times this assertion has

been triggered. */

const char *condition; /**< A string of this assert’s test code. */

const char *filename; /**< The source file where this assert lives.

*/

int linenum; /**< The line in ‘filename‘ where this assert lives. */

const char *function; /**< The name of the function where this

assert lives. */

const struct SDL_AssertData *next; /**< next item in the linked

list. */

} SDL_AssertData;

Remarks

This structure is filled in with information about a triggered assertion, used by
the assertion handler, then added to the assertion report. This is returned as a
linked list from SDL GetAssertionReport().

Version

This struct is available since SDL 3.0.0.

SDL ASSERTIONHANDLER 1431

SDL AssertionHandler

A callback that fires when an SDL assertion fails.

Header File

Defined in SDL3/SDL assert.h

Syntax

typedef SDL_AssertState (SDLCALL *SDL_AssertionHandler)(const

SDL_AssertData* data, void* userdata);

Function Parameters

data a pointer to the SDL AssertData structure corresponding to
the current assertion

userdata what was passed as userdata to
SDL SetAssertionHandler()

Return Value

Returns an SDL AssertState value indicating how to handle the failure.

Version

This datatype is available since SDL 3.0.0.

1432 CHAPTER 3. SDL DATATYPES

SDL AssertState

Possible outcomes from a triggered assertion.

Header File

Defined in SDL3/SDL assert.h

Syntax

typedef enum SDL_AssertState

{

SDL_ASSERTION_RETRY, /**< Retry the assert immediately. */

SDL_ASSERTION_BREAK, /**< Make the debugger trigger a breakpoint. */

SDL_ASSERTION_ABORT, /**< Terminate the program. */

SDL_ASSERTION_IGNORE, /**< Ignore the assert. */

SDL_ASSERTION_ALWAYS_IGNORE /**< Ignore the assert from now on. */

} SDL_AssertState;

Remarks

When an enabled assertion triggers, it may call the assertion handler (possibly
one provided by the app via SDL SetAssertionHandler), which will return one
of these values, possibly after asking the user.

Then SDL will respond based on this outcome (loop around to retry the
condition, try to break in a debugger, kill the program, or ignore the problem).

Version

This enum is available since SDL 3.0.0.

SDL ATOMICINT 1433

SDL AtomicInt

A type representing an atomic integer value.

Header File

Defined in SDL3/SDL atomic.h

Syntax

typedef struct SDL_AtomicInt { int value; } SDL_AtomicInt;

Remarks

This can be used to manage a value that is synchronized across multiple CPUs
without a race condition; when an app sets a value with SDL AtomicSet all
other threads, regardless of the CPU it is running on, will see that value when
retrieved with SDL AtomicGet, regardless of CPU caches, etc.

This is also useful for atomic compare-and-swap operations: a thread can
change the value as long as its current value matches expectations. When done
in a loop, one can guarantee data consistency across threads without a lock (but
the usual warnings apply: if you don’t know what you’re doing, or you don’t do
it carefully, you can confidently cause any number of disasters with this, so in
most cases, you should use a mutex instead of this!).

This is a struct so people don’t accidentally use numeric operations on it
directly. You have to use SDL Atomic* functions.

Version

This struct is available since SDL 3.0.0.

See Also

� SDL AtomicCompareAndSwap

� SDL AtomicGet

� SDL AtomicSet

� SDL AtomicAdd

1434 CHAPTER 3. SDL DATATYPES

SDL AudioDeviceEvent

Audio device event structure (event.adevice.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_AudioDeviceEvent

{

SDL_EventType type; /**< ::SDL_EVENT_AUDIO_DEVICE_ADDED, or

::SDL_EVENT_AUDIO_DEVICE_REMOVED, or

::SDL_EVENT_AUDIO_DEVICE_FORMAT_CHANGED */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_AudioDeviceID which; /**< SDL_AudioDeviceID for the device

being added or removed or changing */

Uint8 iscapture; /**< zero if an output device, non-zero if a

capture device. */

Uint8 padding1;

Uint8 padding2;

Uint8 padding3;

} SDL_AudioDeviceEvent;

Version

This struct is available since SDL 3.0.0.

SDL AUDIODEVICEID 1435

SDL AudioDeviceID

SDL Audio Device instance IDs.

Header File

Defined in SDL3/SDL audio.h

Syntax

typedef Uint32 SDL_AudioDeviceID;

Remarks

Zero is used to signify an invalid/null device.

Version

This datatype is available since SDL 3.0.0.

1436 CHAPTER 3. SDL DATATYPES

SDL AudioFormat

Audio format flags.

Header File

Defined in SDL3/SDL audio.h

Syntax

typedef Uint16 SDL_AudioFormat;

#define SDL_AUDIO_U8 0x0008 /**< Unsigned 8-bit samples */

#define SDL_AUDIO_S8 0x8008 /**< Signed 8-bit samples */

#define SDL_AUDIO_S16LE 0x8010 /**< Signed 16-bit samples */

#define SDL_AUDIO_S16BE 0x9010 /**< As above, but big-endian byte

order */

#define SDL_AUDIO_S32LE 0x8020 /**< 32-bit integer samples */

#define SDL_AUDIO_S32BE 0x9020 /**< As above, but big-endian byte

order */

#define SDL_AUDIO_F32LE 0x8120 /**< 32-bit floating point samples */

#define SDL_AUDIO_F32BE 0x9120 /**< As above, but big-endian byte

order */

#if SDL_BYTEORDER == SDL_LIL_ENDIAN

#define SDL_AUDIO_S16 SDL_AUDIO_S16LE

#define SDL_AUDIO_S32 SDL_AUDIO_S32LE

#define SDL_AUDIO_F32 SDL_AUDIO_F32LE

#else

#define SDL_AUDIO_S16 SDL_AUDIO_S16BE

#define SDL_AUDIO_S32 SDL_AUDIO_S32BE

#define SDL_AUDIO_F32 SDL_AUDIO_F32BE

#endif

Remarks

These are what the 16 bits in SDL AudioFormat currently mean... (Unspecified
bits are always zero).

++-----------------------sample is signed if set

||

|| ++-----------sample is bigendian if set

|| ||

|| || ++---sample is float if set

SDL AUDIOFORMAT 1437

|| || ||

|| || || +=--sample bit size--++

|| || || || ||

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

There are macros to query these bits.

Version

This datatype is available since SDL 3.0.0.

See Also

� SDL AUDIO BITSIZE

� SDL AUDIO BYTESIZE

� SDL AUDIO ISINT

� SDL AUDIO ISFLOAT

� SDL AUDIO ISBIGENDIAN

� SDL AUDIO ISLITTLEENDIAN

� SDL AUDIO ISSIGNED

� SDL AUDIO ISUNSIGNED

1438 CHAPTER 3. SDL DATATYPES

SDL AudioPostmixCallback

A callback that fires when data is about to be fed to an audio device.

Header File

Defined in SDL3/SDL audio.h

Syntax

typedef void (SDLCALL *SDL_AudioPostmixCallback)(void *userdata, const

SDL_AudioSpec *spec, float *buffer, int buflen);

Function Parameters

userdata a pointer provided by the app through
SDL SetAudioDevicePostmixCallback, for its own use.

spec the current format of audio that is to be submitted to the
audio device.

buffer the buffer of audio samples to be submitted. The callback
can inspect and/or modify this data.

buflen the size of buffer in bytes.

Remarks

This is useful for accessing the final mix, perhaps for writing a visualizer or
applying a final effect to the audio data before playback.

This callback should run as quickly as possible and not block for any signifi-
cant time, as this callback delays submission of data to the audio device, which
can cause audio playback problems.

The postmix callback must be able to handle any audio data format spec-
ified in spec, which can change between callbacks if the audio device changed.
However, this only covers frequency and channel count; data is always provided
here in SDL AUDIO F32 format.

Thread Safety

This will run from a background thread owned by SDL. The application is
responsible for locking resources the callback touches that need to be protected.

Version

This datatype is available since SDL 3.0.0.

SDL AUDIOPOSTMIXCALLBACK 1439

See Also

� SDL SetAudioDevicePostmixCallback

1440 CHAPTER 3. SDL DATATYPES

SDL AudioSpec

Format specifier for audio data.

Header File

Defined in SDL3/SDL audio.h

Syntax

typedef struct SDL_AudioSpec

{

SDL_AudioFormat format; /**< Audio data format */

int channels; /**< Number of channels: 1 mono, 2 stereo,

etc */

int freq; /**< sample rate: sample frames per second

*/

} SDL_AudioSpec;

Version

This struct is available since SDL 3.0.0.

See Also

� SDL AudioFormat

SDL AUDIOSTREAM 1441

SDL AudioStream

The opaque handle that represents an audio stream.

Header File

Defined in SDL3/SDL audio.h

Syntax

typedef struct SDL_AudioStream SDL_AudioStream;

Remarks

SDL AudioStream is an audio conversion interface.

� It can handle resampling data in chunks without generating artifacts, when
it doesn’t have the complete buffer available.

� It can handle incoming data in any variable size.

� It can handle input/output format changes on the fly.

� You push data as you have it, and pull it when you need it

� It can also function as a basic audio data queue even if you just have sound
that needs to pass from one place to another.

� You can hook callbacks up to them when more data is added or requested,
to manage data on-the-fly.

Audio streams are the core of the SDL3 audio interface. You create one or
more of them, bind them to an opened audio device, and feed data to them (or
for recording, consume data from them).

Version

This struct is available since SDL 3.0.0.

See Also

� SDL CreateAudioStream

1442 CHAPTER 3. SDL DATATYPES

SDL AudioStreamCallback

A callback that fires when data passes through an SDL AudioStream.

Header File

Defined in SDL3/SDL audio.h

Syntax

typedef void (SDLCALL *SDL_AudioStreamCallback)(void *userdata,

SDL_AudioStream *stream, int additional_amount, int total_amount);

Function Parameters

stream The SDL audio stream associated with this callback.
additional amount The amount of data, in bytes, that is needed right now.
total amount The total amount of data requested, in bytes, that is re-

quested or available.
userdata An opaque pointer provided by the app for their personal

use.

Remarks

Apps can (optionally) register a callback with an audio stream that is called
when data is added with SDL PutAudioStreamData, or requested with SDL GetAudioStreamData.

Two values are offered here: one is the amount of additional data needed to
satisfy the immediate request (which might be zero if the stream already has
enough data queued) and the other is the total amount being requested. In a
Get call triggering a Put callback, these values can be different. In a Put call
triggering a Get callback, these values are always the same.

Byte counts might be slightly overestimated due to buffering or resampling,
and may change from call to call.

This callback is not required to do anything. Generally this is useful for
adding/reading data on demand, and the app will often put/get data as ap-
propriate, but the system goes on with the data currently available to it if this
callback does nothing.

Thread Safety

This callbacks may run from any thread, so if you need to protect shared data,
you should use SDL LockAudioStream to serialize access; this lock will be held
before your callback is called, so your callback does not need to manage the lock
explicitly.

SDL AUDIOSTREAMCALLBACK 1443

Version

This datatype is available since SDL 3.0.0.

See Also

� SDL SetAudioStreamGetCallback

� SDL SetAudioStreamPutCallback

1444 CHAPTER 3. SDL DATATYPES

SDL BlendFactor

The normalized factor used to multiply pixel components.

Header File

Defined in SDL3/SDL blendmode.h

Syntax

typedef enum SDL_BlendFactor

{

SDL_BLENDFACTOR_ZERO = 0x1, /**< 0, 0, 0, 0 */

SDL_BLENDFACTOR_ONE = 0x2, /**< 1, 1, 1, 1 */

SDL_BLENDFACTOR_SRC_COLOR = 0x3, /**< srcR, srcG, srcB, srcA

*/

SDL_BLENDFACTOR_ONE_MINUS_SRC_COLOR = 0x4, /**< 1-srcR, 1-srcG,

1-srcB, 1-srcA */

SDL_BLENDFACTOR_SRC_ALPHA = 0x5, /**< srcA, srcA, srcA, srcA

*/

SDL_BLENDFACTOR_ONE_MINUS_SRC_ALPHA = 0x6, /**< 1-srcA, 1-srcA,

1-srcA, 1-srcA */

SDL_BLENDFACTOR_DST_COLOR = 0x7, /**< dstR, dstG, dstB, dstA

*/

SDL_BLENDFACTOR_ONE_MINUS_DST_COLOR = 0x8, /**< 1-dstR, 1-dstG,

1-dstB, 1-dstA */

SDL_BLENDFACTOR_DST_ALPHA = 0x9, /**< dstA, dstA, dstA, dstA

*/

SDL_BLENDFACTOR_ONE_MINUS_DST_ALPHA = 0xA /**< 1-dstA, 1-dstA,

1-dstA, 1-dstA */

} SDL_BlendFactor;

Remarks

The blend factors are multiplied with the pixels from a drawing operation (src)
and the pixels from the render target (dst) before the blend operation. The
comma-separated factors listed above are always applied in the component order
red, green, blue, and alpha.

Version

This enum is available since SDL 3.0.0.

SDL BLENDMODE 1445

SDL BlendMode

An enumeration of blend modes used in drawing operations.

Header File

Defined in SDL3/SDL blendmode.h

Syntax

typedef enum SDL_BlendMode

{

SDL_BLENDMODE_NONE = 0x00000000, /**< no blending

dstRGBA = srcRGBA */

SDL_BLENDMODE_BLEND = 0x00000001, /**< alpha blending

dstRGB = (srcRGB * srcA) +

(dstRGB * (1-srcA))

dstA = srcA + (dstA *

(1-srcA)) */

SDL_BLENDMODE_ADD = 0x00000002, /**< additive blending

dstRGB = (srcRGB * srcA) +

dstRGB

dstA = dstA */

SDL_BLENDMODE_MOD = 0x00000004, /**< color modulate

dstRGB = srcRGB * dstRGB

dstA = dstA */

SDL_BLENDMODE_MUL = 0x00000008, /**< color multiply

dstRGB = (srcRGB * dstRGB) +

(dstRGB * (1-srcA))

dstA = dstA */

SDL_BLENDMODE_INVALID = 0x7FFFFFFF

/* Additional custom blend modes can be returned by

SDL_ComposeCustomBlendMode() */

} SDL_BlendMode;

Remarks

Note that additional values may be obtained from SDL ComposeCustomBlendMode.

Version

This enum is available since SDL 3.0.0.

1446 CHAPTER 3. SDL DATATYPES

See Also

� SDL ComposeCustomBlendMode

SDL BLENDOPERATION 1447

SDL BlendOperation

The blend operation used when combining source and destination pixel compo-
nents.

Header File

Defined in SDL3/SDL blendmode.h

Syntax

typedef enum SDL_BlendOperation

{

SDL_BLENDOPERATION_ADD = 0x1, /**< dst + src: supported by

all renderers */

SDL_BLENDOPERATION_SUBTRACT = 0x2, /**< src - dst : supported

by D3D9, D3D11, OpenGL, OpenGLES */

SDL_BLENDOPERATION_REV_SUBTRACT = 0x3, /**< dst - src : supported

by D3D9, D3D11, OpenGL, OpenGLES */

SDL_BLENDOPERATION_MINIMUM = 0x4, /**< min(dst, src) :

supported by D3D9, D3D11 */

SDL_BLENDOPERATION_MAXIMUM = 0x5 /**< max(dst, src) :

supported by D3D9, D3D11 */

} SDL_BlendOperation;

Version

This enum is available since SDL 3.0.0.

1448 CHAPTER 3. SDL DATATYPES

SDL BlitMap

An opaque type used in SDL Surface.

Header File

Defined in SDL3/SDL surface.h

Syntax

typedef struct SDL_BlitMap SDL_BlitMap;

Remarks

This is used by SDL to keep track of how blit operations should work internally;
it is not for use directly by applications.

Version

This struct is available since SDL 3.0.0.

SDL BOOL 1449

SDL bool

A boolean type: true or false.

Header File

Defined in SDL3/SDL stdinc.h

Syntax

typedef int SDL_bool;

Version

This datatype is available since SDL 3.0.0.

See Also

� SDL TRUE

� SDL FALSE

1450 CHAPTER 3. SDL DATATYPES

SDL Camera

The opaque structure used to identify an opened SDL camera.

Header File

Defined in SDL3/SDL camera.h

Syntax

struct SDL_Camera;

Version

This struct is available since SDL 3.0.0.

SDL CAMERADEVICEEVENT 1451

SDL CameraDeviceEvent

Camera device event structure (event.cdevice.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_CameraDeviceEvent

{

SDL_EventType type; /**< ::SDL_EVENT_CAMERA_DEVICE_ADDED,

::SDL_EVENT_CAMERA_DEVICE_REMOVED,

::SDL_EVENT_CAMERA_DEVICE_APPROVED,

::SDL_EVENT_CAMERA_DEVICE_DENIED */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_CameraDeviceID which; /**< SDL_CameraDeviceID for the device

being added or removed or changing */

} SDL_CameraDeviceEvent;

Version

This struct is available since SDL 3.0.0.

1452 CHAPTER 3. SDL DATATYPES

SDL CameraDeviceID

This is a unique ID for a camera device for the time it is connected to the
system, and is never reused for the lifetime of the application.

Header File

Defined in SDL3/SDL camera.h

Syntax

typedef Uint32 SDL_CameraDeviceID;

Remarks

If the device is disconnected and reconnected, it will get a new ID.
The ID value starts at 1 and increments from there. The value 0 is an invalid

ID.

Version

This datatype is available since SDL 3.0.0.

See Also

� SDL GetCameraDevices

SDL CAMERAPOSITION 1453

SDL CameraPosition

The position of camera in relation to system device.

Header File

Defined in SDL3/SDL camera.h

Syntax

typedef enum SDL_CameraPosition

{

SDL_CAMERA_POSITION_UNKNOWN,

SDL_CAMERA_POSITION_FRONT_FACING,

SDL_CAMERA_POSITION_BACK_FACING

} SDL_CameraPosition;

Version

This enum is available since SDL 3.0.0.

See Also

� SDL GetCameraDevicePosition

1454 CHAPTER 3. SDL DATATYPES

SDL CameraSpec

The details of an output format for a camera device.

Header File

Defined in SDL3/SDL camera.h

Syntax

typedef struct SDL_CameraSpec

{

SDL_PixelFormatEnum format; /**< Frame format */

int width; /**< Frame width */

int height; /**< Frame height */

int interval_numerator; /**< Frame rate numerator ((dom / num) ==

fps, (num / dom) == duration) */

int interval_denominator; /**< Frame rate demoninator ((dom / num)

== fps, (num / dom) == duration) */

} SDL_CameraSpec;

Remarks

Cameras often support multiple formats; each one will be encapsulated in this
struct.

Version

This struct is available since SDL 3.0.0.

See Also

� SDL GetCameraDeviceSupportedFormats

� SDL GetCameraFormat

SDL CHROMALOCATION 1455

SDL ChromaLocation

The chroma sample location.

Header File

Defined in SDL3/SDL pixels.h

Syntax

typedef enum SDL_ChromaLocation

{

SDL_CHROMA_LOCATION_NONE = 0, /**< RGB, no chroma sampling */

SDL_CHROMA_LOCATION_LEFT = 1, /**< In MPEG-2, MPEG-4, and AVC, Cb

and Cr are taken on midpoint of the left-edge of the 2x2 square.

In other words, they have the same horizontal location as the

top-left pixel, but is shifted one-half pixel down vertically. */

SDL_CHROMA_LOCATION_CENTER = 2, /**< In JPEG/JFIF, H.261, and

MPEG-1, Cb and Cr are taken at the center of the 2x2 square. In

other words, they are offset one-half pixel to the right and

one-half pixel down compared to the top-left pixel. */

SDL_CHROMA_LOCATION_TOPLEFT = 3 /**< In HEVC for BT.2020 and BT.2100

content (in particular on Blu-rays), Cb and Cr are sampled at

the same location as the group’s top-left Y pixel ("co-sited",

"co-located"). */

} SDL_ChromaLocation;

Version

This enum is available since SDL 3.0.0.

1456 CHAPTER 3. SDL DATATYPES

SDL ClipboardCleanupCallback

Callback function that will be called when the clipboard is cleared, or new data
is set.

Header File

Defined in SDL3/SDL clipboard.h

Syntax

typedef void (SDLCALL *SDL_ClipboardCleanupCallback)(void *userdata);

Function Parameters

userdata A pointer to provided user data

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetClipboardData

SDL CLIPBOARDDATACALLBACK 1457

SDL ClipboardDataCallback

Callback function that will be called when data for the specified mime-type is
requested by the OS.

Header File

Defined in SDL3/SDL clipboard.h

Syntax

typedef const void *(SDLCALL *SDL_ClipboardDataCallback)(void *userdata,

const char *mime_type, size_t *size);

Function Parameters

userdata A pointer to provided user data
mime type The requested mime-type
size A pointer filled in with the length of the returned data

Return Value

Returns a pointer to the data for the provided mime-type. Returning NULL or
setting length to 0 will cause no data to be sent to the ”receiver”. It is up to the
receiver to handle this. Essentially returning no data is more or less undefined
behavior and may cause breakage in receiving applications. The returned data
will not be freed so it needs to be retained and dealt with internally.

Remarks

The callback function is called with NULL as the mime type when the clip-
board is cleared or new data is set. The clipboard is automatically cleared in
SDL Quit().

Version

This function is available since SDL 3.0.0.

See Also

� SDL SetClipboardData

1458 CHAPTER 3. SDL DATATYPES

SDL ClipboardEvent

An event triggered when the clipboard contents have changed (event.clipboard.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_ClipboardEvent

{

SDL_EventType type; /**< ::SDL_EVENT_CLIPBOARD_UPDATE */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

} SDL_ClipboardEvent;

Version

This struct is available since SDL 3.0.0.

SDL COLOR 1459

SDL Color

A structure that represents a color as RGBA components.

Header File

Defined in SDL3/SDL pixels.h

Syntax

typedef struct SDL_Color

{

Uint8 r;

Uint8 g;

Uint8 b;

Uint8 a;

} SDL_Color;

Remarks

The bits of this structure can be directly reinterpreted as an integer-packed color
which uses the SDL PIXELFORMAT RGBA32 format (SDL PIXELFORMAT ABGR8888
on little-endian systems and SDL PIXELFORMAT RGBA8888 on big-endian
systems).

Version

This struct is available since SDL 3.0.0.

1460 CHAPTER 3. SDL DATATYPES

SDL ColorPrimaries

The color primaries, as described by https://www.itu.int/rec/T-REC-H.273-
201612-S/en

Header File

Defined in SDL3/SDL pixels.h

Syntax

typedef enum SDL_ColorPrimaries

{

SDL_COLOR_PRIMARIES_UNKNOWN = 0,

SDL_COLOR_PRIMARIES_BT709 = 1, /**< ITU-R BT.709-6 */

SDL_COLOR_PRIMARIES_UNSPECIFIED = 2,

SDL_COLOR_PRIMARIES_BT470M = 4, /**< ITU-R BT.470-6

System M */

SDL_COLOR_PRIMARIES_BT470BG = 5, /**< ITU-R BT.470-6

System B, G / ITU-R BT.601-7 625 */

SDL_COLOR_PRIMARIES_BT601 = 6, /**< ITU-R BT.601-7 525 */

SDL_COLOR_PRIMARIES_SMPTE240 = 7, /**< SMPTE 240M,

functionally the same as SDL_COLOR_PRIMARIES_BT601 */

SDL_COLOR_PRIMARIES_GENERIC_FILM = 8, /**< Generic film (color

filters using Illuminant C) */

SDL_COLOR_PRIMARIES_BT2020 = 9, /**< ITU-R BT.2020-2 /

ITU-R BT.2100-0 */

SDL_COLOR_PRIMARIES_XYZ = 10, /**< SMPTE ST 428-1 */

SDL_COLOR_PRIMARIES_SMPTE431 = 11, /**< SMPTE RP 431-2 */

SDL_COLOR_PRIMARIES_SMPTE432 = 12, /**< SMPTE EG 432-1 / DCI

P3 */

SDL_COLOR_PRIMARIES_EBU3213 = 22, /**< EBU Tech. 3213-E */

SDL_COLOR_PRIMARIES_CUSTOM = 31

} SDL_ColorPrimaries;

Version

This enum is available since SDL 3.0.0.

SDL COLORRANGE 1461

SDL ColorRange

The color range, as described by https://www.itu.int/rec/R-REC-BT.2100-2-
201807-I/en

Header File

Defined in SDL3/SDL pixels.h

Syntax

typedef enum SDL_ColorRange

{

SDL_COLOR_RANGE_UNKNOWN = 0,

SDL_COLOR_RANGE_LIMITED = 1, /**< Narrow range, e.g. 16-235 for

8-bit RGB and luma, and 16-240 for 8-bit chroma */

SDL_COLOR_RANGE_FULL = 2 /**< Full range, e.g. 0-255 for 8-bit RGB

and luma, and 1-255 for 8-bit chroma */

} SDL_ColorRange;

Version

This enum is available since SDL 3.0.0.

1462 CHAPTER 3. SDL DATATYPES

SDL ColorType

The color type

Header File

Defined in SDL3/SDL pixels.h

Syntax

typedef enum SDL_ColorType

{

SDL_COLOR_TYPE_UNKNOWN = 0,

SDL_COLOR_TYPE_RGB = 1,

SDL_COLOR_TYPE_YCBCR = 2

} SDL_ColorType;

Version

This enum is available since SDL 3.0.0.

SDL COMMONEVENT 1463

SDL CommonEvent

Fields shared by every event

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_CommonEvent

{

Uint32 type; /**< Event type, shared with all events, Uint32 to

cover user events which are not in the SDL_EventType enumeration

*/

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

} SDL_CommonEvent;

Version

This struct is available since SDL 3.0.0.

1464 CHAPTER 3. SDL DATATYPES

SDL Condition

A means to block multiple threads until a condition is satisfied.

Header File

Defined in SDL3/SDL mutex.h

Syntax

typedef struct SDL_Condition SDL_Condition;

Remarks

Condition variables, paired with an SDL Mutex, let an app halt multiple threads
until a condition has occurred, at which time the app can release one or all
waiting threads.

Wikipedia has a thorough explanation of the concept:
https://en.wikipedia.org/wiki/Condition variable

Version

This struct is available since SDL 3.0.0.

SDL DATEFORMAT 1465

SDL DateFormat

The preferred date format of the current system locale.

Header File

Defined in SDL3/SDL time.h

Syntax

typedef enum SDL_DateFormat

{

SDL_DATE_FORMAT_YYYYMMDD = 0, /**< Year/Month/Day */

SDL_DATE_FORMAT_DDMMYYYY = 1, /**< Day/Month/Year */

SDL_DATE_FORMAT_MMDDYYYY = 2 /**< Month/Day/Year */

} SDL_DateFormat;

Version

This enum is available since SDL 3.0.0.

See Also

� SDL PROP GLOBAL SYSTEM DATE FORMAT NUMBER

1466 CHAPTER 3. SDL DATATYPES

SDL DateTime

A structure holding a calendar date and time broken down into its components.

Header File

Defined in SDL3/SDL time.h

Syntax

typedef struct SDL_DateTime

{

int year; /**< Year */

int month; /**< Month [01-12] */

int day; /**< Day of the month [01-31] */

int hour; /**< Hour [0-23] */

int minute; /**< Minute [0-59] */

int second; /**< Seconds [0-60] */

int nanosecond; /**< Nanoseconds [0-999999999] */

int day_of_week; /**< Day of the week [0-6] (0 being Sunday)

*/

int utc_offset; /**< Seconds east of UTC */

} SDL_DateTime;

Version

This struct is available since SDL 3.0.0.

SDL DIALOGFILECALLBACK 1467

SDL DialogFileCallback

Callback used by file dialog functions.

Header File

Defined in SDL3/SDL dialog.h

Syntax

typedef void(SDLCALL *SDL_DialogFileCallback)(void *userdata, const char

* const *filelist, int filter);

Remarks

The specific usage is described in each function.
If filelist is... - NULL, an error occured. Details can be obtained with

SDL GetError(). - A pointer to NULL, the user either didn’t choose any file
or canceled the dialog. - A pointer to non- NULL, the user chose one or more
files. The argument is a null-terminated list of pointers to C strings, each con-
taining a path.

The filelist argument does not need to be freed; it will automatically be freed
when the callback returns.

The filter argument is the index of the filter that was selected, or one more
than the size of the list (therefore the index of the terminating NULL entry) if
no filter was selected, or -1 if the platform or method doesn’t support fetching
the selected filter.

Version

This datatype is available since SDL 3.0.0.

See Also

� SDL DialogFileFilter

� SDL ShowOpenFileDialog

� SDL ShowSaveFileDialog

� SDL ShowOpenFolderDialog

1468 CHAPTER 3. SDL DATATYPES

SDL DialogFileFilter

An entry for filters for file dialogs.

Header File

Defined in SDL3/SDL dialog.h

Syntax

typedef struct SDL_DialogFileFilter

{

const char *name;

const char *pattern;

} SDL_DialogFileFilter;

Remarks

name is a user-readable label for the filter (for example, ”Office document”).
pattern is a semicolon-separated list of file extensions (for example, ”doc;docx”).
File extensions may only contain alphanumeric characters, hyphens, underscores
and periods. Alternatively, the whole string can be a single asterisk (”*”), which
serves as an ”All files” filter.

Version

This struct is available since SDL 3.0.0.

See Also

� SDL DialogFileCallback

� SDL ShowOpenFileDialog

� SDL ShowSaveFileDialog

� SDL ShowOpenFolderDialog

SDL DISPLAYEVENT 1469

SDL DisplayEvent

Display state change event data (event.display.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_DisplayEvent

{

SDL_EventType type; /**< ::SDL_DISPLAYEVENT_* */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_DisplayID displayID;/**< The associated display */

Sint32 data1; /**< event dependent data */

} SDL_DisplayEvent;

Version

This struct is available since SDL 3.0.0.

1470 CHAPTER 3. SDL DATATYPES

SDL DisplayMode

The structure that defines a display mode.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef struct SDL_DisplayMode

{

SDL_DisplayID displayID; /**< the display this mode is associated

with */

SDL_PixelFormatEnum format; /**< pixel format */

int w; /**< width */

int h; /**< height */

float pixel_density; /**< scale converting size to pixels (e.g.

a 1920x1080 mode with 2.0 scale would have 3840x2160 pixels) */

float refresh_rate; /**< refresh rate (or zero for unspecified)

*/

void *driverdata; /**< driver-specific data, initialize to 0

*/

} SDL_DisplayMode;

Version

This struct is available since SDL 3.0.0.

See Also

� SDL GetFullscreenDisplayModes

� SDL GetDesktopDisplayMode

� SDL GetCurrentDisplayMode

� SDL SetWindowFullscreenMode

� SDL GetWindowFullscreenMode

SDL DISPLAYORIENTATION 1471

SDL DisplayOrientation

Display orientation values; the way a display is rotated.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef enum SDL_DisplayOrientation

{

SDL_ORIENTATION_UNKNOWN, /**< The display orientation can’t

be determined */

SDL_ORIENTATION_LANDSCAPE, /**< The display is in landscape

mode, with the right side up, relative to portrait mode */

SDL_ORIENTATION_LANDSCAPE_FLIPPED, /**< The display is in landscape

mode, with the left side up, relative to portrait mode */

SDL_ORIENTATION_PORTRAIT, /**< The display is in portrait mode

*/

SDL_ORIENTATION_PORTRAIT_FLIPPED /**< The display is in portrait

mode, upside down */

} SDL_DisplayOrientation;

Version

This enum is available since SDL 3.0.0.

1472 CHAPTER 3. SDL DATATYPES

SDL DropEvent

An event used to drop text or request a file open by the system (event.drop.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_DropEvent

{

SDL_EventType type; /**< ::SDL_EVENT_DROP_BEGIN or

::SDL_EVENT_DROP_FILE or ::SDL_EVENT_DROP_TEXT or

::SDL_EVENT_DROP_COMPLETE or ::SDL_EVENT_DROP_POSITION */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_WindowID windowID; /**< The window that was dropped on, if any */

float x; /**< X coordinate, relative to window (not on

begin) */

float y; /**< Y coordinate, relative to window (not on

begin) */

char *source; /**< The source app that sent this drop event, or

NULL if that isn’t available */

char *data; /**< The text for SDL_EVENT_DROP_TEXT and the file

name for SDL_EVENT_DROP_FILE, NULL for other events */

} SDL_DropEvent;

Remarks

The data is owned by SDL and should be copied if the application wants to
hold onto it beyond the scope of handling this event. Do not free it!

Version

This struct is available since SDL 3.0.0.

SDL EGLATTRIBARRAYCALLBACK 1473

SDL EGLAttribArrayCallback

EGL attribute initialization callback types.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef SDL_EGLAttrib *(SDLCALL *SDL_EGLAttribArrayCallback)(void);

Version

This datatype is available since SDL 3.0.0.

1474 CHAPTER 3. SDL DATATYPES

SDL EGLDisplay

Opaque EGL types.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef void *SDL_EGLDisplay;

Version

This datatype is available since SDL 3.0.0.

SDL EVENT 1475

SDL Event

The structure for all events in SDL.

Header File

Defined in SDL3/SDL events.h

Syntax

typedef union SDL_Event

{

Uint32 type; /**< Event type, shared with all

events, Uint32 to cover user events which are not in the

SDL_EventType enumeration */

SDL_CommonEvent common; /**< Common event data */

SDL_DisplayEvent display; /**< Display event data */

SDL_WindowEvent window; /**< Window event data */

SDL_KeyboardDeviceEvent kdevice; /**< Keyboard device change

event data */

SDL_KeyboardEvent key; /**< Keyboard event data */

SDL_TextEditingEvent edit; /**< Text editing event data */

SDL_TextInputEvent text; /**< Text input event data */

SDL_MouseDeviceEvent mdevice; /**< Mouse device change event

data */

SDL_MouseMotionEvent motion; /**< Mouse motion event data */

SDL_MouseButtonEvent button; /**< Mouse button event data */

SDL_MouseWheelEvent wheel; /**< Mouse wheel event data */

SDL_JoyDeviceEvent jdevice; /**< Joystick device change

event data */

SDL_JoyAxisEvent jaxis; /**< Joystick axis event data */

SDL_JoyBallEvent jball; /**< Joystick ball event data */

SDL_JoyHatEvent jhat; /**< Joystick hat event data */

SDL_JoyButtonEvent jbutton; /**< Joystick button event data

*/

SDL_JoyBatteryEvent jbattery; /**< Joystick battery event data

*/

SDL_GamepadDeviceEvent gdevice; /**< Gamepad device event data */

SDL_GamepadAxisEvent gaxis; /**< Gamepad axis event data */

SDL_GamepadButtonEvent gbutton; /**< Gamepad button event data */

SDL_GamepadTouchpadEvent gtouchpad; /**< Gamepad touchpad event data

*/

SDL_GamepadSensorEvent gsensor; /**< Gamepad sensor event data */

SDL_AudioDeviceEvent adevice; /**< Audio device event data */

SDL_CameraDeviceEvent cdevice; /**< Camera device event data */

SDL_SensorEvent sensor; /**< Sensor event data */

SDL_QuitEvent quit; /**< Quit request event data */

SDL_UserEvent user; /**< Custom event data */

1476 CHAPTER 3. SDL DATATYPES

SDL_TouchFingerEvent tfinger; /**< Touch finger event data */

SDL_PenTipEvent ptip; /**< Pen tip touching or leaving

drawing surface */

SDL_PenMotionEvent pmotion; /**< Pen change in position,

pressure, or angle */

SDL_PenButtonEvent pbutton; /**< Pen button press */

SDL_DropEvent drop; /**< Drag and drop event data */

SDL_ClipboardEvent clipboard; /**< Clipboard event data */

/* This is necessary for ABI compatibility between Visual C++ and

GCC.

Visual C++ will respect the push pack pragma and use 52 bytes

(size of

SDL_TextEditingEvent, the largest structure for 32-bit and 64-bit

architectures) for this union, and GCC will use the alignment of

the

largest datatype within the union, which is 8 bytes on 64-bit

architectures.

So... we’ll add padding to force the size to be the same for both.

On architectures where pointers are 16 bytes, this needs rounding

up to

the next multiple of 16, 64, and on architectures where pointers

are

even larger the size of SDL_UserEvent will dominate as being 3

pointers.

*/

Uint8 padding[128];

} SDL_Event;

Version

This struct is available since SDL 3.0.0.

SDL EVENTFILTER 1477

SDL EventFilter

A function pointer used for callbacks that watch the event queue.

Header File

Defined in SDL3/SDL events.h

Syntax

typedef int (SDLCALL *SDL_EventFilter)(void *userdata, SDL_Event *event);

Function Parameters

userdata what was passed as userdata to SDL SetEventFilter() or
SDL AddEventWatch, etc

event the event that triggered the callback

Return Value

Returns 1 to permit event to be added to the queue, and 0 to disallow it. When
used with SDL AddEventWatch, the return value is ignored.

Thread Safety

SDL may call this callback at any time from any thread; the application is
responsible for locking resources the callback touches that need to be protected.

Version

This datatype is available since SDL 3.0.0.

See Also

� SDL SetEventFilter

� SDL AddEventWatch

1478 CHAPTER 3. SDL DATATYPES

SDL EventType

The types of events that can be delivered.

Header File

Defined in SDL3/SDL events.h

Syntax

typedef enum SDL_EventType

{

SDL_EVENT_FIRST = 0, /**< Unused (do not remove) */

/* Application events */

SDL_EVENT_QUIT = 0x100, /**< User-requested quit */

/* These application events have special meaning on iOS, see

README-ios.md for details */

SDL_EVENT_TERMINATING, /**< The application is being terminated

by the OS

Called on iOS in

applicationWillTerminate()

Called on Android in onDestroy()

*/

SDL_EVENT_LOW_MEMORY, /**< The application is low on memory,

free memory if possible.

Called on iOS in

applicationDidReceiveMemoryWarning()

Called on Android in onLowMemory()

*/

SDL_EVENT_WILL_ENTER_BACKGROUND, /**< The application is about to

enter the background

Called on iOS in

applicationWillResignActive()

Called on Android in onPause()

*/

SDL_EVENT_DID_ENTER_BACKGROUND, /**< The application did enter the

background and may not get CPU for some time

Called on iOS in

applicationDidEnterBackground()

Called on Android in onPause()

*/

SDL_EVENT_WILL_ENTER_FOREGROUND, /**< The application is about to

enter the foreground

Called on iOS in

applicationWillEnterForeground()

Called on Android in onResume()

SDL EVENTTYPE 1479

*/

SDL_EVENT_DID_ENTER_FOREGROUND, /**< The application is now

interactive

Called on iOS in

applicationDidBecomeActive()

Called on Android in onResume()

*/

SDL_EVENT_LOCALE_CHANGED, /**< The user’s locale preferences have

changed. */

SDL_EVENT_SYSTEM_THEME_CHANGED, /**< The system theme changed */

/* Display events */

/* 0x150 was SDL_DISPLAYEVENT, reserve the number for sdl2-compat */

SDL_EVENT_DISPLAY_ORIENTATION = 0x151, /**< Display orientation has

changed to data1 */

SDL_EVENT_DISPLAY_ADDED, /**< Display has been added to

the system */

SDL_EVENT_DISPLAY_REMOVED, /**< Display has been removed

from the system */

SDL_EVENT_DISPLAY_MOVED, /**< Display has changed position

*/

SDL_EVENT_DISPLAY_CONTENT_SCALE_CHANGED, /**< Display has changed

content scale */

SDL_EVENT_DISPLAY_HDR_STATE_CHANGED, /**< Display HDR properties

have changed */

SDL_EVENT_DISPLAY_FIRST = SDL_EVENT_DISPLAY_ORIENTATION,

SDL_EVENT_DISPLAY_LAST = SDL_EVENT_DISPLAY_HDR_STATE_CHANGED,

/* Window events */

/* 0x200 was SDL_WINDOWEVENT, reserve the number for sdl2-compat */

/* 0x201 was SDL_EVENT_SYSWM, reserve the number for sdl2-compat */

SDL_EVENT_WINDOW_SHOWN = 0x202, /**< Window has been shown */

SDL_EVENT_WINDOW_HIDDEN, /**< Window has been hidden */

SDL_EVENT_WINDOW_EXPOSED, /**< Window has been exposed and

should be redrawn */

SDL_EVENT_WINDOW_MOVED, /**< Window has been moved to data1,

data2 */

SDL_EVENT_WINDOW_RESIZED, /**< Window has been resized to

data1xdata2 */

SDL_EVENT_WINDOW_PIXEL_SIZE_CHANGED,/**< The pixel size of the

window has changed to data1xdata2 */

SDL_EVENT_WINDOW_MINIMIZED, /**< Window has been minimized */

SDL_EVENT_WINDOW_MAXIMIZED, /**< Window has been maximized */

SDL_EVENT_WINDOW_RESTORED, /**< Window has been restored to

normal size and position */

SDL_EVENT_WINDOW_MOUSE_ENTER, /**< Window has gained mouse focus */

SDL_EVENT_WINDOW_MOUSE_LEAVE, /**< Window has lost mouse focus */

1480 CHAPTER 3. SDL DATATYPES

SDL_EVENT_WINDOW_FOCUS_GAINED, /**< Window has gained keyboard

focus */

SDL_EVENT_WINDOW_FOCUS_LOST, /**< Window has lost keyboard focus

*/

SDL_EVENT_WINDOW_CLOSE_REQUESTED, /**< The window manager requests

that the window be closed */

SDL_EVENT_WINDOW_TAKE_FOCUS, /**< Window is being offered a focus

(should SetWindowInputFocus() on itself or a subwindow, or

ignore) */

SDL_EVENT_WINDOW_HIT_TEST, /**< Window had a hit test that

wasn’t SDL_HITTEST_NORMAL */

SDL_EVENT_WINDOW_ICCPROF_CHANGED, /**< The ICC profile of the

window’s display has changed */

SDL_EVENT_WINDOW_DISPLAY_CHANGED, /**< Window has been moved to

display data1 */

SDL_EVENT_WINDOW_DISPLAY_SCALE_CHANGED, /**< Window display scale

has been changed */

SDL_EVENT_WINDOW_OCCLUDED, /**< The window has been occluded */

SDL_EVENT_WINDOW_ENTER_FULLSCREEN, /**< The window has entered

fullscreen mode */

SDL_EVENT_WINDOW_LEAVE_FULLSCREEN, /**< The window has left

fullscreen mode */

SDL_EVENT_WINDOW_DESTROYED, /**< The window with the associated

ID is being or has been destroyed. If this message is being

handled

in an event watcher, the window

handle is still valid and

can still be used to

retrieve any userdata

associated with the window.

Otherwise, the handle has

already been destroyed and

all resources

associated with it are invalid

*/

SDL_EVENT_WINDOW_PEN_ENTER, /**< Window has gained focus of the

pressure-sensitive pen with ID "data1" */

SDL_EVENT_WINDOW_PEN_LEAVE, /**< Window has lost focus of the

pressure-sensitive pen with ID "data1" */

SDL_EVENT_WINDOW_FIRST = SDL_EVENT_WINDOW_SHOWN,

SDL_EVENT_WINDOW_LAST = SDL_EVENT_WINDOW_PEN_LEAVE,

/* Keyboard events */

SDL_EVENT_KEY_DOWN = 0x300, /**< Key pressed */

SDL_EVENT_KEY_UP, /**< Key released */

SDL_EVENT_TEXT_EDITING, /**< Keyboard text editing

(composition) */

SDL_EVENT_TEXT_INPUT, /**< Keyboard text input */

SDL_EVENT_KEYMAP_CHANGED, /**< Keymap changed due to a system

event such as an

SDL EVENTTYPE 1481

input language or keyboard

layout change. */

SDL_EVENT_KEYBOARD_ADDED, /**< A new keyboard has been

inserted into the system */

SDL_EVENT_KEYBOARD_REMOVED, /**< A keyboard has been removed */

/* Mouse events */

SDL_EVENT_MOUSE_MOTION = 0x400, /**< Mouse moved */

SDL_EVENT_MOUSE_BUTTON_DOWN, /**< Mouse button pressed */

SDL_EVENT_MOUSE_BUTTON_UP, /**< Mouse button released */

SDL_EVENT_MOUSE_WHEEL, /**< Mouse wheel motion */

SDL_EVENT_MOUSE_ADDED, /**< A new mouse has been inserted

into the system */

SDL_EVENT_MOUSE_REMOVED, /**< A mouse has been removed */

/* Joystick events */

SDL_EVENT_JOYSTICK_AXIS_MOTION = 0x600, /**< Joystick axis motion */

SDL_EVENT_JOYSTICK_BALL_MOTION, /**< Joystick trackball motion

*/

SDL_EVENT_JOYSTICK_HAT_MOTION, /**< Joystick hat position

change */

SDL_EVENT_JOYSTICK_BUTTON_DOWN, /**< Joystick button pressed */

SDL_EVENT_JOYSTICK_BUTTON_UP, /**< Joystick button released */

SDL_EVENT_JOYSTICK_ADDED, /**< A new joystick has been

inserted into the system */

SDL_EVENT_JOYSTICK_REMOVED, /**< An opened joystick has

been removed */

SDL_EVENT_JOYSTICK_BATTERY_UPDATED, /**< Joystick battery level

change */

SDL_EVENT_JOYSTICK_UPDATE_COMPLETE, /**< Joystick update is

complete */

/* Gamepad events */

SDL_EVENT_GAMEPAD_AXIS_MOTION = 0x650, /**< Gamepad axis motion */

SDL_EVENT_GAMEPAD_BUTTON_DOWN, /**< Gamepad button pressed */

SDL_EVENT_GAMEPAD_BUTTON_UP, /**< Gamepad button released */

SDL_EVENT_GAMEPAD_ADDED, /**< A new gamepad has been

inserted into the system */

SDL_EVENT_GAMEPAD_REMOVED, /**< An opened gamepad has been

removed */

SDL_EVENT_GAMEPAD_REMAPPED, /**< The gamepad mapping was

updated */

SDL_EVENT_GAMEPAD_TOUCHPAD_DOWN, /**< Gamepad touchpad was

touched */

SDL_EVENT_GAMEPAD_TOUCHPAD_MOTION, /**< Gamepad touchpad finger was

moved */

SDL_EVENT_GAMEPAD_TOUCHPAD_UP, /**< Gamepad touchpad finger was

lifted */

SDL_EVENT_GAMEPAD_SENSOR_UPDATE, /**< Gamepad sensor was updated

*/

1482 CHAPTER 3. SDL DATATYPES

SDL_EVENT_GAMEPAD_UPDATE_COMPLETE, /**< Gamepad update is complete

*/

SDL_EVENT_GAMEPAD_STEAM_HANDLE_UPDATED, /**< Gamepad Steam handle

has changed */

/* Touch events */

SDL_EVENT_FINGER_DOWN = 0x700,

SDL_EVENT_FINGER_UP,

SDL_EVENT_FINGER_MOTION,

/* 0x800, 0x801, and 0x802 were the Gesture events from SDL2. Do not

reuse these values! sdl2-compat needs them! */

/* Clipboard events */

SDL_EVENT_CLIPBOARD_UPDATE = 0x900, /**< The clipboard or primary

selection changed */

/* Drag and drop events */

SDL_EVENT_DROP_FILE = 0x1000, /**< The system requests a file

open */

SDL_EVENT_DROP_TEXT, /**< text/plain drag-and-drop event

*/

SDL_EVENT_DROP_BEGIN, /**< A new set of drops is

beginning (NULL filename) */

SDL_EVENT_DROP_COMPLETE, /**< Current set of drops is now

complete (NULL filename) */

SDL_EVENT_DROP_POSITION, /**< Position while moving over the

window */

/* Audio hotplug events */

SDL_EVENT_AUDIO_DEVICE_ADDED = 0x1100, /**< A new audio device is

available */

SDL_EVENT_AUDIO_DEVICE_REMOVED, /**< An audio device has been

removed. */

SDL_EVENT_AUDIO_DEVICE_FORMAT_CHANGED, /**< An audio device’s format

has been changed by the system. */

/* Sensor events */

SDL_EVENT_SENSOR_UPDATE = 0x1200, /**< A sensor was updated */

/* Pressure-sensitive pen events */

SDL_EVENT_PEN_DOWN = 0x1300, /**< Pressure-sensitive pen

touched drawing surface */

SDL_EVENT_PEN_UP, /**< Pressure-sensitive pen

stopped touching drawing surface */

SDL_EVENT_PEN_MOTION, /**< Pressure-sensitive pen moved,

or angle/pressure changed */

SDL_EVENT_PEN_BUTTON_DOWN, /**< Pressure-sensitive pen button

pressed */

SDL EVENTTYPE 1483

SDL_EVENT_PEN_BUTTON_UP, /**< Pressure-sensitive pen button

released */

/* Camera hotplug events */

SDL_EVENT_CAMERA_DEVICE_ADDED = 0x1400, /**< A new camera device is

available */

SDL_EVENT_CAMERA_DEVICE_REMOVED, /**< A camera device has been

removed. */

SDL_EVENT_CAMERA_DEVICE_APPROVED, /**< A camera device has been

approved for use by the user. */

SDL_EVENT_CAMERA_DEVICE_DENIED, /**< A camera device has been

denied for use by the user. */

/* Render events */

SDL_EVENT_RENDER_TARGETS_RESET = 0x2000, /**< The render targets

have been reset and their contents need to be updated */

SDL_EVENT_RENDER_DEVICE_RESET, /**< The device has been reset and

all textures need to be recreated */

/* Internal events */

SDL_EVENT_POLL_SENTINEL = 0x7F00, /**< Signals the end of an event

poll cycle */

/** Events ::SDL_EVENT_USER through ::SDL_EVENT_LAST are for your

use,

* and should be allocated with SDL_RegisterEvents()

*/

SDL_EVENT_USER = 0x8000,

/**

* This last event is only for bounding internal arrays

*/

SDL_EVENT_LAST = 0xFFFF,

/* This just makes sure the enum is the size of Uint32 */

SDL_EVENT_ENUM_PADDING = 0x7FFFFFFF

} SDL_EventType;

Version

This enum is available since SDL 3.0.0.

1484 CHAPTER 3. SDL DATATYPES

SDL FColor

The bits of this structure can be directly reinterpreted as a float-packed color
which uses the SDL PIXELFORMAT RGBA128 FLOAT format

Header File

Defined in SDL3/SDL pixels.h

Syntax

typedef struct SDL_FColor

{

float r;

float g;

float b;

float a;

} SDL_FColor;

Version

This struct is available since SDL 3.0.0.

SDL FINGER 1485

SDL Finger

Data about a single finger in a multitouch event.

Header File

Defined in SDL3/SDL touch.h

Syntax

typedef struct SDL_Finger

{

SDL_FingerID id; /**< the finger ID */

float x; /**< the x-axis location of the touch event, normalized

(0...1) */

float y; /**< the y-axis location of the touch event, normalized

(0...1) */

float pressure; /**< the quantity of pressure applied, normalized

(0...1) */

} SDL_Finger;

Remarks

Each touch even is a collection of fingers that are simultaneously in contact
with the touch device (so a ”touch” can be a ”multitouch,” in reality), and this
struct reports details of the specific fingers.

Version

This struct is available since SDL 3.0.0.

See Also

� SDL GetTouchFinger

1486 CHAPTER 3. SDL DATATYPES

SDL FlashOperation

Window flash operation.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef enum SDL_FlashOperation

{

SDL_FLASH_CANCEL, /**< Cancel any window flash state */

SDL_FLASH_BRIEFLY, /**< Flash the window briefly to get

attention */

SDL_FLASH_UNTIL_FOCUSED /**< Flash the window until it gets

focus */

} SDL_FlashOperation;

Version

This enum is available since SDL 3.0.0.

SDL FLIPMODE 1487

SDL FlipMode

The flip mode.

Header File

Defined in SDL3/SDL surface.h

Syntax

typedef enum SDL_FlipMode

{

SDL_FLIP_NONE, /**< Do not flip */

SDL_FLIP_HORIZONTAL, /**< flip horizontally */

SDL_FLIP_VERTICAL /**< flip vertically */

} SDL_FlipMode;

Version

This enum is available since SDL 3.0.0.

1488 CHAPTER 3. SDL DATATYPES

SDL Folder

The type of the OS-provided default folder for a specific purpose.

Header File

Defined in SDL3/SDL filesystem.h

Syntax

typedef enum SDL_Folder

{

/** The folder which contains all of the current user’s data,

preferences,

and documents. It usually contains most of the other folders. If a

requested folder does not exist, the home folder can be considered

a safe

fallback to store a user’s documents. */

SDL_FOLDER_HOME,

/** The folder of files that are displayed on the desktop. Note that

the

existence of a desktop folder does not guarantee that the system

does

show icons on its desktop; certain GNU/Linux distros with a

graphical

environment may not have desktop icons. */

SDL_FOLDER_DESKTOP,

/** User document files, possibly application-specific. This is a

good

place to save a user’s projects. */

SDL_FOLDER_DOCUMENTS,

/** Standard folder for user files downloaded from the internet. */

SDL_FOLDER_DOWNLOADS,

/** Music files that can be played using a standard music player

(mp3,

ogg...). */

SDL_FOLDER_MUSIC,

/** Image files that can be displayed using a standard viewer (png,

jpg...). */

SDL_FOLDER_PICTURES,

/** Files that are meant to be shared with other users on the same

computer. */

SDL_FOLDER_PUBLICSHARE,

/** Save files for games. */

SDL_FOLDER_SAVEDGAMES,

/** Application screenshots. */

SDL_FOLDER_SCREENSHOTS,

/** Template files to be used when the user requests the desktop

environment

SDL FOLDER 1489

to create a new file in a certain folder, such as "New Text

File.txt".

Any file in the Templates folder can be used as a starting point

for a

new file. */

SDL_FOLDER_TEMPLATES,

/** Video files that can be played using a standard video player

(mp4,

webm...). */

SDL_FOLDER_VIDEOS

} SDL_Folder;

Remarks

Note that the Trash folder isn’t included here, because trashing files usually
involves extra OS-specific functionality to remember the file’s original location.

The folders supported per platform are:
— — Windows — WinRT/UWP —macOS/iOS — tvOS — Unix (XDG)

— Haiku — Emscripten — — ———– — ——- — ——— ———— — —- —
———- — —– — ———- — — HOME — X — X — X — — X — X — X
— — DESKTOP — X — X — X — — X — X — — — DOCUMENTS — X
— X — X — — X — — — — DOWNLOADS — Vista+ — X — X — — X
— — — — MUSIC — X — X — X — — X — — — — PICTURES — X —
X — X — — X — — — — PUBLICSHARE — — — X — — X — — — —
SAVEDGAMES — Vista+ — — — — — — — — SCREENSHOTS — Vista+
— X — — — — — — — TEMPLATES — X — X — X — — X — — — —
VIDEOS — X — X — X* — — X — — —

Note that on macOS/iOS, the Videos folder is called ”Movies”.

Version

This enum is available since SDL 3.0.0.

See Also

� SDL GetUserFolder

1490 CHAPTER 3. SDL DATATYPES

SDL FPoint

The structure that defines a point (using floating point values).

Header File

Defined in SDL3/SDL rect.h

Syntax

typedef struct SDL_FPoint

{

float x;

float y;

} SDL_FPoint;

Version

This struct is available since SDL 3.0.0.

See Also

� SDL GetRectEnclosingPointsFloat

� SDL PointInRectFloat

SDL FRECT 1491

SDL FRect

A rectangle, with the origin at the upper left (using floating point values).

Header File

Defined in SDL3/SDL rect.h

Syntax

typedef struct SDL_FRect

{

float x;

float y;

float w;

float h;

} SDL_FRect;

Version

This struct is available since SDL 3.0.0.

See Also

� SDL RectEmptyFloat

� SDL RectsEqualFloat

� SDL RectsEqualEpsilon

� SDL HasRectIntersectionFloat

� SDL GetRectIntersectionFloat

� SDL GetRectAndLineIntersectionFloat

� SDL GetRectUnionFloat

� SDL GetRectEnclosingPointsFloat

� SDL PointInRectFloat

1492 CHAPTER 3. SDL DATATYPES

SDL Gamepad

The structure used to identify an SDL gamepad

Header File

Defined in SDL3/SDL gamepad.h

Syntax

typedef struct SDL_Gamepad SDL_Gamepad;

Version

This struct is available since SDL 3.0.0.

SDL GAMEPADAXIS 1493

SDL GamepadAxis

The list of axes available on a gamepad

Header File

Defined in SDL3/SDL gamepad.h

Syntax

typedef enum SDL_GamepadAxis

{

SDL_GAMEPAD_AXIS_INVALID = -1,

SDL_GAMEPAD_AXIS_LEFTX,

SDL_GAMEPAD_AXIS_LEFTY,

SDL_GAMEPAD_AXIS_RIGHTX,

SDL_GAMEPAD_AXIS_RIGHTY,

SDL_GAMEPAD_AXIS_LEFT_TRIGGER,

SDL_GAMEPAD_AXIS_RIGHT_TRIGGER,

SDL_GAMEPAD_AXIS_MAX

} SDL_GamepadAxis;

Remarks

Thumbstick axis values range from SDL JOYSTICK AXIS MIN to SDL JOYSTICK AXIS MAX,
and are centered within 8000 of zero, though advanced UI will allow users to
set or autodetect the dead zone, which varies between gamepads.

Trigger axis values range from 0 (released) to SDL JOYSTICK AXIS MAX
(fully pressed) when reported by SDL GetGamepadAxis(). Note that this is not
the same range that will be reported by the lower-level SDL GetJoystickAxis().

Version

This enum is available since SDL 3.0.0.

1494 CHAPTER 3. SDL DATATYPES

SDL GamepadAxisEvent

Gamepad axis motion event structure (event.gaxis.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_GamepadAxisEvent

{

SDL_EventType type; /**< ::SDL_EVENT_GAMEPAD_AXIS_MOTION */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_JoystickID which; /**< The joystick instance id */

Uint8 axis; /**< The gamepad axis (SDL_GamepadAxis) */

Uint8 padding1;

Uint8 padding2;

Uint8 padding3;

Sint16 value; /**< The axis value (range: -32768 to 32767) */

Uint16 padding4;

} SDL_GamepadAxisEvent;

Version

This struct is available since SDL 3.0.0.

SDL GAMEPADBINDING 1495

SDL GamepadBinding

A mapping between one joystick input to a gamepad control.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

typedef struct SDL_GamepadBinding

{

SDL_GamepadBindingType input_type;

union

{

int button;

struct

{

int axis;

int axis_min;

int axis_max;

} axis;

struct

{

int hat;

int hat_mask;

} hat;

} input;

SDL_GamepadBindingType output_type;

union

{

SDL_GamepadButton button;

struct

{

SDL_GamepadAxis axis;

int axis_min;

int axis_max;

} axis;

} output;

} SDL_GamepadBinding;

1496 CHAPTER 3. SDL DATATYPES

Remarks

A gamepad has a collection of several bindings, to say, for example, when joystick
button number 5 is pressed, that should be treated like the gamepad’s ”start”
button.

SDL has these bindings built-in for many popular controllers, and can add
more with a simple text string. Those strings are parsed into a collection of
these structs to make it easier to operate on the data.

Version

This struct is available since SDL 3.0.0.

See Also

� SDL GetGamepadBindings

SDL GAMEPADBINDINGTYPE 1497

SDL GamepadBindingType

Types of gamepad control bindings.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

typedef enum SDL_GamepadBindingType

{

SDL_GAMEPAD_BINDTYPE_NONE = 0,

SDL_GAMEPAD_BINDTYPE_BUTTON,

SDL_GAMEPAD_BINDTYPE_AXIS,

SDL_GAMEPAD_BINDTYPE_HAT

} SDL_GamepadBindingType;

Remarks

A gamepad is a collection of bindings that map arbitrary joystick buttons, axes
and hat switches to specific positions on a generic console-style gamepad. This
enum is used as part of SDL GamepadBinding to specify those mappings.

Version

This enum is available since SDL 3.0.0.

1498 CHAPTER 3. SDL DATATYPES

SDL GamepadButton

The list of buttons available on a gamepad

Header File

Defined in SDL3/SDL gamepad.h

Syntax

typedef enum SDL_GamepadButton

{

SDL_GAMEPAD_BUTTON_INVALID = -1,

SDL_GAMEPAD_BUTTON_SOUTH, /* Bottom face button (e.g. Xbox A

button) */

SDL_GAMEPAD_BUTTON_EAST, /* Right face button (e.g. Xbox B

button) */

SDL_GAMEPAD_BUTTON_WEST, /* Left face button (e.g. Xbox X

button) */

SDL_GAMEPAD_BUTTON_NORTH, /* Top face button (e.g. Xbox Y

button) */

SDL_GAMEPAD_BUTTON_BACK,

SDL_GAMEPAD_BUTTON_GUIDE,

SDL_GAMEPAD_BUTTON_START,

SDL_GAMEPAD_BUTTON_LEFT_STICK,

SDL_GAMEPAD_BUTTON_RIGHT_STICK,

SDL_GAMEPAD_BUTTON_LEFT_SHOULDER,

SDL_GAMEPAD_BUTTON_RIGHT_SHOULDER,

SDL_GAMEPAD_BUTTON_DPAD_UP,

SDL_GAMEPAD_BUTTON_DPAD_DOWN,

SDL_GAMEPAD_BUTTON_DPAD_LEFT,

SDL_GAMEPAD_BUTTON_DPAD_RIGHT,

SDL_GAMEPAD_BUTTON_MISC1, /* Additional button (e.g. Xbox

Series X share button, PS5 microphone button, Nintendo Switch

Pro capture button, Amazon Luna microphone button, Google Stadia

capture button) */

SDL_GAMEPAD_BUTTON_RIGHT_PADDLE1, /* Upper or primary paddle, under

your right hand (e.g. Xbox Elite paddle P1) */

SDL_GAMEPAD_BUTTON_LEFT_PADDLE1, /* Upper or primary paddle, under

your left hand (e.g. Xbox Elite paddle P3) */

SDL_GAMEPAD_BUTTON_RIGHT_PADDLE2, /* Lower or secondary paddle,

under your right hand (e.g. Xbox Elite paddle P2) */

SDL_GAMEPAD_BUTTON_LEFT_PADDLE2, /* Lower or secondary paddle, under

your left hand (e.g. Xbox Elite paddle P4) */

SDL_GAMEPAD_BUTTON_TOUCHPAD, /* PS4/PS5 touchpad button */

SDL_GAMEPAD_BUTTON_MISC2, /* Additional button */

SDL_GAMEPAD_BUTTON_MISC3, /* Additional button */

SDL_GAMEPAD_BUTTON_MISC4, /* Additional button */

SDL GAMEPADBUTTON 1499

SDL_GAMEPAD_BUTTON_MISC5, /* Additional button */

SDL_GAMEPAD_BUTTON_MISC6, /* Additional button */

SDL_GAMEPAD_BUTTON_MAX

} SDL_GamepadButton;

Remarks

For controllers that use a diamond pattern for the face buttons, the south/east-
/west/north buttons below correspond to the locations in the diamond pattern.
For Xbox controllers, this would be A/B/X/Y, for Nintendo Switch controllers,
this would be B/A/Y/X, for PlayStation controllers this would be Cross/Cir-
cle/Square/Triangle.

For controllers that don’t use a diamond pattern for the face buttons, the
south/east/west/north buttons indicate the buttons labeled A, B, C, D, or 1,
2, 3, 4, or for controllers that aren’t labeled, they are the primary, secondary,
etc. buttons.

The activate action is often the south button and the cancel action is often
the east button, but in some regions this is reversed, so your game should allow
remapping actions based on user preferences.

You can query the labels for the face buttons using SDL GetGamepadButtonLabel()

Version

This enum is available since SDL 3.0.0.

1500 CHAPTER 3. SDL DATATYPES

SDL GamepadButtonEvent

Gamepad button event structure (event.gbutton.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_GamepadButtonEvent

{

SDL_EventType type; /**< ::SDL_EVENT_GAMEPAD_BUTTON_DOWN or

::SDL_EVENT_GAMEPAD_BUTTON_UP */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_JoystickID which; /**< The joystick instance id */

Uint8 button; /**< The gamepad button (SDL_GamepadButton) */

Uint8 state; /**< ::SDL_PRESSED or ::SDL_RELEASED */

Uint8 padding1;

Uint8 padding2;

} SDL_GamepadButtonEvent;

Version

This struct is available since SDL 3.0.0.

SDL GAMEPADBUTTONLABEL 1501

SDL GamepadButtonLabel

The set of gamepad button labels

Header File

Defined in SDL3/SDL gamepad.h

Syntax

typedef enum SDL_GamepadButtonLabel

{

SDL_GAMEPAD_BUTTON_LABEL_UNKNOWN,

SDL_GAMEPAD_BUTTON_LABEL_A,

SDL_GAMEPAD_BUTTON_LABEL_B,

SDL_GAMEPAD_BUTTON_LABEL_X,

SDL_GAMEPAD_BUTTON_LABEL_Y,

SDL_GAMEPAD_BUTTON_LABEL_CROSS,

SDL_GAMEPAD_BUTTON_LABEL_CIRCLE,

SDL_GAMEPAD_BUTTON_LABEL_SQUARE,

SDL_GAMEPAD_BUTTON_LABEL_TRIANGLE

} SDL_GamepadButtonLabel;

Remarks

This isn’t a complete set, just the face buttons to make it easy to show button
prompts.

For a complete set, you should look at the button and gamepad type and
have a set of symbols that work well with your art style.

Version

This enum is available since SDL 3.0.0.

1502 CHAPTER 3. SDL DATATYPES

SDL GamepadDeviceEvent

Gamepad device event structure (event.gdevice.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_GamepadDeviceEvent

{

SDL_EventType type; /**< ::SDL_EVENT_GAMEPAD_ADDED,

::SDL_EVENT_GAMEPAD_REMOVED, or ::SDL_EVENT_GAMEPAD_REMAPPED,

::SDL_EVENT_GAMEPAD_UPDATE_COMPLETE or

::SDL_EVENT_GAMEPAD_STEAM_HANDLE_UPDATED */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_JoystickID which; /**< The joystick instance id */

} SDL_GamepadDeviceEvent;

Version

This struct is available since SDL 3.0.0.

SDL GAMEPADSENSOREVENT 1503

SDL GamepadSensorEvent

Gamepad sensor event structure (event.gsensor.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_GamepadSensorEvent

{

SDL_EventType type; /**< ::SDL_EVENT_GAMEPAD_SENSOR_UPDATE */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_JoystickID which; /**< The joystick instance id */

Sint32 sensor; /**< The type of the sensor, one of the values of

::SDL_SensorType */

float data[3]; /**< Up to 3 values from the sensor, as defined in

SDL_sensor.h */

Uint64 sensor_timestamp; /**< The timestamp of the sensor reading in

nanoseconds, not necessarily synchronized with the system clock

*/

} SDL_GamepadSensorEvent;

Version

This struct is available since SDL 3.0.0.

1504 CHAPTER 3. SDL DATATYPES

SDL GamepadTouchpadEvent

Gamepad touchpad event structure (event.gtouchpad.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_GamepadTouchpadEvent

{

SDL_EventType type; /**< ::SDL_EVENT_GAMEPAD_TOUCHPAD_DOWN or

::SDL_EVENT_GAMEPAD_TOUCHPAD_MOTION or

::SDL_EVENT_GAMEPAD_TOUCHPAD_UP */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_JoystickID which; /**< The joystick instance id */

Sint32 touchpad; /**< The index of the touchpad */

Sint32 finger; /**< The index of the finger on the touchpad */

float x; /**< Normalized in the range 0...1 with 0 being on

the left */

float y; /**< Normalized in the range 0...1 with 0 being at

the top */

float pressure; /**< Normalized in the range 0...1 */

} SDL_GamepadTouchpadEvent;

Version

This struct is available since SDL 3.0.0.

SDL GAMEPADTYPE 1505

SDL GamepadType

Standard gamepad types.

Header File

Defined in SDL3/SDL gamepad.h

Syntax

typedef enum SDL_GamepadType

{

SDL_GAMEPAD_TYPE_UNKNOWN = 0,

SDL_GAMEPAD_TYPE_STANDARD,

SDL_GAMEPAD_TYPE_XBOX360,

SDL_GAMEPAD_TYPE_XBOXONE,

SDL_GAMEPAD_TYPE_PS3,

SDL_GAMEPAD_TYPE_PS4,

SDL_GAMEPAD_TYPE_PS5,

SDL_GAMEPAD_TYPE_NINTENDO_SWITCH_PRO,

SDL_GAMEPAD_TYPE_NINTENDO_SWITCH_JOYCON_LEFT,

SDL_GAMEPAD_TYPE_NINTENDO_SWITCH_JOYCON_RIGHT,

SDL_GAMEPAD_TYPE_NINTENDO_SWITCH_JOYCON_PAIR,

SDL_GAMEPAD_TYPE_MAX

} SDL_GamepadType;

Remarks

This type does not necessarily map to first-party controllers from Microsoft/-
Sony/Nintendo; in many cases, third-party controllers can report as these, ei-
ther because they were designed for a specific console, or they simply most
closely match that console’s controllers (does it have A/B/X/Y buttons or
X/O/Square/Triangle? Does it have a touchpad? etc).

1506 CHAPTER 3. SDL DATATYPES

SDL GLattr

An enumeration of OpenGL configuration attributes.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef enum SDL_GLattr

{

SDL_GL_RED_SIZE,

SDL_GL_GREEN_SIZE,

SDL_GL_BLUE_SIZE,

SDL_GL_ALPHA_SIZE,

SDL_GL_BUFFER_SIZE,

SDL_GL_DOUBLEBUFFER,

SDL_GL_DEPTH_SIZE,

SDL_GL_STENCIL_SIZE,

SDL_GL_ACCUM_RED_SIZE,

SDL_GL_ACCUM_GREEN_SIZE,

SDL_GL_ACCUM_BLUE_SIZE,

SDL_GL_ACCUM_ALPHA_SIZE,

SDL_GL_STEREO,

SDL_GL_MULTISAMPLEBUFFERS,

SDL_GL_MULTISAMPLESAMPLES,

SDL_GL_ACCELERATED_VISUAL,

SDL_GL_RETAINED_BACKING,

SDL_GL_CONTEXT_MAJOR_VERSION,

SDL_GL_CONTEXT_MINOR_VERSION,

SDL_GL_CONTEXT_FLAGS,

SDL_GL_CONTEXT_PROFILE_MASK,

SDL_GL_SHARE_WITH_CURRENT_CONTEXT,

SDL_GL_FRAMEBUFFER_SRGB_CAPABLE,

SDL_GL_CONTEXT_RELEASE_BEHAVIOR,

SDL_GL_CONTEXT_RESET_NOTIFICATION,

SDL_GL_CONTEXT_NO_ERROR,

SDL_GL_FLOATBUFFERS,

SDL_GL_EGL_PLATFORM

} SDL_GLattr;

Remarks

While you can set most OpenGL attributes normally, the attributes listed above
must be known before SDL creates the window that will be used with the

SDL GLATTR 1507

OpenGL context. These attributes are set and read with SDL GL SetAttribute()
and SDL GL GetAttribute().

In some cases, these attributes are minimum requests; the GL does not
promise to give you exactly what you asked for. It’s possible to ask for a 16-bit
depth buffer and get a 24-bit one instead, for example, or to ask for no stencil
buffer and still have one available. Context creation should fail if the GL can’t
provide your requested attributes at a minimum, but you should check to see
exactly what you got.

Version

This enum is available since SDL 3.0.0.

1508 CHAPTER 3. SDL DATATYPES

SDL GLContext

An opaque handle to an OpenGL context.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef void *SDL_GLContext;

Version

This datatype is available since SDL 3.0.0.

SDL GLCONTEXTFLAG 1509

SDL GLcontextFlag

Possible values to be set for the SDL GL CONTEXT FLAGS attribute.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef enum SDL_GLcontextFlag

{

SDL_GL_CONTEXT_DEBUG_FLAG = 0x0001,

SDL_GL_CONTEXT_FORWARD_COMPATIBLE_FLAG = 0x0002,

SDL_GL_CONTEXT_ROBUST_ACCESS_FLAG = 0x0004,

SDL_GL_CONTEXT_RESET_ISOLATION_FLAG = 0x0008

} SDL_GLcontextFlag;

Version

This enum is available since SDL 3.0.0.

1510 CHAPTER 3. SDL DATATYPES

SDL GLcontextReleaseFlag

Possible values to be set for the SDL GL CONTEXT RELEASE BEHAVIOR
attribute.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef enum SDL_GLcontextReleaseFlag

{

SDL_GL_CONTEXT_RELEASE_BEHAVIOR_NONE = 0x0000,

SDL_GL_CONTEXT_RELEASE_BEHAVIOR_FLUSH = 0x0001

} SDL_GLcontextReleaseFlag;

Version

This enum is available since SDL 3.0.0.

SDL GLCONTEXTRESETNOTIFICATION 1511

SDL GLContextResetNotification

Possible values to be set SDL GL CONTEXT RESET NOTIFICATION at-
tribute.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef enum SDL_GLContextResetNotification

{

SDL_GL_CONTEXT_RESET_NO_NOTIFICATION = 0x0000,

SDL_GL_CONTEXT_RESET_LOSE_CONTEXT = 0x0001

} SDL_GLContextResetNotification;

Version

This enum is available since SDL 3.0.0.

1512 CHAPTER 3. SDL DATATYPES

SDL GLprofile

Possible values to be set for the SDL GL CONTEXT PROFILE MASK at-
tribute.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef enum SDL_GLprofile

{

SDL_GL_CONTEXT_PROFILE_CORE = 0x0001,

SDL_GL_CONTEXT_PROFILE_COMPATIBILITY = 0x0002,

SDL_GL_CONTEXT_PROFILE_ES = 0x0004 /**<

GLX_CONTEXT_ES2_PROFILE_BIT_EXT */

} SDL_GLprofile;

Version

This enum is available since SDL 3.0.0.

SDL GUID 1513

SDL GUID

An SDL GUID is a 128-bit identifier for an input device that identifies that
device across runs of SDL programs on the same platform.

Header File

Defined in SDL3/SDL guid.h

Syntax

typedef struct SDL_GUID {

Uint8 data[16];

} SDL_GUID;

Remarks

If the device is detached and then re-attached to a different port, or if the base
system is rebooted, the device should still report the same GUID.

GUIDs are as precise as possible but are not guaranteed to distinguish phys-
ically distinct but equivalent devices. For example, two game controllers from
the same vendor with the same product ID and revision may have the same
GUID.

GUIDs may be platform-dependent (i.e., the same device may report differ-
ent GUIDs on different operating systems).

Version

This struct is available since SDL 3.0.0.

1514 CHAPTER 3. SDL DATATYPES

SDL HapticCondition

A structure containing a template for a Condition effect.

Header File

Defined in SDL3/SDL haptic.h

Syntax

typedef struct SDL_HapticCondition

{

/* Header */

Uint16 type; /**< SDL_HAPTIC_SPRING, SDL_HAPTIC_DAMPER,

SDL_HAPTIC_INERTIA or SDL_HAPTIC_FRICTION

*/

SDL_HapticDirection direction; /**< Direction of the effect - Not

used ATM. */

/* Replay */

Uint32 length; /**< Duration of the effect. */

Uint16 delay; /**< Delay before starting the effect. */

/* Trigger */

Uint16 button; /**< Button that triggers the effect. */

Uint16 interval; /**< How soon it can be triggered again after

button. */

/* Condition */

Uint16 right_sat[3]; /**< Level when joystick is to the positive

side; max 0xFFFF. */

Uint16 left_sat[3]; /**< Level when joystick is to the negative

side; max 0xFFFF. */

Sint16 right_coeff[3]; /**< How fast to increase the force towards

the positive side. */

Sint16 left_coeff[3]; /**< How fast to increase the force towards

the negative side. */

Uint16 deadband[3]; /**< Size of the dead zone; max 0xFFFF: whole

axis-range when 0-centered. */

Sint16 center[3]; /**< Position of the dead zone. */

} SDL_HapticCondition;

Remarks

The struct handles the following effects:

� SDL HAPTIC SPRING: Effect based on axes position.

SDL HAPTICCONDITION 1515

� SDL HAPTIC DAMPER: Effect based on axes velocity.

� SDL HAPTIC INERTIA: Effect based on axes acceleration.

� SDL HAPTIC FRICTION: Effect based on axes movement.

Direction is handled by condition internals instead of a direction member.
The condition effect specific members have three parameters. The first refers
to the X axis, the second refers to the Y axis and the third refers to the Z axis.
The right terms refer to the positive side of the axis and the left terms refer to
the negative side of the axis. Please refer to the SDL HapticDirection diagram
for which side is positive and which is negative.

Version

This struct is available since SDL 3.0.0.

See Also

� SDL HapticDirection

� SDL HAPTIC SPRING

� SDL HAPTIC DAMPER

� SDL HAPTIC INERTIA

� SDL HAPTIC FRICTION

� SDL HapticEffect

1516 CHAPTER 3. SDL DATATYPES

SDL HapticConstant

A structure containing a template for a Constant effect.

Header File

Defined in SDL3/SDL haptic.h

Syntax

typedef struct SDL_HapticConstant

{

/* Header */

Uint16 type; /**< SDL_HAPTIC_CONSTANT */

SDL_HapticDirection direction; /**< Direction of the effect. */

/* Replay */

Uint32 length; /**< Duration of the effect. */

Uint16 delay; /**< Delay before starting the effect. */

/* Trigger */

Uint16 button; /**< Button that triggers the effect. */

Uint16 interval; /**< How soon it can be triggered again after

button. */

/* Constant */

Sint16 level; /**< Strength of the constant effect. */

/* Envelope */

Uint16 attack_length; /**< Duration of the attack. */

Uint16 attack_level; /**< Level at the start of the attack. */

Uint16 fade_length; /**< Duration of the fade. */

Uint16 fade_level; /**< Level at the end of the fade. */

} SDL_HapticConstant;

Remarks

This struct is exclusively for the SDL HAPTIC CONSTANT effect.

A constant effect applies a constant force in the specified direction to the
joystick.

Version

This struct is available since SDL 3.0.0.

SDL HAPTICCONSTANT 1517

See Also

� SDL HAPTIC CONSTANT

� SDL HapticEffect

1518 CHAPTER 3. SDL DATATYPES

SDL HapticCustom

A structure containing a template for the SDL HAPTIC CUSTOM effect.

Header File

Defined in SDL3/SDL haptic.h

Syntax

typedef struct SDL_HapticCustom

{

/* Header */

Uint16 type; /**< SDL_HAPTIC_CUSTOM */

SDL_HapticDirection direction; /**< Direction of the effect. */

/* Replay */

Uint32 length; /**< Duration of the effect. */

Uint16 delay; /**< Delay before starting the effect. */

/* Trigger */

Uint16 button; /**< Button that triggers the effect. */

Uint16 interval; /**< How soon it can be triggered again after

button. */

/* Custom */

Uint8 channels; /**< Axes to use, minimum of one. */

Uint16 period; /**< Sample periods. */

Uint16 samples; /**< Amount of samples. */

Uint16 *data; /**< Should contain channels*samples items. */

/* Envelope */

Uint16 attack_length; /**< Duration of the attack. */

Uint16 attack_level; /**< Level at the start of the attack. */

Uint16 fade_length; /**< Duration of the fade. */

Uint16 fade_level; /**< Level at the end of the fade. */

} SDL_HapticCustom;

Remarks

This struct is exclusively for the SDL HAPTIC CUSTOM effect.

A custom force feedback effect is much like a periodic effect, where the ap-
plication can define its exact shape. You will have to allocate the data yourself.
Data should consist of channels * samples Uint16 samples.

If channels is one, the effect is rotated using the defined direction. Otherwise
it uses the samples in data for the different axes.

SDL HAPTICCUSTOM 1519

Version

This struct is available since SDL 3.0.0.

See Also

� SDL HAPTIC CUSTOM

� SDL HapticEffect

1520 CHAPTER 3. SDL DATATYPES

SDL HapticDirection

Structure that represents a haptic direction.

Header File

Defined in SDL3/SDL haptic.h

Syntax

typedef struct SDL_HapticDirection

{

Uint8 type; /**< The type of encoding. */

Sint32 dir[3]; /**< The encoded direction. */

} SDL_HapticDirection;

Remarks

This is the direction where the force comes from, instead of the direction in
which the force is exerted.

Directions can be specified by:

� SDL HAPTIC POLAR : Specified by polar coordinates.

� SDL HAPTIC CARTESIAN : Specified by cartesian coordinates.

� SDL HAPTIC SPHERICAL : Specified by spherical coordinates.

Cardinal directions of the haptic device are relative to the positioning of the
device. North is considered to be away from the user.

The following diagram represents the cardinal directions:

.--.

|__| .-------.

|=.| |.-----.|

|--| || ||

| | |’-----’|

|__|~’)_____(’

[COMPUTER]

North (0,-1)

^

|

|

(-1,0) West <----[HAPTIC]----> East (1,0)

SDL HAPTICDIRECTION 1521

|

|

v

South (0,1)

[USER]

\|||/

(o o)

---ooO-(_)-Ooo---

If type is SDL HAPTIC POLAR, direction is encoded by hundredths of a
degree starting north and turning clockwise. SDL HAPTIC POLAR only uses
the first dir parameter. The cardinal directions would be:

� North: 0 (0 degrees)

� East: 9000 (90 degrees)

� South: 18000 (180 degrees)

� West: 27000 (270 degrees)

If type is SDL HAPTIC CARTESIAN, direction is encoded by three posi-
tions (X axis, Y axis and Z axis (with 3 axes)). SDL HAPTIC CARTESIAN
uses the first three dir parameters. The cardinal directions would be:

� North: 0,-1, 0

� East: 1, 0, 0

� South: 0, 1, 0

� West: -1, 0, 0

The Z axis represents the height of the effect if supported, otherwise it’s
unused. In cartesian encoding (1, 2) would be the same as (2, 4), you can use
any multiple you want, only the direction matters.

If type is SDL HAPTIC SPHERICAL, direction is encoded by two rotations.
The first two dir parameters are used. The dir parameters are as follows (all
values are in hundredths of degrees):

� Degrees from (1, 0) rotated towards (0, 1).

� Degrees towards (0, 0, 1) (device needs at least 3 axes).

Example of force coming from the south with all encodings (force coming
from the south means the user will have to pull the stick to counteract):

1522 CHAPTER 3. SDL DATATYPES

SDL_HapticDirection direction;

// Cartesian directions

direction.type = SDL_HAPTIC_CARTESIAN; // Using cartesian direction

encoding.

direction.dir[0] = 0; // X position

direction.dir[1] = 1; // Y position

// Assuming the device has 2 axes, we don’t need to specify third

parameter.

// Polar directions

direction.type = SDL_HAPTIC_POLAR; // We’ll be using polar direction

encoding.

direction.dir[0] = 18000; // Polar only uses first parameter

// Spherical coordinates

direction.type = SDL_HAPTIC_SPHERICAL; // Spherical encoding

direction.dir[0] = 9000; // Since we only have two axes we don’t need

more parameters.

Version

This struct is available since SDL 3.0.0.

See Also

� SDL HAPTIC POLAR

� SDL HAPTIC CARTESIAN

� SDL HAPTIC SPHERICAL

� SDL HAPTIC STEERING AXIS

� SDL HapticEffect

� SDL GetNumHapticAxes

SDL HAPTICEFFECT 1523

SDL HapticEffect

The generic template for any haptic effect.

Header File

Defined in SDL3/SDL haptic.h

Syntax

typedef union SDL_HapticEffect

{

/* Common for all force feedback effects */

Uint16 type; /**< Effect type. */

SDL_HapticConstant constant; /**< Constant effect. */

SDL_HapticPeriodic periodic; /**< Periodic effect. */

SDL_HapticCondition condition; /**< Condition effect. */

SDL_HapticRamp ramp; /**< Ramp effect. */

SDL_HapticLeftRight leftright; /**< Left/Right effect. */

SDL_HapticCustom custom; /**< Custom effect. */

} SDL_HapticEffect;

Remarks

All values max at 32767 (0x7FFF). Signed values also can be negative. Time
values unless specified otherwise are in milliseconds.

You can also pass SDL HAPTIC INFINITY to length instead of a 0-32767
value. Neither delay, interval, attack length nor fade length support SDL HAPTIC INFINITY.
Fade will also not be used since effect never ends.

Additionally, the SDL HAPTIC RAMP effect does not support a duration
of SDL HAPTIC INFINITY.

Button triggers may not be supported on all devices, it is advised to not use
them if possible. Buttons start at index 1 instead of index 0 like the joystick.

If both attack length and fade level are 0, the envelope is not used, otherwise
both values are used.

Common parts:

// Replay - All effects have this

Uint32 length; // Duration of effect (ms).

Uint16 delay; // Delay before starting effect.

// Trigger - All effects have this

Uint16 button; // Button that triggers effect.

Uint16 interval; // How soon before effect can be triggered again.

// Envelope - All effects except condition effects have this

1524 CHAPTER 3. SDL DATATYPES

Uint16 attack_length; // Duration of the attack (ms).

Uint16 attack_level; // Level at the start of the attack.

Uint16 fade_length; // Duration of the fade out (ms).

Uint16 fade_level; // Level at the end of the fade.

Here we have an example of a constant effect evolution in time:

Strength

^

|

| effect level --> _________________

| / \

| / \

| / \

| / \

| attack_level --> | \

| | | <--- fade_level

|

+--> Time

[--] [---]

attack_length fade_length

[------------------][-----------------------]

delay length

Note either the attack level or the fade level may be above the actual effect
level.

Version

This struct is available since SDL 3.0.0.

See Also

� SDL HapticConstant

� SDL HapticPeriodic

� SDL HapticCondition

� SDL HapticRamp

� SDL HapticLeftRight

� SDL HapticCustom

SDL HAPTICID 1525

SDL HapticID

This is a unique ID for a haptic device for the time it is connected to the system,
and is never reused for the lifetime of the application.

Header File

Defined in SDL3/SDL haptic.h

Syntax

typedef Uint32 SDL_HapticID;

Remarks

If the haptic device is disconnected and reconnected, it will get a new ID.
The ID value starts at 1 and increments from there. The value 0 is an invalid

ID.

Version

This datatype is available since SDL 3.0.0.

1526 CHAPTER 3. SDL DATATYPES

SDL HapticLeftRight

A structure containing a template for a Left/Right effect.

Header File

Defined in SDL3/SDL haptic.h

Syntax

typedef struct SDL_HapticLeftRight

{

/* Header */

Uint16 type; /**< SDL_HAPTIC_LEFTRIGHT */

/* Replay */

Uint32 length; /**< Duration of the effect in milliseconds. */

/* Rumble */

Uint16 large_magnitude; /**< Control of the large controller motor.

*/

Uint16 small_magnitude; /**< Control of the small controller motor.

*/

} SDL_HapticLeftRight;

Remarks

This struct is exclusively for the SDL HAPTIC LEFTRIGHT effect.
The Left/Right effect is used to explicitly control the large and small motors,

commonly found in modern game controllers. The small (right) motor is high
frequency, and the large (left) motor is low frequency.

Version

This struct is available since SDL 3.0.0.

See Also

� SDL HAPTIC LEFTRIGHT

� SDL HapticEffect

SDL HAPTICPERIODIC 1527

SDL HapticPeriodic

A structure containing a template for a Periodic effect.

Header File

Defined in SDL3/SDL haptic.h

Syntax

typedef struct SDL_HapticPeriodic

{

/* Header */

Uint16 type; /**< SDL_HAPTIC_SINE, SDL_HAPTIC_SQUARE

SDL_HAPTIC_TRIANGLE, SDL_HAPTIC_SAWTOOTHUP or

SDL_HAPTIC_SAWTOOTHDOWN */

SDL_HapticDirection direction; /**< Direction of the effect. */

/* Replay */

Uint32 length; /**< Duration of the effect. */

Uint16 delay; /**< Delay before starting the effect. */

/* Trigger */

Uint16 button; /**< Button that triggers the effect. */

Uint16 interval; /**< How soon it can be triggered again after

button. */

/* Periodic */

Uint16 period; /**< Period of the wave. */

Sint16 magnitude; /**< Peak value; if negative, equivalent to 180

degrees extra phase shift. */

Sint16 offset; /**< Mean value of the wave. */

Uint16 phase; /**< Positive phase shift given by hundredth of a

degree. */

/* Envelope */

Uint16 attack_length; /**< Duration of the attack. */

Uint16 attack_level; /**< Level at the start of the attack. */

Uint16 fade_length; /**< Duration of the fade. */

Uint16 fade_level; /**< Level at the end of the fade. */

} SDL_HapticPeriodic;

Remarks

The struct handles the following effects:

� SDL HAPTIC SINE

1528 CHAPTER 3. SDL DATATYPES

� SDL HAPTIC SQUARE

� SDL HAPTIC TRIANGLE

� SDL HAPTIC SAWTOOTHUP

� SDL HAPTIC SAWTOOTHDOWN

A periodic effect consists in a wave-shaped effect that repeats itself over
time. The type determines the shape of the wave and the parameters determine
the dimensions of the wave.

Phase is given by hundredth of a degree meaning that giving the phase a
value of 9000 will displace it 25

� 0: No phase displacement.

� 9000: Displaced 25

� 18000: Displaced 50

� 27000: Displaced 75

� 36000: Displaced 100

Examples:

SDL_HAPTIC_SINE

__ __ __ __

/ \ / \ / \ /

/ __/ __/ __/

SDL_HAPTIC_SQUARE

__ __ __ __ __

| | | | | | | | | |

| |__| |__| |__| |__| |

SDL_HAPTIC_TRIANGLE

/\ /\ /\ /\ /\

/ \ / \ / \ / \ /

/ \/ \/ \/ \/

SDL_HAPTIC_SAWTOOTHUP

/| /| /| /| /| /| /|

/ | / | / | / | / | / | / |

/ |/ |/ |/ |/ |/ |/ |

SDL_HAPTIC_SAWTOOTHDOWN

\ |\ |\ |\ |\ |\ |\ |

\ | \ | \ | \ | \ | \ | \ |

\| \| \| \| \| \| \|

SDL HAPTICPERIODIC 1529

Version

This struct is available since SDL 3.0.0.

See Also

� SDL HAPTIC SINE

� SDL HAPTIC SQUARE

� SDL HAPTIC TRIANGLE

� SDL HAPTIC SAWTOOTHUP

� SDL HAPTIC SAWTOOTHDOWN

� SDL HapticEffect

1530 CHAPTER 3. SDL DATATYPES

SDL HapticRamp

A structure containing a template for a Ramp effect.

Header File

Defined in SDL3/SDL haptic.h

Syntax

typedef struct SDL_HapticRamp

{

/* Header */

Uint16 type; /**< SDL_HAPTIC_RAMP */

SDL_HapticDirection direction; /**< Direction of the effect. */

/* Replay */

Uint32 length; /**< Duration of the effect. */

Uint16 delay; /**< Delay before starting the effect. */

/* Trigger */

Uint16 button; /**< Button that triggers the effect. */

Uint16 interval; /**< How soon it can be triggered again after

button. */

/* Ramp */

Sint16 start; /**< Beginning strength level. */

Sint16 end; /**< Ending strength level. */

/* Envelope */

Uint16 attack_length; /**< Duration of the attack. */

Uint16 attack_level; /**< Level at the start of the attack. */

Uint16 fade_length; /**< Duration of the fade. */

Uint16 fade_level; /**< Level at the end of the fade. */

} SDL_HapticRamp;

Remarks

This struct is exclusively for the SDL HAPTIC RAMP effect.
The ramp effect starts at start strength and ends at end strength. It aug-

ments in linear fashion. If you use attack and fade with a ramp the effects get
added to the ramp effect making the effect become quadratic instead of linear.

Version

This struct is available since SDL 3.0.0.

SDL HAPTICRAMP 1531

See Also

� SDL HAPTIC RAMP

� SDL HapticEffect

1532 CHAPTER 3. SDL DATATYPES

SDL hid bus type

HID underlying bus types.

Header File

Defined in SDL3/SDL hidapi.h

Syntax

typedef enum SDL_hid_bus_type {

/** Unknown bus type */

SDL_HID_API_BUS_UNKNOWN = 0x00,

/** USB bus

Specifications:

https://usb.org/hid */

SDL_HID_API_BUS_USB = 0x01,

/** Bluetooth or Bluetooth LE bus

Specifications:

https://www.bluetooth.com/specifications/specs/human-interface-device-profile-1-1-1/

https://www.bluetooth.com/specifications/specs/hid-service-1-0/

https://www.bluetooth.com/specifications/specs/hid-over-gatt-profile-1-0/

*/

SDL_HID_API_BUS_BLUETOOTH = 0x02,

/** I2C bus

Specifications:

https://docs.microsoft.com/previous-versions/windows/hardware/design/dn642101(v=vs.85)

*/

SDL_HID_API_BUS_I2C = 0x03,

/** SPI bus

Specifications:

https://www.microsoft.com/download/details.aspx?id=103325 */

SDL_HID_API_BUS_SPI = 0x04

} SDL_hid_bus_type;

Version

This enum is available since SDL 3.0.0.

SDL HID DEVICE 1533

SDL hid device

A handle representing an open HID device

Header File

Defined in SDL3/SDL hidapi.h

Syntax

struct SDL_hid_device;

Version

This struct is available since SDL 3.0.0.

1534 CHAPTER 3. SDL DATATYPES

SDL hid device info

Information about a connected HID device

Header File

Defined in SDL3/SDL hidapi.h

Syntax

typedef struct SDL_hid_device_info

{

/** Platform-specific device path */

char *path;

/** Device Vendor ID */

unsigned short vendor_id;

/** Device Product ID */

unsigned short product_id;

/** Serial Number */

wchar_t *serial_number;

/** Device Release Number in binary-coded decimal,

also known as Device Version Number */

unsigned short release_number;

/** Manufacturer String */

wchar_t *manufacturer_string;

/** Product string */

wchar_t *product_string;

/** Usage Page for this Device/Interface

(Windows/Mac/hidraw only) */

unsigned short usage_page;

/** Usage for this Device/Interface

(Windows/Mac/hidraw only) */

unsigned short usage;

/** The USB interface which this logical device

represents.

Valid only if the device is a USB HID device.

Set to -1 in all other cases.

*/

int interface_number;

/** Additional information about the USB interface.

Valid on libusb and Android implementations. */

int interface_class;

int interface_subclass;

int interface_protocol;

/** Underlying bus type */

SDL HID DEVICE INFO 1535

SDL_hid_bus_type bus_type;

/** Pointer to the next device */

struct SDL_hid_device_info *next;

} SDL_hid_device_info;

Version

This struct is available since SDL 3.0.0.

1536 CHAPTER 3. SDL DATATYPES

SDL HintCallback

Type definition of the hint callback function.

Header File

Defined in SDL3/SDL hints.h

Syntax

typedef void (SDLCALL *SDL_HintCallback)(void *userdata, const char

*name, const char *oldValue, const char *newValue);

Function Parameters

userdata what was passed as userdata to SDL AddHintCallback()
name what was passed as name to SDL AddHintCallback()
oldValue the previous hint value
newValue the new value hint is to be set to

Version

This datatype is available since SDL 3.0.0.

SDL HINTPRIORITY 1537

SDL HintPriority

An enumeration of hint priorities.

Header File

Defined in SDL3/SDL hints.h

Syntax

typedef enum SDL_HintPriority

{

SDL_HINT_DEFAULT,

SDL_HINT_NORMAL,

SDL_HINT_OVERRIDE

} SDL_HintPriority;

Version

This enum is available since SDL 3.0.0.

1538 CHAPTER 3. SDL DATATYPES

SDL HitTest

Callback used for hit-testing.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef SDL_HitTestResult (SDLCALL *SDL_HitTest)(SDL_Window *win, const

SDL_Point *area, void *data);

Function Parameters

win the SDL Window where hit-testing was set on
area an SDL Point which should be hit-tested
data what was passed as callback data to

SDL SetWindowHitTest()

Return Value

Returns an SDL HitTestResult value.

See Also

� SDL SetWindowHitTest

SDL HITTESTRESULT 1539

SDL HitTestResult

Possible return values from the SDL HitTest callback.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef enum SDL_HitTestResult

{

SDL_HITTEST_NORMAL, /**< Region is normal. No special

properties. */

SDL_HITTEST_DRAGGABLE, /**< Region can drag entire window. */

SDL_HITTEST_RESIZE_TOPLEFT, /**< Region is the resizable top-left

corner border. */

SDL_HITTEST_RESIZE_TOP, /**< Region is the resizable top

border. */

SDL_HITTEST_RESIZE_TOPRIGHT, /**< Region is the resizable top-right

corner border. */

SDL_HITTEST_RESIZE_RIGHT, /**< Region is the resizable right

border. */

SDL_HITTEST_RESIZE_BOTTOMRIGHT, /**< Region is the resizable

bottom-right corner border. */

SDL_HITTEST_RESIZE_BOTTOM, /**< Region is the resizable bottom

border. */

SDL_HITTEST_RESIZE_BOTTOMLEFT, /**< Region is the resizable

bottom-left corner border. */

SDL_HITTEST_RESIZE_LEFT /**< Region is the resizable left

border. */

} SDL_HitTestResult;

Version

This enum is available since SDL 3.0.0.

See Also

� SDL HitTest

1540 CHAPTER 3. SDL DATATYPES

SDL InitFlags

Initialization flags for SDL Init and/or SDL InitSubSystem

Header File

Defined in SDL3/SDL init.h

Syntax

typedef enum SDL_InitFlags

{

SDL_INIT_TIMER = 0x00000001,

SDL_INIT_AUDIO = 0x00000010, /**< ‘SDL_INIT_AUDIO‘ implies

‘SDL_INIT_EVENTS‘ */

SDL_INIT_VIDEO = 0x00000020, /**< ‘SDL_INIT_VIDEO‘ implies

‘SDL_INIT_EVENTS‘ */

SDL_INIT_JOYSTICK = 0x00000200, /**< ‘SDL_INIT_JOYSTICK‘ implies

‘SDL_INIT_EVENTS‘, should be initialized on the same thread as

SDL_INIT_VIDEO on Windows if you don’t set

SDL_HINT_JOYSTICK_THREAD */

SDL_INIT_HAPTIC = 0x00001000,

SDL_INIT_GAMEPAD = 0x00002000, /**< ‘SDL_INIT_GAMEPAD‘ implies

‘SDL_INIT_JOYSTICK‘ */

SDL_INIT_EVENTS = 0x00004000,

SDL_INIT_SENSOR = 0x00008000, /**< ‘SDL_INIT_SENSOR‘ implies

‘SDL_INIT_EVENTS‘ */

SDL_INIT_CAMERA = 0x00010000 /**< ‘SDL_INIT_CAMERA‘ implies

‘SDL_INIT_EVENTS‘ */

} SDL_InitFlags;

Remarks

These are the flags which may be passed to SDL Init(). You should specify the
subsystems which you will be using in your application.

Version

This enum is available since SDL 3.0.0.

See Also

� SDL Init

� SDL Quit

� SDL InitSubSystem

SDL INITFLAGS 1541

� SDL QuitSubSystem

� SDL WasInit

1542 CHAPTER 3. SDL DATATYPES

SDL IOStream

The read/write operation structure.

Header File

Defined in SDL3/SDL iostream.h

Syntax

typedef struct SDL_IOStream SDL_IOStream;

Remarks

This operates as an opaque handle. There are several APIs to create vari-
ous types of I/O streams, or an app can supply an SDL IOStreamInterface to
SDL OpenIO() to provide their own stream implementation behind this struct’s
abstract interface.

Version

This struct is available since SDL 3.0.0.

SDL IOSTREAMINTERFACE 1543

SDL IOStreamInterface

The function pointers that drive an SDL IOStream.

Header File

Defined in SDL3/SDL iostream.h

Syntax

typedef struct SDL_IOStreamInterface

{

/**

* Return the number of bytes in this SDL_IOStream

*

* \return the total size of the data stream, or -1 on error.

*/

Sint64 (SDLCALL *size)(void *userdata);

/**

* Seek to ‘offset‘ relative to ‘whence‘, one of stdio’s whence

values:

* SDL_IO_SEEK_SET, SDL_IO_SEEK_CUR, SDL_IO_SEEK_END

*

* \return the final offset in the data stream, or -1 on error.

*/

Sint64 (SDLCALL *seek)(void *userdata, Sint64 offset, int whence);

/**

* Read up to ‘size‘ bytes from the data stream to the area pointed

* at by ‘ptr‘.

*

* On an incomplete read, you should set ‘*status‘ to a value from

the

* SDL_IOStatus enum. You do not have to explicitly set this on

* a complete, successful read.

*

* \return the number of bytes read

*/

size_t (SDLCALL *read)(void *userdata, void *ptr, size_t size,

SDL_IOStatus *status);

/**

* Write exactly ‘size‘ bytes from the area pointed at by ‘ptr‘

* to data stream.

*

* On an incomplete write, you should set ‘*status‘ to a value from

the

1544 CHAPTER 3. SDL DATATYPES

* SDL_IOStatus enum. You do not have to explicitly set this on

* a complete, successful write.

*

* \return the number of bytes written

*/

size_t (SDLCALL *write)(void *userdata, const void *ptr, size_t

size, SDL_IOStatus *status);

/**

* Close and free any allocated resources.

*

* The SDL_IOStream is still destroyed even if this fails, so clean

up anything

* even if flushing to disk returns an error.

*

* \return 0 if successful or -1 on write error when flushing data.

*/

int (SDLCALL *close)(void *userdata);

} SDL_IOStreamInterface;

Remarks

Applications can provide this struct to SDL OpenIO() to create their own imple-
mentation of SDL IOStream. This is not necessarily required, as SDL already of-
fers several common types of I/O streams, via functions like SDL IOFromFile()
and SDL IOFromMem().

Version

This struct is available since SDL 3.0.0.

SDL JOYAXISEVENT 1545

SDL JoyAxisEvent

Joystick axis motion event structure (event.jaxis.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_JoyAxisEvent

{

SDL_EventType type; /**< ::SDL_EVENT_JOYSTICK_AXIS_MOTION */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_JoystickID which; /**< The joystick instance id */

Uint8 axis; /**< The joystick axis index */

Uint8 padding1;

Uint8 padding2;

Uint8 padding3;

Sint16 value; /**< The axis value (range: -32768 to 32767) */

Uint16 padding4;

} SDL_JoyAxisEvent;

Version

This struct is available since SDL 3.0.0.

1546 CHAPTER 3. SDL DATATYPES

SDL JoyBallEvent

Joystick trackball motion event structure (event.jball.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_JoyBallEvent

{

SDL_EventType type; /**< ::SDL_EVENT_JOYSTICK_BALL_MOTION */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_JoystickID which; /**< The joystick instance id */

Uint8 ball; /**< The joystick trackball index */

Uint8 padding1;

Uint8 padding2;

Uint8 padding3;

Sint16 xrel; /**< The relative motion in the X direction */

Sint16 yrel; /**< The relative motion in the Y direction */

} SDL_JoyBallEvent;

Version

This struct is available since SDL 3.0.0.

SDL JOYBATTERYEVENT 1547

SDL JoyBatteryEvent

Joysick battery level change event structure (event.jbattery.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_JoyBatteryEvent

{

SDL_EventType type; /**< ::SDL_EVENT_JOYSTICK_BATTERY_UPDATED */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_JoystickID which; /**< The joystick instance id */

SDL_PowerState state; /**< The joystick battery state */

int percent; /**< The joystick battery percent charge

remaining */

} SDL_JoyBatteryEvent;

Version

This struct is available since SDL 3.0.0.

1548 CHAPTER 3. SDL DATATYPES

SDL JoyButtonEvent

Joystick button event structure (event.jbutton.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_JoyButtonEvent

{

SDL_EventType type; /**< ::SDL_EVENT_JOYSTICK_BUTTON_DOWN or

::SDL_EVENT_JOYSTICK_BUTTON_UP */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_JoystickID which; /**< The joystick instance id */

Uint8 button; /**< The joystick button index */

Uint8 state; /**< ::SDL_PRESSED or ::SDL_RELEASED */

Uint8 padding1;

Uint8 padding2;

} SDL_JoyButtonEvent;

Version

This struct is available since SDL 3.0.0.

SDL JOYDEVICEEVENT 1549

SDL JoyDeviceEvent

Joystick device event structure (event.jdevice.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_JoyDeviceEvent

{

SDL_EventType type; /**< ::SDL_EVENT_JOYSTICK_ADDED or

::SDL_EVENT_JOYSTICK_REMOVED or

::SDL_EVENT_JOYSTICK_UPDATE_COMPLETE */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_JoystickID which; /**< The joystick instance id */

} SDL_JoyDeviceEvent;

Version

This struct is available since SDL 3.0.0.

1550 CHAPTER 3. SDL DATATYPES

SDL JoyHatEvent

Joystick hat position change event structure (event.jhat.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_JoyHatEvent

{

SDL_EventType type; /**< ::SDL_EVENT_JOYSTICK_HAT_MOTION */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_JoystickID which; /**< The joystick instance id */

Uint8 hat; /**< The joystick hat index */

Uint8 value; /**< The hat position value.

* \sa ::SDL_HAT_LEFTUP ::SDL_HAT_UP

::SDL_HAT_RIGHTUP

* \sa ::SDL_HAT_LEFT ::SDL_HAT_CENTERED

::SDL_HAT_RIGHT

* \sa ::SDL_HAT_LEFTDOWN ::SDL_HAT_DOWN

::SDL_HAT_RIGHTDOWN

*

* Note that zero means the POV is centered.

*/

Uint8 padding1;

Uint8 padding2;

} SDL_JoyHatEvent;

Version

This struct is available since SDL 3.0.0.

SDL JOYSTICK 1551

SDL Joystick

The joystick structure used to identify an SDL joystick.

Header File

Defined in SDL3/SDL joystick.h

Syntax

typedef struct SDL_Joystick SDL_Joystick;

Remarks

This is opaque data.

Version

This struct is available since SDL 3.0.0.

1552 CHAPTER 3. SDL DATATYPES

SDL JoystickConnectionState

Possible connection states for a joystick device.

Header File

Defined in SDL3/SDL joystick.h

Syntax

typedef enum SDL_JoystickConnectionState

{

SDL_JOYSTICK_CONNECTION_INVALID = -1,

SDL_JOYSTICK_CONNECTION_UNKNOWN,

SDL_JOYSTICK_CONNECTION_WIRED,

SDL_JOYSTICK_CONNECTION_WIRELESS

} SDL_JoystickConnectionState;

Remarks

This is used by SDL GetJoystickConnectionState to report how a device is
connected to the system.

Version

This enum is available since SDL 3.0.0.

SDL JOYSTICKGUID 1553

SDL JoystickGUID

A structure that encodes the stable unique id for a joystick device.

Header File

Defined in SDL3/SDL joystick.h

Syntax

typedef SDL_GUID SDL_JoystickGUID;

Remarks

This is just a standard SDL GUID by a different name.

Version

This datatype is available since SDL 3.0.0.

1554 CHAPTER 3. SDL DATATYPES

SDL JoystickID

This is a unique ID for a joystick for the time it is connected to the system, and
is never reused for the lifetime of the application.

Header File

Defined in SDL3/SDL joystick.h

Syntax

typedef Uint32 SDL_JoystickID;

Remarks

If the joystick is disconnected and reconnected, it will get a new ID.
The ID value starts at 1 and increments from there. The value 0 is an invalid

ID.

Version

This datatype is available since SDL 3.0.0.

SDL JOYSTICKTYPE 1555

SDL JoystickType

An enum of some common joystick types.

Header File

Defined in SDL3/SDL joystick.h

Syntax

typedef enum SDL_JoystickType

{

SDL_JOYSTICK_TYPE_UNKNOWN,

SDL_JOYSTICK_TYPE_GAMEPAD,

SDL_JOYSTICK_TYPE_WHEEL,

SDL_JOYSTICK_TYPE_ARCADE_STICK,

SDL_JOYSTICK_TYPE_FLIGHT_STICK,

SDL_JOYSTICK_TYPE_DANCE_PAD,

SDL_JOYSTICK_TYPE_GUITAR,

SDL_JOYSTICK_TYPE_DRUM_KIT,

SDL_JOYSTICK_TYPE_ARCADE_PAD,

SDL_JOYSTICK_TYPE_THROTTLE

} SDL_JoystickType;

Remarks

In some cases, SDL can identify a low-level joystick as being a certain type of de-
vice, and will report it through SDL GetJoystickType (or SDL GetJoystickInstanceType).

This is by no means a complete list of everything that can be plugged into
a computer.

Version

This enum is available since SDL 3.0.0.

1556 CHAPTER 3. SDL DATATYPES

SDL KeyboardDeviceEvent

Keyboard device event structure (event.kdevice.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_KeyboardDeviceEvent

{

SDL_EventType type; /**< ::SDL_EVENT_KEYBOARD_ADDED or

::SDL_EVENT_KEYBOARD_REMOVED */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_KeyboardID which; /**< The keyboard instance id */

} SDL_KeyboardDeviceEvent;

Version

This struct is available since SDL 3.0.0.

SDL KEYBOARDEVENT 1557

SDL KeyboardEvent

Keyboard button event structure (event.key.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_KeyboardEvent

{

SDL_EventType type; /**< ::SDL_EVENT_KEY_DOWN or ::SDL_EVENT_KEY_UP

*/

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_WindowID windowID; /**< The window with keyboard focus, if any */

SDL_KeyboardID which; /**< The keyboard instance id, or 0 if unknown

or virtual */

Uint8 state; /**< ::SDL_PRESSED or ::SDL_RELEASED */

Uint8 repeat; /**< Non-zero if this is a key repeat */

Uint8 padding2;

Uint8 padding3;

SDL_Keysym keysym; /**< The key that was pressed or released */

} SDL_KeyboardEvent;

Version

This struct is available since SDL 3.0.0.

1558 CHAPTER 3. SDL DATATYPES

SDL KeyboardID

This is a unique ID for a keyboard for the time it is connected to the system,
and is never reused for the lifetime of the application.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

typedef Uint32 SDL_KeyboardID;

Remarks

If the keyboard is disconnected and reconnected, it will get a new ID.
The ID value starts at 1 and increments from there. The value 0 is an invalid

ID.

Version

This datatype is available since SDL 3.0.0.

SDL KEYCODE 1559

SDL Keycode

The SDL virtual key representation.

Header File

Defined in SDL3/SDL keycode.h

Syntax

typedef Sint32 SDL_Keycode;

#define SDLK_SCANCODE_MASK (1<<30)

#define SDL_SCANCODE_TO_KEYCODE(X) (X | SDLK_SCANCODE_MASK)

#define SDLK_UNKNOWN 0

#define SDLK_RETURN ’\r’

#define SDLK_ESCAPE ’\x1B’

#define SDLK_BACKSPACE ’\b’

#define SDLK_TAB ’\t’

#define SDLK_SPACE ’ ’

#define SDLK_EXCLAIM ’!’

#define SDLK_QUOTEDBL ’"’

#define SDLK_HASH ’#’

#define SDLK_PERCENT ’%’

#define SDLK_DOLLAR ’$’

#define SDLK_AMPERSAND ’&’

#define SDLK_QUOTE ’\’’

#define SDLK_LEFTPAREN ’(’

#define SDLK_RIGHTPAREN ’)’

#define SDLK_ASTERISK ’*’

#define SDLK_PLUS ’+’

#define SDLK_COMMA ’,’

#define SDLK_MINUS ’-’

#define SDLK_PERIOD ’.’

#define SDLK_SLASH ’/’

#define SDLK_0 ’0’

#define SDLK_1 ’1’

#define SDLK_2 ’2’

#define SDLK_3 ’3’

#define SDLK_4 ’4’

#define SDLK_5 ’5’

#define SDLK_6 ’6’

#define SDLK_7 ’7’

#define SDLK_8 ’8’

#define SDLK_9 ’9’

#define SDLK_COLON ’:’

#define SDLK_SEMICOLON ’;’

#define SDLK_LESS ’<’

1560 CHAPTER 3. SDL DATATYPES

#define SDLK_EQUALS ’=’

#define SDLK_GREATER ’>’

#define SDLK_QUESTION ’?’

#define SDLK_AT ’@’

#define SDLK_LEFTBRACKET ’[’

#define SDLK_BACKSLASH ’\\’

#define SDLK_RIGHTBRACKET ’]’

#define SDLK_CARET ’^’

#define SDLK_UNDERSCORE ’_’

#define SDLK_BACKQUOTE ’‘’

#define SDLK_a ’a’

#define SDLK_b ’b’

#define SDLK_c ’c’

#define SDLK_d ’d’

#define SDLK_e ’e’

#define SDLK_f ’f’

#define SDLK_g ’g’

#define SDLK_h ’h’

#define SDLK_i ’i’

#define SDLK_j ’j’

#define SDLK_k ’k’

#define SDLK_l ’l’

#define SDLK_m ’m’

#define SDLK_n ’n’

#define SDLK_o ’o’

#define SDLK_p ’p’

#define SDLK_q ’q’

#define SDLK_r ’r’

#define SDLK_s ’s’

#define SDLK_t ’t’

#define SDLK_u ’u’

#define SDLK_v ’v’

#define SDLK_w ’w’

#define SDLK_x ’x’

#define SDLK_y ’y’

#define SDLK_z ’z’

#define SDLK_CAPSLOCK SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_CAPSLOCK)

#define SDLK_F1 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F1)

#define SDLK_F2 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F2)

#define SDLK_F3 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F3)

#define SDLK_F4 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F4)

#define SDLK_F5 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F5)

#define SDLK_F6 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F6)

#define SDLK_F7 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F7)

#define SDLK_F8 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F8)

#define SDLK_F9 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F9)

#define SDLK_F10 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F10)

#define SDLK_F11 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F11)

#define SDLK_F12 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F12)

SDL KEYCODE 1561

#define SDLK_PRINTSCREEN

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_PRINTSCREEN)

#define SDLK_SCROLLLOCK SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_SCROLLLOCK)

#define SDLK_PAUSE SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_PAUSE)

#define SDLK_INSERT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_INSERT)

#define SDLK_HOME SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_HOME)

#define SDLK_PAGEUP SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_PAGEUP)

#define SDLK_DELETE ’\x7F’

#define SDLK_END SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_END)

#define SDLK_PAGEDOWN SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_PAGEDOWN)

#define SDLK_RIGHT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_RIGHT)

#define SDLK_LEFT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_LEFT)

#define SDLK_DOWN SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_DOWN)

#define SDLK_UP SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_UP)

#define SDLK_NUMLOCKCLEAR

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_NUMLOCKCLEAR)

#define SDLK_KP_DIVIDE SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_DIVIDE)

#define SDLK_KP_MULTIPLY

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_MULTIPLY)

#define SDLK_KP_MINUS SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_MINUS)

#define SDLK_KP_PLUS SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_PLUS)

#define SDLK_KP_ENTER SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_ENTER)

#define SDLK_KP_1 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_1)

#define SDLK_KP_2 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_2)

#define SDLK_KP_3 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_3)

#define SDLK_KP_4 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_4)

#define SDLK_KP_5 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_5)

#define SDLK_KP_6 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_6)

#define SDLK_KP_7 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_7)

#define SDLK_KP_8 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_8)

#define SDLK_KP_9 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_9)

#define SDLK_KP_0 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_0)

#define SDLK_KP_PERIOD SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_PERIOD)

#define SDLK_APPLICATION

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_APPLICATION)

#define SDLK_POWER SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_POWER)

#define SDLK_KP_EQUALS SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_EQUALS)

#define SDLK_F13 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F13)

#define SDLK_F14 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F14)

#define SDLK_F15 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F15)

#define SDLK_F16 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F16)

#define SDLK_F17 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F17)

#define SDLK_F18 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F18)

#define SDLK_F19 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F19)

#define SDLK_F20 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F20)

#define SDLK_F21 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F21)

#define SDLK_F22 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F22)

#define SDLK_F23 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F23)

#define SDLK_F24 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_F24)

#define SDLK_EXECUTE SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_EXECUTE)

1562 CHAPTER 3. SDL DATATYPES

#define SDLK_HELP SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_HELP)

#define SDLK_MENU SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_MENU)

#define SDLK_SELECT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_SELECT)

#define SDLK_STOP SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_STOP)

#define SDLK_AGAIN SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AGAIN)

#define SDLK_UNDO SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_UNDO)

#define SDLK_CUT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_CUT)

#define SDLK_COPY SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_COPY)

#define SDLK_PASTE SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_PASTE)

#define SDLK_FIND SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_FIND)

#define SDLK_MUTE SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_MUTE)

#define SDLK_VOLUMEUP SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_VOLUMEUP)

#define SDLK_VOLUMEDOWN SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_VOLUMEDOWN)

#define SDLK_KP_COMMA SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_COMMA)

#define SDLK_KP_EQUALSAS400

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_EQUALSAS400)

#define SDLK_ALTERASE SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_ALTERASE)

#define SDLK_SYSREQ SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_SYSREQ)

#define SDLK_CANCEL SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_CANCEL)

#define SDLK_CLEAR SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_CLEAR)

#define SDLK_PRIOR SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_PRIOR)

#define SDLK_RETURN2 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_RETURN2)

#define SDLK_SEPARATOR SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_SEPARATOR)

#define SDLK_OUT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_OUT)

#define SDLK_OPER SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_OPER)

#define SDLK_CLEARAGAIN SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_CLEARAGAIN)

#define SDLK_CRSEL SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_CRSEL)

#define SDLK_EXSEL SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_EXSEL)

#define SDLK_KP_00 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_00)

#define SDLK_KP_000 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_000)

#define SDLK_THOUSANDSSEPARATOR

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_THOUSANDSSEPARATOR)

#define SDLK_DECIMALSEPARATOR

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_DECIMALSEPARATOR)

#define SDLK_CURRENCYUNIT

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_CURRENCYUNIT)

#define SDLK_CURRENCYSUBUNIT

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_CURRENCYSUBUNIT)

#define SDLK_KP_LEFTPAREN

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_LEFTPAREN)

#define SDLK_KP_RIGHTPAREN

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_RIGHTPAREN)

#define SDLK_KP_LEFTBRACE

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_LEFTBRACE)

#define SDLK_KP_RIGHTBRACE

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_RIGHTBRACE)

#define SDLK_KP_TAB SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_TAB)

#define SDLK_KP_BACKSPACE

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_BACKSPACE)

#define SDLK_KP_A SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_A)

SDL KEYCODE 1563

#define SDLK_KP_B SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_B)

#define SDLK_KP_C SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_C)

#define SDLK_KP_D SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_D)

#define SDLK_KP_E SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_E)

#define SDLK_KP_F SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_F)

#define SDLK_KP_XOR SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_XOR)

#define SDLK_KP_POWER SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_POWER)

#define SDLK_KP_PERCENT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_PERCENT)

#define SDLK_KP_LESS SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_LESS)

#define SDLK_KP_GREATER SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_GREATER)

#define SDLK_KP_AMPERSAND

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_AMPERSAND)

#define SDLK_KP_DBLAMPERSAND

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_DBLAMPERSAND)

#define SDLK_KP_VERTICALBAR

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_VERTICALBAR)

#define SDLK_KP_DBLVERTICALBAR

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_DBLVERTICALBAR)

#define SDLK_KP_COLON SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_COLON)

#define SDLK_KP_HASH SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_HASH)

#define SDLK_KP_SPACE SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_SPACE)

#define SDLK_KP_AT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_AT)

#define SDLK_KP_EXCLAM SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_EXCLAM)

#define SDLK_KP_MEMSTORE

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_MEMSTORE)

#define SDLK_KP_MEMRECALL

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_MEMRECALL)

#define SDLK_KP_MEMCLEAR

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_MEMCLEAR)

#define SDLK_KP_MEMADD SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_MEMADD)

#define SDLK_KP_MEMSUBTRACT

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_MEMSUBTRACT)

#define SDLK_KP_MEMMULTIPLY

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_MEMMULTIPLY)

#define SDLK_KP_MEMDIVIDE

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_MEMDIVIDE)

#define SDLK_KP_PLUSMINUS

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_PLUSMINUS)

#define SDLK_KP_CLEAR SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_CLEAR)

#define SDLK_KP_CLEARENTRY

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_CLEARENTRY)

#define SDLK_KP_BINARY SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_BINARY)

#define SDLK_KP_OCTAL SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_OCTAL)

#define SDLK_KP_DECIMAL SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_DECIMAL)

#define SDLK_KP_HEXADECIMAL

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KP_HEXADECIMAL)

#define SDLK_LCTRL SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_LCTRL)

#define SDLK_LSHIFT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_LSHIFT)

#define SDLK_LALT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_LALT)

#define SDLK_LGUI SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_LGUI)

1564 CHAPTER 3. SDL DATATYPES

#define SDLK_RCTRL SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_RCTRL)

#define SDLK_RSHIFT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_RSHIFT)

#define SDLK_RALT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_RALT)

#define SDLK_RGUI SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_RGUI)

#define SDLK_MODE SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_MODE)

#define SDLK_AUDIONEXT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AUDIONEXT)

#define SDLK_AUDIOPREV SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AUDIOPREV)

#define SDLK_AUDIOSTOP SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AUDIOSTOP)

#define SDLK_AUDIOPLAY SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AUDIOPLAY)

#define SDLK_AUDIOMUTE SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AUDIOMUTE)

#define SDLK_MEDIASELECT

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_MEDIASELECT)

#define SDLK_WWW SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_WWW)

#define SDLK_MAIL SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_MAIL)

#define SDLK_CALCULATOR SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_CALCULATOR)

#define SDLK_COMPUTER SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_COMPUTER)

#define SDLK_AC_SEARCH SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AC_SEARCH)

#define SDLK_AC_HOME SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AC_HOME)

#define SDLK_AC_BACK SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AC_BACK)

#define SDLK_AC_FORWARD SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AC_FORWARD)

#define SDLK_AC_STOP SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AC_STOP)

#define SDLK_AC_REFRESH SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AC_REFRESH)

#define SDLK_AC_BOOKMARKS

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AC_BOOKMARKS)

#define SDLK_BRIGHTNESSDOWN

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_BRIGHTNESSDOWN)

#define SDLK_BRIGHTNESSUP

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_BRIGHTNESSUP)

#define SDLK_DISPLAYSWITCH

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_DISPLAYSWITCH)

#define SDLK_KBDILLUMTOGGLE

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KBDILLUMTOGGLE)

#define SDLK_KBDILLUMDOWN

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KBDILLUMDOWN)

#define SDLK_KBDILLUMUP SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_KBDILLUMUP)

#define SDLK_EJECT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_EJECT)

#define SDLK_SLEEP SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_SLEEP)

#define SDLK_APP1 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_APP1)

#define SDLK_APP2 SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_APP2)

#define SDLK_AUDIOREWIND

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AUDIOREWIND)

#define SDLK_AUDIOFASTFORWARD

SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_AUDIOFASTFORWARD)

#define SDLK_SOFTLEFT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_SOFTLEFT)

#define SDLK_SOFTRIGHT SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_SOFTRIGHT)

#define SDLK_CALL SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_CALL)

#define SDLK_ENDCALL SDL_SCANCODE_TO_KEYCODE(SDL_SCANCODE_ENDCALL)

SDL KEYCODE 1565

Remarks

Values of this type are used to represent keyboard keys using the current layout
of the keyboard. These values include Unicode values representing the un-
modified character that would be generated by pressing the key, or an SDLK *

constant for those keys that do not generate characters.
A special exception is the number keys at the top of the keyboard which

map to SDLK 0...SDLK 9 on AZERTY layouts.

Version

This datatype is available since SDL 3.0.0.

See Also

� SDL KeyCode

1566 CHAPTER 3. SDL DATATYPES

SDL Keymod

Enumeration of valid key mods (possibly OR’d together).

Header File

Defined in SDL3/SDL keycode.h

Syntax

typedef enum SDL_Keymod

{

SDL_KMOD_NONE = 0x0000, /**< no modifier is applicable. */

SDL_KMOD_LSHIFT = 0x0001, /**< the left Shift key is down. */

SDL_KMOD_RSHIFT = 0x0002, /**< the right Shift key is down. */

SDL_KMOD_LCTRL = 0x0040, /**< the left Ctrl (Control) key is down. */

SDL_KMOD_RCTRL = 0x0080, /**< the right Ctrl (Control) key is down.

*/

SDL_KMOD_LALT = 0x0100, /**< the left Alt key is down. */

SDL_KMOD_RALT = 0x0200, /**< the right Alt key is down. */

SDL_KMOD_LGUI = 0x0400, /**< the left GUI key (often the Windows

key) is down. */

SDL_KMOD_RGUI = 0x0800, /**< the right GUI key (often the Windows

key) is down. */

SDL_KMOD_NUM = 0x1000, /**< the Num Lock key (may be located on an

extended keypad) is down. */

SDL_KMOD_CAPS = 0x2000, /**< the Caps Lock key is down. */

SDL_KMOD_MODE = 0x4000, /**< the !AltGr key is down. */

SDL_KMOD_SCROLL = 0x8000, /**< the Scoll Lock key is down. */

SDL_KMOD_CTRL = SDL_KMOD_LCTRL | SDL_KMOD_RCTRL, /**< Any Ctrl key

is down. */

SDL_KMOD_SHIFT = SDL_KMOD_LSHIFT | SDL_KMOD_RSHIFT, /**< Any Shift

key is down. */

SDL_KMOD_ALT = SDL_KMOD_LALT | SDL_KMOD_RALT, /**< Any Alt key is

down. */

SDL_KMOD_GUI = SDL_KMOD_LGUI | SDL_KMOD_RGUI /**< Any GUI key is

down. */

} SDL_Keymod;

Version

This enum is available since SDL 3.0.0.

SDL KEYSYM 1567

SDL Keysym

The SDL keysym structure, used in key events.

Header File

Defined in SDL3/SDL keyboard.h

Syntax

typedef struct SDL_Keysym

{

SDL_Scancode scancode; /**< SDL physical key code - see

::SDL_Scancode for details */

SDL_Keycode sym; /**< SDL virtual key code - see

::SDL_Keycode for details */

Uint16 mod; /**< current key modifiers */

Uint32 unused;

} SDL_Keysym;

Remarks

If you are looking for translated character input, see the ::SDL EVENT TEXT INPUT
event.

Version

This struct is available since SDL 3.0.0.

1568 CHAPTER 3. SDL DATATYPES

SDL Locale

A struct to provide locale data.

Header File

Defined in SDL3/SDL locale.h

Syntax

typedef struct SDL_Locale

{

const char *language; /**< A language name, like "en" for English. */

const char *country; /**< A country, like "US" for America. Can be

NULL. */

} SDL_Locale;

Remarks

Locale data is split into a spoken language, like English, and an optional country,
like Canada. The language will be in ISO-639 format (so English would be ”en”),
and the country, if not NULL, will be an ISO-3166 country code (so Canada
would be ”CA”).

Version

This function is available since SDL 3.0.0.

See Also

� SDL GetPreferredLocales

SDL LOGCATEGORY 1569

SDL LogCategory

The predefined log categories

Header File

Defined in SDL3/SDL log.h

Syntax

typedef enum SDL_LogCategory

{

SDL_LOG_CATEGORY_APPLICATION,

SDL_LOG_CATEGORY_ERROR,

SDL_LOG_CATEGORY_ASSERT,

SDL_LOG_CATEGORY_SYSTEM,

SDL_LOG_CATEGORY_AUDIO,

SDL_LOG_CATEGORY_VIDEO,

SDL_LOG_CATEGORY_RENDER,

SDL_LOG_CATEGORY_INPUT,

SDL_LOG_CATEGORY_TEST,

/* Reserved for future SDL library use */

SDL_LOG_CATEGORY_RESERVED1,

SDL_LOG_CATEGORY_RESERVED2,

SDL_LOG_CATEGORY_RESERVED3,

SDL_LOG_CATEGORY_RESERVED4,

SDL_LOG_CATEGORY_RESERVED5,

SDL_LOG_CATEGORY_RESERVED6,

SDL_LOG_CATEGORY_RESERVED7,

SDL_LOG_CATEGORY_RESERVED8,

SDL_LOG_CATEGORY_RESERVED9,

SDL_LOG_CATEGORY_RESERVED10,

/* Beyond this point is reserved for application use, e.g.

enum {

MYAPP_CATEGORY_AWESOME1 = SDL_LOG_CATEGORY_CUSTOM,

MYAPP_CATEGORY_AWESOME2,

MYAPP_CATEGORY_AWESOME3,

...

};

*/

SDL_LOG_CATEGORY_CUSTOM

} SDL_LogCategory;

1570 CHAPTER 3. SDL DATATYPES

Remarks

By default the application category is enabled at the INFO level, the assert
category is enabled at the WARN level, test is enabled at the VERBOSE level
and all other categories are enabled at the ERROR level.

Version

This enum is available since SDL 3.0.0.

SDL LOGOUTPUTFUNCTION 1571

SDL LogOutputFunction

The prototype for the log output callback function.

Header File

Defined in SDL3/SDL log.h

Syntax

typedef void (SDLCALL *SDL_LogOutputFunction)(void *userdata, int

category, SDL_LogPriority priority, const char *message);

Function Parameters

userdata what was passed as userdata to
SDL SetLogOutputFunction()

category the category of the message
priority the priority of the message
message the message being output

Remarks

This function is called by SDL when there is new text to be logged.

Version

This datatype is available since SDL 3.0.0.

1572 CHAPTER 3. SDL DATATYPES

SDL LogPriority

The predefined log priorities

Header File

Defined in SDL3/SDL log.h

Syntax

typedef enum SDL_LogPriority

{

SDL_LOG_PRIORITY_VERBOSE = 1,

SDL_LOG_PRIORITY_DEBUG,

SDL_LOG_PRIORITY_INFO,

SDL_LOG_PRIORITY_WARN,

SDL_LOG_PRIORITY_ERROR,

SDL_LOG_PRIORITY_CRITICAL,

SDL_NUM_LOG_PRIORITIES

} SDL_LogPriority;

Version

This enum is available since SDL 3.0.0.

SDL MAIN FUNC 1573

SDL main func

The prototype for the application’s main() function

Header File

Defined in SDL3/SDL main.h

Syntax

typedef int (SDLCALL *SDL_main_func)(int argc, char *argv[]);

Version

This datatype is available since SDL 3.0.0.

1574 CHAPTER 3. SDL DATATYPES

SDL MatrixCoefficients

The matrix coefficients.

Header File

Defined in SDL3/SDL pixels.h

Syntax

typedef enum SDL_MatrixCoefficients

{

SDL_MATRIX_COEFFICIENTS_IDENTITY = 0,

SDL_MATRIX_COEFFICIENTS_BT709 = 1, /**< ITU-R BT.709-6 */

SDL_MATRIX_COEFFICIENTS_UNSPECIFIED = 2,

SDL_MATRIX_COEFFICIENTS_FCC = 4, /**< US FCC */

SDL_MATRIX_COEFFICIENTS_BT470BG = 5, /**< ITU-R BT.470-6

System B, G / ITU-R BT.601-7 625, functionally the same as

SDL_MATRIX_COEFFICIENTS_BT601 */

SDL_MATRIX_COEFFICIENTS_BT601 = 6, /**< ITU-R BT.601-7 525 */

SDL_MATRIX_COEFFICIENTS_SMPTE240 = 7, /**< SMPTE 240M */

SDL_MATRIX_COEFFICIENTS_YCGCO = 8,

SDL_MATRIX_COEFFICIENTS_BT2020_NCL = 9, /**< ITU-R BT.2020-2

non-constant luminance */

SDL_MATRIX_COEFFICIENTS_BT2020_CL = 10, /**< ITU-R BT.2020-2

constant luminance */

SDL_MATRIX_COEFFICIENTS_SMPTE2085 = 11, /**< SMPTE ST 2085 */

SDL_MATRIX_COEFFICIENTS_CHROMA_DERIVED_NCL = 12,

SDL_MATRIX_COEFFICIENTS_CHROMA_DERIVED_CL = 13,

SDL_MATRIX_COEFFICIENTS_ICTCP = 14, /**< ITU-R BT.2100-0

ICTCP */

SDL_MATRIX_COEFFICIENTS_CUSTOM = 31

} SDL_MatrixCoefficients;

Remarks

These are as described by https://www.itu.int/rec/T-REC-H.273-201612-S/en

Version

This enum is available since SDL 3.0.0.

SDL MESSAGEBOXBUTTONDATA 1575

SDL MessageBoxButtonData

Individual button data.

Header File

Defined in SDL3/SDL messagebox.h

Syntax

typedef struct SDL_MessageBoxButtonData

{

Uint32 flags; /**< ::SDL_MessageBoxButtonFlags */

int buttonID; /**< User defined button id (value returned via

SDL_ShowMessageBox) */

const char *text; /**< The UTF-8 button text */

} SDL_MessageBoxButtonData;

Version

This struct is available since SDL 3.0.0.

1576 CHAPTER 3. SDL DATATYPES

SDL MessageBoxButtonFlags

Flags for SDL MessageBoxButtonData.

Header File

Defined in SDL3/SDL messagebox.h

Syntax

typedef enum SDL_MessageBoxButtonFlags

{

SDL_MESSAGEBOX_BUTTON_RETURNKEY_DEFAULT = 0x00000001, /**< Marks the

default button when return is hit */

SDL_MESSAGEBOX_BUTTON_ESCAPEKEY_DEFAULT = 0x00000002 /**< Marks the

default button when escape is hit */

} SDL_MessageBoxButtonFlags;

Version

This enum is available since SDL 3.0.0.

SDL MESSAGEBOXCOLOR 1577

SDL MessageBoxColor

RGB value used in a message box color scheme

Header File

Defined in SDL3/SDL messagebox.h

Syntax

typedef struct SDL_MessageBoxColor

{

Uint8 r, g, b;

} SDL_MessageBoxColor;

Version

This struct is available since SDL 3.0.0.

1578 CHAPTER 3. SDL DATATYPES

SDL MessageBoxColorScheme

A set of colors to use for message box dialogs

Header File

Defined in SDL3/SDL messagebox.h

Syntax

typedef struct SDL_MessageBoxColorScheme

{

SDL_MessageBoxColor colors[SDL_MESSAGEBOX_COLOR_MAX];

} SDL_MessageBoxColorScheme;

Version

This struct is available since SDL 3.0.0.

SDL MESSAGEBOXCOLORTYPE 1579

SDL MessageBoxColorType

An enumeration of indices inside the colors array of SDL MessageBoxColorScheme.

Header File

Defined in SDL3/SDL messagebox.h

Syntax

typedef enum SDL_MessageBoxColorType

{

SDL_MESSAGEBOX_COLOR_BACKGROUND,

SDL_MESSAGEBOX_COLOR_TEXT,

SDL_MESSAGEBOX_COLOR_BUTTON_BORDER,

SDL_MESSAGEBOX_COLOR_BUTTON_BACKGROUND,

SDL_MESSAGEBOX_COLOR_BUTTON_SELECTED,

SDL_MESSAGEBOX_COLOR_MAX /**< Size of the colors

array of SDL_MessageBoxColorScheme. */

} SDL_MessageBoxColorType;

1580 CHAPTER 3. SDL DATATYPES

SDL MessageBoxData

MessageBox structure containing title, text, window, etc.

Header File

Defined in SDL3/SDL messagebox.h

Syntax

typedef struct SDL_MessageBoxData

{

Uint32 flags; /**< ::SDL_MessageBoxFlags */

SDL_Window *window; /**< Parent window, can be NULL */

const char *title; /**< UTF-8 title */

const char *message; /**< UTF-8 message text */

int numbuttons;

const SDL_MessageBoxButtonData *buttons;

const SDL_MessageBoxColorScheme *colorScheme; /**<

::SDL_MessageBoxColorScheme, can be NULL to use system settings

*/

} SDL_MessageBoxData;

Version

This struct is available since SDL 3.0.0.

SDL MESSAGEBOXFLAGS 1581

SDL MessageBoxFlags

SDL MessageBox flags.

Header File

Defined in SDL3/SDL messagebox.h

Syntax

typedef enum SDL_MessageBoxFlags

{

SDL_MESSAGEBOX_ERROR = 0x00000010, /**< error dialog */

SDL_MESSAGEBOX_WARNING = 0x00000020, /**< warning dialog

*/

SDL_MESSAGEBOX_INFORMATION = 0x00000040, /**< informational

dialog */

SDL_MESSAGEBOX_BUTTONS_LEFT_TO_RIGHT = 0x00000080, /**< buttons

placed left to right */

SDL_MESSAGEBOX_BUTTONS_RIGHT_TO_LEFT = 0x00000100 /**< buttons

placed right to left */

} SDL_MessageBoxFlags;

Remarks

If supported will display warning icon, etc.

Version

This enum is available since SDL 3.0.0.

1582 CHAPTER 3. SDL DATATYPES

SDL MetalView

A handle to a CAMetalLayer-backed NSView (macOS) or UIView (iOS/tvOS).

Header File

Defined in SDL3/SDL metal.h

Syntax

typedef void *SDL_MetalView;

Version

This datatype is available since SDL 3.0.0.

SDL MOUSEBUTTONEVENT 1583

SDL MouseButtonEvent

Mouse button event structure (event.button.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_MouseButtonEvent

{

SDL_EventType type; /**< ::SDL_EVENT_MOUSE_BUTTON_DOWN or

::SDL_EVENT_MOUSE_BUTTON_UP */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_WindowID windowID; /**< The window with mouse focus, if any */

SDL_MouseID which; /**< The mouse instance id, SDL_TOUCH_MOUSEID, or

SDL_PEN_MOUSEID */

Uint8 button; /**< The mouse button index */

Uint8 state; /**< ::SDL_PRESSED or ::SDL_RELEASED */

Uint8 clicks; /**< 1 for single-click, 2 for double-click, etc.

*/

Uint8 padding;

float x; /**< X coordinate, relative to window */

float y; /**< Y coordinate, relative to window */

} SDL_MouseButtonEvent;

Version

This struct is available since SDL 3.0.0.

1584 CHAPTER 3. SDL DATATYPES

SDL MouseDeviceEvent

Mouse device event structure (event.mdevice.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_MouseDeviceEvent

{

SDL_EventType type; /**< ::SDL_EVENT_MOUSE_ADDED or

::SDL_EVENT_MOUSE_REMOVED */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_MouseID which; /**< The mouse instance id */

} SDL_MouseDeviceEvent;

Version

This struct is available since SDL 3.0.0.

SDL MOUSEMOTIONEVENT 1585

SDL MouseMotionEvent

Mouse motion event structure (event.motion.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_MouseMotionEvent

{

SDL_EventType type; /**< ::SDL_EVENT_MOUSE_MOTION */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_WindowID windowID; /**< The window with mouse focus, if any */

SDL_MouseID which; /**< The mouse instance id, SDL_TOUCH_MOUSEID, or

SDL_PEN_MOUSEID */

Uint32 state; /**< The current button state */

float x; /**< X coordinate, relative to window */

float y; /**< Y coordinate, relative to window */

float xrel; /**< The relative motion in the X direction */

float yrel; /**< The relative motion in the Y direction */

} SDL_MouseMotionEvent;

Version

This struct is available since SDL 3.0.0.

1586 CHAPTER 3. SDL DATATYPES

SDL MouseWheelDirection

Scroll direction types for the Scroll event

Header File

Defined in SDL3/SDL mouse.h

Syntax

typedef enum SDL_MouseWheelDirection

{

SDL_MOUSEWHEEL_NORMAL, /**< The scroll direction is normal */

SDL_MOUSEWHEEL_FLIPPED /**< The scroll direction is flipped /

natural */

} SDL_MouseWheelDirection;

Version

This enum is available since SDL 3.0.0.

SDL MOUSEWHEELEVENT 1587

SDL MouseWheelEvent

Mouse wheel event structure (event.wheel.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_MouseWheelEvent

{

SDL_EventType type; /**< ::SDL_EVENT_MOUSE_WHEEL */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_WindowID windowID; /**< The window with mouse focus, if any */

SDL_MouseID which; /**< The mouse instance id, SDL_TOUCH_MOUSEID, or

SDL_PEN_MOUSEID */

float x; /**< The amount scrolled horizontally, positive to

the right and negative to the left */

float y; /**< The amount scrolled vertically, positive away

from the user and negative toward the user */

SDL_MouseWheelDirection direction; /**< Set to one of the

SDL_MOUSEWHEEL_* defines. When FLIPPED the values in X and Y

will be opposite. Multiply by -1 to change them back */

float mouse_x; /**< X coordinate, relative to window */

float mouse_y; /**< Y coordinate, relative to window */

} SDL_MouseWheelEvent;

Version

This struct is available since SDL 3.0.0.

1588 CHAPTER 3. SDL DATATYPES

SDL Mutex

A means to serialize access to a resource between threads.

Header File

Defined in SDL3/SDL mutex.h

Syntax

typedef struct SDL_Mutex SDL_Mutex;

Remarks

Mutexes (short for ”mutual exclusion”) are a synchronization primitive that
allows exactly one thread to proceed at a time.

Wikipedia has a thorough explanation of the concept:
https://en.wikipedia.org/wiki/Mutex

Version

This struct is available since SDL 3.0.0.

SDL PALETTE 1589

SDL Palette

A set of indexed colors representing a palette.

Header File

Defined in SDL3/SDL pixels.h

Syntax

typedef struct SDL_Palette

{

int ncolors; /**< number of elements in ‘colors‘. */

SDL_Color *colors; /**< an array of colors, ‘ncolors‘ long. */

Uint32 version; /**< internal use only, do not touch. */

int refcount; /**< internal use only, do not touch. */

} SDL_Palette;

Version

This struct is available since SDL 3.0.0.

See Also

� SDL PixelFormat

� SDL SetPaletteColors

1590 CHAPTER 3. SDL DATATYPES

SDL PenAxis

Pen axis indices

Header File

Defined in SDL3/SDL pen.h

Syntax

typedef enum SDL_PenAxis

{

SDL_PEN_AXIS_PRESSURE = 0, /**< Pen pressure.

Unidirectional: 0..1.0 */

SDL_PEN_AXIS_XTILT, /**< Pen horizontal tilt angle.

Bidirectional: -90.0..90.0 (left-to-right).

The physical max/min tilt

may be smaller than

-90.0 / 90.0, cf.

SDL_PenCapabilityInfo

*/

SDL_PEN_AXIS_YTILT, /**< Pen vertical tilt angle.

Bidirectional: -90.0..90.0 (top-to-down).

The physical max/min tilt

may be smaller than

-90.0 / 90.0, cf.

SDL_PenCapabilityInfo

*/

SDL_PEN_AXIS_DISTANCE, /**< Pen distance to drawing

surface. Unidirectional: 0.0..1.0 */

SDL_PEN_AXIS_ROTATION, /**< Pen barrel rotation.

Bidirectional: -180..179.9 (clockwise, 0 is facing up, -180.0 is

facing down). */

SDL_PEN_AXIS_SLIDER, /**< Pen finger wheel or slider

(e.g., Airbrush Pen). Unidirectional: 0..1.0 */

SDL_PEN_NUM_AXES, /**< Last valid axis index */

SDL_PEN_AXIS_LAST = SDL_PEN_NUM_AXES - 1 /**< Last axis index plus 1

*/

} SDL_PenAxis;

Remarks

Below are the valid indices to the ”axis” array from SDL PenMotionEvent and
SDL PenButtonEvent. The axis indices form a contiguous range of ints from 0
to SDL PEN AXIS LAST, inclusive. All ”axis[]” entries are either normalised
to 0..1 or report a (positive or negative) angle in degrees, with 0.0 representing

SDL PENAXIS 1591

the centre. Not all pens/backends support all axes: unsupported entries are
always ”0.0f”.

To convert angles for tilt and rotation into vector representation, use SDL sinf
on the XTILT, YTILT, or ROTATION component, for example: SDL sinf(xtilt

* SDL PI F / 180.0).

Version

This enum is available since SDL 3.0.0

1592 CHAPTER 3. SDL DATATYPES

SDL PenButtonEvent

Pressure-sensitive pen button event structure (event.pbutton.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_PenButtonEvent

{

SDL_EventType type; /**< ::SDL_EVENT_PEN_BUTTON_DOWN or

::SDL_EVENT_PEN_BUTTON_UP */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_WindowID windowID; /**< The window with pen focus, if any */

SDL_PenID which; /**< The pen instance id */

Uint8 button; /**< The pen button index (1 represents the

pen tip for compatibility with mouse events) */

Uint8 state; /**< ::SDL_PRESSED or ::SDL_RELEASED */

Uint16 pen_state; /**< Pen button masks (where SDL_BUTTON(1) is

the first button, SDL_BUTTON(2) is the second button etc.),

::SDL_PEN_DOWN_MASK is set if the pen is touching the surface,

and ::SDL_PEN_ERASER_MASK is set if the pen is (used as) an

eraser. */

float x; /**< X coordinate, relative to window */

float y; /**< Y coordinate, relative to window */

float axes[SDL_PEN_NUM_AXES]; /**< Pen axes such as pressure and

tilt (ordered as per ::SDL_PenAxis) */

} SDL_PenButtonEvent;

Version

This struct is available since SDL 3.0.0.

SDL PENCAPABILITYINFO 1593

SDL PenCapabilityInfo

Pen capabilities, as reported by SDL GetPenCapabilities()

Header File

Defined in SDL3/SDL pen.h

Syntax

typedef struct SDL_PenCapabilityInfo

{

float max_tilt; /**< Physical maximum tilt angle, for XTILT and

YTILT, or SDL_PEN_INFO_UNKNOWN . Pens cannot typically tilt all

the way to 90 degrees, so this value is usually less than 90.0.

*/

Uint32 wacom_id; /**< For Wacom devices: wacom tool type ID,

otherwise 0 (useful e.g. with libwacom) */

Sint8 num_buttons; /**< Number of pen buttons (not counting the pen

tip), or SDL_PEN_INFO_UNKNOWN */

} SDL_PenCapabilityInfo;

Version

This struct is available since SDL 3.0.0.

1594 CHAPTER 3. SDL DATATYPES

SDL PenMotionEvent

Pressure-sensitive pen motion / pressure / angle event structure (event.pmotion.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_PenMotionEvent

{

SDL_EventType type; /**< ::SDL_EVENT_PEN_MOTION */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_WindowID windowID; /**< The window with pen focus, if any */

SDL_PenID which; /**< The pen instance id */

Uint8 padding1;

Uint8 padding2;

Uint16 pen_state; /**< Pen button masks (where SDL_BUTTON(1) is

the first button, SDL_BUTTON(2) is the second button etc.),

::SDL_PEN_DOWN_MASK is set if the pen is touching the surface,

and ::SDL_PEN_ERASER_MASK is set if the pen is (used as) an

eraser. */

float x; /**< X coordinate, relative to window */

float y; /**< Y coordinate, relative to window */

float axes[SDL_PEN_NUM_AXES]; /**< Pen axes such as pressure and

tilt (ordered as per ::SDL_PenAxis) */

} SDL_PenMotionEvent;

Version

This struct is available since SDL 3.0.0.

SDL PENSUBTYPE 1595

SDL PenSubtype

Pen types

Header File

Defined in SDL3/SDL pen.h

Syntax

typedef enum SDL_PenSubtype

{

SDL_PEN_TYPE_UNKNOWN = 0,

SDL_PEN_TYPE_ERASER = 1, /**< Eraser */

SDL_PEN_TYPE_PEN, /**< Generic pen; this is the

default. */

SDL_PEN_TYPE_PENCIL, /**< Pencil */

SDL_PEN_TYPE_BRUSH, /**< Brush-like device */

SDL_PEN_TYPE_AIRBRUSH, /**< Airbrush device that

"sprays" ink */

SDL_PEN_TYPE_LAST = SDL_PEN_TYPE_AIRBRUSH /**< Last valid pen type */

} SDL_PenSubtype;

Remarks

Some pens identify as a particular type of drawing device (e.g., an airbrush or
a pencil).

Version

This enum is available since SDL 3.0.0

1596 CHAPTER 3. SDL DATATYPES

SDL PenTipEvent

Pressure-sensitive pen touched or stopped touching surface (event.ptip.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_PenTipEvent

{

SDL_EventType type; /**< ::SDL_EVENT_PEN_DOWN or

::SDL_EVENT_PEN_UP */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_WindowID windowID; /**< The window with pen focus, if any */

SDL_PenID which; /**< The pen instance id */

Uint8 tip; /**< ::SDL_PEN_TIP_INK when using a regular

pen tip, or ::SDL_PEN_TIP_ERASER if the pen is being used as an

eraser (e.g., flipped to use the eraser tip) */

Uint8 state; /**< ::SDL_PRESSED on ::SDL_EVENT_PEN_DOWN and

::SDL_RELEASED on ::SDL_EVENT_PEN_UP */

Uint16 pen_state; /**< Pen button masks (where SDL_BUTTON(1) is

the first button, SDL_BUTTON(2) is the second button etc.),

::SDL_PEN_DOWN_MASK is set if the pen is touching the surface,

and ::SDL_PEN_ERASER_MASK is set if the pen is (used as) an

eraser. */

float x; /**< X coordinate, relative to window */

float y; /**< Y coordinate, relative to window */

float axes[SDL_PEN_NUM_AXES]; /**< Pen axes such as pressure and

tilt (ordered as per ::SDL_PenAxis) */

} SDL_PenTipEvent;

Version

This struct is available since SDL 3.0.0.

SDL PIXELFORMAT 1597

SDL PixelFormat

Details about the format of a pixel.

Header File

Defined in SDL3/SDL pixels.h

Syntax

typedef struct SDL_PixelFormat

{

SDL_PixelFormatEnum format;

SDL_Palette *palette;

Uint8 bits_per_pixel;

Uint8 bytes_per_pixel;

Uint8 padding[2];

Uint32 Rmask;

Uint32 Gmask;

Uint32 Bmask;

Uint32 Amask;

Uint8 Rloss;

Uint8 Gloss;

Uint8 Bloss;

Uint8 Aloss;

Uint8 Rshift;

Uint8 Gshift;

Uint8 Bshift;

Uint8 Ashift;

int refcount;

struct SDL_PixelFormat *next;

} SDL_PixelFormat;

Remarks

Generally this is used with SDL Surface, and covers many possible configura-
tions, including paletted data and various bit patterns.

Version

This struct is available since SDL 3.0.0.

1598 CHAPTER 3. SDL DATATYPES

SDL Point

The structure that defines a point (using integers).

Header File

Defined in SDL3/SDL rect.h

Syntax

typedef struct SDL_Point

{

int x;

int y;

} SDL_Point;

Version

This struct is available since SDL 3.0.0.

See Also

� SDL GetRectEnclosingPoints

� SDL PointInRect

SDL POWERSTATE 1599

SDL PowerState

The basic state for the system’s power supply.

Header File

Defined in SDL3/SDL power.h

Syntax

typedef enum SDL_PowerState

{

SDL_POWERSTATE_ERROR = -1, /**< error determining power status */

SDL_POWERSTATE_UNKNOWN, /**< cannot determine power status */

SDL_POWERSTATE_ON_BATTERY, /**< Not plugged in, running on the

battery */

SDL_POWERSTATE_NO_BATTERY, /**< Plugged in, no battery available */

SDL_POWERSTATE_CHARGING, /**< Plugged in, charging battery */

SDL_POWERSTATE_CHARGED /**< Plugged in, battery charged */

} SDL_PowerState;

Remarks

These are results returned by SDL GetPowerInfo().

Code Examples

if (SDL_GetPowerInfo(NULL, NULL) == SDL_POWERSTATE_ON_BATTERY) {

SDL_Log("You should plug in your laptop before running this

update.");

}

Version

This enum is available since SDL 3.0.0

1600 CHAPTER 3. SDL DATATYPES

SDL PropertiesID

SDL properties ID

Header File

Defined in SDL3/SDL properties.h

Syntax

typedef Uint32 SDL_PropertiesID;

Version

This datatype is available since SDL 3.0.0.

SDL PROPERTYTYPE 1601

SDL PropertyType

SDL property type

Header File

Defined in SDL3/SDL properties.h

Syntax

typedef enum SDL_PropertyType

{

SDL_PROPERTY_TYPE_INVALID,

SDL_PROPERTY_TYPE_POINTER,

SDL_PROPERTY_TYPE_STRING,

SDL_PROPERTY_TYPE_NUMBER,

SDL_PROPERTY_TYPE_FLOAT,

SDL_PROPERTY_TYPE_BOOLEAN

} SDL_PropertyType;

Version

This enum is available since SDL 3.0.0.

1602 CHAPTER 3. SDL DATATYPES

SDL QuitEvent

The ”quit requested” event

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_QuitEvent

{

SDL_EventType type; /**< ::SDL_EVENT_QUIT */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

} SDL_QuitEvent;

Version

This struct is available since SDL 3.0.0.

SDL RECT 1603

SDL Rect

A rectangle, with the origin at the upper left (using integers).

Header File

Defined in SDL3/SDL rect.h

Syntax

typedef struct SDL_Rect

{

int x, y;

int w, h;

} SDL_Rect;

Version

This struct is available since SDL 3.0.0.

See Also

� SDL RectEmpty

� SDL RectsEqual

� SDL HasRectIntersection

� SDL GetRectIntersection

� SDL GetRectAndLineIntersection

� SDL GetRectUnion

� SDL GetRectEnclosingPoints

1604 CHAPTER 3. SDL DATATYPES

SDL Renderer

A structure representing rendering state

Header File

Defined in SDL3/SDL render.h

Syntax

struct SDL_Renderer;

Version

This struct is available since SDL 3.0.0.

SDL RENDERERFLAGS 1605

SDL RendererFlags

Flags used when creating a rendering context.

Header File

Defined in SDL3/SDL render.h

Syntax

typedef enum SDL_RendererFlags

{

SDL_RENDERER_PRESENTVSYNC = 0x00000004 /**< Present is synchronized

with the refresh rate */

} SDL_RendererFlags;

Version

This enum is available since SDL 3.0.0.

1606 CHAPTER 3. SDL DATATYPES

SDL RendererInfo

Information on the capabilities of a render driver or context.

Header File

Defined in SDL3/SDL render.h

Syntax

typedef struct SDL_RendererInfo

{

const char *name; /**< The name of the renderer */

Uint32 flags; /**< Supported ::SDL_RendererFlags */

int num_texture_formats; /**< The number of available texture

formats */

SDL_PixelFormatEnum texture_formats[16]; /**< The available texture

formats */

int max_texture_width; /**< The maximum texture width */

int max_texture_height; /**< The maximum texture height */

} SDL_RendererInfo;

Version

This struct is available since SDL 3.0.0.

SDL RENDERERLOGICALPRESENTATION 1607

SDL RendererLogicalPresentation

How the logical size is mapped to the output.

Header File

Defined in SDL3/SDL render.h

Syntax

typedef enum SDL_RendererLogicalPresentation

{

SDL_LOGICAL_PRESENTATION_DISABLED, /**< There is no logical size in

effect */

SDL_LOGICAL_PRESENTATION_STRETCH, /**< The rendered content is

stretched to the output resolution */

SDL_LOGICAL_PRESENTATION_LETTERBOX, /**< The rendered content is fit

to the largest dimension and the other dimension is letterboxed

with black bars */

SDL_LOGICAL_PRESENTATION_OVERSCAN, /**< The rendered content is fit

to the smallest dimension and the other dimension extends beyond

the output bounds */

SDL_LOGICAL_PRESENTATION_INTEGER_SCALE /**< The rendered content is

scaled up by integer multiples to fit the output resolution */

} SDL_RendererLogicalPresentation;

Version

This enum is available since SDL 3.0.0.

1608 CHAPTER 3. SDL DATATYPES

SDL RWLock

A mutex that allows read-only threads to run in parallel.

Header File

Defined in SDL3/SDL mutex.h

Syntax

typedef struct SDL_RWLock SDL_RWLock;

Remarks

A rwlock is roughly the same concept as SDL Mutex, but allows threads that
request read-only access to all hold the lock at the same time. If a thread
requests write access, it will block until all read-only threads have released the
lock, and no one else can hold the thread (for reading or writing) at the same
time as the writing thread.

This can be more efficient in cases where several threads need to access data
frequently, but changes to that data are rare.

There are other rules that apply to rwlocks that don’t apply to mutexes,
about how threads are scheduled and when they can be recursively locked.
These are documented in the other rwlock functions.

Version

This struct is available since SDL 3.0.0.

SDL SCALEMODE 1609

SDL ScaleMode

The scaling mode.

Header File

Defined in SDL3/SDL surface.h

Syntax

typedef enum SDL_ScaleMode

{

SDL_SCALEMODE_NEAREST, /**< nearest pixel sampling */

SDL_SCALEMODE_LINEAR, /**< linear filtering */

SDL_SCALEMODE_BEST /**< anisotropic filtering */

} SDL_ScaleMode;

Version

This enum is available since SDL 3.0.0.

1610 CHAPTER 3. SDL DATATYPES

SDL Scancode

The SDL keyboard scancode representation.

Header File

Defined in SDL3/SDL scancode.h

Syntax

typedef enum SDL_Scancode

{

SDL_SCANCODE_UNKNOWN = 0,

/**

* \name Usage page 0x07

*

* These values are from usage page 0x07 (USB keyboard page).

*/

/* @{ */

SDL_SCANCODE_A = 4,

SDL_SCANCODE_B = 5,

SDL_SCANCODE_C = 6,

SDL_SCANCODE_D = 7,

SDL_SCANCODE_E = 8,

SDL_SCANCODE_F = 9,

SDL_SCANCODE_G = 10,

SDL_SCANCODE_H = 11,

SDL_SCANCODE_I = 12,

SDL_SCANCODE_J = 13,

SDL_SCANCODE_K = 14,

SDL_SCANCODE_L = 15,

SDL_SCANCODE_M = 16,

SDL_SCANCODE_N = 17,

SDL_SCANCODE_O = 18,

SDL_SCANCODE_P = 19,

SDL_SCANCODE_Q = 20,

SDL_SCANCODE_R = 21,

SDL_SCANCODE_S = 22,

SDL_SCANCODE_T = 23,

SDL_SCANCODE_U = 24,

SDL_SCANCODE_V = 25,

SDL_SCANCODE_W = 26,

SDL_SCANCODE_X = 27,

SDL_SCANCODE_Y = 28,

SDL_SCANCODE_Z = 29,

SDL SCANCODE 1611

SDL_SCANCODE_1 = 30,

SDL_SCANCODE_2 = 31,

SDL_SCANCODE_3 = 32,

SDL_SCANCODE_4 = 33,

SDL_SCANCODE_5 = 34,

SDL_SCANCODE_6 = 35,

SDL_SCANCODE_7 = 36,

SDL_SCANCODE_8 = 37,

SDL_SCANCODE_9 = 38,

SDL_SCANCODE_0 = 39,

SDL_SCANCODE_RETURN = 40,

SDL_SCANCODE_ESCAPE = 41,

SDL_SCANCODE_BACKSPACE = 42,

SDL_SCANCODE_TAB = 43,

SDL_SCANCODE_SPACE = 44,

SDL_SCANCODE_MINUS = 45,

SDL_SCANCODE_EQUALS = 46,

SDL_SCANCODE_LEFTBRACKET = 47,

SDL_SCANCODE_RIGHTBRACKET = 48,

SDL_SCANCODE_BACKSLASH = 49, /**< Located at the lower left of the

return

* key on ISO keyboards and at the right

end

* of the QWERTY row on ANSI keyboards.

* Produces REVERSE SOLIDUS (backslash)

and

* VERTICAL LINE in a US layout, REVERSE

* SOLIDUS and VERTICAL LINE in a UK Mac

* layout, NUMBER SIGN and TILDE in a UK

* Windows layout, DOLLAR SIGN and POUND

SIGN

* in a Swiss German layout, NUMBER SIGN

and

* APOSTROPHE in a German layout, GRAVE

* ACCENT and POUND SIGN in a French Mac

* layout, and ASTERISK and MICRO SIGN

in a

* French Windows layout.

*/

SDL_SCANCODE_NONUSHASH = 50, /**< ISO USB keyboards actually use

this code

* instead of 49 for the same key, but

all

* OSes I’ve seen treat the two codes

* identically. So, as an implementor,

unless

* your keyboard generates both of those

1612 CHAPTER 3. SDL DATATYPES

* codes and your OS treats them

differently,

* you should generate

SDL_SCANCODE_BACKSLASH

* instead of this code. As a user, you

* should not rely on this code because

SDL

* will never generate it with most

(all?)

* keyboards.

*/

SDL_SCANCODE_SEMICOLON = 51,

SDL_SCANCODE_APOSTROPHE = 52,

SDL_SCANCODE_GRAVE = 53, /**< Located in the top left corner (on

both ANSI

* and ISO keyboards). Produces GRAVE ACCENT

and

* TILDE in a US Windows layout and in US

and UK

* Mac layouts on ANSI keyboards, GRAVE

ACCENT

* and NOT SIGN in a UK Windows layout,

SECTION

* SIGN and PLUS-MINUS SIGN in US and UK Mac

* layouts on ISO keyboards, SECTION SIGN and

* DEGREE SIGN in a Swiss German layout (Mac:

* only on ISO keyboards), CIRCUMFLEX ACCENT

and

* DEGREE SIGN in a German layout (Mac: only

on

* ISO keyboards), SUPERSCRIPT TWO and TILDE

in a

* French Windows layout, COMMERCIAL AT and

* NUMBER SIGN in a French Mac layout on ISO

* keyboards, and LESS-THAN SIGN and

GREATER-THAN

* SIGN in a Swiss German, German, or French

Mac

* layout on ANSI keyboards.

*/

SDL_SCANCODE_COMMA = 54,

SDL_SCANCODE_PERIOD = 55,

SDL_SCANCODE_SLASH = 56,

SDL_SCANCODE_CAPSLOCK = 57,

SDL_SCANCODE_F1 = 58,

SDL_SCANCODE_F2 = 59,

SDL_SCANCODE_F3 = 60,

SDL_SCANCODE_F4 = 61,

SDL SCANCODE 1613

SDL_SCANCODE_F5 = 62,

SDL_SCANCODE_F6 = 63,

SDL_SCANCODE_F7 = 64,

SDL_SCANCODE_F8 = 65,

SDL_SCANCODE_F9 = 66,

SDL_SCANCODE_F10 = 67,

SDL_SCANCODE_F11 = 68,

SDL_SCANCODE_F12 = 69,

SDL_SCANCODE_PRINTSCREEN = 70,

SDL_SCANCODE_SCROLLLOCK = 71,

SDL_SCANCODE_PAUSE = 72,

SDL_SCANCODE_INSERT = 73, /**< insert on PC, help on some Mac

keyboards (but

does send code 73, not 117) */

SDL_SCANCODE_HOME = 74,

SDL_SCANCODE_PAGEUP = 75,

SDL_SCANCODE_DELETE = 76,

SDL_SCANCODE_END = 77,

SDL_SCANCODE_PAGEDOWN = 78,

SDL_SCANCODE_RIGHT = 79,

SDL_SCANCODE_LEFT = 80,

SDL_SCANCODE_DOWN = 81,

SDL_SCANCODE_UP = 82,

SDL_SCANCODE_NUMLOCKCLEAR = 83, /**< num lock on PC, clear on Mac

keyboards

*/

SDL_SCANCODE_KP_DIVIDE = 84,

SDL_SCANCODE_KP_MULTIPLY = 85,

SDL_SCANCODE_KP_MINUS = 86,

SDL_SCANCODE_KP_PLUS = 87,

SDL_SCANCODE_KP_ENTER = 88,

SDL_SCANCODE_KP_1 = 89,

SDL_SCANCODE_KP_2 = 90,

SDL_SCANCODE_KP_3 = 91,

SDL_SCANCODE_KP_4 = 92,

SDL_SCANCODE_KP_5 = 93,

SDL_SCANCODE_KP_6 = 94,

SDL_SCANCODE_KP_7 = 95,

SDL_SCANCODE_KP_8 = 96,

SDL_SCANCODE_KP_9 = 97,

SDL_SCANCODE_KP_0 = 98,

SDL_SCANCODE_KP_PERIOD = 99,

SDL_SCANCODE_NONUSBACKSLASH = 100, /**< This is the additional key

that ISO

* keyboards have over ANSI ones,

* located between left shift and Y.

1614 CHAPTER 3. SDL DATATYPES

* Produces GRAVE ACCENT and TILDE

in a

* US or UK Mac layout, REVERSE

SOLIDUS

* (backslash) and VERTICAL LINE in

a

* US or UK Windows layout, and

* LESS-THAN SIGN and GREATER-THAN

SIGN

* in a Swiss German, German, or

French

* layout. */

SDL_SCANCODE_APPLICATION = 101, /**< windows contextual menu,

compose */

SDL_SCANCODE_POWER = 102, /**< The USB document says this is a

status flag,

* not a physical key - but some Mac

keyboards

* do have a power key. */

SDL_SCANCODE_KP_EQUALS = 103,

SDL_SCANCODE_F13 = 104,

SDL_SCANCODE_F14 = 105,

SDL_SCANCODE_F15 = 106,

SDL_SCANCODE_F16 = 107,

SDL_SCANCODE_F17 = 108,

SDL_SCANCODE_F18 = 109,

SDL_SCANCODE_F19 = 110,

SDL_SCANCODE_F20 = 111,

SDL_SCANCODE_F21 = 112,

SDL_SCANCODE_F22 = 113,

SDL_SCANCODE_F23 = 114,

SDL_SCANCODE_F24 = 115,

SDL_SCANCODE_EXECUTE = 116,

SDL_SCANCODE_HELP = 117, /**< AL Integrated Help Center */

SDL_SCANCODE_MENU = 118, /**< Menu (show menu) */

SDL_SCANCODE_SELECT = 119,

SDL_SCANCODE_STOP = 120, /**< AC Stop */

SDL_SCANCODE_AGAIN = 121, /**< AC Redo/Repeat */

SDL_SCANCODE_UNDO = 122, /**< AC Undo */

SDL_SCANCODE_CUT = 123, /**< AC Cut */

SDL_SCANCODE_COPY = 124, /**< AC Copy */

SDL_SCANCODE_PASTE = 125, /**< AC Paste */

SDL_SCANCODE_FIND = 126, /**< AC Find */

SDL_SCANCODE_MUTE = 127,

SDL_SCANCODE_VOLUMEUP = 128,

SDL_SCANCODE_VOLUMEDOWN = 129,

/* not sure whether there’s a reason to enable these */

/* SDL_SCANCODE_LOCKINGCAPSLOCK = 130, */

/* SDL_SCANCODE_LOCKINGNUMLOCK = 131, */

/* SDL_SCANCODE_LOCKINGSCROLLLOCK = 132, */

SDL SCANCODE 1615

SDL_SCANCODE_KP_COMMA = 133,

SDL_SCANCODE_KP_EQUALSAS400 = 134,

SDL_SCANCODE_INTERNATIONAL1 = 135, /**< used on Asian keyboards, see

footnotes in USB doc */

SDL_SCANCODE_INTERNATIONAL2 = 136,

SDL_SCANCODE_INTERNATIONAL3 = 137, /**< Yen */

SDL_SCANCODE_INTERNATIONAL4 = 138,

SDL_SCANCODE_INTERNATIONAL5 = 139,

SDL_SCANCODE_INTERNATIONAL6 = 140,

SDL_SCANCODE_INTERNATIONAL7 = 141,

SDL_SCANCODE_INTERNATIONAL8 = 142,

SDL_SCANCODE_INTERNATIONAL9 = 143,

SDL_SCANCODE_LANG1 = 144, /**< Hangul/English toggle */

SDL_SCANCODE_LANG2 = 145, /**< Hanja conversion */

SDL_SCANCODE_LANG3 = 146, /**< Katakana */

SDL_SCANCODE_LANG4 = 147, /**< Hiragana */

SDL_SCANCODE_LANG5 = 148, /**< Zenkaku/Hankaku */

SDL_SCANCODE_LANG6 = 149, /**< reserved */

SDL_SCANCODE_LANG7 = 150, /**< reserved */

SDL_SCANCODE_LANG8 = 151, /**< reserved */

SDL_SCANCODE_LANG9 = 152, /**< reserved */

SDL_SCANCODE_ALTERASE = 153, /**< Erase-Eaze */

SDL_SCANCODE_SYSREQ = 154,

SDL_SCANCODE_CANCEL = 155, /**< AC Cancel */

SDL_SCANCODE_CLEAR = 156,

SDL_SCANCODE_PRIOR = 157,

SDL_SCANCODE_RETURN2 = 158,

SDL_SCANCODE_SEPARATOR = 159,

SDL_SCANCODE_OUT = 160,

SDL_SCANCODE_OPER = 161,

SDL_SCANCODE_CLEARAGAIN = 162,

SDL_SCANCODE_CRSEL = 163,

SDL_SCANCODE_EXSEL = 164,

SDL_SCANCODE_KP_00 = 176,

SDL_SCANCODE_KP_000 = 177,

SDL_SCANCODE_THOUSANDSSEPARATOR = 178,

SDL_SCANCODE_DECIMALSEPARATOR = 179,

SDL_SCANCODE_CURRENCYUNIT = 180,

SDL_SCANCODE_CURRENCYSUBUNIT = 181,

SDL_SCANCODE_KP_LEFTPAREN = 182,

SDL_SCANCODE_KP_RIGHTPAREN = 183,

SDL_SCANCODE_KP_LEFTBRACE = 184,

SDL_SCANCODE_KP_RIGHTBRACE = 185,

SDL_SCANCODE_KP_TAB = 186,

SDL_SCANCODE_KP_BACKSPACE = 187,

SDL_SCANCODE_KP_A = 188,

SDL_SCANCODE_KP_B = 189,

1616 CHAPTER 3. SDL DATATYPES

SDL_SCANCODE_KP_C = 190,

SDL_SCANCODE_KP_D = 191,

SDL_SCANCODE_KP_E = 192,

SDL_SCANCODE_KP_F = 193,

SDL_SCANCODE_KP_XOR = 194,

SDL_SCANCODE_KP_POWER = 195,

SDL_SCANCODE_KP_PERCENT = 196,

SDL_SCANCODE_KP_LESS = 197,

SDL_SCANCODE_KP_GREATER = 198,

SDL_SCANCODE_KP_AMPERSAND = 199,

SDL_SCANCODE_KP_DBLAMPERSAND = 200,

SDL_SCANCODE_KP_VERTICALBAR = 201,

SDL_SCANCODE_KP_DBLVERTICALBAR = 202,

SDL_SCANCODE_KP_COLON = 203,

SDL_SCANCODE_KP_HASH = 204,

SDL_SCANCODE_KP_SPACE = 205,

SDL_SCANCODE_KP_AT = 206,

SDL_SCANCODE_KP_EXCLAM = 207,

SDL_SCANCODE_KP_MEMSTORE = 208,

SDL_SCANCODE_KP_MEMRECALL = 209,

SDL_SCANCODE_KP_MEMCLEAR = 210,

SDL_SCANCODE_KP_MEMADD = 211,

SDL_SCANCODE_KP_MEMSUBTRACT = 212,

SDL_SCANCODE_KP_MEMMULTIPLY = 213,

SDL_SCANCODE_KP_MEMDIVIDE = 214,

SDL_SCANCODE_KP_PLUSMINUS = 215,

SDL_SCANCODE_KP_CLEAR = 216,

SDL_SCANCODE_KP_CLEARENTRY = 217,

SDL_SCANCODE_KP_BINARY = 218,

SDL_SCANCODE_KP_OCTAL = 219,

SDL_SCANCODE_KP_DECIMAL = 220,

SDL_SCANCODE_KP_HEXADECIMAL = 221,

SDL_SCANCODE_LCTRL = 224,

SDL_SCANCODE_LSHIFT = 225,

SDL_SCANCODE_LALT = 226, /**< alt, option */

SDL_SCANCODE_LGUI = 227, /**< windows, command (apple), meta */

SDL_SCANCODE_RCTRL = 228,

SDL_SCANCODE_RSHIFT = 229,

SDL_SCANCODE_RALT = 230, /**< alt gr, option */

SDL_SCANCODE_RGUI = 231, /**< windows, command (apple), meta */

SDL_SCANCODE_MODE = 257, /**< I’m not sure if this is really not

covered

* by any of the above, but since there’s

a

* special SDL_KMOD_MODE for it I’m

adding it here

*/

SDL SCANCODE 1617

/* @} *//* Usage page 0x07 */

/**

* \name Usage page 0x0C

*

* These values are mapped from usage page 0x0C (USB consumer page).

* See https://usb.org/sites/default/files/hut1_2.pdf

*

* There are way more keys in the spec than we can represent in the

* current scancode range, so pick the ones that commonly come up in

* real world usage.

*/

/* @{ */

SDL_SCANCODE_AUDIONEXT = 258,

SDL_SCANCODE_AUDIOPREV = 259,

SDL_SCANCODE_AUDIOSTOP = 260,

SDL_SCANCODE_AUDIOPLAY = 261,

SDL_SCANCODE_AUDIOMUTE = 262,

SDL_SCANCODE_MEDIASELECT = 263,

SDL_SCANCODE_WWW = 264, /**< AL Internet Browser */

SDL_SCANCODE_MAIL = 265,

SDL_SCANCODE_CALCULATOR = 266, /**< AL Calculator */

SDL_SCANCODE_COMPUTER = 267,

SDL_SCANCODE_AC_SEARCH = 268, /**< AC Search */

SDL_SCANCODE_AC_HOME = 269, /**< AC Home */

SDL_SCANCODE_AC_BACK = 270, /**< AC Back */

SDL_SCANCODE_AC_FORWARD = 271, /**< AC Forward */

SDL_SCANCODE_AC_STOP = 272, /**< AC Stop */

SDL_SCANCODE_AC_REFRESH = 273, /**< AC Refresh */

SDL_SCANCODE_AC_BOOKMARKS = 274, /**< AC Bookmarks */

/* @} *//* Usage page 0x0C */

/**

* \name Walther keys

*

* These are values that Christian Walther added (for mac

keyboard?).

*/

/* @{ */

SDL_SCANCODE_BRIGHTNESSDOWN = 275,

SDL_SCANCODE_BRIGHTNESSUP = 276,

SDL_SCANCODE_DISPLAYSWITCH = 277, /**< display mirroring/dual display

switch, video mode switch */

SDL_SCANCODE_KBDILLUMTOGGLE = 278,

SDL_SCANCODE_KBDILLUMDOWN = 279,

SDL_SCANCODE_KBDILLUMUP = 280,

SDL_SCANCODE_EJECT = 281,

1618 CHAPTER 3. SDL DATATYPES

SDL_SCANCODE_SLEEP = 282, /**< SC System Sleep */

SDL_SCANCODE_APP1 = 283,

SDL_SCANCODE_APP2 = 284,

/* @} *//* Walther keys */

/**

* \name Usage page 0x0C (additional media keys)

*

* These values are mapped from usage page 0x0C (USB consumer page).

*/

/* @{ */

SDL_SCANCODE_AUDIOREWIND = 285,

SDL_SCANCODE_AUDIOFASTFORWARD = 286,

/* @} *//* Usage page 0x0C (additional media keys) */

/**

* \name Mobile keys

*

* These are values that are often used on mobile phones.

*/

/* @{ */

SDL_SCANCODE_SOFTLEFT = 287, /**< Usually situated below the display

on phones and

used as a multi-function feature key

for selecting

a software defined function shown on

the bottom left

of the display. */

SDL_SCANCODE_SOFTRIGHT = 288, /**< Usually situated below the

display on phones and

used as a multi-function feature key

for selecting

a software defined function shown on

the bottom right

of the display. */

SDL_SCANCODE_CALL = 289, /**< Used for accepting phone calls. */

SDL_SCANCODE_ENDCALL = 290, /**< Used for rejecting phone calls. */

/* @} *//* Mobile keys */

/* Add any other keys here. */

SDL_NUM_SCANCODES = 512 /**< not a key, just marks the number of

scancodes

for array bounds */

SDL SCANCODE 1619

} SDL_Scancode;

Remarks

An SDL scancode is the physical representation of a key on the keyboard, inde-
pendent of language and keyboard mapping.

Values of this type are used to represent keyboard keys, among other places
in the keysym.scancode field of the SDL KeyboardEvent structure.

The values in this enumeration are based on the USB usage page standard:
https://www.usb.org/sites/default/files/documents/hut1 12v2.pdf

Version

This enum is available since SDL 3.0.0.

1620 CHAPTER 3. SDL DATATYPES

SDL Semaphore

A means to manage access to a resource, by count, between threads.

Header File

Defined in SDL3/SDL mutex.h

Syntax

typedef struct SDL_Semaphore SDL_Semaphore;

Remarks

Semaphores (specifically, ”counting semaphores”), let X number of threads re-
quest access at the same time, each thread granted access decrementing a
counter. When the counter reaches zero, future requests block until a prior
thread releases their request, incrementing the counter again.

Wikipedia has a thorough explanation of the concept:
https://en.wikipedia.org/wiki/Semaphore (programming)

Version

This struct is available since SDL 3.0.0.

SDL SENSOREVENT 1621

SDL SensorEvent

Sensor event structure (event.sensor.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_SensorEvent

{

SDL_EventType type; /**< ::SDL_EVENT_SENSOR_UPDATE */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_SensorID which; /**< The instance ID of the sensor */

float data[6]; /**< Up to 6 values from the sensor - additional

values can be queried using SDL_GetSensorData() */

Uint64 sensor_timestamp; /**< The timestamp of the sensor reading in

nanoseconds, not necessarily synchronized with the system clock

*/

} SDL_SensorEvent;

Version

This struct is available since SDL 3.0.0.

1622 CHAPTER 3. SDL DATATYPES

SDL SensorID

This is a unique ID for a sensor for the time it is connected to the system, and
is never reused for the lifetime of the application.

Header File

Defined in SDL3/SDL sensor.h

Syntax

typedef Uint32 SDL_SensorID;

Remarks

The ID value starts at 1 and increments from there. The value 0 is an invalid
ID.

Version

This datatype is available since SDL 3.0.0.

SDL SENSORTYPE 1623

SDL SensorType

The different sensors defined by SDL.

Header File

Defined in SDL3/SDL sensor.h

Syntax

typedef enum SDL_SensorType

{

SDL_SENSOR_INVALID = -1, /**< Returned for an invalid sensor */

SDL_SENSOR_UNKNOWN, /**< Unknown sensor type */

SDL_SENSOR_ACCEL, /**< Accelerometer */

SDL_SENSOR_GYRO, /**< Gyroscope */

SDL_SENSOR_ACCEL_L, /**< Accelerometer for left Joy-Con

controller and Wii nunchuk */

SDL_SENSOR_GYRO_L, /**< Gyroscope for left Joy-Con controller

*/

SDL_SENSOR_ACCEL_R, /**< Accelerometer for right Joy-Con

controller */

SDL_SENSOR_GYRO_R /**< Gyroscope for right Joy-Con controller

*/

} SDL_SensorType;

Remarks

Additional sensors may be available, using platform dependent semantics.
Here are the additional Android sensors:
https://developer.android.com/reference/android/hardware/SensorEvent.html#values
Accelerometer sensor notes:
The accelerometer returns the current acceleration in SI meters per second

squared. This measurement includes the force of gravity, so a device at rest
will have an value of SDL STANDARD GRAVITY away from the center of the
earth, which is a positive Y value.

� values[0]: Acceleration on the x axis

� values[1]: Acceleration on the y axis

� values[2]: Acceleration on the z axis

For phones and tablets held in natural orientation and game controllers held
in front of you, the axes are defined as follows:

� -X ... +X : left ... right

1624 CHAPTER 3. SDL DATATYPES

� -Y ... +Y : bottom ... top

� -Z ... +Z : farther ... closer

The accelerometer axis data is not changed when the device is rotated.
Gyroscope sensor notes:
The gyroscope returns the current rate of rotation in radians per second.

The rotation is positive in the counter-clockwise direction. That is, an observer
looking from a positive location on one of the axes would see positive rotation
on that axis when it appeared to be rotating counter-clockwise.

� values[0]: Angular speed around the x axis (pitch)

� values[1]: Angular speed around the y axis (yaw)

� values[2]: Angular speed around the z axis (roll)

For phones and tablets held in natural orientation and game controllers held
in front of you, the axes are defined as follows:

� -X ... +X : left ... right

� -Y ... +Y : bottom ... top

� -Z ... +Z : farther ... closer

The gyroscope axis data is not changed when the device is rotated.

Version

This enum is available since SDL 3.0.0.

See Also

� SDL GetCurrentDisplayOrientation

SDL SPINLOCK 1625

SDL SpinLock

An atomic spinlock.

Header File

Defined in SDL3/SDL atomic.h

Syntax

typedef int SDL_SpinLock;

Remarks

The atomic locks are efficient spinlocks using CPU instructions, but are vul-
nerable to starvation and can spin forever if a thread holding a lock has been
terminated. For this reason you should minimize the code executed inside an
atomic lock and never do expensive things like API or system calls while holding
them.

They are also vulnerable to starvation if the thread holding the lock is lower
priority than other threads and doesn’t get scheduled. In general you should use
mutexes instead, since they have better performance and contention behavior.

The atomic locks are not safe to lock recursively.
Porting Note: The spin lock functions and type are required and can not be

emulated because they are used in the atomic emulation code.

1626 CHAPTER 3. SDL DATATYPES

SDL Storage

An abstract interface for filesystem access.

Header File

Defined in SDL3/SDL storage.h

Syntax

typedef struct SDL_Storage SDL_Storage;

Remarks

This is an opaque datatype. One can create this object using standard SDL
functions like SDL OpenTitleStorage or SDL OpenUserStorage, etc, or create
an object with a custom implementation using SDL OpenStorage.

Version

This struct is available since SDL 3.0.0.

SDL STORAGEINTERFACE 1627

SDL StorageInterface

Function interface for SDL Storage.

Header File

Defined in SDL3/SDL storage.h

Syntax

typedef struct SDL_StorageInterface

{

/* Called when the storage is closed */

int (SDLCALL *close)(void *userdata);

/* Optional, returns whether the storage is currently ready for

access */

SDL_bool (SDLCALL *ready)(void *userdata);

/* Enumerate a directory, optional for write-only storage */

int (SDLCALL *enumerate)(void *userdata, const char *path,

SDL_EnumerateDirectoryCallback callback, void

*callback_userdata);

/* Get path information, optional for write-only storage */

int (SDLCALL *info)(void *userdata, const char *path, SDL_PathInfo

*info);

/* Read a file from storage, optional for write-only storage */

int (SDLCALL *read_file)(void *userdata, const char *path, void

*destination, Uint64 length);

/* Write a file to storage, optional for read-only storage */

int (SDLCALL *write_file)(void *userdata, const char *path, const

void *source, Uint64 length);

/* Create a directory, optional for read-only storage */

int (SDLCALL *mkdir)(void *userdata, const char *path);

/* Remove a file or empty directory, optional for read-only storage

*/

int (SDLCALL *remove)(void *userdata, const char *path);

/* Rename a path, optional for read-only storage */

int (SDLCALL *rename)(void *userdata, const char *oldpath, const

char *newpath);

/* Get the space remaining, optional for read-only storage */

1628 CHAPTER 3. SDL DATATYPES

Uint64 (SDLCALL *space_remaining)(void *userdata);

} SDL_StorageInterface;

Remarks

Apps that want to supply a custom implementation of SDL Storage will fill in
all the functions in this struct, and then pass it to SDL OpenStorage to create
a custom SDL Storage object.

It is not usually necessary to do this; SDL provides standard implementations
for many things you might expect to do with an SDL Storage.

Version

This struct is available since SDL 3.0.0.

SDL SURFACE 1629

SDL Surface

A collection of pixels used in software blitting.

Header File

Defined in SDL3/SDL surface.h

Syntax

typedef struct SDL_Surface

{

Uint32 flags; /**< Read-only */

SDL_PixelFormat *format; /**< Read-only */

int w, h; /**< Read-only */

int pitch; /**< Read-only */

void *pixels; /**< Read-write */

void *reserved; /**< Private */

/** information needed for surfaces requiring locks */

int locked; /**< Read-only */

/** list of BlitMap that hold a reference to this surface */

void *list_blitmap; /**< Private */

/** clipping information */

SDL_Rect clip_rect; /**< Read-only */

/** info for fast blit mapping to other surfaces */

SDL_BlitMap *map; /**< Private */

/** Reference count -- used when freeing surface */

int refcount; /**< Read-mostly */

} SDL_Surface;

Remarks

Pixels are arranged in memory in rows, with the top row first. Each row occupies
an amount of memory given by the pitch (sometimes known as the row stride
in non-SDL APIs).

Within each row, pixels are arranged from left to right until the width is
reached. Each pixel occupies a number of bits appropriate for its format, with
most formats representing each pixel as one or more whole bytes (in some in-
dexed formats, instead multiple pixels are packed into each byte), and a byte
order given by the format. After encoding all pixels, any remaining bytes to

1630 CHAPTER 3. SDL DATATYPES

reach the pitch are used as padding to reach a desired alignment, and have
undefined contents.

Version

This struct is available since SDL 3.0.0.

SDL SYSTEMCURSOR 1631

SDL SystemCursor

Cursor types for SDL CreateSystemCursor().

Header File

Defined in SDL3/SDL mouse.h

Syntax

typedef enum SDL_SystemCursor

{

SDL_SYSTEM_CURSOR_ARROW, /**< Arrow */

SDL_SYSTEM_CURSOR_IBEAM, /**< I-beam */

SDL_SYSTEM_CURSOR_WAIT, /**< Wait */

SDL_SYSTEM_CURSOR_CROSSHAIR, /**< Crosshair */

SDL_SYSTEM_CURSOR_WAITARROW, /**< Small wait cursor (or Wait if not

available) */

SDL_SYSTEM_CURSOR_SIZENWSE, /**< Double arrow pointing northwest and

southeast */

SDL_SYSTEM_CURSOR_SIZENESW, /**< Double arrow pointing northeast and

southwest */

SDL_SYSTEM_CURSOR_SIZEWE, /**< Double arrow pointing west and east */

SDL_SYSTEM_CURSOR_SIZENS, /**< Double arrow pointing north and south

*/

SDL_SYSTEM_CURSOR_SIZEALL, /**< Four pointed arrow pointing north,

south, east, and west */

SDL_SYSTEM_CURSOR_NO, /**< Slashed circle or crossbones */

SDL_SYSTEM_CURSOR_HAND, /**< Hand */

SDL_SYSTEM_CURSOR_WINDOW_TOPLEFT, /**< Window resize top-left (or

SIZENWSE) */

SDL_SYSTEM_CURSOR_WINDOW_TOP, /**< Window resize top (or SIZENS)

*/

SDL_SYSTEM_CURSOR_WINDOW_TOPRIGHT, /**< Window resize top-right (or

SIZENESW) */

SDL_SYSTEM_CURSOR_WINDOW_RIGHT, /**< Window resize right (or

SIZEWE) */

SDL_SYSTEM_CURSOR_WINDOW_BOTTOMRIGHT, /**< Window resize

bottom-right (or SIZENWSE) */

SDL_SYSTEM_CURSOR_WINDOW_BOTTOM, /**< Window resize bottom (or

SIZENS) */

SDL_SYSTEM_CURSOR_WINDOW_BOTTOMLEFT, /**< Window resize bottom-left

(or SIZENESW) */

SDL_SYSTEM_CURSOR_WINDOW_LEFT, /**< Window resize left (or

SIZEWE) */

SDL_NUM_SYSTEM_CURSORS

} SDL_SystemCursor;

1632 CHAPTER 3. SDL DATATYPES

Version

This enum is available since SDL 3.0.0.

SDL SYSTEMTHEME 1633

SDL SystemTheme

System theme.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef enum SDL_SystemTheme

{

SDL_SYSTEM_THEME_UNKNOWN, /**< Unknown system theme */

SDL_SYSTEM_THEME_LIGHT, /**< Light colored system theme */

SDL_SYSTEM_THEME_DARK /**< Dark colored system theme */

} SDL_SystemTheme;

Version

This enum is available since SDL 3.0.0.

1634 CHAPTER 3. SDL DATATYPES

SDL TextEditingEvent

Keyboard text editing event structure (event.edit.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_TextEditingEvent

{

SDL_EventType type; /**< ::SDL_EVENT_TEXT_EDITING */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_WindowID windowID; /**< The window with keyboard focus, if any */

char *text; /**< The editing text */

Sint32 start; /**< The start cursor of selected editing text */

Sint32 length; /**< The length of selected editing text */

} SDL_TextEditingEvent;

Remarks

The text is owned by SDL and should be copied if the application wants to
hold onto it beyond the scope of handling this event.

Version

This struct is available since SDL 3.0.0.

SDL TEXTINPUTEVENT 1635

SDL TextInputEvent

Keyboard text input event structure (event.text.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_TextInputEvent

{

SDL_EventType type; /**< ::SDL_EVENT_TEXT_INPUT */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_WindowID windowID; /**< The window with keyboard focus, if any */

char *text; /**< The input text, UTF-8 encoded */

} SDL_TextInputEvent;

Remarks

The text is owned by SDL and should be copied if the application wants to
hold onto it beyond the scope of handling this event.

Version

This struct is available since SDL 3.0.0.

1636 CHAPTER 3. SDL DATATYPES

SDL Texture

An efficient driver-specific representation of pixel data

Header File

Defined in SDL3/SDL render.h

Syntax

struct SDL_Texture;

Version

This struct is available since SDL 3.0.0.

SDL TEXTUREACCESS 1637

SDL TextureAccess

The access pattern allowed for a texture.

Header File

Defined in SDL3/SDL render.h

Syntax

typedef enum SDL_TextureAccess

{

SDL_TEXTUREACCESS_STATIC, /**< Changes rarely, not lockable */

SDL_TEXTUREACCESS_STREAMING, /**< Changes frequently, lockable */

SDL_TEXTUREACCESS_TARGET /**< Texture can be used as a render

target */

} SDL_TextureAccess;

Version

This enum is available since SDL 3.0.0.

1638 CHAPTER 3. SDL DATATYPES

SDL ThreadFunction

The function passed to SDL CreateThread().

Header File

Defined in SDL3/SDL thread.h

Syntax

typedef int (SDLCALL * SDL_ThreadFunction) (void *data);

Function Parameters

data what was passed as data to SDL CreateThread()

Return Value

Returns a value that can be reported through SDL WaitThread().

Version

This datatype is available since SDL 3.0.0.

SDL THREADPRIORITY 1639

SDL ThreadPriority

The SDL thread priority.

Header File

Defined in SDL3/SDL thread.h

Syntax

typedef enum SDL_ThreadPriority {

SDL_THREAD_PRIORITY_LOW,

SDL_THREAD_PRIORITY_NORMAL,

SDL_THREAD_PRIORITY_HIGH,

SDL_THREAD_PRIORITY_TIME_CRITICAL

} SDL_ThreadPriority;

Remarks

SDL will make system changes as necessary in order to apply the thread priority.
Code which attempts to control thread state related to priority should be aware
that calling SDL SetThreadPriority may alter such state. SDL HINT THREAD PRIORITY POLICY
can be used to control aspects of this behavior.

Version

This enum is available since SDL 3.0.0.

1640 CHAPTER 3. SDL DATATYPES

SDL TimeFormat

The preferred time format of the current system locale.

Header File

Defined in SDL3/SDL time.h

Syntax

typedef enum SDL_TimeFormat

{

SDL_TIME_FORMAT_24HR = 0, /**< 24 hour time */

SDL_TIME_FORMAT_12HR = 1 /**< 12 hour time */

} SDL_TimeFormat;

Version

This enum is available since SDL 3.0.0.

See Also

� SDL PROP GLOBAL SYSTEM TIME FORMAT NUMBER

SDL TIMERCALLBACK 1641

SDL TimerCallback

Function prototype for the timer callback function.

Header File

Defined in SDL3/SDL timer.h

Syntax

typedef Uint32 (SDLCALL *SDL_TimerCallback)(Uint32 interval, void

*param);

Function Parameters

interval the current callback time interval.
param an arbitrary pointer provided by the app through

SDL AddTimer, for its own use.

Return Value

Returns the new callback time interval, or 0 to disable further runs of the
callback.

Remarks

The callback function is passed the current timer interval and returns the next
timer interval, in milliseconds. If the returned value is the same as the one
passed in, the periodic alarm continues, otherwise a new alarm is scheduled. If
the callback returns 0, the periodic alarm is cancelled.

Thread Safety

SDL may call this callback at any time from a background thread; the appli-
cation is responsible for locking resources the callback touches that need to be
protected.

Version

This datatype is available since SDL 3.0.0.

See Also

� SDL AddTimer

1642 CHAPTER 3. SDL DATATYPES

SDL TimerID

Definition of the timer ID type.

Header File

Defined in SDL3/SDL timer.h

Syntax

typedef Uint32 SDL_TimerID;

Version

This datatype is available since SDL 3.0.0.

SDL TOUCHFINGEREVENT 1643

SDL TouchFingerEvent

Touch finger event structure (event.tfinger.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_TouchFingerEvent

{

SDL_EventType type; /**< ::SDL_EVENT_FINGER_MOTION or

::SDL_EVENT_FINGER_DOWN or ::SDL_EVENT_FINGER_UP */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_TouchID touchID; /**< The touch device id */

SDL_FingerID fingerID;

float x; /**< Normalized in the range 0...1 */

float y; /**< Normalized in the range 0...1 */

float dx; /**< Normalized in the range -1...1 */

float dy; /**< Normalized in the range -1...1 */

float pressure; /**< Normalized in the range 0...1 */

SDL_WindowID windowID; /**< The window underneath the finger, if any

*/

} SDL_TouchFingerEvent;

Version

This struct is available since SDL 3.0.0.

1644 CHAPTER 3. SDL DATATYPES

SDL TransferCharacteristics

The color transfer characteristics.

Header File

Defined in SDL3/SDL pixels.h

Syntax

typedef enum SDL_TransferCharacteristics

{

SDL_TRANSFER_CHARACTERISTICS_UNKNOWN = 0,

SDL_TRANSFER_CHARACTERISTICS_BT709 = 1, /**< Rec. ITU-R BT.709-6

/ ITU-R BT1361 */

SDL_TRANSFER_CHARACTERISTICS_UNSPECIFIED = 2,

SDL_TRANSFER_CHARACTERISTICS_GAMMA22 = 4, /**< ITU-R BT.470-6

System M / ITU-R BT1700 625 PAL & SECAM */

SDL_TRANSFER_CHARACTERISTICS_GAMMA28 = 5, /**< ITU-R BT.470-6

System B, G */

SDL_TRANSFER_CHARACTERISTICS_BT601 = 6, /**< SMPTE ST 170M /

ITU-R BT.601-7 525 or 625 */

SDL_TRANSFER_CHARACTERISTICS_SMPTE240 = 7, /**< SMPTE ST 240M */

SDL_TRANSFER_CHARACTERISTICS_LINEAR = 8,

SDL_TRANSFER_CHARACTERISTICS_LOG100 = 9,

SDL_TRANSFER_CHARACTERISTICS_LOG100_SQRT10 = 10,

SDL_TRANSFER_CHARACTERISTICS_IEC61966 = 11, /**< IEC 61966-2-4 */

SDL_TRANSFER_CHARACTERISTICS_BT1361 = 12, /**< ITU-R BT1361

Extended Colour Gamut */

SDL_TRANSFER_CHARACTERISTICS_SRGB = 13, /**< IEC 61966-2-1 (sRGB

or sYCC) */

SDL_TRANSFER_CHARACTERISTICS_BT2020_10BIT = 14, /**< ITU-R BT2020

for 10-bit system */

SDL_TRANSFER_CHARACTERISTICS_BT2020_12BIT = 15, /**< ITU-R BT2020

for 12-bit system */

SDL_TRANSFER_CHARACTERISTICS_PQ = 16, /**< SMPTE ST 2084 for

10-, 12-, 14- and 16-bit systems */

SDL_TRANSFER_CHARACTERISTICS_SMPTE428 = 17, /**< SMPTE ST 428-1 */

SDL_TRANSFER_CHARACTERISTICS_HLG = 18, /**< ARIB STD-B67, known

as "hybrid log-gamma" (HLG) */

SDL_TRANSFER_CHARACTERISTICS_CUSTOM = 31

} SDL_TransferCharacteristics;

Remarks

These are as described by https://www.itu.int/rec/T-REC-H.273-201612-S/en

SDL TRANSFERCHARACTERISTICS 1645

Version

This enum is available since SDL 3.0.0.

1646 CHAPTER 3. SDL DATATYPES

SDL UserEvent

A user-defined event type (event.user.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_UserEvent

{

Uint32 type; /**< ::SDL_EVENT_USER through ::SDL_EVENT_LAST-1,

Uint32 because these are not in the SDL_EventType enumeration */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_WindowID windowID; /**< The associated window if any */

Sint32 code; /**< User defined event code */

void *data1; /**< User defined data pointer */

void *data2; /**< User defined data pointer */

} SDL_UserEvent;

Remarks

This event is unique; it is never created by SDL, but only by the application.
The event can be pushed onto the event queue using SDL PushEvent(). The
contents of the structure members are completely up to the programmer; the
only requirement is that ”’type”’ is a value obtained from SDL RegisterEvents().

Code Examples

extern Sint32 my_event_code;

extern void *significant_data;

extern void *some_other_data;

const Uint32 myEventType = SDL_RegisterEvents(1);

if (myEventType != ((Uint32)-1)) {

SDL_Event event;

SDL_zero(event);

event.type = myEventType;

event.user.code = my_event_code;

event.user.data1 = significant_data;

event.user.data2 = some_other_data;

SDL_PushEvent(&event);

}

SDL USEREVENT 1647

Version

This struct is available since SDL 3.0.0.

1648 CHAPTER 3. SDL DATATYPES

SDL Version

Information about the version of SDL in use.

Header File

Defined in SDL3/SDL version.h

Syntax

typedef struct SDL_Version

{

Uint8 major; /**< major version */

Uint8 minor; /**< minor version */

Uint8 patch; /**< update version */

} SDL_Version;

Remarks

Represents the library’s version as three levels: major revision (increments with
massive changes, additions, and enhancements), minor revision (increments with
backwards-compatible changes to the major revision), and patchlevel (incre-
ments with fixes to the minor revision).

Version

This struct is available since SDL 3.0.0.

See Also

� SDL VERSION

� SDL GetVersion

SDL VERTEX 1649

SDL Vertex

Vertex structure.

Header File

Defined in SDL3/SDL render.h

Syntax

typedef struct SDL_Vertex

{

SDL_FPoint position; /**< Vertex position, in SDL_Renderer

coordinates */

SDL_FColor color; /**< Vertex color */

SDL_FPoint tex_coord; /**< Normalized texture coordinates, if

needed */

} SDL_Vertex;

Version

This struct is available since SDL 3.0.0.

1650 CHAPTER 3. SDL DATATYPES

SDL VirtualJoystickDesc

The structure that defines an extended virtual joystick description

Header File

Defined in SDL3/SDL joystick.h

Syntax

typedef struct SDL_VirtualJoystickDesc

{

Uint16 type; /**< ‘SDL_JoystickType‘ */

Uint16 naxes; /**< the number of axes on this joystick */

Uint16 nbuttons; /**< the number of buttons on this joystick */

Uint16 nhats; /**< the number of hats on this joystick */

Uint16 vendor_id; /**< the USB vendor ID of this joystick */

Uint16 product_id; /**< the USB product ID of this joystick */

Uint16 padding; /**< unused */

Uint32 button_mask; /**< A mask of which buttons are valid for this

controller

e.g. (1 << SDL_GAMEPAD_BUTTON_SOUTH) */

Uint32 axis_mask; /**< A mask of which axes are valid for this

controller

e.g. (1 << SDL_GAMEPAD_AXIS_LEFTX) */

const char *name; /**< the name of the joystick */

void *userdata; /**< User data pointer passed to callbacks */

void (SDLCALL *Update)(void *userdata); /**< Called when the

joystick state should be updated */

void (SDLCALL *SetPlayerIndex)(void *userdata, int player_index);

/**< Called when the player index is set */

int (SDLCALL *Rumble)(void *userdata, Uint16 low_frequency_rumble,

Uint16 high_frequency_rumble); /**< Implements

SDL_RumbleJoystick() */

int (SDLCALL *RumbleTriggers)(void *userdata, Uint16 left_rumble,

Uint16 right_rumble); /**< Implements

SDL_RumbleJoystickTriggers() */

int (SDLCALL *SetLED)(void *userdata, Uint8 red, Uint8 green, Uint8

blue); /**< Implements SDL_SetJoystickLED() */

int (SDLCALL *SendEffect)(void *userdata, const void *data, int

size); /**< Implements SDL_SendJoystickEffect() */

} SDL_VirtualJoystickDesc;

Remarks

All elements of this structure are optional and can be left 0.

SDL VIRTUALJOYSTICKDESC 1651

Version

This struct is available since SDL 3.0.0.

See Also

� SDL AttachVirtualJoystickEx

1652 CHAPTER 3. SDL DATATYPES

SDL Window

The struct used as an opaque handle to a window.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef struct SDL_Window SDL_Window;

Version

This struct is available since SDL 3.0.0.

See Also

� SDL CreateWindow

SDL WINDOWEVENT 1653

SDL WindowEvent

Window state change event data (event.window.*)

Header File

Defined in SDL3/SDL events.h

Syntax

typedef struct SDL_WindowEvent

{

SDL_EventType type; /**< ::SDL_WINDOWEVENT_* */

Uint32 reserved;

Uint64 timestamp; /**< In nanoseconds, populated using

SDL_GetTicksNS() */

SDL_WindowID windowID; /**< The associated window */

Sint32 data1; /**< event dependent data */

Sint32 data2; /**< event dependent data */

} SDL_WindowEvent;

Version

This struct is available since SDL 3.0.0.

1654 CHAPTER 3. SDL DATATYPES

SDL WindowFlags

The flags on a window.

Header File

Defined in SDL3/SDL video.h

Syntax

typedef Uint32 SDL_WindowFlags;

#define SDL_WINDOW_FULLSCREEN 0x00000001U /**< window is in

fullscreen mode */

#define SDL_WINDOW_OPENGL 0x00000002U /**< window usable with

OpenGL context */

#define SDL_WINDOW_OCCLUDED 0x00000004U /**< window is occluded

*/

#define SDL_WINDOW_HIDDEN 0x00000008U /**< window is neither

mapped onto the desktop nor shown in the taskbar/dock/window list;

SDL_ShowWindow() is required for it to become visible */

#define SDL_WINDOW_BORDERLESS 0x00000010U /**< no window

decoration */

#define SDL_WINDOW_RESIZABLE 0x00000020U /**< window can be

resized */

#define SDL_WINDOW_MINIMIZED 0x00000040U /**< window is minimized

*/

#define SDL_WINDOW_MAXIMIZED 0x00000080U /**< window is maximized

*/

#define SDL_WINDOW_MOUSE_GRABBED 0x00000100U /**< window has grabbed

mouse input */

#define SDL_WINDOW_INPUT_FOCUS 0x00000200U /**< window has input

focus */

#define SDL_WINDOW_MOUSE_FOCUS 0x00000400U /**< window has mouse

focus */

#define SDL_WINDOW_EXTERNAL 0x00000800U /**< window not created

by SDL */

#define SDL_WINDOW_MODAL 0x00001000U /**< window is modal */

#define SDL_WINDOW_HIGH_PIXEL_DENSITY 0x00002000U /**< window uses high

pixel density back buffer if possible */

#define SDL_WINDOW_MOUSE_CAPTURE 0x00004000U /**< window has mouse

captured (unrelated to MOUSE_GRABBED) */

#define SDL_WINDOW_ALWAYS_ON_TOP 0x00008000U /**< window should

always be above others */

#define SDL_WINDOW_UTILITY 0x00020000U /**< window should be

treated as a utility window, not showing in the task bar and window

list */

SDL WINDOWFLAGS 1655

#define SDL_WINDOW_TOOLTIP 0x00040000U /**< window should be

treated as a tooltip and does not get mouse or keyboard focus,

requires a parent window */

#define SDL_WINDOW_POPUP_MENU 0x00080000U /**< window should be

treated as a popup menu, requires a parent window */

#define SDL_WINDOW_KEYBOARD_GRABBED 0x00100000U /**< window has grabbed

keyboard input */

#define SDL_WINDOW_VULKAN 0x10000000U /**< window usable for

Vulkan surface */

#define SDL_WINDOW_METAL 0x20000000U /**< window usable for

Metal view */

#define SDL_WINDOW_TRANSPARENT 0x40000000U /**< window with

transparent buffer */

#define SDL_WINDOW_NOT_FOCUSABLE 0x80000000U /**< window should not

be focusable */

Remarks

These cover a lot of true/false, or on/off, window state. Some of it is immutable
after being set through SDL CreateWindow(), some of it can be changed on
existing windows by the app, and some of it might be altered by the user or
system outside of the app’s control.

Version

This datatype is available since SDL 3.0.0.

See Also

� SDL GetWindowFlags

1656 CHAPTER 3. SDL DATATYPES

SDL WindowsMessageHook

A callback to be used with SDL SetWindowsMessageHook.

Header File

Defined in SDL3/SDL system.h

Syntax

typedef SDL_bool (SDLCALL *SDL_WindowsMessageHook)(void *userdata, MSG

*msg);

Function Parameters

userdata the app-defined pointer provided to
SDL SetWindowsMessageHook.

msg a pointer to a Win32 event structure to process.

Return Value

Returns SDL TRUE to let event continue on, SDL FALSE to drop it.

Remarks

This callback may modify the message, and should return SDL TRUE if the
message should continue to be processed, or SDL FALSE to prevent further
processing.

As this is processing a message directly from the Windows event loop, this
callback should do the minimum required work and return quickly.

Code Examples

#if defined(SDL_PLATFORM_WIN32) || defined(SDL_PLATFORM_GDK)

SDL_bool MyMessageHook(void *userdata, MSG *msg)

{

// do things with userdata and msg...

return SDL_TRUE; // let SDL continue processing the message

}

// ...

SDL_SetWindowsMessageHook(MyMessageHook, NULL);

#endif

SDL WINDOWSMESSAGEHOOK 1657

Thread Safety

This may only be called (by SDL) from the thread handling the Windows event
loop.

Version

This datatype is available since SDL 3.0.0.

See Also

� SDL SetWindowsMessageHook

� SDL HINT WINDOWS ENABLE MESSAGELOOP

1658 CHAPTER 3. SDL DATATYPES

SDL WinRT DeviceFamily

WinRT Device Family

Header File

Defined in SDL3/SDL system.h

Syntax

typedef enum SDL_WinRT_DeviceFamily

{

/** Unknown family */

SDL_WINRT_DEVICEFAMILY_UNKNOWN,

/** Desktop family*/

SDL_WINRT_DEVICEFAMILY_DESKTOP,

/** Mobile family (for example smartphone) */

SDL_WINRT_DEVICEFAMILY_MOBILE,

/** XBox family */

SDL_WINRT_DEVICEFAMILY_XBOX,

} SDL_WinRT_DeviceFamily;

Version

This enum is available since SDL 3.0.0.

SDL WINRT PATH 1659

SDL WinRT Path

WinRT / Windows Phone path types

Header File

Defined in SDL3/SDL system.h

Syntax

typedef enum SDL_WinRT_Path

{

/** The installed app’s root directory.

Files here are likely to be read-only. */

SDL_WINRT_PATH_INSTALLED_LOCATION,

/** The app’s local data store. Files may be written here */

SDL_WINRT_PATH_LOCAL_FOLDER,

/** The app’s roaming data store. Unsupported on Windows Phone.

Files written here may be copied to other machines via a network

connection.

*/

SDL_WINRT_PATH_ROAMING_FOLDER,

/** The app’s temporary data store. Unsupported on Windows Phone.

Files written here may be deleted at any time. */

SDL_WINRT_PATH_TEMP_FOLDER

} SDL_WinRT_Path;

Version

This enum is available since SDL 3.0.0.

	SDL Functions
	SDL_acos
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Thread Safety
	Version
	See Also

	SDL_acosf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AcquireCameraFrame
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_AddEventWatch
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AddGamepadMapping
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AddGamepadMappingsFromFile
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AddGamepadMappingsFromIO
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AddHintCallback
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_AddTimer
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_AddVulkanRenderSemaphores
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_aligned_alloc
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_aligned_free
	Header File
	Syntax
	Version
	See Also

	SDL_AllocateEventMemory
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_AndroidBackButton
	Header File
	Syntax
	Version

	SDL_AndroidGetActivity
	Header File
	Syntax
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_AndroidGetExternalStoragePath
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_AndroidGetExternalStorageState
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AndroidGetInternalStoragePath
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_AndroidGetJNIEnv
	Header File
	Syntax
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_AndroidRequestPermission
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_AndroidSendMessage
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_AndroidShowToast
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_AppEvent
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_AppInit
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_AppIterate
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_AppQuit
	Header File
	Syntax
	Function Parameters
	Remarks
	Thread Safety
	Version
	See Also

	SDL_asin
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_asinf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_atan
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_atan2
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_atan2f
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_atanf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AtomicAdd
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AtomicCompareAndSwap
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AtomicCompareAndSwapPointer
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AtomicGet
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AtomicGetPtr
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AtomicSet
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AtomicSetPtr
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_AttachVirtualJoystick
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_AttachVirtualJoystickEx
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_AudioDevicePaused
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_BindAudioStream
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_BindAudioStreams
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_BlitSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_BlitSurfaceScaled
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_BlitSurfaceUnchecked
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_BlitSurfaceUncheckedScaled
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_BroadcastCondition
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version
	See Also

	SDL_CaptureMouse
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_ceil
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_ceilf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_CleanupTLS
	Header File
	Syntax
	Version

	SDL_ClearAudioStream
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_ClearClipboardData
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_ClearComposition
	Header File
	Syntax
	Version
	See Also

	SDL_ClearError
	Header File
	Syntax
	Code Examples
	Version
	See Also

	SDL_ClearProperty
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version

	SDL_CloseAudioDevice
	Header File
	Syntax
	Function Parameters
	Remarks
	Code Examples
	Thread Safety
	Version
	See Also

	SDL_CloseCamera
	Header File
	Syntax
	Function Parameters
	Thread Safety
	Version
	See Also

	SDL_CloseGamepad
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_CloseHaptic
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_CloseIO
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_CloseJoystick
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_CloseSensor
	Header File
	Syntax
	Function Parameters
	Version

	SDL_CloseStorage
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_ComposeCustomBlendMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_ConvertAudioSamples
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_ConvertEventToRenderCoordinates
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_ConvertPixels
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_ConvertPixelsAndColorspace
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_ConvertSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_ConvertSurfaceFormat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_ConvertSurfaceFormatAndColorspace
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_CopyProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_copysign
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_copysignf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_cos
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_cosf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_CreateAudioStream
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_CreateColorCursor
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version
	See Also

	SDL_CreateCondition
	Header File
	Syntax
	Return Value
	Code Examples
	Version
	See Also

	SDL_CreateCursor
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_CreateDirectory
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_CreateHapticEffect
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_CreateMutex
	Header File
	Syntax
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_CreatePalette
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_CreatePixelFormat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_CreatePopupWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_CreateProperties
	Header File
	Syntax
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_CreateRenderer
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_CreateRendererWithProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_CreateRWLock
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_CreateSemaphore
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_CreateSoftwareRenderer
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_CreateStorageDirectory
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_CreateSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_CreateSurfaceFrom
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_CreateSystemCursor
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version
	See Also

	SDL_CreateTexture
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version
	See Also

	SDL_CreateTextureFromSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_CreateTextureWithProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_CreateThread
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_CreateThreadWithStackSize
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_CreateTLS
	Header File
	Syntax
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_CreateWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_CreateWindowAndRenderer
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version
	See Also

	SDL_CreateWindowWithProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_CursorVisible
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_DateTimeToTime
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_Delay
	Header File
	Syntax
	Function Parameters
	Remarks
	Version

	SDL_DelayNS
	Header File
	Syntax
	Function Parameters
	Remarks
	Version

	SDL_DelEventWatch
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_DelHintCallback
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_DestroyAudioStream
	Header File
	Syntax
	Function Parameters
	Remarks
	Thread Safety
	Version
	See Also

	SDL_DestroyCondition
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_DestroyCursor
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_DestroyHapticEffect
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_DestroyMutex
	Header File
	Syntax
	Function Parameters
	Remarks
	Code Examples
	Version
	See Also

	SDL_DestroyPalette
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_DestroyPixelFormat
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_DestroyProperties
	Header File
	Syntax
	Function Parameters
	Remarks
	Thread Safety
	Version
	See Also

	SDL_DestroyRenderer
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_DestroyRWLock
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_DestroySemaphore
	Header File
	Syntax
	Function Parameters
	Remarks
	Code Examples
	Version
	See Also

	SDL_DestroySurface
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_DestroyTexture
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_DestroyWindow
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_DestroyWindowSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_DetachThread
	Header File
	Syntax
	Function Parameters
	Remarks
	Code Examples
	Version
	See Also

	SDL_DetachVirtualJoystick
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_Direct3D9GetAdapterIndex
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_DisableScreenSaver
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_DuplicateSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_DXGIGetOutputInfo
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_EGL_GetCurrentEGLConfig
	Header File
	Syntax
	Return Value
	Version

	SDL_EGL_GetCurrentEGLDisplay
	Header File
	Syntax
	Return Value
	Version

	SDL_EGL_GetProcAddress
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_EGL_GetWindowEGLSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_EGL_SetEGLAttributeCallbacks
	Header File
	Syntax
	Function Parameters
	Remarks
	Version

	SDL_EnableScreenSaver
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_EnterAppMainCallbacks
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_EnumerateDirectory
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_EnumerateProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_EnumerateStorageDirectory
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_Error
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_EventEnabled
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_exp
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_expf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_fabs
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_fabsf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_FillSurfaceRect
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_FillSurfaceRects
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_FilterEvents
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_FlashWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_FlipSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_floor
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_floorf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_FlushAudioStream
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_FlushEvent
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_FlushEvents
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_FlushRenderer
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_fmod
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_fmodf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GamepadConnected
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GamepadEventsEnabled
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_GamepadHasAxis
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GamepadHasButton
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GamepadHasSensor
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GamepadSensorEnabled
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GDKGetDefaultUser
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GDKGetTaskQueue
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GDKSuspendComplete
	Header File
	Syntax
	Version

	SDL_GetAndroidSDKVersion
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_GetAssertionHandler
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetAssertionReport
	Header File
	Syntax
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GetAudioCaptureDevices
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetAudioDeviceFormat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_GetAudioDeviceName
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Thread Safety
	Version
	See Also

	SDL_GetAudioDriver
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Thread Safety
	Version
	See Also

	SDL_GetAudioOutputDevices
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetAudioStreamAvailable
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetAudioStreamData
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetAudioStreamDevice
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetAudioStreamFormat
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version

	SDL_GetAudioStreamFrequencyRatio
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_GetAudioStreamProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetAudioStreamQueued
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetBasePath
	Header File
	Syntax
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GetBooleanProperty
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetCameraDeviceName
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetCameraDevicePosition
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetCameraDevices
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_GetCameraDeviceSupportedFormats
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetCameraDriver
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetCameraFormat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetCameraInstanceID
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_GetCameraPermissionState
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetCameraProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_GetClipboardData
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetClipboardText
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_GetClosestFullscreenDisplayMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetCPUCacheLineSize
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_GetCPUCount
	Header File
	Syntax
	Return Value
	Code Examples
	Version

	SDL_GetCurrentAudioDriver
	Header File
	Syntax
	Return Value
	Remarks
	Code Examples
	Thread Safety
	Version

	SDL_GetCurrentCameraDriver
	Header File
	Syntax
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_GetCurrentDisplayMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GetCurrentDisplayOrientation
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetCurrentRenderOutputSize
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetCurrentThreadID
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_GetCurrentTime
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetCurrentVideoDriver
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_GetCursor
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_GetDayOfWeek
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetDayOfYear
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetDaysInMonth
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetDefaultAssertionHandler
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_GetDefaultCursor
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_GetDesktopDisplayMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GetDisplayBounds
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GetDisplayContentScale
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetDisplayForPoint
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetDisplayForRect
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetDisplayForWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetDisplayName
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetDisplayProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetDisplays
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetDisplayUsableBounds
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetError
	Header File
	Syntax
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GetEventFilter
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetFloatProperty
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetFullscreenDisplayModes
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadAppleSFSymbolsNameForAxis
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetGamepadAppleSFSymbolsNameForButton
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetGamepadAxis
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadAxisFromString
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadBindings
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetGamepadButton
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetGamepadButtonFromString
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadButtonLabel
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetGamepadButtonLabelForType
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetGamepadConnectionState
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetGamepadFirmwareVersion
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetGamepadFromInstanceID
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetGamepadFromPlayerIndex
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetGamepadInstanceGUID
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadInstanceID
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetGamepadInstanceMapping
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadInstanceName
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadInstancePath
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadInstancePlayerIndex
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadInstanceProduct
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadInstanceProductVersion
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadInstanceType
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadInstanceVendor
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadJoystick
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetGamepadMapping
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadMappingForGUID
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadMappings
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetGamepadName
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetGamepadPath
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetGamepadPlayerIndex
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadPowerInfo
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetGamepadProduct
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadProductVersion
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepads
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetGamepadSensorData
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetGamepadSensorDataRate
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetGamepadSerial
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetGamepadSteamHandle
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetGamepadStringForAxis
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadStringForButton
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadStringForType
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadTouchpadFinger
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetGamepadType
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetGamepadTypeFromString
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGamepadVendor
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGlobalMouseState
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetGlobalProperties
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_GetGrabbedWindow
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_GetHapticEffectStatus
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetHapticFeatures
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetHapticFromInstanceID
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetHapticInstanceID
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetHapticInstanceName
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetHapticName
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetHaptics
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetHint
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetHintBoolean
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetIOProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetIOSize
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetIOStatus
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_GetJoystickAxis
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickAxisInitialState
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetJoystickBall
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickButton
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetJoystickConnectionState
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetJoystickFirmwareVersion
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetJoystickFromInstanceID
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetJoystickFromPlayerIndex
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetJoystickGUID
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickGUIDFromString
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickGUIDInfo
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_GetJoystickGUIDString
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickHat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickInstanceGUID
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickInstanceID
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetJoystickInstanceName
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickInstancePath
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickInstancePlayerIndex
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickInstanceProduct
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickInstanceProductVersion
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickInstanceType
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickInstanceVendor
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickName
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetJoystickPath
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetJoystickPlayerIndex
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickPowerInfo
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetJoystickProduct
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickProductVersion
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoystickProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetJoysticks
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetJoystickSerial
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetJoystickType
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetJoystickVendor
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetKeyboardFocus
	Header File
	Syntax
	Return Value
	Version

	SDL_GetKeyboardInstanceName
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetKeyboards
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetKeyboardState
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GetKeyFromName
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetKeyFromScancode
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetKeyName
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetLogOutputFunction
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_GetMasksForPixelFormatEnum
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetMaxHapticEffects
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetMaxHapticEffectsPlaying
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetMemoryFunctions
	Header File
	Syntax
	Function Parameters
	Version

	SDL_GetMice
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetModState
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_GetMouseFocus
	Header File
	Syntax
	Return Value
	Version

	SDL_GetMouseInstanceName
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetMouseState
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GetNaturalDisplayOrientation
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetNumAllocations
	Header File
	Syntax
	Return Value
	Version

	SDL_GetNumAudioDrivers
	Header File
	Syntax
	Return Value
	Remarks
	Code Examples
	Thread Safety
	Version
	See Also

	SDL_GetNumberProperty
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetNumCameraDrivers
	Header File
	Syntax
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetNumGamepadTouchpadFingers
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetNumGamepadTouchpads
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetNumHapticAxes
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetNumJoystickAxes
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetNumJoystickBalls
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetNumJoystickButtons
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetNumJoystickHats
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetNumRenderDrivers
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_GetNumVideoDrivers
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_GetOriginalMemoryFunctions
	Header File
	Syntax
	Function Parameters
	Version

	SDL_GetPathInfo
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetPenCapabilities
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetPenFromGUID
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetPenGUID
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetPenName
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetPens
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetPenStatus
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetPenType
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetPerformanceCounter
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_GetPerformanceFrequency
	Header File
	Syntax
	Return Value
	Code Examples
	Version
	See Also

	SDL_GetPixelFormatEnumForMasks
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetPixelFormatName
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version

	SDL_GetPlatform
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_GetPowerInfo
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version

	SDL_GetPreferredLocales
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_GetPrefPath
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GetPrimaryDisplay
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_GetPrimarySelectionText
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_GetProperty
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_GetPropertyType
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_GetRealGamepadInstanceType
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetRealGamepadType
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetRectAndLineIntersection
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetRectAndLineIntersectionFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetRectEnclosingPoints
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetRectEnclosingPointsFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetRectIntersection
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetRectIntersectionFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetRectUnion
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetRectUnionFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetRelativeMouseMode
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_GetRelativeMouseState
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetRenderClipRect
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetRenderColorScale
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetRenderDrawBlendMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetRenderDrawColor
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetRenderDrawColorFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetRenderDriver
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetRenderer
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetRendererFromTexture
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version

	SDL_GetRendererInfo
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetRendererProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetRenderLogicalPresentation
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetRenderMetalCommandEncoder
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetRenderMetalLayer
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetRenderOutputSize
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetRenderScale
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetRenderTarget
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetRenderViewport
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetRenderVSync
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetRenderWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetRevision
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_GetRGB
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_GetRGBA
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_GetScancodeFromKey
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetScancodeFromName
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetScancodeName
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetSemaphoreValue
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetSensorData
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetSensorFromInstanceID
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetSensorInstanceID
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetSensorInstanceName
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetSensorInstanceNonPortableType
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetSensorInstanceType
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetSensorName
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetSensorNonPortableType
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetSensorProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetSensors
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetSensorType
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetSilenceValueForFormat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_GetStorageFileSize
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetStoragePathInfo
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetStorageSpaceRemaining
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetStringProperty
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_GetSurfaceAlphaMod
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetSurfaceBlendMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetSurfaceClipRect
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetSurfaceColorKey
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetSurfaceColorMod
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetSurfaceColorspace
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetSurfaceProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetSystemRAM
	Header File
	Syntax
	Return Value
	Version

	SDL_GetSystemTheme
	Header File
	Syntax
	Return Value
	Version

	SDL_GetTextureAlphaMod
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetTextureAlphaModFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetTextureBlendMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetTextureColorMod
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetTextureColorModFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetTextureProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetTextureScaleMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetThreadID
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GetThreadName
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetTicks
	Header File
	Syntax
	Return Value
	Code Examples
	Version

	SDL_GetTicksNS
	Header File
	Syntax
	Return Value
	Version

	SDL_GetTLS
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetTouchDeviceName
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetTouchDevices
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetTouchDeviceType
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetTouchFingers
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetUserFolder
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetVersion
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GetVideoDriver
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetWindowBordersSize
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetWindowDisplayScale
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetWindowFlags
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetWindowFromID
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetWindowFullscreenMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetWindowICCProfile
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_GetWindowID
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetWindowKeyboardGrab
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetWindowMaximumSize
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetWindowMinimumSize
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetWindowMouseGrab
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetWindowMouseRect
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetWindowOpacity
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetWindowParent
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetWindowPixelDensity
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetWindowPixelFormat
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_GetWindowPosition
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetWindowProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetWindowSize
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GetWindowSizeInPixels
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GetWindowSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GetWindowTitle
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GL_CreateContext
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GL_DeleteContext
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GL_ExtensionSupported
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version

	SDL_GL_GetAttribute
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_GL_GetCurrentContext
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_GL_GetCurrentWindow
	Header File
	Syntax
	Return Value
	Version

	SDL_GL_GetProcAddress
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GL_GetSwapInterval
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GL_LoadLibrary
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GL_MakeCurrent
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GL_ResetAttributes
	Header File
	Syntax
	Version
	See Also

	SDL_GL_SetAttribute
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_GL_SetSwapInterval
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GL_SwapWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version

	SDL_GL_UnloadLibrary
	Header File
	Syntax
	Version
	See Also

	SDL_GlobDirectory
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_GlobStorageDirectory
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_GUIDFromString
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_GUIDToString
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_HapticEffectSupported
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_HapticRumbleSupported
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version
	See Also

	SDL_HasAltiVec
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_HasARMSIMD
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_HasAVX
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_HasAVX2
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_HasAVX512F
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_HasClipboardData
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_HasClipboardText
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_HasEvent
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_HasEvents
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_HasExactlyOneBitSet32
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_HasGamepad
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_HasJoystick
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_HasKeyboard
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_HasLASX
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_HasLSX
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_HasMMX
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_HasMouse
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_HasNEON
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_HasPrimarySelectionText
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_HasProperty
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_HasRectIntersection
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_HasRectIntersectionFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_HasScreenKeyboardSupport
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_HasSSE
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_HasSSE2
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_HasSSE3
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_HasSSE41
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_HasSSE42
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_hid_ble_scan
	Header File
	Syntax
	Function Parameters
	Version

	SDL_hid_close
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_hid_device_change_count
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_hid_enumerate
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_hid_exit
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_hid_free_enumeration
	Header File
	Syntax
	Function Parameters
	Remarks
	Version

	SDL_hid_get_device_info
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_hid_get_feature_report
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_hid_get_indexed_string
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_hid_get_input_report
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_hid_get_manufacturer_string
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_hid_get_product_string
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_hid_get_report_descriptor
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_hid_get_serial_number_string
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_hid_init
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_hid_open
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_hid_open_path
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_hid_read
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_hid_read_timeout
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_hid_send_feature_report
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_hid_set_nonblocking
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_hid_write
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_HideCursor
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_HideWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_iconv_string
	Header File
	Syntax
	Version

	SDL_Init
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_InitHapticRumble
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_InitSubSystem
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_IOFromConstMem
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_IOFromDynamicMem
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_IOFromFile
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_IOFromMem
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_IOprintf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_iOSSetAnimationCallback
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_iOSSetEventPump
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_IOvprintf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_isalnum
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_isalpha
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_IsAndroidTV
	Header File
	Syntax
	Return Value
	Version

	SDL_isblank
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_IsChromebook
	Header File
	Syntax
	Return Value
	Version

	SDL_iscntrl
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_IsDeXMode
	Header File
	Syntax
	Return Value
	Version

	SDL_isdigit
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_IsGamepad
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_isgraph
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_IsJoystickHaptic
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_IsJoystickVirtual
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_islower
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_IsMouseHaptic
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_isprint
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_ispunct
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_isspace
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_IsTablet
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_isupper
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_isxdigit
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_JoystickConnected
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_JoystickEventsEnabled
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_LinuxSetThreadPriority
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_LinuxSetThreadPriorityAndPolicy
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_LoadBMP
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_LoadBMP_IO
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_LoadFile
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_LoadFile_IO
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_LoadFunction
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_LoadObject
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version
	See Also

	SDL_LoadWAV
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_LoadWAV_IO
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_LockAudioStream
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_LockJoysticks
	Header File
	Syntax
	Remarks
	Version

	SDL_LockMutex
	Header File
	Syntax
	Function Parameters
	Remarks
	Code Examples
	Version
	See Also

	SDL_LockProperties
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_LockRWLockForReading
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_LockRWLockForWriting
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_LockSpinlock
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_LockSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_LockTexture
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_LockTextureToSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_log
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_Log
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_log10
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_log10f
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_LogCritical
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_LogDebug
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_LogError
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_logf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_LogGetPriority
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_LogInfo
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_LogMessage
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_LogMessageV
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_LogResetPriorities
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_LogSetAllPriority
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_LogSetPriority
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_LogVerbose
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_LogWarn
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_lround
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_lroundf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_main
	Header File
	Syntax
	Remarks
	Thread Safety
	Version

	SDL_MapRGB
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_MapRGBA
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_MaximizeWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_MemoryBarrierAcquireFunction
	Header File
	Syntax
	Remarks
	Thread Safety
	Version
	See Also

	SDL_MemoryBarrierReleaseFunction
	Header File
	Syntax
	Remarks
	Thread Safety
	Version

	SDL_Metal_CreateView
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_Metal_DestroyView
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_Metal_GetLayer
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_MinimizeWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_MixAudioFormat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Thread Safety
	Version

	SDL_modf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_modff
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_MostSignificantBitIndex32
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_OnApplicationDidBecomeActive
	Header File
	Syntax
	Remarks
	Thread Safety
	Version

	SDL_OnApplicationDidChangeStatusBarOrientation
	Header File
	Syntax
	Remarks
	Thread Safety
	Version

	SDL_OnApplicationDidEnterBackground
	Header File
	Syntax
	Remarks
	Thread Safety
	Version

	SDL_OnApplicationDidReceiveMemoryWarning
	Header File
	Syntax
	Remarks
	Thread Safety
	Version

	SDL_OnApplicationWillEnterForeground
	Header File
	Syntax
	Remarks
	Thread Safety
	Version

	SDL_OnApplicationWillResignActive
	Header File
	Syntax
	Remarks
	Thread Safety
	Version

	SDL_OnApplicationWillTerminate
	Header File
	Syntax
	Remarks
	Thread Safety
	Version

	SDL_OpenAudioDevice
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Thread Safety
	Version
	See Also

	SDL_OpenAudioDeviceStream
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_OpenCameraDevice
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_OpenFileStorage
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_OpenGamepad
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_OpenHaptic
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_OpenHapticFromJoystick
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_OpenHapticFromMouse
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_OpenIO
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_OpenJoystick
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_OpenSensor
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_OpenStorage
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_OpenTitleStorage
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_OpenURL
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_OpenUserStorage
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_PauseAudioDevice
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Thread Safety
	Version
	See Also

	SDL_PauseHaptic
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_PeepEvents
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_PenConnected
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_PlayHapticRumble
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_PointInRect
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_PointInRectFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_PollEvent
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_PostSemaphore
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_pow
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_powf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_PremultiplyAlpha
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_PumpEvents
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_PushEvent
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_PutAudioStreamData
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_QueryTexture
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version

	SDL_Quit
	Header File
	Syntax
	Remarks
	Code Examples
	Version
	See Also

	SDL_QuitSubSystem
	Header File
	Syntax
	Function Parameters
	Remarks
	Code Examples
	Version
	See Also

	SDL_RaiseWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_ReadIO
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_ReadS16BE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadS16LE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadS32BE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadS32LE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadS64BE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadS64LE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadStorageFile
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_ReadSurfacePixel
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadU16BE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadU16LE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadU32BE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadU32LE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadU64BE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadU64LE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ReadU8
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_RectEmpty
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_RectEmptyFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_RectsEqual
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_RectsEqualEpsilon
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_RectsEqualFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_RegisterApp
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_RegisterEvents
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version
	See Also

	SDL_ReleaseCameraFrame
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_ReloadGamepadMappings
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_RemovePath
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_RemoveStoragePath
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RemoveTimer
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version
	See Also

	SDL_RenamePath
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_RenameStoragePath
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderClear
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_RenderClipEnabled
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderCoordinatesFromWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderCoordinatesToWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderFillRect
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderFillRects
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderGeometry
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version
	See Also

	SDL_RenderGeometryRaw
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderGeometryRawFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderLine
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderLines
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderPoint
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderPoints
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderPresent
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Thread Safety
	Version
	See Also

	SDL_RenderReadPixels
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_RenderRect
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderRects
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderTexture
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderTextureRotated
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_RenderViewportSet
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_ReportAssertion
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_ResetAssertionReport
	Header File
	Syntax
	Remarks
	Code Examples
	Version
	See Also

	SDL_ResetHint
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_ResetHints
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_ResetKeyboard
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_RestoreWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_ResumeAudioDevice
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_ResumeHaptic
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_round
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_roundf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_RumbleGamepad
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_RumbleGamepadTriggers
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_RumbleJoystick
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_RumbleJoystickTriggers
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_RunApp
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_RunHapticEffect
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SaveBMP
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SaveBMP_IO
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_scalbn
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_scalbnf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_ScreenKeyboardShown
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_ScreenSaverEnabled
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_SeekIO
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SendGamepadEffect
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_SendJoystickEffect
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_SetAssertionHandler
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_SetAudioPostmixCallback
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_SetAudioStreamFormat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_SetAudioStreamFrequencyRatio
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_SetAudioStreamGetCallback
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_SetAudioStreamPutCallback
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_SetBooleanProperty
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_SetClipboardData
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetClipboardText
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_SetCursor
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetError
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_SetEventEnabled
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_SetEventFilter
	Header File
	Syntax
	Function Parameters
	Remarks
	Code Examples
	Thread Safety
	Version
	See Also

	SDL_SetFloatProperty
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_SetGamepadEventsEnabled
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_SetGamepadLED
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_SetGamepadMapping
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetGamepadPlayerIndex
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_SetGamepadSensorEnabled
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_SetHapticAutocenter
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetHapticGain
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetHint
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_SetHintWithPriority
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetJoystickEventsEnabled
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_SetJoystickLED
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_SetJoystickPlayerIndex
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_SetJoystickVirtualAxis
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_SetJoystickVirtualButton
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_SetJoystickVirtualHat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_SetLogOutputFunction
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_SetMainReady
	Header File
	Syntax
	Remarks
	Code Examples
	Version
	See Also

	SDL_SetMemoryFunctions
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_SetModState
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_SetNumberProperty
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_SetPaletteColors
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_SetPixelFormatPalette
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_SetPrimarySelectionText
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_SetProperty
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_SetPropertyWithCleanup
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_SetRelativeMouseMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetRenderClipRect
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_SetRenderColorScale
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetRenderDrawBlendMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetRenderDrawColor
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_SetRenderDrawColorFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetRenderLogicalPresentation
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetRenderScale
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetRenderTarget
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetRenderViewport
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_SetRenderVSync
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_SetStringProperty
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_SetSurfaceAlphaMod
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetSurfaceBlendMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetSurfaceClipRect
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetSurfaceColorKey
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetSurfaceColorMod
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetSurfaceColorspace
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_SetSurfacePalette
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_SetSurfaceRLE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetTextInputRect
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetTextureAlphaMod
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetTextureAlphaModFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetTextureBlendMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetTextureColorMod
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_SetTextureColorModFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetTextureScaleMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetThreadPriority
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_SetTLS
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowAlwaysOnTop
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowBordered
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowFocusable
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_SetWindowFullscreen
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowFullscreenMode
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowHitTest
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_SetWindowIcon
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version

	SDL_SetWindowInputFocus
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowKeyboardGrab
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowMaximumSize
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_SetWindowMinimumSize
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_SetWindowModalFor
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_SetWindowMouseGrab
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowMouseRect
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowOpacity
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowPosition
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowResizable
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowShape
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_SetWindowSize
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SetWindowsMessageHook
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_SetWindowTitle
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_SetX11EventHook
	Header File
	Syntax
	Function Parameters
	Remarks
	Version

	SDL_ShowCursor
	Header File
	Syntax
	Return Value
	Code Examples
	Version
	See Also

	SDL_ShowMessageBox
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_ShowOpenFileDialog
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_ShowOpenFolderDialog
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_ShowSaveFileDialog
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_ShowSimpleMessageBox
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_ShowWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version
	See Also

	SDL_ShowWindowSystemMenu
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_SignalCondition
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_SIMDGetAlignment
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_sin
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_sinf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_size_add_overflow
	Header File
	Syntax
	Remarks
	Version

	SDL_size_mul_overflow
	Header File
	Syntax
	Remarks
	Version

	SDL_SoftStretch
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_sqrt
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_sqrtf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_StartTextInput
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_StopHapticEffect
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_StopHapticEffects
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_StopHapticRumble
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_StopTextInput
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_StorageReady
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_strcasecmp
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_strcmp
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_strlwr
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_strncasecmp
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_strncmp
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_strupr
	Header File
	Syntax
	Remarks
	Thread Safety
	Version
	See Also

	SDL_SurfaceHasColorKey
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_SurfaceHasRLE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_Swap16
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_Swap32
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_Swap64
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_SwapFloat
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_SyncWindow
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_tan
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_tanf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_TellIO
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_TextInputActive
	Header File
	Syntax
	Return Value
	Version
	See Also

	SDL_TimeFromWindows
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_TimeToDateTime
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_TimeToWindows
	Header File
	Syntax
	Function Parameters
	Remarks
	Version

	SDL_tolower
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_toupper
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_trunc
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_truncf
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_TryLockMutex
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_TryLockRWLockForReading
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_TryLockRWLockForWriting
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_TryLockSpinlock
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_TryWaitSemaphore
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_UnbindAudioStream
	Header File
	Syntax
	Function Parameters
	Remarks
	Thread Safety
	Version
	See Also

	SDL_UnbindAudioStreams
	Header File
	Syntax
	Function Parameters
	Remarks
	Thread Safety
	Version
	See Also

	SDL_UnloadObject
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_UnlockAudioStream
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_UnlockJoysticks
	Header File
	Syntax
	Version

	SDL_UnlockMutex
	Header File
	Syntax
	Function Parameters
	Remarks
	Code Examples
	Version
	See Also

	SDL_UnlockProperties
	Header File
	Syntax
	Function Parameters
	Thread Safety
	Version
	See Also

	SDL_UnlockRWLock
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_UnlockSpinlock
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_UnlockSurface
	Header File
	Syntax
	Function Parameters
	Code Examples
	Version
	See Also

	SDL_UnlockTexture
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_UnregisterApp
	Header File
	Syntax
	Remarks
	Version

	SDL_UpdateGamepads
	Header File
	Syntax
	Remarks
	Version

	SDL_UpdateHapticEffect
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_UpdateJoysticks
	Header File
	Syntax
	Remarks
	Version

	SDL_UpdateNVTexture
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_UpdateSensors
	Header File
	Syntax
	Remarks
	Version

	SDL_UpdateTexture
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_UpdateWindowSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_UpdateWindowSurfaceRects
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_UpdateYUVTexture
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_Vulkan_CreateSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_Vulkan_GetInstanceExtensions
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_Vulkan_GetVkGetInstanceProcAddr
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_Vulkan_LoadLibrary
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_Vulkan_UnloadLibrary
	Header File
	Syntax
	Version
	See Also

	SDL_WaitCondition
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_WaitConditionTimeout
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_WaitEvent
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_WaitEventTimeout
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_WaitSemaphore
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_WaitSemaphoreTimeout
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Version
	See Also

	SDL_WaitThread
	Header File
	Syntax
	Function Parameters
	Remarks
	Code Examples
	Version
	See Also

	SDL_WarpMouseGlobal
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_WarpMouseInWindow
	Header File
	Syntax
	Function Parameters
	Remarks
	Version
	See Also

	SDL_WasInit
	Header File
	Syntax
	Function Parameters
	Return Value
	Code Examples
	Version
	See Also

	SDL_wcscasecmp
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_wcscmp
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_wcsncasecmp
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_wcsncmp
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_WindowHasSurface
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_WinRTGetDeviceFamily
	Header File
	Syntax
	Return Value
	Version

	SDL_WinRTGetFSPath
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteIO
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_WriteS16BE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteS16LE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteS32BE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteS32LE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteS64BE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteS64LE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteStorageFile
	Header File
	Syntax
	Function Parameters
	Return Value
	Version
	See Also

	SDL_WriteU16BE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteU16LE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteU32BE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteU32LE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteU64BE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteU64LE
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version

	SDL_WriteU8
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL Macros
	SDL_ANDROID_EXTERNAL_STORAGE_READ
	Header File
	Syntax
	Version

	SDL_arraysize
	Header File
	Syntax
	Remarks
	Version

	SDL_assert
	Header File
	Syntax
	Remarks
	Version

	SDL_assert_always
	Header File
	Syntax
	Remarks
	Version

	SDL_ASSERT_LEVEL
	Header File
	Syntax
	Remarks
	Version

	SDL_assert_paranoid
	Header File
	Syntax
	Remarks
	Version

	SDL_assert_release
	Header File
	Syntax
	Remarks
	Version

	SDL_AtomicDecRef
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_AtomicIncRef
	Header File
	Syntax
	Return Value
	Remarks
	Version
	See Also

	SDL_AUDIO_BITSIZE
	Header File
	Syntax
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_AUDIO_BYTESIZE
	Header File
	Syntax
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_AUDIO_DEVICE_DEFAULT_CAPTURE
	Header File
	Syntax
	Remarks
	Version

	SDL_AUDIO_DEVICE_DEFAULT_OUTPUT
	Header File
	Syntax
	Remarks
	Version

	SDL_AUDIO_FRAMESIZE
	Header File
	Syntax
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_AUDIO_ISBIGENDIAN
	Header File
	Syntax
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_AUDIO_ISFLOAT
	Header File
	Syntax
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_AUDIO_ISINT
	Header File
	Syntax
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_AUDIO_ISLITTLEENDIAN
	Header File
	Syntax
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_AUDIO_ISSIGNED
	Header File
	Syntax
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_AUDIO_ISUNSIGNED
	Header File
	Syntax
	Return Value
	Remarks
	Thread Safety
	Version

	SDL_BUTTON
	Header File
	Syntax
	Remarks
	Version

	SDL_CACHELINE_SIZE
	Header File
	Syntax
	Remarks
	Version

	SDL_COMPILEDVERSION
	Header File
	Syntax
	Version

	SDL_CompilerBarrier
	Header File
	Syntax
	Remarks
	Thread Safety
	Version

	SDL_CPUPauseInstruction
	Header File
	Syntax
	Remarks
	Thread Safety
	Version

	SDL_FALSE
	Header File
	Syntax
	Version
	See Also

	SDL_HAPTIC_AUTOCENTER
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_CARTESIAN
	Header File
	Syntax
	Version
	See Also

	SDL_HAPTIC_CONSTANT
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_CUSTOM
	Header File
	Syntax
	Remarks
	Version

	SDL_HAPTIC_DAMPER
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_FRICTION
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_GAIN
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_INERTIA
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_INFINITY
	Header File
	Syntax
	Version
	See Also

	SDL_HAPTIC_LEFTRIGHT
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_PAUSE
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_POLAR
	Header File
	Syntax
	Version
	See Also

	SDL_HAPTIC_RAMP
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_RESERVED1
	Header File
	Syntax
	Version

	SDL_HAPTIC_SAWTOOTHDOWN
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_SAWTOOTHUP
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_SINE
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_SPHERICAL
	Header File
	Syntax
	Version
	See Also

	SDL_HAPTIC_SPRING
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_SQUARE
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_STATUS
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_STEERING_AXIS
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HAPTIC_TRIANGLE
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HINT_ALLOW_ALT_TAB_WHILE_GRABBED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_ANDROID_ALLOW_RECREATE_ACTIVITY
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_ANDROID_BLOCK_ON_PAUSE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_ANDROID_BLOCK_ON_PAUSE_PAUSEAUDIO
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_ANDROID_TRAP_BACK_BUTTON
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_APP_ID
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_APP_NAME
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_APPLE_TV_CONTROLLER_UI_EVENTS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_APPLE_TV_REMOTE_ALLOW_ROTATION
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_AUDIO_CATEGORY
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_AUDIO_DEVICE_APP_NAME
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_AUDIO_DEVICE_SAMPLE_FRAMES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_AUDIO_DEVICE_STREAM_NAME
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_AUDIO_DEVICE_STREAM_ROLE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_AUDIO_DRIVER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_AUDIO_INCLUDE_MONITORS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_AUTO_UPDATE_JOYSTICKS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_AUTO_UPDATE_SENSORS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_BMP_SAVE_LEGACY_FORMAT
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_CAMERA_DRIVER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_CPU_FEATURE_MASK
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_DISPLAY_USABLE_BOUNDS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_EMSCRIPTEN_ASYNCIFY
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_EMSCRIPTEN_CANVAS_SELECTOR
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_EMSCRIPTEN_KEYBOARD_ELEMENT
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_ENABLE_SCREEN_KEYBOARD
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_EVENT_LOGGING
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_FILE_DIALOG_DRIVER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_FORCE_RAISEWINDOW
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_FRAMEBUFFER_ACCELERATION
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_GAMECONTROLLER_IGNORE_DEVICES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_GAMECONTROLLER_IGNORE_DEVICES_EXCEPT
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_GAMECONTROLLER_SENSOR_FUSION
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_GAMECONTROLLERCONFIG
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_GAMECONTROLLERCONFIG_FILE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_GAMECONTROLLERTYPE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_GDK_TEXTINPUT_DEFAULT_TEXT
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_GDK_TEXTINPUT_DESCRIPTION
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_GDK_TEXTINPUT_MAX_LENGTH
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_GDK_TEXTINPUT_SCOPE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_GDK_TEXTINPUT_TITLE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_HIDAPI_ENUMERATE_ONLY_CONTROLLERS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_HIDAPI_IGNORE_DEVICES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_IME_INTERNAL_EDITING
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_IME_SHOW_UI
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_IOS_HIDE_HOME_INDICATOR
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_ALLOW_BACKGROUND_EVENTS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_ARCADESTICK_DEVICES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_ARCADESTICK_DEVICES_EXCLUDED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_BLACKLIST_DEVICES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_BLACKLIST_DEVICES_EXCLUDED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_DEVICE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_DIRECTINPUT
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_FLIGHTSTICK_DEVICES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_FLIGHTSTICK_DEVICES_EXCLUDED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_GAMECUBE_DEVICES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_GAMECUBE_DEVICES_EXCLUDED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_COMBINE_JOY_CONS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_GAMECUBE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_GAMECUBE_RUMBLE_BRAKE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_JOY_CONS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_JOYCON_HOME_LED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_LUNA
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_NINTENDO_CLASSIC
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_PS3
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_PS3_SIXAXIS_DRIVER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_PS4
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_PS4_RUMBLE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_PS5
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_PS5_PLAYER_LED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_PS5_RUMBLE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_SHIELD
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_STADIA
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_STEAM
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_STEAMDECK
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_SWITCH
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_SWITCH_HOME_LED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_SWITCH_PLAYER_LED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_VERTICAL_JOY_CONS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_WII
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_WII_PLAYER_LED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_XBOX
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_XBOX_360
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_XBOX_360_PLAYER_LED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_XBOX_360_WIRELESS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_XBOX_ONE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_HIDAPI_XBOX_ONE_HOME_LED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_IOKIT
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_LINUX_CLASSIC
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_LINUX_DEADZONES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_LINUX_DIGITAL_HATS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_LINUX_HAT_DEADZONES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_MFI
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_RAWINPUT
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_RAWINPUT_CORRELATE_XINPUT
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_ROG_CHAKRAM
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_THREAD
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_THROTTLE_DEVICES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_THROTTLE_DEVICES_EXCLUDED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_WGI
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_WHEEL_DEVICES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_WHEEL_DEVICES_EXCLUDED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_JOYSTICK_ZERO_CENTERED_DEVICES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_KMSDRM_DEVICE_INDEX
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_KMSDRM_REQUIRE_DRM_MASTER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_LOGGING
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MAC_BACKGROUND_APP
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MAC_CTRL_CLICK_EMULATE_RIGHT_CLICK
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MAC_OPENGL_ASYNC_DISPATCH
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MAIN_CALLBACK_RATE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MOUSE_AUTO_CAPTURE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MOUSE_DOUBLE_CLICK_RADIUS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MOUSE_DOUBLE_CLICK_TIME
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MOUSE_FOCUS_CLICKTHROUGH
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MOUSE_NORMAL_SPEED_SCALE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MOUSE_RELATIVE_MODE_CENTER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MOUSE_RELATIVE_MODE_WARP
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MOUSE_RELATIVE_SPEED_SCALE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MOUSE_RELATIVE_SYSTEM_SCALE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MOUSE_RELATIVE_WARP_MOTION
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_MOUSE_TOUCH_EVENTS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_NO_SIGNAL_HANDLERS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_OPENGL_ES_DRIVER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_ORIENTATIONS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_PEN_DELAY_MOUSE_BUTTON
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_PEN_NOT_MOUSE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_POLL_SENTINEL
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_PREFERRED_LOCALES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_QUIT_ON_LAST_WINDOW_CLOSE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_RENDER_DIRECT3D11_DEBUG
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_RENDER_DIRECT3D_THREADSAFE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_RENDER_DRIVER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_RENDER_LINE_METHOD
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_RENDER_METAL_PREFER_LOW_POWER_DEVICE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_RENDER_PS2_DYNAMIC_VSYNC
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_RENDER_VSYNC
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_RENDER_VULKAN_DEBUG
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_RETURN_KEY_HIDES_IME
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_ROG_GAMEPAD_MICE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_ROG_GAMEPAD_MICE_EXCLUDED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_RPI_VIDEO_LAYER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_SCREENSAVER_INHIBIT_ACTIVITY_NAME
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_SHUTDOWN_DBUS_ON_QUIT
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_STORAGE_TITLE_DRIVER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_STORAGE_USER_DRIVER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_THREAD_FORCE_REALTIME_TIME_CRITICAL
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_THREAD_PRIORITY_POLICY
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_TIMER_RESOLUTION
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_TOUCH_MOUSE_EVENTS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_TRACKPAD_IS_TOUCH_ONLY
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_TV_REMOTE_AS_JOYSTICK
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_ALLOW_SCREENSAVER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_DOUBLE_BUFFER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_DRIVER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_EGL_ALLOW_GETDISPLAY_FALLBACK
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_FORCE_EGL
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_MAC_FULLSCREEN_SPACES
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_MINIMIZE_ON_FOCUS_LOSS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_SYNC_WINDOW_OPERATIONS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_WAYLAND_ALLOW_LIBDECOR
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_WAYLAND_EMULATE_MOUSE_WARP
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_WAYLAND_MODE_EMULATION
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_WAYLAND_MODE_SCALING
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_WAYLAND_PREFER_LIBDECOR
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_WAYLAND_SCALE_TO_DISPLAY
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_WIN_D3DCOMPILER
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_X11_NET_WM_BYPASS_COMPOSITOR
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_X11_NET_WM_PING
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_X11_SCALING_FACTOR
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_X11_WINDOW_VISUALID
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VIDEO_X11_XRANDR
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_VITA_TOUCH_MOUSE_DEVICE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WAVE_FACT_CHUNK
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WAVE_RIFF_CHUNK_SIZE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WAVE_TRUNCATION
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINDOW_ACTIVATE_WHEN_RAISED
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINDOW_ACTIVATE_WHEN_SHOWN
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINDOW_ALLOW_TOPMOST
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINDOW_FRAME_USABLE_WHILE_CURSOR_HIDDEN
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINDOWS_CLOSE_ON_ALT_F4
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINDOWS_ENABLE_MENU_MNEMONICS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINDOWS_ENABLE_MESSAGELOOP
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINDOWS_FORCE_MUTEX_CRITICAL_SECTIONS
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINDOWS_FORCE_SEMAPHORE_KERNEL
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINDOWS_INTRESOURCE_ICON
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINDOWS_RAW_KEYBOARD
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINDOWS_USE_D3D9EX
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINRT_HANDLE_BACK_BUTTON
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINRT_PRIVACY_POLICY_LABEL
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_WINRT_PRIVACY_POLICY_URL
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_X11_FORCE_OVERRIDE_REDIRECT
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_X11_WINDOW_TYPE
	Header File
	Syntax
	Remarks
	Version

	SDL_HINT_XINPUT_ENABLED
	Header File
	Syntax
	Remarks
	Version

	SDL_JOYSTICK_AXIS_MAX
	Header File
	Syntax
	Version
	See Also

	SDL_JOYSTICK_AXIS_MIN
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_MAIN_USE_CALLBACKS
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_MAX_SINT16
	Header File
	Syntax
	Version

	SDL_MAX_SINT32
	Header File
	Syntax
	Version

	SDL_MAX_SINT64
	Header File
	Syntax
	Version

	SDL_MAX_SINT8
	Header File
	Syntax
	Version

	SDL_MAX_TIME
	Header File
	Syntax
	Remarks
	Version

	SDL_MAX_UINT16
	Header File
	Syntax
	Version

	SDL_MAX_UINT32
	Header File
	Syntax
	Version

	SDL_MAX_UINT64
	Header File
	Syntax
	Version

	SDL_MAX_UINT8
	Header File
	Syntax
	Version

	SDL_MIX_MAXVOLUME
	Header File
	Syntax
	Version

	SDL_MUSTLOCK
	Header File
	Syntax
	Version

	SDL_MUTEX_TIMEDOUT
	Header File
	Syntax
	Remarks
	Version

	SDL_PROP_GLOBAL_SYSTEM_DATE_FORMAT_NUMBER
	Header File
	Syntax
	Version
	See Also

	SDL_PROP_GLOBAL_SYSTEM_TIME_FORMAT_NUMBER
	Header File
	Syntax
	Version
	See Also

	SDL_PROP_GLOBAL_VIDEO_WAYLAND_WL_DISPLAY_POINTER
	Header File
	Syntax
	Remarks

	SDL_REVISION
	Header File
	Syntax
	Remarks
	Version

	SDL_SOFTWARE_RENDERER
	Header File
	Syntax
	Version

	SDL_STANDARD_GRAVITY
	Header File
	Syntax
	Remarks
	Version

	SDL_STRINGIFY_ARG
	Header File
	Syntax
	Remarks
	Version

	SDL_SwapBE16
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_SwapBE32
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_SwapBE64
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_SwapFloatBE
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_SwapFloatLE
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_SwapLE16
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_SwapLE32
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_SwapLE64
	Header File
	Syntax
	Return Value
	Remarks
	Version

	SDL_TriggerBreakpoint
	Header File
	Syntax
	Remarks
	Thread Safety
	Version

	SDL_TRUE
	Header File
	Syntax
	Version
	See Also

	SDL_VERSION
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_VERSION_ATLEAST
	Header File
	Syntax
	Version

	SDL_VERSIONNUM
	Header File
	Syntax
	Remarks
	Version

	SDL_WINDOWPOS_CENTERED_MASK
	Header File
	Syntax
	Version

	SDL_WINDOWPOS_UNDEFINED_MASK
	Header File
	Syntax
	Version

	SDL Datatypes
	SDL_AssertData
	Header File
	Syntax
	Remarks
	Version

	SDL_AssertionHandler
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_AssertState
	Header File
	Syntax
	Remarks
	Version

	SDL_AtomicInt
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_AudioDeviceEvent
	Header File
	Syntax
	Version

	SDL_AudioDeviceID
	Header File
	Syntax
	Remarks
	Version

	SDL_AudioFormat
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_AudioPostmixCallback
	Header File
	Syntax
	Function Parameters
	Remarks
	Thread Safety
	Version
	See Also

	SDL_AudioSpec
	Header File
	Syntax
	Version
	See Also

	SDL_AudioStream
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_AudioStreamCallback
	Header File
	Syntax
	Function Parameters
	Remarks
	Thread Safety
	Version
	See Also

	SDL_BlendFactor
	Header File
	Syntax
	Remarks
	Version

	SDL_BlendMode
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_BlendOperation
	Header File
	Syntax
	Version

	SDL_BlitMap
	Header File
	Syntax
	Remarks
	Version

	SDL_bool
	Header File
	Syntax
	Version
	See Also

	SDL_Camera
	Header File
	Syntax
	Version

	SDL_CameraDeviceEvent
	Header File
	Syntax
	Version

	SDL_CameraDeviceID
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_CameraPosition
	Header File
	Syntax
	Version
	See Also

	SDL_CameraSpec
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_ChromaLocation
	Header File
	Syntax
	Version

	SDL_ClipboardCleanupCallback
	Header File
	Syntax
	Function Parameters
	Version
	See Also

	SDL_ClipboardDataCallback
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Version
	See Also

	SDL_ClipboardEvent
	Header File
	Syntax
	Version

	SDL_Color
	Header File
	Syntax
	Remarks
	Version

	SDL_ColorPrimaries
	Header File
	Syntax
	Version

	SDL_ColorRange
	Header File
	Syntax
	Version

	SDL_ColorType
	Header File
	Syntax
	Version

	SDL_CommonEvent
	Header File
	Syntax
	Version

	SDL_Condition
	Header File
	Syntax
	Remarks
	Version

	SDL_DateFormat
	Header File
	Syntax
	Version
	See Also

	SDL_DateTime
	Header File
	Syntax
	Version

	SDL_DialogFileCallback
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_DialogFileFilter
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_DisplayEvent
	Header File
	Syntax
	Version

	SDL_DisplayMode
	Header File
	Syntax
	Version
	See Also

	SDL_DisplayOrientation
	Header File
	Syntax
	Version

	SDL_DropEvent
	Header File
	Syntax
	Remarks
	Version

	SDL_EGLAttribArrayCallback
	Header File
	Syntax
	Version

	SDL_EGLDisplay
	Header File
	Syntax
	Version

	SDL_Event
	Header File
	Syntax
	Version

	SDL_EventFilter
	Header File
	Syntax
	Function Parameters
	Return Value
	Thread Safety
	Version
	See Also

	SDL_EventType
	Header File
	Syntax
	Version

	SDL_FColor
	Header File
	Syntax
	Version

	SDL_Finger
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_FlashOperation
	Header File
	Syntax
	Version

	SDL_FlipMode
	Header File
	Syntax
	Version

	SDL_Folder
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_FPoint
	Header File
	Syntax
	Version
	See Also

	SDL_FRect
	Header File
	Syntax
	Version
	See Also

	SDL_Gamepad
	Header File
	Syntax
	Version

	SDL_GamepadAxis
	Header File
	Syntax
	Remarks
	Version

	SDL_GamepadAxisEvent
	Header File
	Syntax
	Version

	SDL_GamepadBinding
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_GamepadBindingType
	Header File
	Syntax
	Remarks
	Version

	SDL_GamepadButton
	Header File
	Syntax
	Remarks
	Version

	SDL_GamepadButtonEvent
	Header File
	Syntax
	Version

	SDL_GamepadButtonLabel
	Header File
	Syntax
	Remarks
	Version

	SDL_GamepadDeviceEvent
	Header File
	Syntax
	Version

	SDL_GamepadSensorEvent
	Header File
	Syntax
	Version

	SDL_GamepadTouchpadEvent
	Header File
	Syntax
	Version

	SDL_GamepadType
	Header File
	Syntax
	Remarks

	SDL_GLattr
	Header File
	Syntax
	Remarks
	Version

	SDL_GLContext
	Header File
	Syntax
	Version

	SDL_GLcontextFlag
	Header File
	Syntax
	Version

	SDL_GLcontextReleaseFlag
	Header File
	Syntax
	Version

	SDL_GLContextResetNotification
	Header File
	Syntax
	Version

	SDL_GLprofile
	Header File
	Syntax
	Version

	SDL_GUID
	Header File
	Syntax
	Remarks
	Version

	SDL_HapticCondition
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HapticConstant
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HapticCustom
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HapticDirection
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HapticEffect
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HapticID
	Header File
	Syntax
	Remarks
	Version

	SDL_HapticLeftRight
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HapticPeriodic
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_HapticRamp
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_hid_bus_type
	Header File
	Syntax
	Version

	SDL_hid_device
	Header File
	Syntax
	Version

	SDL_hid_device_info
	Header File
	Syntax
	Version

	SDL_HintCallback
	Header File
	Syntax
	Function Parameters
	Version

	SDL_HintPriority
	Header File
	Syntax
	Version

	SDL_HitTest
	Header File
	Syntax
	Function Parameters
	Return Value
	See Also

	SDL_HitTestResult
	Header File
	Syntax
	Version
	See Also

	SDL_InitFlags
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_IOStream
	Header File
	Syntax
	Remarks
	Version

	SDL_IOStreamInterface
	Header File
	Syntax
	Remarks
	Version

	SDL_JoyAxisEvent
	Header File
	Syntax
	Version

	SDL_JoyBallEvent
	Header File
	Syntax
	Version

	SDL_JoyBatteryEvent
	Header File
	Syntax
	Version

	SDL_JoyButtonEvent
	Header File
	Syntax
	Version

	SDL_JoyDeviceEvent
	Header File
	Syntax
	Version

	SDL_JoyHatEvent
	Header File
	Syntax
	Version

	SDL_Joystick
	Header File
	Syntax
	Remarks
	Version

	SDL_JoystickConnectionState
	Header File
	Syntax
	Remarks
	Version

	SDL_JoystickGUID
	Header File
	Syntax
	Remarks
	Version

	SDL_JoystickID
	Header File
	Syntax
	Remarks
	Version

	SDL_JoystickType
	Header File
	Syntax
	Remarks
	Version

	SDL_KeyboardDeviceEvent
	Header File
	Syntax
	Version

	SDL_KeyboardEvent
	Header File
	Syntax
	Version

	SDL_KeyboardID
	Header File
	Syntax
	Remarks
	Version

	SDL_Keycode
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_Keymod
	Header File
	Syntax
	Version

	SDL_Keysym
	Header File
	Syntax
	Remarks
	Version

	SDL_Locale
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_LogCategory
	Header File
	Syntax
	Remarks
	Version

	SDL_LogOutputFunction
	Header File
	Syntax
	Function Parameters
	Remarks
	Version

	SDL_LogPriority
	Header File
	Syntax
	Version

	SDL_main_func
	Header File
	Syntax
	Version

	SDL_MatrixCoefficients
	Header File
	Syntax
	Remarks
	Version

	SDL_MessageBoxButtonData
	Header File
	Syntax
	Version

	SDL_MessageBoxButtonFlags
	Header File
	Syntax
	Version

	SDL_MessageBoxColor
	Header File
	Syntax
	Version

	SDL_MessageBoxColorScheme
	Header File
	Syntax
	Version

	SDL_MessageBoxColorType
	Header File
	Syntax

	SDL_MessageBoxData
	Header File
	Syntax
	Version

	SDL_MessageBoxFlags
	Header File
	Syntax
	Remarks
	Version

	SDL_MetalView
	Header File
	Syntax
	Version

	SDL_MouseButtonEvent
	Header File
	Syntax
	Version

	SDL_MouseDeviceEvent
	Header File
	Syntax
	Version

	SDL_MouseMotionEvent
	Header File
	Syntax
	Version

	SDL_MouseWheelDirection
	Header File
	Syntax
	Version

	SDL_MouseWheelEvent
	Header File
	Syntax
	Version

	SDL_Mutex
	Header File
	Syntax
	Remarks
	Version

	SDL_Palette
	Header File
	Syntax
	Version
	See Also

	SDL_PenAxis
	Header File
	Syntax
	Remarks
	Version

	SDL_PenButtonEvent
	Header File
	Syntax
	Version

	SDL_PenCapabilityInfo
	Header File
	Syntax
	Version

	SDL_PenMotionEvent
	Header File
	Syntax
	Version

	SDL_PenSubtype
	Header File
	Syntax
	Remarks
	Version

	SDL_PenTipEvent
	Header File
	Syntax
	Version

	SDL_PixelFormat
	Header File
	Syntax
	Remarks
	Version

	SDL_Point
	Header File
	Syntax
	Version
	See Also

	SDL_PowerState
	Header File
	Syntax
	Remarks
	Code Examples
	Version

	SDL_PropertiesID
	Header File
	Syntax
	Version

	SDL_PropertyType
	Header File
	Syntax
	Version

	SDL_QuitEvent
	Header File
	Syntax
	Version

	SDL_Rect
	Header File
	Syntax
	Version
	See Also

	SDL_Renderer
	Header File
	Syntax
	Version

	SDL_RendererFlags
	Header File
	Syntax
	Version

	SDL_RendererInfo
	Header File
	Syntax
	Version

	SDL_RendererLogicalPresentation
	Header File
	Syntax
	Version

	SDL_RWLock
	Header File
	Syntax
	Remarks
	Version

	SDL_ScaleMode
	Header File
	Syntax
	Version

	SDL_Scancode
	Header File
	Syntax
	Remarks
	Version

	SDL_Semaphore
	Header File
	Syntax
	Remarks
	Version

	SDL_SensorEvent
	Header File
	Syntax
	Version

	SDL_SensorID
	Header File
	Syntax
	Remarks
	Version

	SDL_SensorType
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_SpinLock
	Header File
	Syntax
	Remarks

	SDL_Storage
	Header File
	Syntax
	Remarks
	Version

	SDL_StorageInterface
	Header File
	Syntax
	Remarks
	Version

	SDL_Surface
	Header File
	Syntax
	Remarks
	Version

	SDL_SystemCursor
	Header File
	Syntax
	Version

	SDL_SystemTheme
	Header File
	Syntax
	Version

	SDL_TextEditingEvent
	Header File
	Syntax
	Remarks
	Version

	SDL_TextInputEvent
	Header File
	Syntax
	Remarks
	Version

	SDL_Texture
	Header File
	Syntax
	Version

	SDL_TextureAccess
	Header File
	Syntax
	Version

	SDL_ThreadFunction
	Header File
	Syntax
	Function Parameters
	Return Value
	Version

	SDL_ThreadPriority
	Header File
	Syntax
	Remarks
	Version

	SDL_TimeFormat
	Header File
	Syntax
	Version
	See Also

	SDL_TimerCallback
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Thread Safety
	Version
	See Also

	SDL_TimerID
	Header File
	Syntax
	Version

	SDL_TouchFingerEvent
	Header File
	Syntax
	Version

	SDL_TransferCharacteristics
	Header File
	Syntax
	Remarks
	Version

	SDL_UserEvent
	Header File
	Syntax
	Remarks
	Code Examples
	Version

	SDL_Version
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_Vertex
	Header File
	Syntax
	Version

	SDL_VirtualJoystickDesc
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_Window
	Header File
	Syntax
	Version
	See Also

	SDL_WindowEvent
	Header File
	Syntax
	Version

	SDL_WindowFlags
	Header File
	Syntax
	Remarks
	Version
	See Also

	SDL_WindowsMessageHook
	Header File
	Syntax
	Function Parameters
	Return Value
	Remarks
	Code Examples
	Thread Safety
	Version
	See Also

	SDL_WinRT_DeviceFamily
	Header File
	Syntax
	Version

	SDL_WinRT_Path
	Header File
	Syntax
	Version

