|
|
@@ -0,0 +1,271 @@ |
|
|
/* MD5 for GNU make |
|
|
|
|
|
This file is part of GNU Make. |
|
|
|
|
|
GNU Make is free software; you can redistribute it and/or modify it under the |
|
|
terms of the GNU General Public License as published by the Free Software |
|
|
Foundation; either version 3 of the License, or (at your option) any later |
|
|
version. |
|
|
|
|
|
GNU Make is distributed in the hope that it will be useful, but WITHOUT ANY |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
|
|
A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
|
|
|
|
|
You should have received a copy of the GNU General Public License along with |
|
|
this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
|
|
|
Orignal C++ code from Aaron Ucko / NCBI(National Center for Biotechnology Information) /Public Domain |
|
|
Converted back to C by Pierre Lindenbaum |
|
|
|
|
|
*/ |
|
|
#include <stdlib.h> |
|
|
#include <stdio.h> |
|
|
#include <stdint.h> |
|
|
#include <string.h> |
|
|
#include "makeint.h" |
|
|
#include "md5.h" |
|
|
|
|
|
|
|
|
|
|
|
#ifdef __BIG_ENDIAN__ |
|
|
static void s_ByteReverse(unsigned char* buf, size_t longs) |
|
|
{ |
|
|
uint32_t t; |
|
|
do { |
|
|
t = (uint32_t ) ((unsigned) buf[3] << 8 | buf[2]) << 16 | |
|
|
((unsigned) buf[1] << 8 | buf[0]); |
|
|
*((uint32_t*)(buf)) = t; |
|
|
buf += 4; |
|
|
} while (--longs); |
|
|
} |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
// The four core functions - F1 is optimized somewhat |
|
|
|
|
|
// #define F1(x, y, z) (x & y | ~x & z) |
|
|
#define F1(x, y, z) (z ^ (x & (y ^ z))) |
|
|
#define F2(x, y, z) ((z & x) | (~z & y)) |
|
|
#define F3(x, y, z) (x ^ (y ^ z)) |
|
|
#define F4(x, y, z) (y ^ (x | ~z)) |
|
|
|
|
|
// This is the central step in the MD5 algorithm. |
|
|
#define MD5STEP(f, w, x, y, z, data, s) \ |
|
|
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) |
|
|
|
|
|
// The core of the MD5 algorithm, this alters an existing MD5 hash to |
|
|
// reflect the addition of 16 longwords of new data. MD5Update blocks |
|
|
// the data and converts bytes into longwords for this routine. |
|
|
static |
|
|
void CMD5Transform(CMD5* ptr) |
|
|
{ |
|
|
uint32_t a, b, c, d; |
|
|
uint32_t* inw = (uint32_t*)(ptr->m_In); |
|
|
|
|
|
a = ptr->m_Buf[0]; |
|
|
b = ptr->m_Buf[1]; |
|
|
c = ptr->m_Buf[2]; |
|
|
d = ptr->m_Buf[3]; |
|
|
|
|
|
MD5STEP(F1, a, b, c, d, inw[0] + 0xd76aa478, 7); |
|
|
MD5STEP(F1, d, a, b, c, inw[1] + 0xe8c7b756, 12); |
|
|
MD5STEP(F1, c, d, a, b, inw[2] + 0x242070db, 17); |
|
|
MD5STEP(F1, b, c, d, a, inw[3] + 0xc1bdceee, 22); |
|
|
MD5STEP(F1, a, b, c, d, inw[4] + 0xf57c0faf, 7); |
|
|
MD5STEP(F1, d, a, b, c, inw[5] + 0x4787c62a, 12); |
|
|
MD5STEP(F1, c, d, a, b, inw[6] + 0xa8304613, 17); |
|
|
MD5STEP(F1, b, c, d, a, inw[7] + 0xfd469501, 22); |
|
|
MD5STEP(F1, a, b, c, d, inw[8] + 0x698098d8, 7); |
|
|
MD5STEP(F1, d, a, b, c, inw[9] + 0x8b44f7af, 12); |
|
|
MD5STEP(F1, c, d, a, b, inw[10] + 0xffff5bb1, 17); |
|
|
MD5STEP(F1, b, c, d, a, inw[11] + 0x895cd7be, 22); |
|
|
MD5STEP(F1, a, b, c, d, inw[12] + 0x6b901122, 7); |
|
|
MD5STEP(F1, d, a, b, c, inw[13] + 0xfd987193, 12); |
|
|
MD5STEP(F1, c, d, a, b, inw[14] + 0xa679438e, 17); |
|
|
MD5STEP(F1, b, c, d, a, inw[15] + 0x49b40821, 22); |
|
|
|
|
|
MD5STEP(F2, a, b, c, d, inw[1] + 0xf61e2562, 5); |
|
|
MD5STEP(F2, d, a, b, c, inw[6] + 0xc040b340, 9); |
|
|
MD5STEP(F2, c, d, a, b, inw[11] + 0x265e5a51, 14); |
|
|
MD5STEP(F2, b, c, d, a, inw[0] + 0xe9b6c7aa, 20); |
|
|
MD5STEP(F2, a, b, c, d, inw[5] + 0xd62f105d, 5); |
|
|
MD5STEP(F2, d, a, b, c, inw[10] + 0x02441453, 9); |
|
|
MD5STEP(F2, c, d, a, b, inw[15] + 0xd8a1e681, 14); |
|
|
MD5STEP(F2, b, c, d, a, inw[4] + 0xe7d3fbc8, 20); |
|
|
MD5STEP(F2, a, b, c, d, inw[9] + 0x21e1cde6, 5); |
|
|
MD5STEP(F2, d, a, b, c, inw[14] + 0xc33707d6, 9); |
|
|
MD5STEP(F2, c, d, a, b, inw[3] + 0xf4d50d87, 14); |
|
|
MD5STEP(F2, b, c, d, a, inw[8] + 0x455a14ed, 20); |
|
|
MD5STEP(F2, a, b, c, d, inw[13] + 0xa9e3e905, 5); |
|
|
MD5STEP(F2, d, a, b, c, inw[2] + 0xfcefa3f8, 9); |
|
|
MD5STEP(F2, c, d, a, b, inw[7] + 0x676f02d9, 14); |
|
|
MD5STEP(F2, b, c, d, a, inw[12] + 0x8d2a4c8a, 20); |
|
|
|
|
|
MD5STEP(F3, a, b, c, d, inw[5] + 0xfffa3942, 4); |
|
|
MD5STEP(F3, d, a, b, c, inw[8] + 0x8771f681, 11); |
|
|
MD5STEP(F3, c, d, a, b, inw[11] + 0x6d9d6122, 16); |
|
|
MD5STEP(F3, b, c, d, a, inw[14] + 0xfde5380c, 23); |
|
|
MD5STEP(F3, a, b, c, d, inw[1] + 0xa4beea44, 4); |
|
|
MD5STEP(F3, d, a, b, c, inw[4] + 0x4bdecfa9, 11); |
|
|
MD5STEP(F3, c, d, a, b, inw[7] + 0xf6bb4b60, 16); |
|
|
MD5STEP(F3, b, c, d, a, inw[10] + 0xbebfbc70, 23); |
|
|
MD5STEP(F3, a, b, c, d, inw[13] + 0x289b7ec6, 4); |
|
|
MD5STEP(F3, d, a, b, c, inw[0] + 0xeaa127fa, 11); |
|
|
MD5STEP(F3, c, d, a, b, inw[3] + 0xd4ef3085, 16); |
|
|
MD5STEP(F3, b, c, d, a, inw[6] + 0x04881d05, 23); |
|
|
MD5STEP(F3, a, b, c, d, inw[9] + 0xd9d4d039, 4); |
|
|
MD5STEP(F3, d, a, b, c, inw[12] + 0xe6db99e5, 11); |
|
|
MD5STEP(F3, c, d, a, b, inw[15] + 0x1fa27cf8, 16); |
|
|
MD5STEP(F3, b, c, d, a, inw[2] + 0xc4ac5665, 23); |
|
|
|
|
|
MD5STEP(F4, a, b, c, d, inw[0] + 0xf4292244, 6); |
|
|
MD5STEP(F4, d, a, b, c, inw[7] + 0x432aff97, 10); |
|
|
MD5STEP(F4, c, d, a, b, inw[14] + 0xab9423a7, 15); |
|
|
MD5STEP(F4, b, c, d, a, inw[5] + 0xfc93a039, 21); |
|
|
MD5STEP(F4, a, b, c, d, inw[12] + 0x655b59c3, 6); |
|
|
MD5STEP(F4, d, a, b, c, inw[3] + 0x8f0ccc92, 10); |
|
|
MD5STEP(F4, c, d, a, b, inw[10] + 0xffeff47d, 15); |
|
|
MD5STEP(F4, b, c, d, a, inw[1] + 0x85845dd1, 21); |
|
|
MD5STEP(F4, a, b, c, d, inw[8] + 0x6fa87e4f, 6); |
|
|
MD5STEP(F4, d, a, b, c, inw[15] + 0xfe2ce6e0, 10); |
|
|
MD5STEP(F4, c, d, a, b, inw[6] + 0xa3014314, 15); |
|
|
MD5STEP(F4, b, c, d, a, inw[13] + 0x4e0811a1, 21); |
|
|
MD5STEP(F4, a, b, c, d, inw[4] + 0xf7537e82, 6); |
|
|
MD5STEP(F4, d, a, b, c, inw[11] + 0xbd3af235, 10); |
|
|
MD5STEP(F4, c, d, a, b, inw[2] + 0x2ad7d2bb, 15); |
|
|
MD5STEP(F4, b, c, d, a, inw[9] + 0xeb86d391, 21); |
|
|
|
|
|
ptr->m_Buf[0] += a; |
|
|
ptr->m_Buf[1] += b; |
|
|
ptr->m_Buf[2] += c; |
|
|
ptr->m_Buf[3] += d; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
|
|
// initialization constants. |
|
|
CMD5* CMD5New(void) |
|
|
{ |
|
|
CMD5* p = (CMD5*)xmalloc(sizeof(CMD5)); |
|
|
p->m_Bits = 0; |
|
|
p->m_Buf[0] = 0x67452301; |
|
|
p->m_Buf[1] = 0xefcdab89; |
|
|
p->m_Buf[2] = 0x98badcfe; |
|
|
p->m_Buf[3] = 0x10325476; |
|
|
p->m_Finalized = 0; |
|
|
return p; |
|
|
} |
|
|
|
|
|
|
|
|
// Update state to reflect the concatenation of another buffer full of bytes. |
|
|
void CMD5Update(CMD5* ptr,const char* buf, size_t length) |
|
|
{ |
|
|
unsigned int tmp; |
|
|
if ( ptr->m_Finalized ) |
|
|
{ |
|
|
O (fatal, NILF, _("attempt to update a finalized MD5 instance")); |
|
|
} |
|
|
|
|
|
// Number of leftover bytes in m_In |
|
|
tmp = (unsigned int)((ptr->m_Bits >> 3) % (sizeof(ptr->m_In)) ); |
|
|
|
|
|
// Update bit count |
|
|
ptr->m_Bits += length << 3; |
|
|
|
|
|
// Handle any leading odd-sized chunks |
|
|
if ( tmp ) |
|
|
{ |
|
|
unsigned char* p = ptr->m_In + tmp; |
|
|
|
|
|
tmp = kBlockSize - tmp; |
|
|
if (length < tmp) |
|
|
{ |
|
|
memcpy(p, buf, length); |
|
|
return; |
|
|
} |
|
|
memcpy(p, buf, tmp); |
|
|
#ifdef __BIG_ENDIAN__ |
|
|
s_ByteReverse(ptr->m_In, 16); |
|
|
#endif |
|
|
CMD5Transform(ptr); |
|
|
buf += tmp; |
|
|
length -= tmp; |
|
|
} |
|
|
|
|
|
// Process remaining data in kBlockSize-byte chunks |
|
|
while (length >= kBlockSize) |
|
|
{ |
|
|
memcpy(ptr->m_In, buf, kBlockSize); |
|
|
#ifdef __BIG_ENDIAN__ |
|
|
s_ByteReversep->(ptr->m_In, 16); |
|
|
#endif |
|
|
CMD5Transform(ptr); |
|
|
buf += kBlockSize; |
|
|
length -= kBlockSize; |
|
|
} |
|
|
|
|
|
// Handle any remaining bytes of data |
|
|
memcpy(ptr->m_In, buf, length); |
|
|
} |
|
|
|
|
|
|
|
|
// Final wrapup - pad to kBlockSize-byte boundary with the bit pattern |
|
|
// 1 0* (64-bit count of bits processed, MSB-first). |
|
|
void CMD5Finalize(CMD5* ptr,unsigned char digest[16]) |
|
|
{ |
|
|
int count; |
|
|
unsigned char *p; |
|
|
if ( ptr->m_Finalized ) |
|
|
{ |
|
|
memcpy(digest, ptr->m_Buf, 16); |
|
|
return; |
|
|
} |
|
|
|
|
|
// Compute number of bytes mod kBlockSize |
|
|
count = (int)((ptr->m_Bits >> 3) % kBlockSize); |
|
|
|
|
|
// Set the first char of padding to 0x80. This is safe since there is |
|
|
// always at least one byte free. |
|
|
p = ptr->m_In + count; |
|
|
*p++ = 0x80; |
|
|
|
|
|
// Bytes of padding needed to make kBlockSize bytes |
|
|
count = kBlockSize - 1 - count; |
|
|
|
|
|
// Pad out to 56 mod kBlockSize |
|
|
if (count < 8) |
|
|
{ |
|
|
// Two lots of padding: Pad the first block to kBlockSize bytes |
|
|
memset(p, 0, count); |
|
|
#ifdef __BIG_ENDIAN__ |
|
|
s_ByteReverse(ptr->m_In, 16); |
|
|
#endif |
|
|
CMD5Transform(ptr); |
|
|
|
|
|
// Now fill the next block with 56 bytes |
|
|
memset(ptr->m_In, 0, kBlockSize - 8); |
|
|
} |
|
|
else |
|
|
{ |
|
|
// Pad block to 56 bytes |
|
|
memset(p, 0, count - 8); |
|
|
#ifdef __BIG_ENDIAN__ |
|
|
s_ByteReverse(ptr->m_In, 14); |
|
|
#endif |
|
|
} |
|
|
|
|
|
// Append length in bits and transform |
|
|
((uint32_t*)ptr->m_In)[14] = (uint32_t)(ptr->m_Bits); |
|
|
((uint32_t*)ptr->m_In)[15] = (uint32_t)(ptr->m_Bits >> 32); |
|
|
|
|
|
CMD5Transform(ptr); |
|
|
#ifdef __BIG_ENDIAN__ |
|
|
s_ByteReverse((unsigned char*)(ptr->m_Buf), 4); |
|
|
#endif |
|
|
memcpy(digest, ptr->m_Buf, 16); |
|
|
memset(ptr->m_In, 0, kBlockSize); // may be sensitive |
|
|
ptr->m_Finalized = 1; |
|
|
} |
|
|
|