
Liquality Integration Guide

This is a quick guide that describes all steps that are needed when a new chain is integrated in liquality
ecosystem. In the last section will be described some chain specific issues that are important for all
developers using this guide.

Step I. Integration in Chain Abstraction Layer

Chain abstraction layer (CAL) is a monorepo that holds sdk like modules that expose a
common interface and a bridge between Wallet and Atomic Agent and the blockchain
itself. Here is the link to CAL repository:
https://github.com/liquality/chainabstractionlayer

Every new blockchain should implement its packages in chain abstraction layer in
packages folder: https://github.com/liquality/chainabstractionlayer/tree/dev/packages

● [Chain-Name]-js-wallet-provider - holds key management and signing
● [Chain-Name]-network - holds different networks for a given chain e.g testnet,

mainnet, etc.
● [Chain-Name]-rpc-provider - logic for rpc connection with the given blockchain
●
● [Chain-Name]-near-swap-find-provider - it is used to fetch data about the given

account and its transaction and swaps
● [Chain-Name]-swap-provider - implements main logic for create/withdraw/refund

swap/order using HTLC contracts
● [Chain-Name]-utils - a helper module that holds some utility functions in order to

support the other modules
● [Chain-Name]-rpc-fee-provider - a module that computes and returns current gas

price needed for the transaction

This is the bare minimum that is required in order for a new chain to be integrated in
liquality ecosystem (there are some exceptions if we are integrating evm compatible
blockchain similar to Ethereum)

https://github.com/liquality/chainabstractionlayer
https://github.com/liquality/chainabstractionlayer/tree/dev/packages

Step II. Integration in Cryptoassets

Liquality cryptoassets is a package that stores general information for all
supported blockchain in the ecosystem, their symbols, and decimals.
https://github.com/liquality/cryptoassets/

New chains should be imported in the json file stored here:
https://github.com/liquality/cryptoassets/blob/master/src/assets/network.js

Step III. Integration in Wallet

Liquality wallet is a browser extension that is written in vuejs. It is super useful and easy
to use and anyone can download it freely on chrome web store.
https://github.com/liquality/wallet

Adding new token in wallet is relatively simple:
● Add an svg for the new chain here: src/assets/icons/assets/[chain-name].svg
● Add the symbol of the new chain here: src/build.config.js
● Add a provider of the new chain here: src/contentScript.js
● Add new provider following the logic for the other chains here: src/inject.js
● Add all implemented providers for the given chain in step 1 (Chain Abstraction

Layer) in the factory: src/store/factory/client.js
● Add the Symbol of the new chain in the getters: src/store/getters.js
● Add all supported networks for the given chain: src/utils/asset.js
● Add some fixed fee values if available: src/utils/fees.js
● Add faucet url if available: src/views/Receive.vue

Step IV. Integration in Atomic Agent

Atomic Agent is a piece of code that works as an automated
market-making software. When someone is using the Wallet extension
he/she is swapping/trading agents Atomic Agent instances.
https://github.com/liquality/atomicagent

https://github.com/liquality/cryptoassets/blob/master/src/assets/network.js
https://github.com/liquality/cryptoassets/blob/master/src/assets/network.js
https://github.com/liquality/wallet
https://github.com/liquality/atomicagent

These are the files that should be changed for the integration:
● Add the Symbol and decimals of the new chain

src/migrate/data/assets.json
● Add new trading pairs including the new coin/token and put initial

rates here: src/migrate/data/markets.json
● Add all providers for the given chain from Chain Abstraction Layer:

src/utils/clients.js
● Add example configuration in ./config.toml file

Step V. Integration in Ethereum Scraper

Ethereum scrapper is a service that fetches all blocks for a given blockchain and stores
this data in a database in order to give to atomic agent and wallet quick access.
https://github.com/liquality/ethereum-scraper

Some chains require such kind of scrapper but others do not.
If the chain is Ethereum like the only change that should be done is inside
https://github.com/liquality/ethereum-scraper .env file

VI. Blockchain Specific
VI.1 Bitcoin Specifics

● Bitcoin transaction fees can be computed in deterministic manner and

they are subtracted from the transaction value
● Uses Bitcoin Script as a simple smart contract language

(Non-turing-complete)
● Blocktime ~ 10 minutes, Decimals: 8

VI.2 Ethereum Specifics

● Ethereum transactions fees are dynamic and should be updated on
every transaction

● Uses solidity as a smart contract language

https://github.com/liquality/ethereum-scraper
https://github.com/liquality/ethereum-scraper

● Blocktime ~ 13 sec, Decimals: 18

VI.3 Near Specifics

● Near accounts should be funded in order to exist on the blockchain
● Near transaction fees can be computed in deterministic manner and

they are subtracted from the transaction value similar to Bitcoin
● Uses Asembly Script as a smart contract language
● Blocktime: ~ 1s, Decimals: 24

VI.4 Ethereum like chains specifics

● Ethereum like chains e.g RSK, BSC can use all Ethereum providers

from CAL without providing their own

